ADP7142ACPZN1.8-R7 [ADI]

40 V, 200 mA, Low Noise, CMOS LDO Linear Regulator;
ADP7142ACPZN1.8-R7
型号: ADP7142ACPZN1.8-R7
厂家: ADI    ADI
描述:

40 V, 200 mA, Low Noise, CMOS LDO Linear Regulator

文件: 总23页 (文件大小:1109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
40 V, 200 mA, Low Noise,  
CMOS LDO Linear Regulator  
ADP7142  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
Low noise: 11 μV rms independent of fixed output voltage  
PSRR of 88 dB at 10 kHz, 68 dB at 100 kHz, 50 dB at 1 MHz,  
ADP7142  
V
= 6V  
V
= 5V  
OUT  
IN  
VIN  
VOUT  
C
C
OUT  
2.2µF  
VOUT ≤ 5 V, VIN = 7 V  
IN  
2.2µF  
Input voltage range: 2.7 V to 40 V  
Maximum output current: 200 mA  
Initial accuracy: 0.8ꢀ  
Accuracy over line, load, and temperature  
−1.2ꢀ to +1.5ꢀ, TJ = −40°C to +85°C  
1.8ꢀ, TJ = −40°C to +125°C  
SENSE/ADJ  
ON  
EN  
SS  
C
1nF  
GND  
SS  
OFF  
Figure 1. ADP7142 with Fixed Output Voltage, 5 V  
Low dropout voltage: 200 mV (typical) at a 200 mA load,  
ADP7142  
V
= 7V  
V
= 6V  
IN  
OUT  
VOUT = 5 V  
VIN  
VOUT  
C
C
OUT  
2.2µF  
User programmable soft start (LFCSP and SOIC only)  
Low quiescent current, IGND = 50 ꢁA (typical) with no load  
Low shutdown current: 1.8 ꢁA at VIN = 5 V, 3.0 ꢁA at VIN = 40 V  
Stable with a small 2.2 μF ceramic output capacitor  
Fixed output voltage options: 1.8 V, 2.5 V, 3.3 V, 3.8 V, and 5.0 V  
15 standard voltages between 1.2 V and 5.0 V are  
available  
IN  
2kΩ  
2.2µF  
SENSE/ADJ  
10kΩ  
ON  
EN  
SS  
C
GND  
SS  
1nF  
OFF  
Figure 2. ADP7142 with 5 V Output Adjusted to 6 V  
Adjustable output from 1.2 V to VIN – VDO, output can be  
adjusted above initial set point  
Precision enable  
2 mm × 2 mm, 6-lead LFCSP, 8-Lead SOIC, 5-Lead TSOT  
Supported by ADIsimPower tool  
APPLICATIONS  
Regulation to noise sensitive applications  
ADC, DAC circuits, precision amplifiers, power for  
VCO VTUNE control  
Communications and infrastructure  
Medical and healthcare  
Industrial and instrumentation  
(adjustable), 1.8 V, 2.5 V, 3.3 V, 3.8 V, and 5.0 V. Additional  
voltages available by special order are 1.5 V, 1.85 V, 2.0 V, 2.2 V,  
2.75 V, 2.8 V, 2.85 V, 4.2 V, and 4.6 V.  
GENERAL DESCRIPTION  
The ADP7142 is a CMOS, low dropout (LDO) linear regulator  
that operates from 2.7 V to 40 V and provides up to 200 mA of  
output current. This high input voltage LDO is ideal for the  
regulation of high performance analog and mixed signal  
circuits operating from 39 V down to 1.2 V rails. Using an  
advanced proprietary architecture, the device provides high  
power supply rejection, low noise, and achieves excellent line and  
load transient response with a small 2.2 μF ceramic output  
capacitor. The ADP7142 regulator output noise is 11 ꢀV rms  
independent of the output voltage for the fixed options of 5 V  
or less.  
Each fixed output voltage can be adjusted above the initial set  
point with an external feedback divider. This allows the ADP7142  
to provide an output voltage from 1.2 V to VIN − VDO with high  
PSRR and low noise.  
User programmable soft start with an external capacitor is  
available in the LFCSP and SOIC packages.  
The ADP7142 is available in a 6-lead, 2 mm × 2 mm LFCSP  
making it not only a very compact solution, but it also provides  
excellent thermal performance for applications requiring up to  
200 mA of output current in a small, low profile footprint. The  
ADP7142 is also available in a 5-lead TSOT and an 8-lead SOIC.  
The ADP7142 is available in 15 fixed output voltage options.  
The following voltages are available from stock: 1.2 V  
Rev. H  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP7142  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Applications Information ............................................................. 14  
ADIsimPower Design Tool ...................................................... 14  
Capacitor Selection .................................................................... 14  
Programable Precision Enable ................................................. 15  
Soft Start ...................................................................................... 15  
Noise Reduction of the ADP7142 in Adjustable Mode........ 16  
Effect of Noise Reduction on Start-Up Time......................... 16  
Current-Limit and Thermal Overload Protection ................ 17  
Thermal Considerations ........................................................... 17  
Printed Circuit Board Layout Considerations ........................... 20  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 23  
Applications ...................................................................................... 1  
Typical Application Circuits........................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Input and Output Capacitance, Recommended Specifications.. 4  
Absolute Maximum Ratings ........................................................... 5  
Thermal Data................................................................................ 5  
Thermal Resistance...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions........................... 6  
Typical Performance Characteristics............................................. 7  
Theory of Operation ...................................................................... 13  
REVISION HISTORY  
3/2020—Rev. G to Rev. H  
11/2017—Rev. C to Rev. D  
Changes to General Description Section ...................................... 1  
Changes to Shutdown Current Parameter, Table 1..................... 3  
Changes to Theory of Operation Section.................................... 13  
Change to Figure 50....................................................................... 16  
Changes to Current-Limit and Thermal Overload  
Changes to Ordering Guide.......................................................... 22  
Updated Outline Dimensions ...................................................... 23  
6/2016—Rev. B to Rev. C  
Changes to Figure 42 ..................................................................... 13  
Changes to Programmable Precision Enable Section and Soft  
Start Section .................................................................................... 15  
Changes to Figure 50 ..................................................................... 16  
Added Effect of Noise Reduction on Start-Up Time Section .. 16  
Protection Section .......................................................................... 17  
Changes to Table 8 and Table 9.................................................... 21  
10/2019—Rev. F to Rev. G  
Changes to Features Section and General Description Section .......1  
Changes to Ordering Guide.......................................................... 23  
4/2015—Rev. A to Rev. B  
Changes to Ordering Guide.......................................................... 23  
9/2018—Rev. E to Rev. F  
12/2014—Rev. 0 to Rev. A  
Changes to Ordering Guide.......................................................... 23  
Changes to Figure 36 to Figure 41 ............................................... 12  
Changes to Figure 44 ..................................................................... 14  
Updated Figure 67; Outline Dimensions.................................... 22  
4/2018—Rev. D to Rev. E  
Changes to Features Section ........................................................... 1  
Changes to Ordering Guide.......................................................... 23  
9/2014—Revision 0: Initial Version  
Rev. H | Page 2 of 23  
 
