ADP8861DBCB-EVALZ [ADI]

Charge Pump, 7-Channel Smart LED Driver with I2C Interface; 电荷泵, 7通道智能LED驱动器,带有I2C接口
ADP8861DBCB-EVALZ
型号: ADP8861DBCB-EVALZ
厂家: ADI    ADI
描述:

Charge Pump, 7-Channel Smart LED Driver with I2C Interface
电荷泵, 7通道智能LED驱动器,带有I2C接口

驱动器 泵
文件: 总40页 (文件大小:682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Charge Pump, 7-Channel  
Smart LED Driver with I2C Interface  
ADP8861  
TYPICAL OPERATING CIRCUIT  
FEATURES  
Charge pump with automatic gain selection of 1×, 1.5×, and  
2× for maximum efficiency  
7 independent, programmable LED drivers  
7 drivers capable of 30 mA (typical)  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VIN  
1 driver also capable of 60 mA (typical)  
Programmable maximum current limit (128 levels)  
Standby mode for <1 μA current consumption  
16 programmable fade in and fade out times  
0.1 sec to 5.5 sec  
C
IN  
1µF  
VOUT  
OUT  
VDDIO  
C
1µF  
nRST  
SDA  
SCL  
C1+  
C1–  
C2+  
C2–  
VDDIO  
VDDIO  
VDDIO  
C1  
Choose from linear, square, or cubic rates  
Fading override  
1µF  
ADP8861  
I2C-compatible interface for all programming  
Dedicated reset pin and built-in power-on reset (POR)  
Short-circuit, overvoltage, and overtemperature protection  
Internal soft start to limit inrush currents  
Input-to-output isolation during faults or shutdown  
Operation down to VIN = 2.5 V with undervoltage lockout  
(UVLO) at VIN = 2.0 V  
C2  
1µF  
nINT  
GND1  
GND2  
Figure 1.  
Small lead frame chip scale package (LFCSP)  
APPLICATIONS  
Mobile display backlighting  
Mobile phone keypad backlighting  
Dual RGB backlighting  
LED indication  
General backlighting of small format displays  
GENERAL DESCRIPTION  
The ADP8861 provides a powerful charge pump driver with  
independent control of up to seven LEDs. These seven LEDs  
can be independently driven up to 30 mA (typical). The seventh  
LED can also be driven to 60 mA (typical). All LEDs are pro-  
grammable for maximum current and fade in/out times via  
the I2C interface. These LEDs can also be combined into groups to  
reduce the processor instructions during fade in/out.  
capable of driving a maximum IOUT of 240 mA from a supply  
of 2.5 V to 5.5 V. A full suite of safety features, including short-  
circuit, overvoltage, and overtemperature protection, allows  
easy implementation of a safe and robust design. Additionally,  
input inrush currents are limited via an integrated soft start  
combined with controlled input-to-output isolation.  
The ADP8861 is available in a compact lead frame chip scale  
package (LFCSP).  
This entire configuration is driven by a two-capacitor charge  
pump with gains of 1×, 1.5×, and 2×. The charge pump is  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADP8861  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Automated Fade In and Fade Out............................................ 14  
Backlight Turn On/Turn Off/Dim........................................... 15  
Automatic Dim and Turn Off Timers ..................................... 15  
Fade Override ............................................................................. 16  
Independent Sink Control ........................................................ 16  
Short-Circuit Protection Mode ................................................ 16  
Overvoltage Protection.............................................................. 17  
Thermal Shutdown/Overtemperature Protection ................. 17  
Interrupts..................................................................................... 17  
Applications Information.............................................................. 19  
Determining the Transition Point of the Charge Pump ....... 19  
Layout Guidelines....................................................................... 19  
Example Circuits ........................................................................ 20  
I2C Programming and Digital Control........................................ 21  
Backlight Register Descriptions ............................................... 26  
Independent Sink Register Descriptions................................. 31  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 39  
Applications....................................................................................... 1  
Typical Operating Circuit................................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Diagram .................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Maximum Temperature Ranges ................................................. 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 11  
Power Stage.................................................................................. 12  
Operating Modes........................................................................ 13  
Backlight Operating Levels ....................................................... 14  
Backlight Maximum and Dim Settings ................................... 14  
REVISION HISTORY  
4/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
ADP8861  
SPECIFICATIONS  
VIN = 3.6 V, SCL = 2.7 V, SDA = 2.7 V, nINT = open, nRST = 2.7 V, VD1:D7 = 0.4 V, Capacitor C1 = 1 μF, Capacitor C2 = 1 μF, COUT = 1 μF,  
typical values are at TA = 25°C and are not guaranteed, minimum and maximum limits are guaranteed from TA = −40°C to +85°C, unless  
otherwise noted.  
Table 1.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max Unit  
SUPPLY  
Input Voltage  
Operating Range  
VIN  
2.5  
5.5  
V
Start-Up Level  
Low Level  
VIN(START) Hysteresis  
UVLO Noise Filter  
Quiescent Current  
Prior to VIN(START)  
During Standby  
After Startup and Switching  
OSCILLATOR  
VIN(START)  
VIN(STOP)  
VIN(HYS)  
tUVLO  
VIN increasing  
VIN decreasing  
After startup  
2.05  
1.97  
80  
2.30  
V
V
mV  
μs  
1.75  
10  
IQ  
IQ(START)  
IQ(STBY)  
IQ(ACTIVE)  
VIN = VIN(START) − 100 mV  
10  
0.3  
4.5  
μA  
μA  
mA  
VIN = 3.6 V, Bit nSTBY = 0, SCL = SDA = 0 V  
VIN = 3.6 V, Bit nSTBY = 1, IOUT = 0 mA, gain = 2×  
Charge pump gain = 2×  
1.0  
7.2  
Switching Frequency  
Duty Cycle  
fSW  
D
0.8  
1
50  
1.32 MHz  
%
OUTPUT CURRENT CONTROL  
Maximum Drive Current  
Diode1 to Diode 7  
TJ = 25°C  
TJ = −40°C to +85°C  
Diode 7 Only (60 mA Setting)  
TJ = 25°C  
TJ = −40°C to +85°C  
LED Current Source Matching1  
All Current Sinks  
ID1:D7(MAX) VD1:D7 = 0.4 V  
Bit SCR = 0 in the ISC7 register  
26.2  
24.4  
30  
60  
34.1 mA  
34.1 mA  
ID7(60 mA)  
VD7 = 0.4 V, Bit SCR = 1 in the ISC7 register  
52.5  
48.8  
67  
67  
mA  
mA  
IMATCH  
IMATCH7  
IMATCH6  
VD1:D7 = 0.4 V  
VD2:D7 = 0.4 V  
2.0  
1.5  
%
%
Diode 2 to Diode 7 Current  
Sinks  
Leakage Current on LED Pins  
Equivalent Output Resistance  
Gain = 1×  
Gain = 1.5×  
Gain = 2×  
Regulated Output Voltage  
AUTOMATIC GAIN SELECTION  
Minimum Voltage  
ID1:D7(LKG)  
ROUT  
VIN = 5.5 V, VD1:D7 = 2.5 V, Bit nSTBY = 1  
0.5  
μA  
VIN = 3.6 V, IOUT = 100 mA  
VIN = 3.1 V, IOUT = 100 mA  
VIN = 2.5 V, IOUT = 100 mA  
VIN = 3 V, gain = 2×, IOUT = 10 mA  
0.5  
3.0  
3.8  
4.9  
Ω
Ω
Ω
V
VOUT(REG)  
4.3  
5.5  
Gain Increases  
Minimum Current Sink Headroom  
Voltage  
VHR(UP)  
VHR(MIN)  
Decrease VD1:D7 until the gain switches up  
IDX = IDX(MAX) × 95%  
162  
200  
180  
276  
mV  
mV  
Gain Delay  
tGAIN  
The delay after gain has changed and before  
gain is allowed to change again  
100  
μs  
FAULT PROTECTION  
Start-Up Charging Current Source  
Output Voltage Threshold  
Exit Soft Start  
ISS  
VOUT  
VIN = 3.6 V, VOUT = 0.8 × VIN  
2.5  
3.75  
5.5  
mA  
VOUT(START) VOUT rising  
VOUT(SC) VOUT falling  
0.92 × VIN  
0.55 × VIN  
V
V
Short-Circuit Protection  
Rev. 0 | Page 3 of 40  
 
 
ADP8861  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max Unit  
Output Overvoltage Protection  
Activation Level  
OVP Recovery Hysteresis  
Thermal Shutdown  
Threshold  
VOVP  
5.8  
500  
V
mV  
TSD  
TSD(HYS)  
150  
20  
°C  
°C  
Hysteresis  
Isolation from Input to Output  
During Fault  
IOUTLKG  
VIN = 5.5 V, VOUT = 0 V, Bit nSTBY = 0  
1.5  
μA  
Time to Validate a Fault  
I2C INTERFACE  
tFAULT  
2
μs  
Operating VDDIO Voltage  
Logic Low Input2  
Logic High Input3  
VDDIO  
VIL  
VIH  
5.5  
0.5  
V
V
V
VIN = 2.5 V  
VIN = 5.5 V  
1.55  
I2C TIMING SPECIFICATIONS  
Guaranteed by design  
Delay from Reset Deassertion to  
I2C Access  
tRESET  
20  
μs  
SCL Frequency  
SCL High Time  
SCL Low Time  
Setup Time  
fSCL  
tHIGH  
tLOW  
400  
kHz  
μs  
μs  
0.6  
1.3  
Data  
tSU, DAT  
tSU, STA  
tSU, STO  
100  
0.6  
0.6  
ns  
μs  
μs  
Repeated Start  
Stop Condition  
Hold Time  
Data  
tHD, DAT  
tHD, STA  
tBUF  
0
0.6  
1.3  
0.9  
μs  
μs  
μs  
Start/Repeated Start  
Bus Free Time (Stop and Start  
Conditions)  
Rise Time (SCL and SDA)  
Fall Time (SCL and SDA)  
Pulse Width of Suppressed Spike  
Capacitive Load per Bus Line  
tR  
tF  
tSP  
CB  
20 + 0.1 CB  
20 + 0.1 CB  
0
300  
300  
50  
ns  
ns  
ns  
pF  
400  
1 Current source matching is calculated by dividing the difference between the maximum and minimum currents from the sum of the maximum and minimum.  
2 VIL is a function of the input voltage. See Figure 15 in the Typical Performance Characteristics section for typical values over operating ranges.  
3 VIH is a function of the input voltage. See Figure 15 in the Typical Performance Characteristics section for typical values over operating ranges.  
I2C TIMING DIAGRAM  
SDA  
tBUF  
tF  
tLOW  
tR  
tR  
tF  
tSP  
tSU, DAT  
tHD, STA  
SCL  
tHIGH  
tSU, STA  
tSU, STO  
tHD, DAT  
S
Sr  
P
S
S = START CONDITION  
Sr = REPEATED START CONDITION  
P = STOP CONDITION  
Figure 2. I2C Interface Timing Diagram  
Rev. 0 | Page 4 of 40  
 