Data Sheet  
ADP7142  
SPECIFICATIONS  
VIN = VOUT +1 V or 2.7 V, whichever is greater, VOUT = 5 V, EN = VIN, IOUT = 10 mA, CIN = COUT = 2.2 μF, CSS = 0 pF, TA = 25°C for typical  
specifications, TJ = −40°C to +125°C for minimum/maximum specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Test Conditions/Comments  
Min  
Typ  
Max  
40  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
2.7  
IGND  
IOUT = 0 μA  
50  
80  
180  
1.8  
3.0  
140  
190  
320  
μA  
μA  
μA  
μA  
μA  
IOUT = 10 mA  
IOUT = 200 mA  
EN = GND  
SHUTDOWN CURRENT  
IGND-SD  
EN = GND, VIN = 40 V  
10  
OUTPUT VOLTAGE ACCURACY  
Output Voltage Accuracy  
VOUT  
IOUT = 10 mA, TJ = 25°C  
100 ꢀA < IOUT < 200 mA, VIN = (VOUT + 1 V) to 40 V,  
TJ = −40°C to +85°C  
–0.8  
–1.2  
+0.8  
+1.5  
%
%
100 ꢀA < IOUT < 200 mA, VIN = (VOUT + 1 V) to 40 V  
–1.8  
+1.8  
%
LINE REGULATION  
∆VOUT/∆VIN VIN = (VOUT + 1 V) to 40 V  
∆VOUT/∆IOUT IOUT = 100 ꢀA to 200 mA  
–0.01  
+0.01 %/V  
0.002 0.004 %/mA  
LOAD REGULATION1  
SENSE INPUT BIAS CURRENT  
DROPOUT VOLTAGE2  
SENSEI-BIAS  
VDROPOUT  
100 ꢀA < IOUT < 200 mA VIN = (VOUT + 1 V) to 40 V  
10  
1000  
60  
420  
nA  
mV  
mV  
μs  
IOUT = 10 mA  
IOUT = 200 mA  
VOUT = 5 V  
30  
200  
380  
1.15  
360  
START-UP TIME3  
tSTART-UP  
SSI-SOURCE  
ILIMIT  
SOFT START SOURCE CURRENT  
CURRENT-LIMIT THRESHOLD4  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
UNDERVOLTAGE THRESHOLDS  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
SS = GND  
μA  
mA  
250  
2.2  
460  
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
UVLORISE  
UVLOFALL  
UVLOHYS  
2.69  
V
V
230  
mV  
PRECISION EN INPUT  
Logic High  
Logic Low  
Logic Hysteresis  
Leakage Current  
2.7 V ≤ VIN ≤ 40 V  
ENHIGH  
ENLOW  
ENHYS  
1.15  
1.06  
1.22  
1.12  
100  
0.04  
80  
1.30  
1.18  
V
V
mV  
μA  
ꢀs  
IEN-LKG  
EN = VIN or GND  
1
Delay Time  
tEN-DLY  
OUTNOISE  
PSRR  
From EN rising from 0 V to VIN to 0.1 × VOUT  
10 Hz to 100 kHz, all output voltage options  
1 MHz, VIN = 7 V, VOUT = 5 V  
100 kHz, VIN = 7 V, VOUT = 5 V  
10 kHz, VIN = 7 V, VOUT = 5 V  
OUTPUT NOISE  
11  
μV rms  
dB  
dB  
dB  
POWER SUPPLY REJECTION RATIO  
50  
68  
88  
1 Based on an endpoint calculation using 100 ꢀA and 200 mA loads. See Figure 7 for typical load regulation performance for loads less than 1 mA.  
2 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. Dropout applies only for output  
voltages above 2.7 V.  
3 Start-up time is defined as the time between the rising edge of EN to OUT being at 90% of its nominal value.  
4 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 5.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 5.0 V or 4.5 V.  
Rev. H | Page 3 of 23  
 
ADP7142  
Data Sheet  
INPUT AND OUTPUT CAPACITANCE, RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT AND OUTPUT CAPACITANCE  
Minimum Capacitance1  
Capacitor Effective Series Resistance (ESR)  
CMIN  
RESR  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
1.5  
0.001  
μF  
Ω
0.3  
1 The minimum input and output capacitance must be greater than 1.5 ꢀF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended,  
while Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. H | Page 4 of 23  
 
Data Sheet  
ADP7142  
ABSOLUTE MAXIMUM RATINGS  
θJA of the package is based on modeling and calculation using a  
4-layer board. The θJA is highly dependent on the application  
and board layout. In applications where high maximum power  
dissipation exists, close attention to thermal board design is  
required. The value of θJA may vary, depending on PCB material,  
layout, and environmental conditions. The specified values of θJA  
are based on a 4-layer, 4 inches × 3 inches circuit board. See  
JESD51-7 and JESD51-9 for detailed information on the board  
construction.  
Table 3.  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
EN to GND  
SENSE/ADJ to GND  
SS to GND  
–0.3 V to +44 V  
–0.3 V to VIN  
–0.3 V to +44 V  
–0.3 V to +6 V  
–0.3 V to VIN or +6 V  
(whichever is less)  
Storage Temperature Range  
Junction Temperature (TJ)  
–65°C to +150°C  
150°C  
Ψ
JB is the junction-to-board thermal characterization parameter  
with units of °C/W. The ΨJB of the package is based on  
Operating Ambient Temperature  
(TA) Range  
Soldering Conditions  
–40°C to +125°C  
modeling and calculation using a 4-layer board. The JESD51-12,  
Guidelines for Reporting and Using Electronic Package Thermal  
Information, states that thermal characterization parameters are  
not the same as thermal resistances. ΨJB measures the component  
power flowing through multiple thermal paths rather than a  
single path as in thermal resistance (θJB). Therefore, ΨJB thermal  
paths include convection from the top of the package as well as  
radiation from the package, factors that make ΨJB more useful  
in real-world applications. Maximum TJ is calculated from the  
board temperature (TB) and PD using the formula  
JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
THERMAL DATA  
TJ = TB + (PD × ΨJB)  
(2)  
Absolute maximum ratings apply individually only, not in  
combination. The ADP7142 can be damaged when the junction  
temperature limits are exceeded. Monitoring ambient temperature  
does not guarantee that TJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermal resistance, the maximum ambient temperature may  
have to be derated.  
See JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL RESISTANCE  
θJA, θJC, and ΨJB are specified for the worst-case conditions, that  
is, a device soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
In applications with moderate power dissipation and low printed  
circuit board (PCB) thermal resistance, the maximum ambient  
temperature can exceed the maximum limit as long as the  
junction temperature is within specification limits. The  
junction temperature of the device is dependent on the ambient  
temperature, the power dissipation (PD) of the device, and the  
junction-to-ambient thermal resistance of the package (θJA).  
Package Type  
6-Lead LFCSP  
8-Lead SOIC  
5-Lead TSOT  
θJA  
θJC  
ΨJB  
47.1  
32.7  
43  
Unit  
°C/W  
°C/W  
°C/W  
72.1  
52.7  
170  
42.3  
41.5  
N/A1  
1 N/A means not applicable.  
ESD CAUTION  
Maximum TJ is calculated from the TA and PD using the  
formula  
TJ = TA + (PD × θJA)  
(1)  
Rev. H | Page 5 of 23  
 