ADP8861  
ABSOLUTE MAXIMUM RATINGS  
MAXIMUM TEMPERATURE RANGES  
Table 2.  
The maximum operating junction temperature (TJ(MAX)) takes  
precedence over the maximum operating ambient temperature  
(TA(MAX)). Therefore, in situations where the ADP8861 is  
exposed to poor thermal resistance and high power dissipation  
(PD), the maximum ambient temperature may need to be  
derated. In these cases, the maximum ambient temperature can  
be calculated with the following equation:  
Parameter  
Rating  
VIN, VOUT  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
Indefinite  
D1, D2, D3, D4, D5, D6, and D7  
nINT, nRST, SCL, and SDA  
Output Short-Circuit Duration  
Operating Temperature Range  
Ambient (TA)  
–40°C to +85°C1  
–40°C to +125°C  
–65°C to +150°C  
JEDEC J-STD-020  
Junction (TJ)  
TA(MAX) = TJ(MAX) − (θJA × PD(MAX))  
Storage Temperature Range  
Soldering Conditions  
ESD (Electrostatic Discharge)  
Human Body Model (HBM)  
Charged Device Model (CDM)  
THERMAL RESISTANCE  
θJA (junction to air) is specified for the worst-case conditions,  
that is, a device soldered in a circuit board for surface-mount  
packages. The θJA and θJC (junction to case) are determined  
according to JESD51-9 on a 4-layer printed circuit board (PCB)  
with natural convection cooling. For the LFCSP package, the  
exposed pad must be soldered to the GND1 and/or GND2  
terminal on the board.  
3 kV  
1.5 kV  
1 The maximum operating junction temperature (TJ(MAX)) takes precedence  
over the maximum operating ambient temperature (TA(MAX)). See the  
Maximum Temperature Ranges section for more information.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
20-Lead LFCSP_WQ  
49.5  
5.3  
°C/W  
ESD CAUTION  
Absolute maximum ratings apply individually only, not in  
combination. Unless otherwise specified, all voltages are  
referenced to ground.  
Rev. 0 | Page 5 of 40  
 
 
ADP8861  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADP8861  
TOP VIEW  
(Not to Scale)  
15  
14  
D3 1  
D2 2  
GND1  
VIN  
3
4
5
D1  
SCL  
13 VOUT  
12  
C2+  
11 C1+  
nRST  
NOTES  
1. CONNECT THE EXPOSED PADDLE  
TO GND1 AND/OR GND2.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
14  
3
VIN  
D1  
Input Voltage, 2.5 V to 5.5 V.  
LED Sink 1.  
2
D2  
LED Sink 2.  
1
D3  
LED Sink 3.  
20  
19  
17  
16  
18  
13  
11  
9
12  
10  
15  
8
D4  
D5  
D6  
D7  
LED Sink 4.  
LED Sink 5.  
LED Sink 6.  
LED Sink 7.  
NA  
This pin is not used and must be connected to ground.  
Charge Pump Output.  
Charge Pump C1+.  
Charge Pump C1−.  
Charge Pump C2+.  
Charge Pump C2−.  
Ground. Connect the exposed pad to GND1 and/or GND2.  
Ground. Connect the exposed pad to GND1 and/or GND2.  
Processor Interrupt (Active Low). Requires an external pull-up resistor. If this pin is not used, it can be left floating.  
Hardware Reset (Active Low). This pin resets the device to the default conditions. If not used, this pin must be tied  
VOUT  
C1+  
C1−  
C2+  
C2−  
GND1  
GND2  
nINT  
nRST  
6
5
above VIH(MIN)  
.
7
4
SDA  
SCL  
I2C Serial Data. Requires an external pull-up resistor.  
I2C Clock. Requires an external pull-up resistor.  
21  
EPAD  
Exposed Paddle. Connect the exposed paddle to GND1 and/or GND2.  
Rev. 0 | Page 6 of 40  
 
ADP8861  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.6 V, SCL = 2.7 V, SDA = 2.7 V, nRST = 2.7 V, VD1:D7 = 0.4 V, CIN = 1 μF, Capacitor C1 = 1 μF, Capacitor C2 = 1 μF, COUT = 1 μF,  
TA= 25°C, unless otherwise noted.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
35  
30  
25  
20  
15  
10  
5
V
= 3.6V  
= 30mA  
IN  
I
= NO LOAD  
OUT  
I
D1:D7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
–40°C  
+25°C  
+85°C  
+105°C  
0
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V (V)  
HR  
1.2  
1.4  
1.6  
1.8  
2.0  
V
IN  
Figure 4. Typical Quiescent Current, G = 1×  
Figure 7. Typical Diode Current vs. Current Sink Headroom Voltage (VHR)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
35  
V
= 0.4V  
D1:D7  
I
= NO LOAD  
OUT  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
–40°C  
+25°C  
+85°C  
+105°C  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
Figure 5. Typical Quiescent Current, G = 2×, IQ(ACTIVE)  
Figure 8. Typical Diode Current vs. VIN  
10  
6
5
4
3
2
1
0
SCL = SDA = 0V  
V
= 3.6V  
= 30mA  
–40°C  
IN  
nRST = 2.7V  
I
D1:D7  
+25°C  
+85°C  
+105°C  
1
0.1  
0.01  
0.001  
–40°C  
+25°C  
+85°C  
+105°C  
0
1
2
3
4
5
6
0.2  
0.4  
0.6  
0.8  
1.0  
V
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
V
(V)  
IN  
HR  
Figure 6. Typical Standby IQ vs. VIN  
Figure 9. Typical Diode Matching vs. Current Sink Headroom Voltage (VHR)  
Rev. 0 | Page 7 of 40  
 
ADP8861  
35  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 3.6V  
= 30mA  
I
= 100mA  
OUT  
IN  
I
D1:D7  
30  
25  
20  
15  
10  
5
–40°C  
+25°C  
+85°C  
+105°C  
–40°C  
+25°C  
+85°C  
+105°C  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
2.0  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
HR  
Figure 10. Typical Diode Current vs. Current Sink Headroom Voltage (VHR  
)
Figure 13. Typical ROUT (G = 1×) vs. VIN  
1
10  
9
8
7
6
5
4
3
2
1
0
V
V
= 3.6V  
= 0.40V  
V
= 80% OF V  
OUT IN  
IN  
D1:D7  
0
–1  
–2  
–3  
–4  
–5  
–6  
–40°C  
+25°C  
+85°C  
+105°C  
–40  
–10  
20  
50  
80  
110  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
JUNCTION TEMPERATURE (°C)  
V
IN  
Figure 11. Typical Change In Diode Current vs. Temperature  
Figure 14. Typical Output Soft Start Current, ISS  
7
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 100mA  
OUT  
V
V
V
@ +25°C  
@ +85°C  
@ –40°C  
IH  
IH  
IH  
6
5
4
3
2
1
0
G = 2× @ V = 2.5V  
IN  
V
V
V
@ +25°C  
IL  
IL  
IL  
@ +85°C  
@ –40°C  
G = 1.5× @ V = 3V  
IN  
G = 1× @ V = 3.6V  
IN  
–40  
–20  
0
20  
40  
60  
80  
100  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
V
IN  
Figure 15. Typical I2C Thresholds, VIH and VIL  
Figure 12. ROUT vs. Temperature  
Rev. 0 | Page 8 of 40  
 
 
ADP8861  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 3V  
IN  
GAIN = 2×  
= 10mA  
I
OUT  
I
I
= 140mA, Vf = 3.85V  
= 210mA, Vf = 4.25V  
OUT  
OUT  
0
5.5  
–40  
–10  
20  
50  
80  
110  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
JUNCTION TEMPERATURE (°C)  
V
IN  
Figure 19. Typical Efficiency (High Vf Diode)  
Figure 16. Typical Regulated Output Voltage (VOUT(REG)  
)
6.0  
5.8  
5.6  
5.4  
5.2  
T
V
(AC-COUPLED) 50mV/DIV  
IN  
1
2
3
OVP THRESHOLD  
V
(AC-COUPLED) 50mV/DIV  
OUT  
I
(AC-COUPLED) 10mA/DIV  
IN  
= 1µF, C1 = 1µF, C2 = 1µF  
OUT  
C
V
= 1µF, C  
= 3.6V  
= 120mA  
IN  
IN  
OVP RECOVERY  
80  
500ns/DIV  
I
OUT  
–40  
–10  
20  
50  
110  
JUNCTION TEMPERATURE (°C)  
Figure 17. Typical Overvoltage Protection (OVP) Threshold  
Figure 20. Typical Operating Waveforms, G = 1×  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
450  
T
V
(AC-COUPLED) 50mV/DIV  
IN  
400  
350  
300  
250  
200  
150  
100  
50  
1
2
3
V
(AC-COUPLED) 50mV/DIV  
OUT  
I
(AC-COUPLED) 10mA/DIV  
IN  
= 1µF, C1 = 1µF, C2 = 1µF  
OUT  
C
V
= 1µF, C  
= 3.0V  
= 120mA  
IN  
I
I
= 140mA, Vf = 3.1V  
= 210mA, Vf = 3.2V  
OUT  
OUT  
IN  
500ns/DIV  
I
OUT  
0
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
V
IN  
Figure 21. Typical Operating Waveforms, G = 1.5×  
Figure 18. Typical Efficiency (Low Vf Diode)  
Rev. 0 | Page 9 of 40  
ADP8861  
V
= 3.7V  
T
IN  
V
(AC-COUPLED) 50mV/DIV  
IN  
1
2
3
V
(1V/DIV)  
OUT  
V
(AC-COUPLED) 50mV/DIV  
OUT  
2
I
(10mA/DIV)  
IN  
I
(AC-COUPLED) 10mA/DIV  
IN  
= 1µF, C1 = 1µF, C2 = 1µF  
OUT  
C
V
= 1µF, C  
= 2.5V  
= 120mA  
IN  
IN  
4
500ns/DIV  
I (10mA/DIV)  
OUT  
100µs/DIV  
I
OUT  
Figure 22. Typical Operating Waveforms, G = 2×  
Figure 23. Typical Start-Up Waveform  
Rev. 0 | Page 10 of 40  
ADP8861  
THEORY OF OPERATION  
The ADP8861 provides a powerful charge pump driver with  
programmable LED control. Up to seven LEDs can be indepen-  
dently driven up to 30 mA (typical) each. The seventh LED can  
also be driven to 60 mA (typical). All LEDs can be individually  
programmed or combined into a group to operate backlight  
LEDs. A full suite of safety features, including short-circuit,  
overvoltage, and overtemperature protection with input-to-  
output isolation, allows for a robust and safe design. The  
integrated soft start limits inrush currents at startup, restart  
attempts, and gain transitions.  
D1  
D4  
D5  
D2  
D3  
D6  
D7  
GAIN  
SELECT  
LOGIC  
V
IN  
ID1  
ID3  
ID2  
ID4  
ID5  
ID6  
ID7  
I
SS  
VIN  
SOFT  
START  
CHARGE  
PUMP  
LOGIC  
V
REFS  
VBAT  
C
VIN  
VIN  
IN  
VOUT  
I
UVLO  
STNDBY  
REFS  
C
OUT  
VDDIO  
EN  
CLK  
NOISE FILTER  
50µs  
C1+  
C1  
1µF  
nRST  
CHARGE  
PUMP  
(1×, 1.5×, 2×)  
C1–  
C2+  
STANDBY  
RESET  
C2  
1µF  
SCL  
SDA  
2
C2–  
I C  
SWITCH CONTROL  
LOGIC  
CURRENT SINK CONTROL  
nINT  
GND1  
GND2  
Figure 24. Detailed Block Diagram  
Rev. 0 | Page 11 of 40  
 
 
ADP8861  
in parallel and are discharged to VOUT in parallel. In certain fault  
modes, the switches are opened and the output is physically  
isolated from the input.  
POWER STAGE  
Because typical white LEDs require up to 4 V to drive them,  
some form of boosting is required over the typical variation in  
battery voltage. The ADP8861 accomplishes this with a high  
efficiency charge pump capable of producing a maximum IOUT  
of 240 mA over the entire input voltage range (2.5 V to 5.5 V).  
Charge pumps use the basic principle that a capacitor stores  
charge based on the voltage applied to it, as shown in the  
following equation:  
Automatic Gain Selection  
Each LED that is driven requires a current source. The voltage  
on this current source must be greater than a minimum head-  
room voltage (180 mV typical) to maintain accurate current  
regulation. The gain is automatically selected based on the  
minimum voltage (VDX) at all of the current sources. At startup,  
the device is placed into G = 1× mode and the output charges  
to VIN. If any VD1:D7 level is less than the required headroom  
(180 mV), the gain is increased to the next step (G = 1.5×).  
A 100 μs delay is allowed for the output to stabilize prior to  
the next gain switching decision. If there remains insufficient  
current sink headroom, then the gain is increased again to 2×.  
Conversely, to optimize efficiency, it is not desirable for the  
output voltage to be too high. Therefore, the gain reduces when  
the headroom voltage is great enough. This point (labeled  
Q = C × V  
(1)  
By charging the capacitors in different configurations, the  
charge, and therefore the gain, can be optimized to deliver the  
voltage required to power the LEDs. Because a fixed charging  
and discharging combination must be used, only certain  
multiples of gain are available. The ADP8861 is capable of  
automatically optimizing the gain (G) from 1×, 1.5×, and 2×.  
These gains are accomplished with two capacitors (labeled C1  
and C2 in Figure 24) and an internal switching network.  
V
DMAX in Figure 25) is internally calculated to ensure that the  
In G = 1× mode, the switches are configured to pass VIN  
directly to VOUT. In this mode, several switches are connected  
in parallel to minimize the resistive drop from input to output.  
In G = 1.5× and 2× modes, the switches alternatively charge  
from the battery and discharge into the output. For G = 1.5×,  
the capacitors are charged from VIN in series and are discharged to  
lower gain still results in ample headroom for all the current  
sinks. The entire cycle is illustrated in Figure 25.  
Note that the gain selection criteria apply only to active current  
sources. If current sources have been deactivated through an  
I2C command (for example only five LEDs are used), then the  
voltages on the deactivated current sources are ignored.  
VOUT in parallel. For G = 2×, the capacitors are charged from VIN  
STARTUP:  
CHARGE  
EXIT STANDBY  
STANDBY  
V
TO V  
IN  
OUT  
0
1
EXIT  
STARTUP  
VOUT > V  
OUT(START)  
0
WAIT  
100µs (TYP)  
MIN (V  
D1:D7  
) < V  
G = 1  
HR(UP)  
0
0
WAIT  
100µs (TYP)  
G = 1.5  
MIN (V  
D1:D7  
) < V  
HR(UP)  
MIN (V  
D1:D7  
) > V  
DMAX  
0
WAIT  
100µs (TYP)  
MIN (V  
D1:D7  
) < V  
DMAX  
G = 2  
NOTES  
1. V  
IS THE CALCULATED GAIN DOWN TRANSITION POINT.  
DMAX  
Figure 25. State Diagram for Automatic Gain Selection  
Rev. 0 | Page 12 of 40  
 
 
 
ADP8861  
Soft Start Feature  
Shutdown Mode  
At startup (either from UVLO activation or fault/standby  
recovery), the output is first charged by ISS (3.75 mA typical)  
until it reaches about 92% of VIN. This soft start feature reduces  
the inrush current that is otherwise present when the output  
capacitance is initially charged to VIN. When this point is  
reached, the controller enters G = 1× mode. If the output  
voltage is not sufficient, then the automatic gain selection  
determines the optimal point as defined in the Automatic Gain  
Selection section.  
Shutdown mode disables all circuitry, including the I2C receivers.  
Shutdown occurs when VIN is below the undervoltage thresholds.  
When VIN rises above VIN(START) (2.05 V typical), all registers are  
reset and the part is placed into standby mode.  
Reset Mode  
In reset mode, all registers are set to their default values and  
the part is placed into standby. There are two ways to reset the  
part: by power-on reset (POR) or using the nRST pin. POR is  
activated any time that the part exits shutdown mode. After  
a POR sequence is complete, the part automatically enters  
standby mode.  
OPERATING MODES  
There are four different operating modes: active, standby,  
shutdown, and reset.  
After startup, the part can be reset by pulling the nRST pin low.  
As long as the nRST pin is low, the part is held in a standby state  
but no I2C commands are acknowledged (all registers are kept  
at their default values). After releasing the nRST pin, all registers  
remain at their default values, and the part remains in standby;  
however, the part does accept I2C commands.  
Active Mode  
In active mode, all circuits are powered up and in a fully  
operational state. This mode is entered when Bit nSTBY (in  
Register MDCR) is set to 1.  
Standby Mode  
The nRST pin has a 50 μs (typical) noise filter to prevent inad-  
vertent activation of the reset function. The nRST pin must be  
held low for this entire time to activate reset.  
Standby mode disables all circuitry except for the I2C receivers.  
Current consumption is reduced to less than 1 μA. This mode is  
entered when the nSTBY bit is set to 0 or when the nRST pin is  
held low for more than 100 μs (maximum). When standby is  
exited, a soft start sequence is performed.  
The operating modes function according to the timing diagram  
in Figure 26.  
SHUTDOWN  
V
CROSSES ~2.05V AND TRIGGERS POWER-ON RESET  
nRST MUST BE HIGH FOR 20µs (MAX)  
BEFORE SENDING I C COMMANDS  
IN  
V
IN  
2
BIT nSTBY IN REGISTER  
MDCR GOES LOW  
~100µs DELAY BETWEEN POWER-UP AND  
WHEN I C COMMANDS CAN BE RECEIVED  
STANDBY  
nRST  
2
nRST IS LOW, WHICH FORCES STANDBY LOW  
25µs TO 100µs NOISE FILTER  
2
AND RESETS ALL I C REGISTERS  
2×  
~3.75mA CHARGES  
1.5×  
V
V
TO V LEVEL  
GAIN CHANGES OCCUR ONLY WHEN NECESSARY,  
BUT HAVE A MIN TIME BEFORE CHANGING  
OUT  
V
OUT  
IN  
IN  
1×  
SOFT START  
SOFT START  
10µs 100µs  
Figure 26. Typical Timing Diagram  
Rev. 0 | Page 13 of 40  
 
 
ADP8861  
30  
25  
20  
15  
10  
5
BACKLIGHT OPERATING LEVELS  
The backlight can be operated at either the maximum level  
(Register 0x09) or the dim level (Register 0x0A). The backlight  
maximum and dim current settings are determined by a 7-bit  
code programmed by the user into these registers. The 7-bit  
resolution allows the user to set the backlight to one of 128  
different levels between 0 mA and 30 mA.  
LINEAR  
30mA  
SQUARE  
BACKLIGHT_MAX  
0
0
32  
64  
CODE  
96  
128  
BACKLIGHT_DIM  
Figure 28. Backlight Current vs. Input Code  
AUTOMATED FADE IN AND FADE OUT  
The LED drivers are easily configured for automated fade in  
and fade out. Sixteen fade in and fade out rates can be selected  
via the I2C interface. Fade in and fade out rates range from  
0.1 sec to 5.5 sec (per full-scale current, either 30 mA or 60 mA).  
0
Figure 27. Backlight Operating Levels  
The maximum and dim settings can be set between 0 mA and  
30 mA; therefore, it is possible to program a dim setting that is  
greater than a maximum setting. For normal expected operation,  
ensure that the dim setting is programmed to be less than the  
maximum setting.  
Table 5. Available Fade In and Fade Out Rates  
Code  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Fade Rate (in sec per Full-Scale Current)  
0.1 (disabled)  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
BACKLIGHT MAXIMUM AND DIM SETTINGS  
The ADP8861 can implement two distinct algorithms to  
achieve a linear and a nonlinear relationship between input  
code and backlight current. The law bits in Register 0x04 are  
used to change between these algorithms.  
By default, the ADP8861 uses a linear algorithm (law = 00),  
where the backlight current increases linearly for a correspond-  
ing increase in input code. Backlight current (in milliamperes)  
is determined by the following equation:  
Backlight Current (mA) = Code × (Full-Scale Current/127) (2)  
where:  
Code is the input code programmed by the user.  
Full-Scale Current is the maximum sink current allowed per  
LED (typically 30 mA).  
The fade profile is based on the transfer law selected (linear,  
square, Cubic 10, or Cubic 11) and the delta between the actual  
current and the target current. Smaller changes in current  
reduce the fade time. For linear and square law fades, the fade  
time is given by  
The ADP8861 can also implement a nonlinear (square approxima-  
tion) relationship between input code and backlight current  
level. In this case (law = 01), the backlight current (in milliam-  
peres) is determined by the following equation:  
2
Fade Time = Fade Rate × (Code/127)  
where the Fade Rate is shown in Table 5.  
(4)  
Full Scale Current  
Backlight Current (mA) = Code×  
(3)  
127  
The Cubic 10 and Cubic 11 laws also use the square law back-  
light currents derived from Equation 3; however, the time  
between each step is varied to produce a steeper slope at higher  
currents and a shallower slope at lower currents (see Figure 29).  
Figure 28 shows the backlight current level vs. input code for  
both the linear and square law algorithms.  
Rev. 0 | Page 14 of 40  
 