 
 
 
ADP7142  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VOUT  
SENSE/ADJ  
GND  
1
2
3
6
5
4
VIN  
VOUT  
VOUT  
1
2
3
4
8
7
6
5
VIN  
VIN  
SS  
ADP7142  
ADP7142  
TOP VIEW  
(Not to Scale)  
SS  
TOP VIEW  
(Not to Scale)  
SENSE/ADJ  
GND  
EXPOSED PAD  
EN  
EN  
NOTES  
NOTES  
1. THE EXPOSED PAD ON THE BOTTOM OF THE PACKAGE  
ENHANCES THERMAL PERFORMANCE AND IS  
1. THE EXPOSED PAD ON THE BOTTOM OF THE PACKAGE  
ENHANCES THERMAL PERFORMANCE AND IS  
ELECTRICALLY CONNECTED TO GND INSIDE THE  
PACKAGE. IT IS RECOMMENDED THAT THE EXPOSED  
PAD CONNECT TO THE GROUND PLANE ON THE BOARD.  
ELECTRICALLY CONNECTED TO GND INSIDE THE  
PACKAGE. IT IS RECOMMENDED THAT THE EXPOSED  
PAD CONNECT TO THE GROUND PLANE ON THE BOARD.  
Figure 5. 8-Lead SOIC Pin Configuration  
Figure 3. 6-Lead LFCSP Pin Configuration  
1
2
3
5
4
VIN  
GND  
EN  
VOUT  
ADP7142  
TOP VIEW  
(Not to Scale)  
SENSE/ADJ  
Figure 4. 5-Lead TSOT Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
6-Lead  
LFCSP  
8-Lead  
SOIC  
5-Lead  
TSOT  
Mnemonic Description  
VOUT Regulated Output Voltage. Bypass VOUT to GND with a 2.2 μF or greater capacitor.  
SENSE/ADJ Sense Input (SENSE). Connect to load. An external resistor divider may also be used to  
set the output voltage higher than the fixed output voltage (ADJ).  
1
2
1, 2  
3
5
4
3
4
4
5
2
3
GND  
EN  
Ground.  
The enable pin controls the operation of the LDO. Drive EN high to turn on the  
regulator. Drive EN low to turn off the regulator. For automatic startup, connect  
EN to VIN.  
5
6
6
Not  
applicable  
1
SS  
Soft Start. An external capacitor connected to this pin determines the soft-start  
time. Leave this pin open for a typical 380 ꢀs start-up time. Do not ground this pin.  
Regulator Input Supply. Bypass VIN to GND with a 2.2 μF or greater capacitor.  
Exposed Pad. The exposed pad on the bottom of the package enhances thermal  
performance and is electrically connected to GND inside the package. It is  
recommended that the exposed pad connect to the ground plane on the board.  
7, 8  
VIN  
EP  
Rev. H | Page 6 of 23  
 
Data Sheet  
ADP7142  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = VOUT + 1 V or 2.7 V, whichever is greater, VOUT = 5 V, IOUT = 10 mA, CIN = COUT = 2.2 μF, TA = 25°C, unless otherwise noted.  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
300  
250  
200  
150  
100  
50  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
0
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 6. Output Voltage (VOUT) vs. Junction Temperature  
Figure 9. Ground Current vs. Junction Temperature  
5.05  
200  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
(mA)  
100  
1000  
I
I
LOAD  
LOAD  
Figure 7. Output Voltage (VOUT) vs. Load Current (ILOAD  
)
Figure 10. Ground Current vs. Load Current (ILOAD)  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
300  
250  
200  
150  
100  
50  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
0
5
10  
15  
20  
25  
(V)  
30  
35  
40  
5
10  
15  
20  
25  
(V)  
30  
35  
40  
V
V
IN  
IN  
Figure 8. Output Voltage (VOUT) vs. Input Voltage (VIN  
)
Figure 11. Ground Current vs. Input Voltage (VIN)  
Rev. H | Page 7 of 23  
 