 
 
 
ADP8861  
30  
25  
20  
15  
10  
5
AUTOMATIC DIM AND TURN OFF TIMERS  
The user can program the backlight to dim automatically by  
using the DIMT bits in Register 0x07. The dim timer has  
127 settings ranging from 1 sec to 127 sec. Program the dim  
timer (DIMT) before turning on the backlight. If BL_EN = 1,  
the backlight turns on to its maximum setting and the dim  
timer starts counting. When the dim timer expires, the internal  
state machine sets DIM_EN = 1, and the backlight enters its  
dim setting.  
LINEAR  
SQUARE  
CUBIC 11  
BACKLIGHT  
CURRENT  
DIM TIMER  
RUNNING  
DIM TIMER  
RUNNING  
CUBIC 10  
0.75  
0
0
0.25  
0.50  
1.00  
MAX  
UNIT FADE TIME  
Figure 29. Comparison of the Dimming Transfers Laws  
BACKLIGHT TURN ON/TURN OFF/DIM  
With the device in active mode (nSTBY = 1), the backlight can  
be turned on using the BL_EN bit in Register 0x01. Before  
turning on the backlight, the user should ensure that the  
maximum and dim settings are programmed. The backlight  
turns on when BL_EN = 1. The backlight turns off when  
BL_EN = 0.  
DIM  
BL_EN = 1 DIM_EN = 1  
DIM_EN = 0 DIM_EN = 1 BL_EN = 0  
SET BY USER  
SET BY INTERNAL STATEMACHINE  
BACKLIGHT  
CURRENT  
Figure 32. Dim Timer  
If the user clears the DIM_EN bit, the backlight reverts to its  
maximum setting and the dim timer begins counting again.  
When the dim timer expires, the internal state machine again  
sets DIM_EN = 1, and the backlight enters its dim setting. The  
backlight can be turned off at any point during the dim timer  
countdown by clearing BL_EN.  
MAX  
The user can also program the backlight to turn off automati-  
cally by using the OFFT bits in Register 0x06. The off timer has  
127 settings ranging from 1 sec to 127 sec. Program the off  
timer (OFFT) before turning on the backlight. If BL_EN = 1,  
the backlight turns on to its maximum setting and the off timer  
starts counting. When the off timer expires, the internal state  
machine clears the BL_EN bit, and the backlight turns off.  
BACKLIGHT  
BL_EN = 1  
BL_EN = 0  
Figure 30. Backlight Turn On/Turn Off  
While the backlight is on (BL_EN = 1), the user can change to  
the dim setting by programming DIM_EN = 1 in Register 0x01.  
If DIM_EN = 0, the backlight reverts to its maximum setting.  
BACKLIGHT  
CURRENT  
OFF TIMER  
RUNNING  
CURRENT  
MAX  
MAX  
DIM  
BL_EN = 1 BL_EN = 0  
BL_EN = 1 DIM_EN = 1 DIM_EN = 0 BL_EN = 0  
SET BY USER  
SET BY INTERNAL STATE MACHINE  
Figure 31. Backlight Turn On/Dim/Turn Off  
Figure 33. Off Timer  
The backlight can be turned off at any point during the off  
timer countdown by clearing BL_EN.  
Rev. 0 | Page 15 of 40  
 
 
ADP8861  
The dim timer and off timer can be used together for sequential  
maximum-to-dim-to-off functionality. With both the dim and  
off timers programmed, and BL_EN asserted, the backlight turns  
on to its maximum setting, and when the dim timer expires, the  
backlight changes to its dim setting. When the off timer expires,  
the backlight turns off.  
INDEPENDENT SINK CONTROL  
Each of the seven LEDs can be configured (in Register 0x05) to  
operate as either part of the backlight or to operate as an indepen-  
dent sink current (ISC). Each ISC can be enabled independently  
and has its own current level. All ISCs share the same fade in  
rates, fade out rates, and fade law.  
BACKLIGHT  
CURRENT  
The ISCs have additional timers to facilitate blinking functions.  
A shared on timer (SCON) used in conjunction with the off  
timers of each ISC (SC1_OFF, SC2_OFF, SC3_OFF, and SC4_OFF  
in Register 0x12, and SC5_OFF, SC6_OFF, and SC7_OFF in  
Register 0x11) allows the LED current sinks to be configured in  
various blinking modes. The on timer can be set to one of four  
different settings: 0.2 sec, 0.6 sec, 0.8 sec, or 1.2 sec. The off  
timers have four different settings: disabled, 0.6 sec, 1.2 sec, and  
1.8 sec. Blink mode is activated by setting the off timers to any  
setting other than disabled.  
DIM TIMER  
RUNNING  
MAX  
OFF TIMER  
RUNNING  
DIM  
Program all fade, on, and off timers before enabling any of the  
LED current sinks. If ISCx is on during a blink cycle and  
SCx_EN is cleared, the LED turns off (or fades to off if fade out  
is enabled). If ISCx is off during a blink cycle and SCx_EN is  
cleared, it stays off.  
BL_EN = 1  
DIM_EN = 1  
BL_EN = 0  
SET BY USER  
SET BY INTERNAL STATE MACHINE  
Figure 34. Dim and Off Timers Used Together  
FADE OVERRIDE  
ISCx  
A fade override feature (FOVR in Register CFGR (0x04)) enables  
the host to override the preprogrammed fade in or fade out set-  
tings. If FOVR is set and the backlight is enabled in the middle  
of a fade out process, the backlight instantly (within approximately  
100 ms) returns to its prefade brightness level. Alternatively, if  
the backlight is fading in, reasserting BL_EN overrides the pro-  
grammed fade in time, and the backlight instantly goes to its final  
fade value. This is useful for situations where a key is pressed  
during a fade sequence. However, if FOVR is cleared and the  
backlight is enabled in the middle of a fade process, the back-  
light gradually brightens from where it was interrupted (it does  
not go down to 0 and then comes back on).  
ON TIME  
ON TIME  
FADE-IN  
FADE-OUT FADE-IN  
FADE-OUT  
MAX  
OFF  
TIME  
OFF  
TIME  
ISCx_EN  
SET BY USER  
BACKLIGHT  
CURRENT  
Figure 36. Independent Sink Blink Mode with Fading  
FADE-IN  
FADE-OUT  
OVERRIDDEN  
OVERRIDDEN  
SHORT-CIRCUIT PROTECTION MODE  
MAX  
The ADP8861 can protect against short circuits on the output  
(VOUT). Short-circuit protection (SCP) is activated at the point  
when VOUT < 55% of VIN. Note that SCP sensing is disabled  
during both startup and restart attempts (fault recovery). SCP  
sensing is reenabled 4 ms (typical) after activation. During a  
short-circuit fault, the device enters a low current consumption  
state and an interrupt flag is set. The device can be restarted at  
any time after receiving a short-circuit fault by simply rewriting  
nSTBY = 1. It then repeats another complete soft start sequence.  
Note that the value of the output capacitance (COUT) should be  
small enough to allow VOUT to reach approximately 55% (typical)  
of VIN within the 4 ms (typical) time. If COUT is too large, the  
device inadvertently enters short-circuit protection.  
BL_EN = 1  
BL_EN = 1  
BL_EN = 0 BL_EN = 1 BL_EN = 0  
(REASSERTED)  
Figure 35. Fade Override Function (FOVR Is High)  
Rev. 0 | Page 16 of 40  
 
 
ADP8861  
pump resumes operation. If the fault or load event recurs, the  
process may repeat. An interrupt flag is set at each OVP  
instance.  
OVERVOLTAGE PROTECTION  
Overvoltage protection (OVP) is implemented on the output.  
There are two types of overvoltage events: normal (no fault)  
and abnormal (from a fault or sudden load change).  
THERMAL SHUTDOWN/OVERTEMPERATURE  
PROTECTION  
Normal Overvoltage  
If the die temperature of the ADP8861 rises above a safe limit  
(150°C typical), the controllers enter thermal shutdown (TSD)  
protection mode. In this mode, most of the internal functions  
shut down, the part enters standby, and the TSD_INT interrupt  
(Register 0x02) is set. When the die temperature decreases  
below ~130°C, the part can be restarted. To restart the part,  
simply remove it from standby. No interrupt is generated when  
the die temperature falls below 130°C. However, if the software  
clears the pending TSD_INT interrupt and the temperature  
remains above 130°C, another interrupt is generated.  
In a normal (no fault) overvoltage, the output voltage approaches  
VOUT(REG) (4.9 V typical) during normal operation. This is not  
caused by a fault or load change, but it is simply a consequence  
of the input voltage times the gain reaching the same level as the  
clamped output voltage (VOUT(REG)). To prevent this type of overvol-  
tage, the ADP8861 detects when the output voltage rises to  
V
OUT(REG). It then increases the effective ROUT of the gain stage to  
reduce the voltage that is delivered. This effectively regulates  
OUT to VOUT(REG); however, there is a limit to the effect that this  
V
system can have on regulating VOUT. It is designed only for  
normal operation and it is not intended to protect against faults  
or sudden load changes. When the output voltage is regulated to  
The complete state machine for these faults (SCP, OVP, and  
TSD) is shown in Figure 37.  
V
OUT(REG), no interrupt is set and the operation is transparent to  
INTERRUPTS  
the LEDs and the overall application.  
There are three interrupt sources available on the ADP8861 in  
Register 0x02.  
Abnormal Overvoltage  
Because of the open-loop behavior of the charge pump as well  
as how the gain transitions are computed, a sudden load change  
or fault can abnormally force VOUT beyond 6 V. This causes an  
abnormal overvoltage situation. If the event happens slowly  
enough, the system first tries to regulate the output to 4.9 V as  
in a normal overvoltage scenario. However, if this is not sufficient,  
or if the event happens too quickly, then the ADP8861 enters  
OVP mode when VOUT exceeds the OVP threshold (typically  
5.8 V). In OVP mode, only the charge pump is disabled to  
prevent VOUT from rising too high. The current sources and all  
other device functionality remain intact. When the output  
voltage falls by about 500 mV (to 5.3 V typical), the charge  
Overvoltage protection: The OVP_INT interrupt is  
generated when the output voltage exceeds 5.8 V (typical).  
Thermal shutdown circuit: An interrupt (TSD_INT) is  
generated when entering overtemperature protection.  
Short-circuit detection: SHORT_INT is generated when  
the device enters short-circuit protection mode.  
The interrupt (if any) that appears on the nINT pin is deter-  
mined by the bits mapped in Register INTR_EN (0x03). To  
clear an interrupt, write a 1 to the interrupt in the MDCR2  
register (0x02) or reset the part. Reading the interrupt, or writing a  
0, has no effect.  
Rev. 0 | Page 17 of 40  
 