 
ADP7142  
Data Sheet  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
LOAD = 5mA  
V
V
V
V
V
V
= 2.7V  
= 3V  
= 5V  
= 6V  
= 10V  
= 40V  
IN  
IN  
IN  
IN  
IN  
IN  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 200mA  
0
4.8  
5.0  
5.2  
(V)  
5.4  
5.6  
–50  
–25  
0
25  
50  
75  
100  
125  
V
TEMPERATURE (°C)  
IN  
Figure 12. Shutdown Current vs. Temperature at Various Input Voltages (VIN  
)
Figure 15. Ground Current vs. Input Voltage (VIN) in Dropout, VOUT = 5 V  
250  
3.35  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
200  
150  
100  
50  
3.33  
3.31  
3.29  
3.27  
3.25  
0
1
10  
100  
1000  
–40  
–5  
25  
85  
125  
I
(mA)  
JUNCTION TEMPERATURE (°C)  
LOAD  
Figure 16. Output Voltage (VOUT) vs. Junction Temperature, VOUT = 3.3 V  
Figure 13. Dropout Voltage vs. Load Current (ILOAD), VOUT = 5 V  
3.35  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
3.33  
3.31  
3.29  
3.27  
3.25  
4.75  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 200mA  
4.70  
4.65  
4.60  
4.8  
5.0  
5.2  
(V)  
5.4 5.6  
0.1  
1
10  
(mA)  
100  
1000  
V
I
IN  
LOAD  
Figure 14. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout, VOUT = 5 V  
Figure 17. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 3.3 V  
Rev. H | Page 8 of 23  
Data Sheet  
ADP7142  
3.35  
300  
250  
200  
150  
100  
50  
LOAD = 100µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
3.33  
3.31  
3.29  
3.27  
3.25  
0
0
5
10  
15  
20  
(V)  
25  
30  
35  
40  
0
5
10  
15  
20  
(V)  
25  
30  
35  
40  
V
V
IN  
IN  
Figure 21. Ground Current vs. Input Voltage (VIN), VOUT = 3.3 V  
Figure 18. Output Voltage (VOUT) vs. Input Voltage (VIN), VOUT = 3.3 V  
300  
250  
200  
150  
100  
50  
300  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
250  
LOAD = 200mA  
200  
150  
100  
50  
0
0
1
10  
100  
1000  
–40  
–5  
25  
85  
125  
I
(mA)  
JUNCTION TEMPERATURE (°C)  
LOAD  
Figure 19. Ground Current vs. Junction Temperature, VOUT = 3.3 V  
Figure 22. Dropout Voltage vs. Load Current (ILOAD), VOUT = 3.3 V  
200  
180  
160  
140  
120  
100  
80  
3.4  
3.3  
3.2  
3.1  
3.0  
60  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
40  
2.9  
20  
LOAD = 150mA  
LOAD = 200mA  
3.7 3.9  
0
0.1  
2.8  
3.1  
1
10  
(mA)  
100  
1000  
3.3  
3.5  
(V)  
I
V
LOAD  
IN  
Figure 23. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout,  
VOUT = 3.3 V  
Figure 20. Ground Current vs. Load Current (ILOAD), VOUT = 3.3 V  
Rev. H | Page 9 of 23  
ADP7142  
Data Sheet  
700  
600  
500  
400  
300  
200  
100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 200mA  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
0
3.1  
3.3  
3.5  
(V)  
3.7  
3.9  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
V
HEADROOM VOLTAGE (V)  
IN  
Figure 24. Ground Current vs. Input Voltage (VIN) in Dropout, VOUT = 3.3 V  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
VOUT = 1.8 V, for Different Frequencies  
300  
0
–20  
–40  
–60  
V
V
V
V
V
= 2.7V  
= 5.0V  
= 10V  
= 20V  
= 40V  
IN  
IN  
IN  
IN  
IN  
250  
200  
150  
100  
50  
3.0V  
2.0V  
1.6V  
1.4V  
1.2V  
1.0V  
800mV  
700mV  
600mV  
500mV  
–80  
–100  
–120  
0
–40  
–5  
25  
85  
125  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 28. Power Supply Rejection Ratio (PSRR) vs. Frequency, VOUT = 3.3 V,  
for Various Headroom Voltages  
Figure 25. Soft Start (SS) Current vs. Temperature, Multiple Input Voltages (VIN),  
VOUT = 5 V  
0
0
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
3.0V  
2.0V  
1.6V  
1.4V  
1.2V  
1.0V  
800mV  
–10  
–10  
–20  
–20  
–30  
–30  
700mV  
600mV  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–100  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
HEADROOM VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 29. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
VOUT = 3.3 V, for Different Frequencies  
Figure 26. Power Supply Rejection Ratio (PSRR) vs. Frequency, VOUT = 1.8 V,  
for Various Headroom Voltages  
Rev. H | Page 10 of 23  
Data Sheet  
ADP7142  
0
10k  
1k  
100  
10  
1
–20  
–40  
–60  
3.0V  
2.0V  
1.6V  
–80  
1.4V  
1.2V  
1.0V  
800mV  
700mV  
600mV  
500mV  
–100  
–120  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. Output Noise Spectral Density vs. Frequency, ILOAD = 10 mA  
Figure 30. Power Supply Rejection Ratio (PSRR) vs. Frequency, VOUT = 5 V,  
for Various Headroom Voltages  
0
100k  
10Hz  
100µA  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
1mA  
10mA  
100mA  
200mA  
–10  
10k  
–20  
–30  
1k  
–40  
–50  
–60  
–70  
–80  
–90  
100  
10  
1
–100  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
FREQUENCY (Hz)  
HEADROOM VOLTAGE (V)  
Figure 34. Output Noise Spectral Density vs. Frequency, for Different Loads  
Figure 31. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
VOUT = 5 V, for Different Frequencies  
20  
100k  
1.8V  
3.3V  
5.0V  
10Hz TO 100kHz  
100Hz TO 100kHz  
10k  
1k  
100  
10  
1
16  
12  
8
4
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1000  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 35. Output Noise Spectral Density vs. Frequency, for Different Output  
Voltages (VOUT  
Figure 32. RMS Output Noise vs. Load Current (ILOAD  
)
)
Rev. H | Page 11 of 23  
ADP7142  
Data Sheet  
T
T
1
2
2
1
B
B
CH1 200mA Ω  
CH2 20mV  
M20µs A CH1  
W
1000mA  
B
B
W
W
CH1 1V  
CH2 2mV  
M4µs  
10.2%  
A CH4  
1.84V  
W
T
10.2%  
T
Figure 36. Load Transient Response, ILOAD = 1 mA to 200 mA,  
VOUT = 5 V, VIN = 7 V, CH1 Load Current (ILOAD), CH2 VOUT  
Figure 39. Line Transient Response, ILOAD = 200 mA,  
VOUT = 3.3 V, CH1 VIN, CH2 VOUT  
T
T
1
2
1
2
B
B
B
B
CH1 2V  
CH2 2.0mV  
M4µs  
10.2%  
A CH4  
1.84V  
CH1 200mA Ω  
CH2 20mV  
M20µs A CH1  
T 10.2%  
84mA  
W
W
W
W
T
Figure 37. Line Transient Response, ILOAD = 200 mA,  
VOUT = 5 V, CH1 VIN, CH2 VOUT  
Figure 40. Load Transient Response, ILOAD = 1 mA to 200 mA,  
VOUT = 1.8 V, VIN = 3 V, CH1 Load Current (ILOAD), CH2 VOUT  
T
T
1
2
1
2
B
B
CH1 200mA Ω  
CH2 20mV  
M20µs A CH1  
10.4%  
148mA  
B
W
W
CH1 1V  
CH2 5mV  
M4.0µs  
T 93.4%  
A CH4  
2.08V  
W
T
Figure 38. Load Transient Response, ILOAD = 1 mA to 200 mA,  
VOUT = 3.3 V, VIN = 5 V, CH1 Load Current (ILOAD), CH2 VOUT  
Figure 41. Line Transient Response, ILOAD = 200 mA,  
VOUT = 1.8 V, CH1 VIN, CH2 VOUT  
Rev. H | Page 12 of 23  
Data Sheet  
ADP7142  
THEORY OF OPERATION  
The ADP7142 is a low quiescent current, LDO linear regulator  
that operates from 2.7 V to 40 V and provides up to 200 mA of  
output current. Drawing a low 180 ꢀA of quiescent current  
(typical) at full load makes the ADP7142 ideal for portable  
equipment. Typical shutdown current consumption is less than  
3 ꢀA at room temperature.  
The ADP7142 is available in 15 fixed output voltage options,  
ranging from 1.2 V to 5.0 V. The ADP7142 architecture allows  
any fixed output voltage to be set to a higher voltage with an  
external voltage divider. For example, a fixed 5 V output can be  
set to a 6 V output according to the following equation:  
V
OUT = 5 V (1 + R1/R2)  
(3)  
Optimized for use with small 2.2 μF ceramic capacitors, the  
ADP7142 provides excellent transient performance.  
where R1 and R2 are the resistors in the output voltage divider  
shown in Figure 43.  
To set the output voltage of the adjustable ADP7142, replace 5 V  
in Equation 3 with 1.2 V.  
VIN  
VOUT  
SENSE/  
ADJ  
SHORT-CIRCUIT,  
THERMAL  
PROTECTION  
GND  
ADP7142  
V
= 7V  
V
= 6V  
IN  
OUT  
VIN  
VOUT  
REFERENCE  
R1  
C
2.2µF  
C
OUT  
2.2µF  
IN  
2kΩ  
SENSE/ADJ  
R2  
10kΩ  
EN  
SHUTDOWN  
ON  
Figure 42. Internal Block Diagram  
EN  
SS  
GND  
C
1nF  
SS  
OFF  
Internally, the ADP7142 consists of a reference, an error amplifier,  
and a PMOS pass transistor. Output current is delivered via the  
PMOS pass device, which is controlled by the error amplifier. The  
error amplifier compares the reference voltage with the feedback  
voltage from the output and amplifies the difference. If the  
feedback voltage is lower than the reference voltage, the gate of  
the PMOS device is pulled lower, allowing more current to pass  
and increasing the output voltage. If the feedback voltage is  
higher than the reference voltage, the gate of the PMOS device  
is pulled higher, allowing less current to pass and decreasing  
the output voltage.  
Figure 43. Typical Adjustable Output Voltage Application Schematic  
It is recommended that the R2 value be less than 200 kΩ  
to minimize errors in the output voltage caused by the  
SENSE/ADJ pin input current. For example, when R1 and R2  
each equal 200 kΩ and the default output voltage is 1.2 V, the  
adjusted output voltage is 2.4 V. The output voltage error  
introduced by the SENSE/ADJ pin input current is 1 mV or 0.04%,  
assuming a typical SENSE/ ADJ pin input current of 10 nA at  
25°C.  
The ADP7142 uses the EN pin to enable and disable the  
VOUT pin under normal operating conditions. When EN is  
high, VOUT turns on, and when EN is low, VOUT turns off.  
For automatic startup, EN can be tied to VIN.  
Rev. H | Page 13 of 23  
 