ADP8861  
STANDBY  
0
EXIT STANDBY  
1
TSD FAULT  
DIE TEMP > TSD  
0
EXIT STANDBY  
1
STARTUP:  
CHARGE  
VIN TO VOUT  
DIE TEMP <  
TSD – TSD  
SCP FAULT  
(HYS)  
0
VOUT > V  
OUT(START)  
1
0
EXIT  
STARTUP  
VOUT < V  
OUT(SC)  
0
1
WAIT  
100µs (TYP)  
MIN (V  
< V  
)
VOUT < V  
D1:D7  
OVP  
0
G = 1  
V
HR(UP)  
OVP(HYS)  
0
VOUT > V  
OVP  
1
OVP FAULT  
1
0
0
1
MIN (V  
)
MIN (V  
> V  
)
WAIT  
100µs (TYP)  
D1:D7  
D1:D7  
DMAX  
G = 1.5  
< V  
HR(UP)  
0
VOUT < V  
OVP  
V
(HYS)  
OVP  
0
VOUT > V  
OUT(REG)  
OVP FAULT  
1
1
TRY TO  
REGULATE  
VOUT TO  
V
OUT(REG)  
VOUT > V  
OVP  
0
1
MIN (V  
> V  
)
WAIT  
100µs (TYP)  
D1:D7  
VOUT < V  
OVP  
G = 2  
0
DMAX  
V
OVP (HYS)  
0
VOUT > V  
OUT(REG)  
OVP FAULT  
1
1
TRY TO  
REGULATE  
VOUT TO  
NOTES  
1. V  
IS THE CALCULATED GAIN DOWN TRANSITION POINT.  
V
DMAX  
OUT(REG)  
VOUT > V  
OVP  
Figure 37. Fault State Machine  
Rev. 0 | Page 18 of 40  
 
ADP8861  
APPLICATIONS INFORMATION  
The ADP8861 allows the charge pump to operate efficiently  
with a minimum of external components. Specifically, the user  
must select an input capacitor (CIN), output capacitor (COUT),  
and two charge pump fly capacitors (C1 and C2). CIN should  
be 1 μF or greater. The value must be high enough to produce  
a stable input voltage signal at the minimum input voltage and  
maximum output load. A 1 μF capacitor for COUT is recommended.  
Larger values are permissible, but care must be exercised to  
ensure that VOUT charges above 55% (typical) of VIN within  
4 ms (typical). See the Short-Circuit Protection Mode section  
for more details.  
VOUT is also equal to the largest Vf of the LEDs used plus the  
voltage drop across the regulating current source. This gives  
V
OUT = Vf(MAX) + VDX  
(6)  
(7)  
Combining Equation 5 and Equation 6 gives  
VIN = (Vf(MAX) + VDX + IOUT × ROUT(G))/G  
Equation 7 is useful for calculating approximate bounds for the  
charge pump design.  
DETERMINING THE TRANSITION POINT OF THE  
CHARGE PUMP  
Consider the following design example where:  
For best practice, it is recommended that the two charge pump  
fly capacitors be 1 μF; larger values are not recommended, and  
smaller values may reduce the ability of the charge pump to  
deliver maximum current. For optimal efficiency, the charge  
pump fly capacitors should have low equivalent series resistance  
(ESR). Low ESR X5R or X7R capacitors are recommended for  
all four components. The use of fly capacitors sized 0402 and  
smaller is allowed, but the GDWN_DIS bit in Register 0x01  
must be set. Minimum voltage ratings should adhere to the  
guidelines in Table 6.  
Vf(MAX) = 3.7 V  
I
R
OUT = 140 mA (7 LEDs at 20 mA each)  
OUT (G = 1.5×) = 3 Ω (obtained from Figure 12)  
At the point of a gain transition, VDX = VHR(UP). Table 1 gives the  
typical value of VHR(UP) as 0.2 V. Therefore, the input voltage  
level when the gain transitions from 1.5× to 2× is  
VIN = (3.7 V + 0.2 V + 140 mA × 3 Ω)/1.5 = 2.88 V  
LAYOUT GUIDELINES  
Note the following layout guidelines:  
Table 6. Capacitor Stress in Each Charge Pump Gain State  
Capacitor Gain = 1× Gain = 1.5×  
Gain = 2×  
For optimal noise immunity, place the CIN and COUT  
capacitors as close to their respective pins as possible.  
These capacitors should share a short ground trace. If  
the LEDs are a significant distance from the VOUT pin,  
another capacitor on VOUT, placed closer to the LEDs, is  
advisable.  
CIN  
VIN  
VIN  
VIN  
COUT  
C1  
VIN  
VIN × 1.5 (max of 5.5 V)  
VIN × 2.0 (max of 5.5 V)  
None  
None  
VIN/2  
VIN/2  
VIN  
VIN  
C2  
Any color LED can be used if the Vf (forward voltage) is less  
than 4.1 V. However, using lower Vf LEDs reduces the input  
power consumption by allowing the charge pump to operate at  
lower gain states.  
For optimal efficiency, place the charge pump fly capacitors  
(C1 and C2) as close to the part as possible.  
The ADP8861 does not distinguish between power ground  
and analog ground. Therefore, both ground pins can be  
connected directly together. It is recommended that these  
ground pins be connected at the ground for the input and  
output capacitors.  
The equivalent circuit model for a charge pump is shown in  
Figure 38.  
VOUT  
R
OUT  
I
OUT  
Unused diode pins (Pin D1 to Pin D7) can be connected  
to ground or to VOUT, or remain floating. However, the  
unused diode current sinks must be disabled by setting  
them as independent sinks in Register 0x05 and then  
disabling them in Register 0x10. If they are not disabled,  
the charge pump efficiency may suffer.  
If the interrupt pin (nINT) is not used, connect it to  
ground or leave it floating. Never connect it to a voltage  
supply, except through a ≥1 kꢀ series resistor.  
The ADP8861 has an integrated noise filter on the nRST  
pin. Under normal conditions, it is not necessary to filter  
the reset line. However, if the part is exposed to an unusually  
noisy signal, it is beneficial to add a small RC filter or bypass  
capacitor on this pin. If the nRST pin is not used, it must  
be pulled well above the VIH(MIN) level (see Table 1). Do not  
allow the nRST pin to float.  
V
DX  
G × V  
IN  
C
OUT  
Figure 38. Charge Pump Equivalent Circuit Model  
The input voltage is multiplied by the gain (G) and delivered to  
the output through an effective resistance (ROUT). The output  
current flows through ROUT and produces an IR drop to yield:  
V
OUT = G ×VIN IOUT × ROUT(G)  
(5)  
The ROUT term is a combination of the RDSON resistance for the  
switches used in the charge pump and a small resistance, which  
accounts for the effective dynamic charge pump resistance. The  
OUT level changes based upon the gain (the configuration of the  
switches). Typical ROUT values are given in Table 1, Figure 12,  
R
and Figure 13.  
Rev. 0 | Page 19 of 40  
 
 
 
ADP8861  
EXAMPLE CIRCUITS  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VIN  
1µF  
VOUT  
1µF  
VDDIO  
nRST  
SDA  
SCL  
C1+  
C1–  
C2+  
C2–  
VDDIO  
VDDIO  
VDDIO  
C1  
1µF  
ADP8861  
C2  
1µF  
nINT  
GND1  
GND2  
Figure 39. Generic Application Schematic  
KEYPAD LIGHT  
UP TO 10 LEDs (6mA EACH)  
60mA MAX TOTAL CURRENT  
DL7  
DL8  
R6  
DL17  
R15  
R5  
ACCESSORY  
LIGHTS OR  
DISPLAY BACKLIGHT  
DL1 DL2 DL3 DL4  
SUB-DISPLAY BL  
DL5 DL6  
D1  
VIN  
D2  
D3  
D4  
D5 D6  
D7  
VOUT  
GND2  
V
IN  
C2  
C1  
GND1  
VDDIO  
nRST  
ADP8861  
R1 R2 R3 R4  
C1+  
C1–  
C2+  
C2–  
nRST  
SDA  
SCL  
C3  
C4  
2
I C  
CONTROL  
SIGNALS  
nINT  
nINT  
Figure 40. Application Schematic with Keypad Light Control  
Rev. 0 | Page 20 of 40  
 
ADP8861  
I2C PROGRAMMING AND DIGITAL CONTROL  
The ADP8861 provides full software programmability to facilitate  
its adoption in various product architectures. The default I2C  
address is 0101010x (x = 0 during write, x = 1 during read). There-  
fore, the default write address is 0x54 and the read address is 0x55.  
Table 7 through Table 55 provide register and bit descriptions.  
The reset value for all bits in the bit map tables is all 0s, except  
in Table 9 (see Table 9 for its unique reset value). Wherever the  
acronym N/A appears in the tables, it means not applicable.  
Note the following general behavior of registers:  
All registers are set to their default values during reset or  
after a UVLO event.  
All registers are read/write unless otherwise specified.  
Unused bits are read as zero.  
B7  
0
B0  
B7  
B0  
B7  
0
B0  
B7  
B0  
ST  
1
0
1
0
1
0
R/W ACK  
REGISTER ADDRESS  
ACK RS  
1
0
1
0
1
0
R/W ACK  
REGISTER VALUE  
ACK ST  
DEVICE ID  
FOR WRITE  
OPERATION  
SELECT REGISTER TO WRITE  
DEVICE ID  
FOR READ  
OPERATION  
8-BIT VALUE TO WRITE IN THE  
ADDRESSED REGISTER  
SLAVE TO MASTER  
MASTER TO SLAVE  
Figure 41. I2C Read Command Sequence  
B7  
B0  
B7  
B0  
B7  
B0  
ST  
0
1
0
1
0
1
0
ACK  
REGISTER ADDRESS  
ACK  
REGISTER VALUE  
R/W  
ACK ST  
DEVICE ID  
FOR WRITE  
OPERATION  
SELECT REGISTER TO WRITE  
8-BIT VALUE TO WRITE IN THE  
ADDRESSED REGISTER  
SLAVE TO MASTER  
MASTER TO SLAVE  
Figure 42. I2C Write Command Sequence  
Rev. 0 | Page 21 of 40  
 
ADP8861  
Table 7. Register Set Definitions  
Address (Hex) Register Name  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B to 0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
MFDVID  
MDCR  
MDCR2  
INTR_EN  
CFGR  
BLSEN  
BLOFF  
BLDIM  
BLFR  
BLMX  
BLDM  
Reserved  
ISCFR  
ISCC  
ISCT1  
ISCT2  
ISCF  
ISC7  
ISC6  
ISC5  
ISC4  
ISC3  
ISC2  
Manufacturer and device ID  
Device mode and status  
Device mode and Status Register 2  
Interrupts enable  
Configuration register  
Sink enable, backlight or independent  
Backlight off timeout  
Backlight dim timeout  
Backlight fade in and fade out rates  
Backlight maximum current  
Backlight dim current  
Independent sink current fade control register  
Independent sink current control register  
Independent Sink Current Timer Register, LED[7:5]  
Independent Sink Current Timer Register, LED[4:1]  
Independent sink current fade register  
Independent Sink Current, LED7  
Independent Sink Current, LED6  
Independent Sink Current, LED5  
Independent Sink Current, LED4  
Independent Sink Current, LED3  
Independent Sink Current, LED2  
Independent Sink Current, LED1  
ISC1  
Rev. 0 | Page 22 of 40  
 
ADP8861  
Table 8. Register Map  
Address Register  
(Hex)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
Name  
MFDVID  
MDCR  
MDCR2  
INTR_EN  
CFGR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Manufacturer ID  
Device ID  
Reserved INT_CFG  
Reserved  
Reserved  
nSTBY  
DIM_EN  
GDWN_DIS SIS_EN  
Reserved  
BL_EN  
SHORT_INT  
SHORT_IEN  
TSD_INT  
TSD_IEN  
OVP_INT  
OVP_IEN  
Reserved  
Reserved  
FOVR  
D1EN  
Reserved  
Law  
D2EN  
BLSEN  
BLOFF  
BLDIM  
BLFR  
Reserved D7EN  
D6EN  
D5EN  
D4EN  
OFFT  
DIMT  
D3EN  
Reserved  
Reserved  
BL_FO  
BL_FI  
BLMX  
BLDM  
N/A  
Reserved  
Reserved  
BL_MC  
BL_DC  
0x0B to  
0x0E  
Reserved  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
ISCFR  
ISCC  
ISCT1  
ISCT2  
ISCF  
ISC7  
ISC6  
ISC5  
ISC4  
ISC3  
ISC2  
ISC1  
Reserved  
SC5_EN  
SC7_OFF  
SC_LAW  
SC1_EN  
SC5_OFF  
SC1_OFF  
Reserved SC7_EN  
SCON  
SC6_EN  
SC4_EN  
SC3_EN  
SC2_EN  
SC6_OFF  
SC2_OFF  
SC4_OFF  
SC3_OFF  
SCFO  
SCFI  
SCR  
SCD7  
SCD6  
SCD5  
SCD4  
SCD3  
SCD2  
SCD1  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Rev. 0 | Page 23 of 40  
ADP8861  
Manufacturer and Device ID (MFDVID)—Register 0x00  
Multiple device revisions are tracked by the device ID field. This is a read-only register.  
Table 9. MFDVID Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Device ID  
Bit 0  
Manufacturer ID  
0
1
0
0
0
0
0
0
Mode Control Register (MDCR)—Register 0x01  
Table 10. MDCR Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
DIM_EN  
Bit 3  
GDWN_DIS  
Bit 2  
SIS_EN  
Bit 1  
Bit 0  
Reserved  
INT_CFG  
nSTBY  
Reserved  
BL_EN  
Table 11. Bit Descriptions for the MDCR Register  
Bit Name  
Bit No. Description  
N/A  
7
6
Reserved.  
INT_CFG  
Interrupt configuration.  
1 = processor interrupt deasserts for 50 μs and reasserts with pending events.  
0 = processor interrupt remains asserted if the host tries to clear the interrupt while there is a pending event.  
nSTBY  
5
4
1 = device is in active mode.  
0 = device is in standby mode; only the I2C interface is enabled.  
DIM_EN  
DIM_EN is set by the hardware after a dim timeout. The user can also force the backlight into dim mode by  
asserting this bit. Dim mode can only be entered if BL_EN is also enabled.  
1 = backlight is operating at the dim current level (BL_EN must also be asserted).  
0 = backlight is not in dim mode.  
GDWN_DIS  
SIS_EN  
3
2
1 = the charge pump does not switch down in gain until all LEDs are off. The charge pump switches up in gain as  
needed. This feature is useful if the ADP8861 charge pump is used to drive an external load. This feature must be  
used when utilizing small fly capacitors (0402 or smaller).  
0 = the charge pump automatically switches up and down in gain. This provides optimal efficiency, but is not  
suitable for driving loads that are not connected through the ADP8861 diode drivers. Additionally, the charge  
pump fly capacitors should be low ESR and sized 0603 or greater.  
Synchronous independent sinks enable.  
1 = enables all LED current sinks designated as independent sinks. This bit has no effect if any of the SCx_EN bits  
in Register 0x10 are set.  
0 = disables all LED current sinks designated as independent sinks. This bit has no effect if any of the SCx_EN bits  
in Register 0x10 are set.  
N/A  
1
0
Reserved.  
BL_EN  
1 = backlight is enabled (nSTBY must also be asserted).  
0 = backlight is disabled.  
Rev. 0 | Page 24 of 40  
 
ADP8861  
Mode Control Register 2 (MDCR2)—Register 0x02  
Table 12. MDCR2 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SHORT_INT  
TSD_INT  
OVP_INT  
Reserved  
Table 13. Bit Descriptions for the MDCR2 Register  
Bit Name  
Bit No.  
[7:5]  
4
Description1  
N/A  
Reserved  
SHORT_INT  
Short-circuit error interrupt.  
1 = a short-circuit or overload condition on VOUT has been detected.  
0 = no short-circuit or overload condition has been detected.  
Thermal shutdown interrupt.  
1 = the device temperature has exceeded 150°C (typical).  
0 = no overtemperature condition has been detected.  
Overvoltage interrupt.  
TSD_INT  
OVP_INT  
N/A  
3
2
1 = VOUT has exceeded VOVP  
.
0 = VOUT has not exceeded VOVP  
Reserved.  
.
1:0  
1 Interrupt bits are cleared by writing a 1 to the flag; writing a 0 or reading the flag has no effect.  
Interrupt Enable (INTR_EN)—Register 0x03  
Table 14. INTR_EN Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Reserved  
SHORT_IEN  
TSD_IEN  
OVP_IEN  
Table 15. Bit Descriptions for the INTR_EN Register  
Bit Name  
Bit No. Description  
N/A  
[7:5]  
4
Reserved.  
SHORT_IEN  
Short-circuit interrupt is enabled. When the SHORT_INT status bit is set after an error condition, an interrupt is  
raised to the host if the SHORT_IEN flag is enabled.  
1 = the short-circuit interrupt is enabled.  
0 = the short-circuit interrupt is disabled (the SHORT_INT flag continues to assert).  
TSD_IEN  
OVP_IEN  
N/A  
3
Thermal shutdown interrupt is enabled. When the TSD_INT status bit is set after an error condition, an interrupt is  
raised to the host if the TSD_IEN flag is enabled.  
1 = the thermal shutdown interrupt is enabled.  
0 = the thermal shutdown interrupt is disabled (the TSD_INT flag continues to assert).  
2
Overvoltage interrupt enabled. When the OVP_INT status bit is set after an error condition, an interrupt is raised to  
the host if the OVP_IEN flag is enabled.  
1 = the overvoltage interrupt is enabled.  
0 = the overvoltage interrupt is disabled (the OVP_INT flag continues to assert).  
Reserved.  
[1:0]  
Rev. 0 | Page 25 of 40  
ADP8861  
BACKLIGHT REGISTER DESCRIPTIONS  
Configuration Register (CFGR)—Register 0x04  
Table 16. CFGR Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Law  
Bit 0  
Reserved  
FOVR  
Table 17. Bit Descriptions for the CFGR Register  
Bit Name  
Bit No. Description  
N/A  
[7:3]  
[2:1]  
Reserved  
Law  
Backlight transfer law  
00 = linear law DAC, linear time steps  
01 = square law DAC, linear time steps  
10 = square law DAC, nonlinear time steps (Cubic 10)  
11 = square law DAC, nonlinear time steps (Cubic 11)  
Backlight fade override  
FOVR  
0
1 = the backlight fade override is enabled  
0 = the backlight fade override is disabled  
Backlight Sink Enable (BLSEN)—Register 0x05  
Table 18. BLSEN Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
D7EN  
D6EN  
D5EN  
D4EN  
D3EN  
D2EN  
D1EN  
Table 19. Bit Descriptions for the BLSEN Register  
Bit Name  
Bit No.  
Description  
N/A  
7
6
Reserved  
D7EN  
Diode 7 backlight sink enable  
1 = selects LED7 as an independent sink  
0 = connects LED7 sink to backlight enable (BL_EN)  
Diode 6 backlight sink enable  
1 = selects LED6 as an independent sink  
0 = connects LED6 sink to backlight enable (BL_EN)  
Diode 5 backlight sink enable  
1 = selects LED5 as an independent sink  
0 = connects LED5 sink to backlight enable (BL_EN)  
Diode 4 backlight sink enable  
1 = selects LED4 as an independent sink  
0 = connects LED4 sink to backlight enable (BL_EN)  
Diode 3 backlight sink enable  
1 = selects LED3 as an independent sink  
0 = connects LED3 sink to backlight enable (BL_EN)  
Diode 2 backlight sink enable  
1 = selects LED2 as an independent sink  
0 = connects LED2 sink to backlight enable (BL_EN)  
Diode 1 backlight sink enable  
D6EN  
D5EN  
D4EN  
D3EN  
D2EN  
D1EN  
5
4
3
2
1
0
1 = selects LED1 as an independent sink  
0 = connects LED1 sink to backlight enable (BL_EN)  
Rev. 0 | Page 26 of 40  
 