 
ADP7142  
Data Sheet  
APPLICATIONS INFORMATION  
tured with a variety of dielectrics, each with different behavior  
over temperature and applied voltage. Capacitors must have a  
dielectric adequate to ensure the minimum capacitance over  
the necessary temperature range and dc bias conditions. X5R or  
X7R dielectrics with a voltage rating of 6.3 V to 100 V are  
recommended. Y5V and Z5U dielectrics are not recommended,  
due to their poor temperature and dc bias characteristics.  
ADIsimPOWER DESIGN TOOL  
The ADP7142 is supported by the ADIsimPower™ design tool  
set. ADIsimPower is a collection of tools that produce complete  
power designs optimized for a specific design goal. The tools  
enable the user to generate a full schematic, bill of materials, and  
calculate performance in minutes. ADIsimPower can optimize  
designs for cost, area, efficiency, and parts count, taking into  
consideration the operating conditions and limitations of the IC  
and all real external components. For more information about,  
and to obtain ADIsimPower design tools, visit  
Figure 45 depicts the capacitance vs. voltage bias characteristic of  
an 0805, 2.2 μF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is ~ 15% over the −40°C to +85°C temperature  
range and is not a function of package or voltage rating.  
2.5  
www.analog.com/ADIsimPower.  
CAPACITOR SELECTION  
Output Capacitor  
The ADP7142 is designed for operation with small, space-saving  
ceramic capacitors, but functions with general-purpose capacitors  
as long as care is taken with regard to the effective series resistance  
(ESR) value. The ESR of the output capacitor affects the stability  
of the LDO control loop. A minimum of 2.2 μF capacitance with  
an ESR of 0.3 ꢁ or less is recommended to ensure the stability of  
the ADP7142. Transient response to changes in load current is  
also affected by output capacitance. Using a larger value of output  
capacitance improves the transient response of the ADP7142 to  
large changes in load current. Figure 44 shows the transient  
responses for an output capacitance value of 2.2 μF.  
2.0  
1.5  
1.0  
0.5  
0
T
0
2
4
6
8
10  
12  
DC BIAS VOLTAGE (V)  
1
Figure 45. Capacitance vs. Voltage Characteristic  
Use Equation 1 to determine the worst-case capacitance  
accounting for capacitor variation over temperature, component  
tolerance, and voltage.  
2
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(4)  
where:  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
B
B
CH1 200mA Ω  
CH2 20mV  
M20µs A CH1  
T 10.2%  
100mA  
W
W
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
Figure 44. Output Transient Response, VOUT = 5 V, COUT = 2.2 μF, CH1 Load  
Current, CH2 VOUT  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and CBIAS is 2.09 ꢀF at 5 V, as shown in Figure 45.  
Input Bypass Capacitor  
Connecting a 2.2 μF capacitor from VIN to GND reduces the  
circuit sensitivity to the PCB layout, especially when long input  
traces or high source impedance is encountered. If greater than  
2.2 μF of output capacitance is required, increase the input  
capacitor to match it.  
These values in Equation 1 yield  
CEFF = 2.09 ꢀF × (1 − 0.15) × (1 − 0.1) = 1.59 ꢀF  
(5)  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temper-  
ature and tolerance at the chosen output voltage.  
Input and Output Capacitor Properties  
To guarantee the performance of the ADP7142, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Any good quality ceramic capacitors can be used with the  
ADP7142, as long as they meet the minimum capacitance and  
maximum ESR requirements. Ceramic capacitors are manufac-  
Rev. H | Page 14 of 23  
 
 
 
 
 
Data Sheet  
ADP7142  
PROGRAMABLE PRECISION ENABLE  
SOFT START  
The ADP7142 uses the EN pin to enable and disable the  
VOUT pin under normal operating conditions. As shown in  
Figure 46, when a rising voltage on EN crosses the upper threshold,  
nominally 1.2 V, VOUT turns on. When a falling voltage on EN  
crosses the lower threshold, nominally 1.1 V, VOUT turns off.  
The hysteresis of the EN threshold is approximately 100 mV.  
3.5  
The ADP7142 uses an internal soft start (when the SS pin is left  
open) to limit the inrush current when the output is enabled. The  
start-up time for the 3.3 V option is approximately 380 ꢀs from  
the time the EN active threshold is crossed to when the output  
reaches 90% of its final value. As shown in Figure 48, the start-up  
time is dependent on the output voltage setting.  
6
V
V
V
V
EN  
IN  
IN  
IN  
= 1.8V  
= 3.3V  
= 5.0V  
3.0  
2.5  
2.0  
1.5  
1.0  
5
4
3
2
1
0
0.5  
–40°C  
+25°C  
+125°C  
0
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
(V)  
TIME (ms)  
EN  
Figure 48. Typical Start-Up Behavior  
Figure 46. Typical VOUT Response to EN Pin Operation  
An external capacitor connected to the SS pin determines the  
soft start time. The SS pin can be left open for a typical 380 ꢀs  
start-up time. Do not ground this pin. When an external soft  
start capacitor (CSS) is used, the soft start time is determined by  
the following equation:  
The upper and lower thresholds are user programmable and  
can be set higher than the nominal 1.2 V threshold by using  
two resistors. The resistance values, REN1 and REN2, can be  
determined from  
R
R
EN2 = nominally 10 kΩ to 100 kΩ  
(6)  
(7)  
SSTIME (sec) = tSTARTUP (0 pF) + (0.6 × CSS)/ISS  
where:  
STARTUP (at 0 pF) is the start-up time at CSS = 0 pF (typically 380 μs).  
SS is the soft start capacitor (F).  
(8)  
EN1 = REN2 × (VIN − 1.2 V)/1.2 V  
where:  
IN is the desired turn-on voltage.  
The hysteresis voltage increases by the factor (REN1 + REN2)/ REN2  
t
C
V
.
I
SS is the soft start current (typically 1.15 μA).  
For the example shown in Figure 47, the enable threshold is 3.6 V  
with a hysteresis of 300 mV.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ADP7142  
V
= 8V  
V
= 6V  
IN  
OUT  
VIN  
VOUT  
C
R1  
C
OUT  
2.2µF  
IN  
10kΩ  
2.2µF  
SENSE/ADJ  
R2  
20kΩ  
R
EN1  
ON  
200kΩ  
EN  
GND  
R
OFF  
EN2  
100kΩ  
V
EN  
NO SS CAP  
1nF  
2nF  
4.7nF  
6.8nF  
10nF  
Figure 47. Typical EN Pin Voltage Divider  
Figure 46 shows the typical hysteresis of the EN pin. This prevents  
on/off oscillations that can occur due to noise on the EN pin as  
it passes through the threshold points.  
0
1
2
3
4
5
6
7
8
9
10  
TIME (ms)  
Figure 49. Typical Soft Start Behavior, Different CSS  
Rev. H | Page 15 of 23  
 