ADP8861  
Backlight Off Timeout (BLOFF)—Register 0x06  
Table 20. BLOFF Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
OFFT  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Table 21. Bit Descriptions for the BLOFF Register  
Bit Name Bit No. Description  
N/A  
7
Reserved.  
OFFT  
[6:0]  
Backlight off timeout. After the off timeout (OFFT) period, the backlight turns off. If the dim timeout (DIMT) is  
enabled, the off timeout starts after the dim timeout.  
0000000 = timeout disabled  
0000001 = 1 sec  
0000010 = 2 sec  
0000011 = 3 sec  
1111111 = 127 sec  
Backlight Dim Timeout (BLDIM)—Register 0x07  
Table 22. BLDIM Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
DIMT  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Table 23. Bit Descriptions for the BLDIM Register  
Bit Name Bit No. Description  
N/A  
7
Reserved.  
DIMT  
[6:0]  
Backlight dim timeout. After the dim timeout (DIMT) period, the backlight is set to the dim current value. The dim  
timeout starts after backlight reaches the maximum current.  
0000000 = timeout disabled  
0000001 = 1 sec  
0000010 = 2 sec  
0000011 = 3 sec  
1111111 = 127 sec  
Rev. 0 | Page 27 of 40  
ADP8861  
Backlight Fade (BLFR)—Register 0x08  
Table 24. BLFR Bit Map  
Bit 7  
Bit 6  
Bit 5  
BL_FO  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
BL_FI  
Bit 0  
Table 25. Bit Descriptions for the BLFR Register  
Bit Name Bit No. Description  
BL_FO  
[7:4]  
Backlight fade out rate. If fade out is disabled (BL_FO = 0000), the backlight changes instantly (within 100 ms). If the  
fade out rate is set, the backlight fades from its current value to the dim or the off value. The times listed for BL_FO  
are for a full-scale fade out (30 mA to 0 mA). Fades between closer current values reduce the fade time. See the  
Automated Fade In and Fade Out section for more information.  
0000 = 0.1 sec (fade out disabled)1  
0001 = 0.3 sec  
0010 = 0.6 sec  
0011 = 0.9 sec  
0100 = 1.2 sec  
0101 = 1.5 sec  
0110 = 1.8 sec  
0111 = 2.1 sec  
1000 = 2.4 sec  
1001 = 2.7 sec  
1010 = 3.0 sec  
1011 = 3.5 sec  
1100 = 4.0 sec  
1101 = 4.5 sec  
1110 = 5.0 sec  
1111 = 5.5 sec  
BL_FI  
[3:0]  
Backlight fade in rate. If fade in is disabled (BL_FI = 0000), the backlight changes instantly (within 100 ms). If the fade  
in rate is set, the backlight fades from its current value to its maximum value when the backlight is turned on. The  
times listed for BL_FI are for a full-scale fade in (0 mA to 30 mA). Fades between closer current values reduce the fade  
time. See the Automated Fade In and Fade Out section for more information.  
0000 = 0.1 sec (fade in disabled)1  
0001 = 0.3 sec  
0010 = 0.6 sec  
0011 = 0.9 sec  
1111 = 5.5 sec  
1 When fade in and fade out are disabled, the backlight does not instantly fade, but instead, fades rapidly within about 100 ms.  
Rev. 0 | Page 28 of 40  
ADP8861  
Backlight Maximum Current Register (BLMX)—Register 0x09  
Table 26. BLMX Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
BL_MC  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Table 27. Bit Descriptions for the BLMX Register  
Bit Name Bit No.  
Description  
N/A  
7
Reserved.  
BL_MC  
[6:0]  
Backlight maximum current. The backlight maximum current can be set according to the linear or square law  
function (see Table 28 for a complete list of values).  
DAC  
Linear Law (mA) Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0.000  
0.002  
0.007  
0.017  
0.236  
0.472  
0.709  
1111111  
30  
30  
Table 28. Linear and Square Law Currents Per DAC Code (SCR = 0)  
DAC Code  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
Linear Law (mA)  
Square Law (mA)1  
0.000  
0.002  
0.007  
0.017  
0.030  
0.047  
0.067  
0.091  
0.119  
0.151  
0.186  
0.225  
0.268  
0.314  
0.365  
0.419  
0.476  
0.538  
0.603  
0.671  
0.744  
0.820  
0.900  
0.984  
1.071  
1.163  
1.257  
1.356  
1.458  
1.564  
1.674  
1.787  
1.905  
2.026  
DAC Code  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
Linear Law (mA)  
8.031  
8.268  
8.504  
8.740  
8.976  
9.213  
9.449  
9.685  
Square Law (mA)1  
2.150  
2.279  
2.411  
2.546  
2.686  
2.829  
2.976  
3.127  
3.281  
3.439  
3.601  
3.767  
3.936  
4.109  
4.285  
4.466  
4.650  
4.838  
5.029  
5.225  
5.424  
5.627  
5.833  
6.043  
6.257  
6.475  
6.696  
6.921  
7.150  
7.382  
7.619  
7.859  
8.102  
8.350  
0
0.236  
0.472  
0.709  
0.945  
1.181  
1.417  
1.654  
1.890  
2.126  
2.362  
2.598  
2.835  
3.071  
3.307  
3.543  
3.780  
4.016  
4.252  
4.488  
4.724  
4.961  
5.197  
5.433  
5.669  
5.906  
6.142  
6.378  
6.614  
6.850  
7.087  
7.323  
7.559  
7.795  
9.921  
10.157  
10.394  
10.630  
10.866  
11.102  
11.339  
11.575  
11.811  
12.047  
12.283  
12.520  
12.756  
12.992  
13.228  
13.465  
13.701  
13.937  
14.173  
14.409  
14.646  
14.882  
15.118  
15.354  
15.591  
15.827  
Rev. 0 | Page 29 of 40  
 
ADP8861  
DAC Code  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
Linear Law (mA)  
16.063  
16.299  
16.535  
16.772  
17.008  
17.244  
17.480  
17.717  
17.953  
18.189  
18.425  
18.661  
18.898  
19.134  
19.370  
19.606  
19.842  
20.079  
20.315  
20.551  
20.787  
21.024  
21.260  
21.496  
21.732  
21.968  
22.205  
22.441  
22.677  
22.913  
Square Law (mA)1  
8.601  
8.855  
9.114  
9.376  
9.642  
9.912  
DAC Code  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
Linear Law (mA)  
23.150  
23.386  
23.622  
23.858  
24.094  
24.331  
24.567  
24.803  
25.039  
25.276  
25.512  
25.748  
25.984  
26.220  
26.457  
26.693  
26.929  
27.165  
27.402  
27.638  
27.874  
28.110  
28.346  
28.583  
28.819  
29.055  
29.291  
29.528  
29.764  
30.000  
Square Law (mA)1  
17.863  
18.230  
18.600  
18.974  
19.351  
19.733  
20.118  
20.507  
20.899  
21.295  
21.695  
22.099  
22.506  
22.917  
23.332  
23.750  
24.173  
24.599  
25.028  
25.462  
25.899  
26.340  
26.784  
27.232  
27.684  
28.140  
28.599  
29.063  
29.529  
30.000  
10.185  
10.463  
10.743  
11.028  
11.316  
11.608  
11.904  
12.203  
12.507  
12.814  
13.124  
13.439  
13.757  
14.078  
14.404  
14.733  
15.066  
15.403  
15.743  
16.087  
16.435  
16.787  
17.142  
17.501  
1 Cubic 10 and Cubic 11 laws use the square law DAC setting but vary the time  
step per DAC code (see Figure 29).  
Rev. 0 | Page 30 of 40  
ADP8861  
Backlight Dim Current Register (BLDM)—Register 0x0A  
Table 29. BLDM Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
BL_DC  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Table 30. Bit Descriptions for the BLDM Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
BL_DC  
[6:0]  
Backlight dim current. The backlight is set to the dim current value after a dim timeout or if the DIM_EN  
flag is set by the user (see Table 28 for a complete list of values).  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0.000  
0.002  
0.007  
0.017  
0.236  
0.472  
0.709  
1111111  
30  
30  
INDEPENDENT SINK REGISTER DESCRIPTIONS  
Independent Sink Current Fade Control Register (ISCFR)—Register 0x0F  
Table 31. ISCFR Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SC_LAW  
Reserved  
Table 32. Bit Descriptions for the ISCFR  
Bit Name  
Bit No.  
Description  
N/A  
[7:2]  
Reserved  
SC_LAW  
[1:0]  
Independent sink current fade transfer law  
00 = linear law DAC, linear time steps  
01 = square law DAC, linear time steps  
10 = square law DAC, nonlinear time steps (Cubic 10)  
11 = square law DAC, nonlinear time steps (Cubic 11)  
Independent Sink Current Control (ISCC)—Register 0x10  
Table 33. ISCC Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SC7_EN  
SC6_EN  
SC5_EN  
SC4_EN  
SC3_EN  
SC2_EN  
SC1_EN  
Table 34. Bit Descriptions for the ISCC Register  
Bit Name  
Bit No.  
Description  
N/A  
7
6
Reserved  
SC7_EN  
This enable acts upon LED7  
1 = SC7 is turned on  
0 = SC7 is turned off  
SC6_EN  
SC5_EN  
5
4
This enable acts upon LED6  
1 = SC6 is turned on  
0 = SC6 is turned off  
This enable acts upon LED5  
1 = SC5 is turned on  
0 = SC5 is turned off  
Rev. 0 | Page 31 of 40  
 
ADP8861  
Bit Name  
Bit No.  
Description  
SC4_EN  
3
This enable acts upon LED4  
1 = SC4 is turned on  
0 = SC4 is turned off  
SC3_EN  
SC2_EN  
SC1_EN  
2
1
0
This enable acts upon LED3  
1 = SC3 is turned on  
0 = SC3 is turned off  
This enable acts upon LED2  
1 = SC2 is turned on  
0 = SC2 is turned off  
This enable acts upon LED1  
1 = SC1 is turned on  
0 = SC1 is turned off  
Independent Sink Current Time (ISCT1)—Register 0x11  
Table 35. ISCT1 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
SC7_OFF  
Bit 3  
Bit 2  
SC6_OFF  
Bit 1  
Bit 0  
SC5_OFF  
SCON  
Table 36. Bit Descriptions for the ISCT1 Register  
Bit Name  
Bit No.  
Description1  
SCON  
[7:6]  
SC on time. If the SCx_OFF time is not disabled and the independent current sink is enabled (Register  
0x10), the LED(s) remains on for the on time selected (per the following list) and then turns off.  
00 = 0.2 sec  
01 = 0.6 sec  
10 = 0.8 sec  
11 = 1.2 sec  
SC7_OFF  
SC6_OFF  
SC5_OFF  
[5:4]  
[3:2]  
[1:0]  
SC7 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is  
set to any other value, then the ISC turns off for the off time (per the following listed times) and then turns  
on according to the SCON setting.  
00 = off time disabled  
01 = 0.6 sec  
10 = 1.2 sec  
11 = 1.8 sec  
SC6 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is  
set to any other value, then the ISC turns off for the off time (per the following listed times) and then turns  
on according to the SCON setting.  
00 = off time disabled  
01 = 0.6 sec  
10 = 1.2 sec  
11 = 1.8 sec  
SC5 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is  
set to any other value, then the ISC turns off for the off time (per the following listed times) and then turns  
on according to the SCON setting.  
00 = off time disabled  
01 = 0.6 sec  
10 = 1.2 sec  
11 = 1.8 sec  
1 Each current sink remains on continuously when its enable is set to 1 and its off time is set to 00 (disabled).  
Rev. 0 | Page 32 of 40  
ADP8861  
Independent Sink Current Time (ISCT2)—Register 0x12  
Table 37. ISCT2 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
SC3_OFF  
Bit 3  
Bit 2  
SC2_OFF  
Bit 1  
Bit 0  
SC4_OFF  
SC1_OFF  
Table 38. Bit Descriptions for the ISCT2 Register  
Bit Name  
Bit No.  
Description1  
SC4_OFF  
[7:6]  
SC4 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is  
set to any other value, then the ISC turns off for the off time (per the following listed times) and then  
turns on according to the SCON setting.  
00 = off time disabled  
01 = 0.6 sec  
10 = 1.2 sec  
11 = 1.8 sec  
SC3_OFF  
SC2_OFF  
SC1_OFF  
[5:4]  
[3:2]  
[1:0]  
SC3 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is  
set to any other value, then the ISC turns off for the off time (per the following listed times) and then  
turns on according to the SCON setting.  
00 = off time disabled  
01 = 0.6 sec  
10 = 1.2 sec  
11 = 1.8 sec  
SC2 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is  
set to any other value, then the ISC turns off for the off time (per the following listed times) and then  
turns on according to the SCON setting.  
00 = off time disabled  
01 = 0.6 sec  
10 = 1.2 sec  
11 = 1.8 sec  
SC1 off time. When the SC off time is disabled, the ISC remains on while enabled. When the SC off time is  
set to any other value, then the ISC turns off for the off time (per the following listed times) and then  
turns on according to the SCON setting.  
00 = off time disabled  
01 = 0.6 sec  
10 = 1.2 sec  
11 = 1.8 sec  
1 Each current sink remains on continuously when its enable is set to 1 and its off time is set to 00 (disabled).  
Rev. 0 | Page 33 of 40  
ADP8861  
Independent Sink Current Fade (ISCF)—Register 0x13  
Table 39. ISCF Bit Map  
Bit 7  
Bit 6  
Bit 5  
SCFO  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
SCFI  
Bit 0  
Table 40. Bit Descriptions for the ISCF Register  
Bit Name  
Bit No.  
Description  
SCFO  
[7:4]  
Sink current fade out rate. The following times listed are for a full-scale fade out (30 mA to 0 mA). Fades  
between closer current values reduce the fade time. See the Automated Fade In and Fade Out section  
for more information.  
0000 = disabled  
0001 = 0.30 sec  
0010 = 0.60 sec  
0011 = 0.90 sec  
0100 = 1.2 sec  
0101 = 1.5 sec  
0110 = 1.8 sec  
0111 = 2.1 sec  
1000 = 2.4 sec  
1001 = 2.7 sec  
1010 = 3.0 sec  
1011 = 3.5 sec  
1100 = 4.0 sec  
1101 = 4.5 sec  
1110 = 5.0 sec  
1111 = 5.5 sec  
SCFI  
[3:0]  
Sink current fade in rate. The following times listed are for a full-scale fade in (0 mA to 30 mA). Fades  
between closer current values reduce the fade time. See the Automated Fade In and Fade Out section  
for more information.  
0000 = disabled  
0001 = 0.30 sec  
0010 = 0.60 sec  
0011 = 0.90 sec  
0100 = 1.2 sec  
0101 = 1.5 sec  
0110 = 1.8 sec  
0111 = 2.1 sec  
1000 = 2.4 sec  
1001 = 2.7 sec  
1010 = 3.0 sec  
1011 = 3.5 sec  
1100 = 4.0 sec  
1101 = 4.5 sec  
1110 = 5.0 sec  
1111 = 5.5 sec  
Rev. 0 | Page 34 of 40  
ADP8861  
Sink Current Register LED7 (ISC7)—Register 0x14  
Table 41. ISC7 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SCD7  
Bit 2  
Bit 1  
Bit 0  
SCR  
Table 42. Bit Descriptions for the ISC7 Register  
Bit Name  
Bit No.  
Description  
SCR  
7
1 = Sink Current 1.  
0 = Sink Current 0.  
SCD7  
[6:0]  
For Sink Current 0, use the following DAC code schedule (see Table 28 for a complete list of values):  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0
0.000  
0.002  
0.007  
0.017  
0000001 0.236  
0000010 0.472  
0000011 0.709  
1111111 30  
30  
For Sink Current 1, use the following DAC code schedule (see Table 43 for a complete list of values):  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000 0.000  
0000001 0.472  
0000010 0.945  
0000011 1.417  
0
0.004  
0.014  
0.034  
1111111 60  
60  
Table 43. Linear and Square Law Currents for LED7 (SCR = 1)  
DAC Code  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
Linear Law (mA)  
0.000  
0.472  
0.945  
1.42  
1.89  
2.36  
2.83  
3.31  
3.78  
4.25  
4.72  
5.20  
5.67  
6.14  
6.61  
7.09  
7.56  
8.03  
8.50  
8.98  
9.45  
9.92  
10.39  
10.87  
11.34  
Square Law (mA)1  
0
DAC Code  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
Linear Law (mA)  
11.81  
12.28  
12.76  
13.23  
13.70  
14.17  
14.65  
15.12  
15.59  
16.06  
16.54  
17.01  
17.48  
17.95  
18.43  
18.90  
19.37  
19.84  
20.31  
20.79  
21.26  
21.73  
22.20  
22.68  
23.15  
Square Law (mA)1  
2.326  
2.514  
2.712  
2.916  
3.128  
3.348  
3.574  
3.81  
0.004  
0.014  
0.034  
0.06  
0.094  
0.134  
0.182  
0.238  
0.302  
0.372  
0.45  
0.536  
0.628  
0.73  
0.838  
0.952  
1.076  
1.206  
1.342  
1.488  
1.64  
4.052  
4.3  
4.558  
4.822  
5.092  
5.372  
5.658  
5.952  
6.254  
6.562  
6.878  
7.202  
7.534  
7.872  
8.218  
8.57  
1.8  
1.968  
2.142  
8.932  
Rev. 0 | Page 35 of 40  
 
ADP8861  
DAC Code  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
Linear Law (mA)  
23.62  
24.09  
24.57  
25.04  
25.51  
25.98  
26.46  
26.93  
27.40  
27.87  
28.35  
28.82  
29.29  
29.76  
30.24  
30.71  
31.18  
31.65  
32.13  
32.60  
33.07  
33.54  
34.02  
34.49  
34.96  
35.43  
35.91  
36.38  
36.85  
37.32  
37.80  
38.27  
38.74  
39.21  
39.69  
40.16  
40.63  
41.10  
41.57  
Square Law (mA)1  
9.3  
9.676  
10.058  
10.45  
DAC Code  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
Linear Law (mA)  
42.05  
42.52  
42.99  
43.46  
43.94  
44.41  
44.88  
45.35  
45.83  
46.30  
46.77  
47.24  
47.72  
48.19  
48.66  
49.13  
49.61  
50.08  
50.55  
51.02  
51.50  
51.97  
52.44  
52.91  
53.39  
53.86  
54.33  
54.80  
55.28  
55.75  
56.22  
56.69  
57.17  
57.64  
58.11  
58.58  
59.06  
59.53  
60  
Square Law (mA)1  
29.466  
30.132  
30.806  
31.486  
32.174  
32.87  
33.574  
34.284  
35.002  
35.726  
36.46  
10.848  
11.254  
11.666  
12.086  
12.514  
12.95  
13.392  
13.842  
14.3  
14.764  
15.238  
15.718  
16.204  
16.7  
37.2  
37.948  
38.702  
39.466  
40.236  
41.014  
41.798  
42.59  
17.202  
17.71  
43.39  
18.228  
18.752  
19.284  
19.824  
20.37  
44.198  
45.012  
45.834  
46.664  
47.5  
48.346  
49.198  
50.056  
50.924  
51.798  
52.68  
53.568  
54.464  
55.368  
56.28  
57.198  
58.126  
59.058  
60  
20.926  
21.486  
22.056  
22.632  
23.216  
23.808  
24.406  
25.014  
25.628  
26.248  
26.878  
27.514  
28.156  
28.808  
1 Cubic 10 and Cubic 11 laws use the square law DAC setting but vary the time  
step per DAC code (see Figure 29).  
Rev. 0 | Page 36 of 40  
ADP8861  
Sink Current Register LED6 (ISC6)—Register 0x15  
Table 44. ISC6 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SCD6  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Table 45. Bit Descriptions for the ISC6 Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
SCD6  
[6:0]  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values).  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0.000  
0.002  
0.007  
0.017  
0.236  
0.472  
0.709  
1111111  
30  
30  
Sink Current Register LED5 (ISC5)—Register 0x16  
Table 46. ISC5 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SCD5  
Table 47. Bit Descriptions for the ISC5 Register  
Bit Name  
Bit No. Description  
N/A  
7
Reserved.  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
SCD5  
[6:0]  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0.000  
0.002  
0.007  
0.017  
0.236  
0.472  
0.709  
1111111  
30  
30  
Sink Current Register LED4 (ISC4)—Register 0x17  
Table 48. ISC4 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
SCD4  
Table 49. Bit Descriptions for the ISC4 Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
SCD4  
[6:0]  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0
0.236  
0.472  
0.709  
0.002  
0.007  
0.017  
1111111  
30  
30  
Rev. 0 | Page 37 of 40  
ADP8861  
Sink Current Register LED3 (ISC3)—Register 0x18  
Table 50. ISC3 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SCD3  
Bit 2  
Bit 1  
Bit 0  
Bit 0  
Bit 0  
Reserved  
Table 51. Bit Descriptions for the ISC3 Register  
Bit Name  
N/A  
Bit No.  
Description  
7
Reserved.  
SCD3  
[6:0]  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0.000  
0.002  
0.007  
0.017  
0.236  
0.472  
0.709  
1111111  
30  
30  
Sink Current Register LED2 (ISC2)—Register 0x19  
Table 52. ISC2 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SCD2  
Bit 2  
Bit 1  
Reserved  
Table 53. Bit Descriptions for the ISC2 Register  
Bit Name  
N/A  
Bit No.  
Description  
7
Reserved.  
SCD2  
[6:0]  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0.000  
0.002  
0.007  
0.017  
0.236  
0.472  
0.709  
1111111  
30  
30  
Sink Current Register LED1 (ISC1)—Register 0x1A  
Table 54. ISC1 Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
SCD1  
Bit 2