 
 
 
 
ADP7142  
Data Sheet  
Measured rms noise of the adjustable LDO without noise  
reduction is 70 μV rms  
Measured rms noise of the adjustable LDO with noise  
reduction is 12 μV rms  
NOISE REDUCTION OF THE ADP7142 IN  
ADJUSTABLE MODE  
The ultralow output noise of the ADP7142 is achieved by  
keeping the LDO error amplifier in unity gain and setting the  
reference voltage equal to the output voltage. This architecture  
does not work for an adjustable output voltage LDO in the  
conventional sense. However, the ADP7142 architecture allows  
any fixed output voltage to be set to a higher voltage with an  
external voltage divider. For example, a fixed 5 V output can be  
set to a 10 V output according to Equation 3 (see Figure 50):  
Measured noise reduction of approximately 15.3 dB  
Note that the measured noise reduction is less than the  
theoretical noise reduction. Figure 51 shows the noise spectral  
density of an adjustable ADP7142 set to 6 V and 12 V with and  
without the noise reduction network. The output noise with the  
noise reduction network is approximately the same for both  
voltages, especially beyond 100 Hz. The noise of the 6 V and 12 V  
outputs without the noise reduction network differs by a factor  
of 2 up to approximately 20 kHz. Above 40 kHz, the closed  
loop gain of the error amplifier is limited by its open loop gain  
characteristic. Therefore, the noise contribution from 20 kHz to  
100 kHz is less than what it would be if the error amplifier had  
infinite bandwidth. This is also the reason why the noise is less  
than what might be expected simply based on the dc gain, that  
is, 70 μV rms vs. 110 μV rms.  
V
OUT = 5 V (1 + R1/R2)  
The disadvantage in using the ADP7142 in this manner is that  
the output voltage noise is proportional to the output voltage.  
Therefore, it is best to choose a fixed output voltage that is close  
to the target voltage to minimize the increase in output noise.  
The adjustable LDO circuit can be modified to reduce the  
output voltage noise to levels close to that of the fixed output  
ADP7142. The circuit shown in Figure 50 adds two additional  
components to the output voltage setting resistor divider. CNR  
and RNR are added in parallel with R1 to reduce the ac gain of  
the error amplifier. RNR is chosen to be small with respect to R2.  
If RNR is 1% to 10% of the value of R2, the minimum ac gain of  
the error amplifier is approximately 0.1 dB to 0.8 dB. The actual  
gain is determined by the parallel combination of RNR and R1.  
This gain ensures that the error amplifier always operates at  
slightly greater than unity gain.  
100k  
12V NOISE REDUCTION  
12V NO NOISE REDUCTION  
6V NOISE REDUCTION  
10k  
1k  
100  
10  
1
6V NO NOISE REDUCTION  
CNR is chosen by setting the reactance of CNR equal to R1 − RNR  
at a frequency between 1 Hz and 50 Hz. This setting places the  
frequency where the ac gain of the error amplifier is 3 dB down  
from its dc gain.  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
V
= 12V  
VIN  
VOUT  
V
= 14V  
OUT  
IN  
R1  
91kΩ  
C
2.2µF  
C
FREQUENCY (Hz)  
IN  
OUT  
2.2µF  
C
1µF  
NR  
SENSE/ADJ  
Figure 51. 6 V and 12 V Output Voltage with and Without Noise Reduction  
Network  
R
1kΩ  
NR  
ON  
200kΩ  
100kΩ  
R2  
10kΩ  
OFF  
EN  
EFFECT OF NOISE REDUCTION ON START-UP TIME  
The start-up time of the ADP7142 is affected by the noise  
reduction network and must be considered in applications  
where power supply sequencing is critical.  
GND  
Figure 50. Noise Reduction Modification  
The noise reduction circuit adds a pole in the feedback loop,  
slowing down the start-up time. The start-up time for an adjustable  
model with a noise reduction network can be approximated  
using the following equation:  
The noise of the adjustable LDO is found by using the  
following formula, assuming the noise of a fixed output LDO is  
approximately 11 ꢀV.  
Noise = 11 ꢀV × (RPAR + R2)/R2  
(9)  
SSNRTIME (sec) = 5.5 × CNR × (RNR + R1)  
where RPAR is a parallel combination of R1 and RNR  
.
For a CNR, RNR, and R1 combination of 1 μF, 1 kΩ, and 91 kΩ as  
shown in Figure 50, the start-up time is approximately 0.5 sec.  
When SSNRTIME is greater than SSTIME, SSNRTIME dictates the  
length of the start-up time instead of the soft start capacitor.  
Based on the component values shown in Figure 50, the ADP7142  
has the following characteristics:  
DC gain of 10 (20 dB)  
3 dB roll-off frequency of 1.75 Hz  
High frequency ac gain of 1.099 (0.82 dB)  
Theoretical noise reduction factor of 9.1 (19.2 dB)  
Rev. H | Page 16 of 23  
 
 
 
 
Data Sheet  
ADP7142  
temperature changes. These parameters include ambient  
CURRENT-LIMIT AND THERMAL OVERLOAD  
PROTECTION  
temperature, power dissipation in the power device, and  
thermal resistances between the junction and ambient air (θJA).  
The θJA number is dependent on the package assembly  
compounds that are used and the amount of copper used to  
solder the package GND pins to the PCB.  
The ADP7142 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP7142 is designed to current limit when the  
output load reaches 360 mA (typical). When the output load  
exceeds 360 mA, the output voltage is reduced to maintain a  
constant current limit.  
Table 6 shows typical θJA values of the 8-lead SOIC, 6-lead LFCSP,  
and 5-Lead TSOT packages for various PCB copper sizes. Table 7  
shows the typical ΨJB values of the 8-lead SOIC, 6-lead LFCSP,  
and 5-lead TSOT.  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and/or  
high power dissipation) when the junction temperature starts  
to rise above 150°C, the output is turned off, reducing the  
output current to zero. When the junction temperature drops  
below 135°C, the output is turned on again, and output current  
is restored to its operating value.  
Table 6. Typical θJA Values  
θ
JA (°C/W)  
Copper Size (mm2)  
251  
LFCSP  
182.8  
N/A2  
142.6  
83.9  
SOIC  
N/A2  
181.4  
145.4  
89.3  
TSOT  
N/A2  
152  
146  
131  
N/A2  
N/A2  
50  
100  
500  
1000  
6400  
Consider the case where a hard short from VOUT to ground  
occurs. At first, the ADP7142 current limits, so that only 360 mA  
is conducted into the short. If self heating of the junction is great  
enough to cause its temperature to rise above 150°C, thermal  
shutdown activates, turning off the output and reducing the  
output current to zero. As the junction temperature cools and  
drops below 135°C, the output turns on and conducts 360 mA  
into the short, again causing the junction temperature to rise  
above 150°C. This thermal oscillation between 135°C and 150°C  
causes a current oscillation between 360 mA and 0 mA that  
continues as long as the short remains at the output.  
71.7  
57.4  
77.5  
63.2  
1 Device soldered to minimum size pin traces.  
2 N/A means not applicable.  
Table 7. Typical ΨJB Values  
Model  
ΨJB (°C/W)  
6-Lead LFCSP  
8-Lead SOIC  
5-Lead TSOT  
24  
38.8  
43  
Current and thermal limit protections protect the device  
against accidental overload conditions. For reliable operation,  
device power dissipation must be externally limited so that the  
junction temperature does not exceed 125°C.  
To calculate the junction temperature of the ADP7142, use  
Equation 1:  
TJ = TA + (PD × θJA)  
where:  
THERMAL CONSIDERATIONS  
TA is the ambient temperature.  
In applications with a low input-to-output voltage differential,  
the ADP7142 does not dissipate much heat. However, in appli-  
cations with high ambient temperature and/or high input voltage,  
the heat dissipated in the package may become large enough to  
cause the junction temperature of the die to exceed the  
maximum junction temperature of 125°C.  
PD is the power dissipation in the die, given by  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
where:  
IN and VOUT are input and output voltages, respectively.  
)
(10)  
V
I
I
LOAD is the load current.  
GND is the ground current.  
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature has decreased below 135°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is very important to guarantee reliable performance over all  
conditions. The junction temperature of the die is the sum of  
the ambient temperature of the environment and the temperature  
rise of the package due to the power dissipation, as shown in  
Equation 2.  
Power dissipation due to ground current is quite small and can  
be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(11)  
As shown in Equation 4, for a given ambient temperature, input-  
to-output voltage differential, and continuous load current, there  
exists a minimum copper size requirement for the PCB to ensure  
that the junction temperature does not rise above 125°C. Figure 52  
to Figure 60 show junction temperature calculations for different  
ambient temperatures, power dissipation, and areas of PCB  
copper.  
To guarantee reliable operation, the junction temperature of  
the ADP7142 must not exceed 125°C. To ensure that the  
junction temperature stays below this maximum value, the user  
must be aware of the parameters that contribute to junction  
Rev. H | Page 17 of 23  
 
 
 
 
ADP7142  
Data Sheet  
140  
120  
100  
80  
145  
135  
125  
115  
105  
95  
85  
60  
75  
65  
40  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
55  
B
B
B
B
J
2
6400mm  
45  
2
500mm  
20  
2
25mm  
35  
T
MAX  
J
25  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
TOTAL POWER DISSIPATION (W)  
Figure 55. SOIC, TA = 25°C  
Figure 52. LFCSP, TA = 25°C  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
80  
80  
70  
70  
2
2
6400mm  
6400mm  
2
2
500mm  
500mm  
60  
60  
2
2
50mm  
25mm  
T
MAX  
1.2  
T
MAX  
1.6  
J
J
50  
50  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.8  
TOTAL POWER DISSIPATION (W)  
TOTAL POWER DISSIPATION (W)  
Figure 56. SOIC, TA = 50°C  
Figure 53. LFCSP, TA = 50°C  
145  
135  
125  
115  
105  
95  
140  
130  
120  
110  
100  
90  
80  
85  
70  
2
2
6400mm  
6400mm  
2
2
500mm  
500mm  
75  
60  
2
2
50mm  
25mm  
T
MAX  
T
MAX  
1.6  
J
J
65  
50  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.8  
TOTAL POWER DISSIPATION (W)  
TOTAL POWER DISSIPATION (W)  
Figure 57. SOIC, TA = 85°C  
Figure 54. LFCSP, TA = 85°C  
Rev. H | Page 18 of 23  
 
Data Sheet  
ADP7142  
145  
135  
125  
115  
105  
95  
The typical value of ΨJB is 24°C/W for the 8-lead LFCSP package,  
38.8°C/W for the 8-lead SOIC package, and 43°C/W for the 5-lead  
TSOT package.  
140  
120  
100  
80  
85  
75  
65  
55  
2
2
500mm  
100mm  
50mm  
45  
60  
2
35  
T
MAX  
J
25  
40  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TOTAL POWER DISSIPATION (W)  
20  
0
Figure 58. TSOT, TA = 25°C  
140  
130  
120  
110  
100  
90  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
TOTAL POWER DISSIPATION (W)  
Figure 61. LFCSP Junction Temperature Rise, Different Board Temperatures  
140  
120  
100  
80  
80  
70  
2
2
500mm  
100mm  
50mm  
60  
60  
2
T
MAX  
J
40  
50  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
TOTAL POWER DISSIPATION (W)  
20  
0
Figure 59. TSOT, TA = 50°C  
145  
135  
125  
115  
105  
95  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
TOTAL POWER DISSIPATION (W)  
Figure 62. SOIC Junction Temperature Rise, Different Board Temperatures  
140  
120  
100  
80  
85  
2
2
500mm  
100mm  
60  
75  
2
50mm  
T
MAX  
J
40  
65  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
TOTAL POWER DISSIPATION (W)  
20  
0
Figure 60. TSOT, TA = 85°C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
In the case where the board temperature is known, use the  
thermal characterization parameter, ΨJB, to estimate the  
junction temperature rise (see Figure 61, Figure 62, and  
Figure 63). Calculate the maximum junction temperature by  
using Equation 2.  
TOTAL POWER DISSIPATION (W)  
Figure 63. TSOT Junction Temperature Rise, Different Board Temperatures  
TJ = TB + (PD × ΨJB)  
Rev. H | Page 19 of 23  
 
 
 
ADP7142  
Data Sheet  
PRINTED CIRCUIT BOARD LAYOUT CONSIDERATIONS  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP7142.  
However, as listed in Table 6, a point of diminishing returns is  
eventually reached, beyond which an increase in the copper size  
does not yield significant heat dissipation benefits.  
Place the input capacitor as close as possible to the VIN pin and  
GND pin. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use of 0805 or 1206 size capacitors and  
resistors achieves the smallest possible footprint solution on  
boards where area is limited.  
Figure 64. Example LFCSP PCB Layout  
Figure 65. Example SOIC PCB Layout  
Rev. H | Page 20 of 23  
 
Data Sheet  
ADP7142  
Figure 66. Example TSOT PCB Layout  
Table 8. Recommended LDOs for Very Low Noise Operation  
Noise  
(Fixed)  
10 Hz to  
100 kHz  
(μV rms)  
VOUT  
Adjust  
IQ at  
IOUT  
(μA)  
IGND-SD  
Max  
(μA)  
PSRR  
100 kHz  
(dB)  
Device  
Number  
VIN  
VOUT  
IOUT  
(mA)  
Soft  
Start  
PSRR  
1 MHz  
Range (V) Fixed (V) (V)  
PGOOD  
Package  
ADP7102  
ADP7104  
ADP7105  
ADP7112  
ADP7118  
3.3 to 20  
3.3 to 20  
3.3 to 20  
2.7 to 20  
2.7 to 20  
1.5 to 9  
1.22 to  
19  
300  
500  
500  
200  
200  
750  
900  
900  
180  
180  
75  
75  
75  
10  
10  
No  
Yes  
15  
15  
15  
11  
11  
60  
60  
60  
68  
68  
40 dB  
40 dB  
40 dB  
50 dB  
50 dB  
3 mm × 3 mm  
8-lead LFCSP,  
8-lead SOIC  
1.5 to 9  
1.22 to  
19  
No  
Yes  
Yes  
No  
No  
3 mm × 3 mm  
8-lead LFCSP,  
8-lead SOIC  
1.8, 3.3, 5 1.22 to  
19  
Yes  
Yes  
Yes  
3 mm × 3 mm  
8-lead LFCSP,  
8-lead SOIC  
1.2 to 5  
1.2 to 5  
1.2 to 19  
1.2 to 19  
1 mm ×  
1.2 mm  
6-ball WLCSP  
2 mm × 2 mm  
6-lead LFCSP,  
8-lead SOIC,  
5-lead TSOT  
2.7 to 40  
1.2 to 5  
1.2 to 39  
200  
180  
10  
−8  
Yes  
No  
No  
No  
11  
18  
68  
45  
50 dB  
45 dB  
2 mm × 2 mm  
6-lead LFCSP,  
8-lead SOIC,  
5-lead TSOT  
ADP7142  
ADP7182  
−2.7 to  
−28  
−1.8 to  
−5  
−1.22 to  
−27  
−200  
−650  
2 mm × 2 mm  
6-lead LFCSP,  
3 mm × 3 mm  
8-lead LFCSP,  
5-lead TSOT  
Table 9. Related Devices  
Model  
Input Voltage (V)  
2.7 to 20  
2.7 to 20  
2.7 to 20  
2.7 to 20  
Output Current (mA)  
Package  
ADP7118CP  
ADP7118RD  
ADP7118UJ  
ADP7112CB  
200  
200  
200  
200  
6-lead LFCSP  
8-lead SOIC  
5-lead TSOT  
6-ball WLCSP  
Rev. H | Page 21 of 23  
ADP7142  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
1.70  
1.60  
1.50  
2.10  
2.00 SQ  
1.90  
0.65 BSC  
6
4
PIN 1 INDEX  
EXPOSED  
PAD  
1.10  
1.00  
0.90  
AREA  
0.425  
0.350  
0.275  
0.15 MIN  
PIN 1  
3
1
TOP VIEW  
INDICATO R AR E A OP TIONS  
(SEE DETAIL A)  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.35  
0.30  
0.25  
SEATING  
PLANE  
0.20 REF  
Figure 67. 6-Lead Lead Frame Chip Scale Package [LFCSP]  
2.00 mm × 2.00 mm Body and 0.55 mm Package Height  
(CP-6-3)  
Dimensions shown in millimeters  
5.00  
4.90  
4.80  
2.29  
0.356  
5
4
6.20  
6.00  
5.80  
8
1
4.00  
3.90  
3.80  
2.29  
0.457  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
BOTTOM VIEW  
45°  
1.27 BSC  
3.81 REF  
TOP VIEW  
SECTION OF THIS DATA SHEET.  
1.65  
1.25  
1.75  
1.35  
0.50  
0.25  
0.25  
0.17  
0.10 MAX  
0.05 NOM  
SEATING  
PLANE  
8°  
0°  
0.51  
0.31  
1.04 REF  
1.27  
0.40  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
Figure 68. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body  
(RD-8-1)  
Dimensions shown in millimeters  
Rev. H | Page 22 of 23  
 
Data Sheet  
ADP7142  
3.05  
2.90  
2.75  
TOP VIEW  
5
1
4
3
3.05  
2.80  
2.55  
1.75  
1.60  
1.45  
2
0.95 BSC  
1.90 REF  
0.90  
0.70  
SIDE VIEW  
END VIEW  
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
SEATING  
PLANE  
0.10 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
COMPLIANT TO JEDEC STANDARDS MO-193-AB  
Figure 69. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Marking  
Package Option Code  
Model1  
Output Voltage (V)2, 3  
Package Description  
6-Lead LFCSP  
6-Lead LFCSP  
6-Lead LFCSP  
6-Lead LFCSP  
ADP7142ACPZN-R7  
ADP7142ACPZN1.8-R7  
ADP7142ACPZN2.5-R7  
ADP7142ACPZN3.3-R7  
ADP7142ACPZN3.8-R7  
ADP7142ACPZN5.0-R7  
ADP7142ARDZ  
ADP7142ARDZ-R7  
ADP7142ARDZ-1.8  
ADP7142ARDZ-1.8-R7  
ADP7142ARDZ-2.5  
ADP7142ARDZ-2.5-R7  
ADP7142ARDZ-3.3  
ADP7142ARDZ-3.3-R7  
ADP7142ARDZ-5.0  
ADP7142ARDZ-5.0-R7  
ADP7142AUJZ-R2  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Adjustable (1.2 V)  
1.8  
2.5  
3.3  
3.8  
5
Adjustable (1.2 V)  
Adjustable (1.2 V)  
1.8  
1.8  
2.5  
2.5  
3.3  
3.3  
CP-6-3  
CP-6-3  
CP-6-3  
CP-6-3  
CP-6-3  
CP-6-3  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
UJ-5  
LP4  
LP5  
LP7  
LP6  
LVK  
LP8  
6-Lead LFCSP  
6-Lead LFCSP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
5-Lead TSOT  
5
5
Adjustable (1.2 V)  
Adjustable (1.2 V)  
1.8  
2.5  
3.3  
5
LP4  
LP4  
LP5  
LP7  
LP6  
LP8  
ADP7142AUJZ-R7  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
ADP7142AUJZ-1.8-R7  
ADP7142AUJZ-2.5-R7  
ADP7142AUJZ-3.3-R7  
ADP7142AUJZ-5.0-R7  
ADP7142UJ-EVALZ  
ADP7142CP-EVALZ  
ADP7142RD-EVALZ  
5-Lead TSOT  
UJ-5  
TSOT Evaluation Board  
LFCSP Evaluation Board  
SOIC Evaluation Board  
1 Z = RoHS Compliant Part.  
2 For additional voltage options, contact a local Analog Devices, Inc., sales or distribution representative.  
3 The evaluation boards are preconfigured with an adjustable ADP7142.  
©2014–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11848-3/20(H)  
Rev. H | Page 23 of 23  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY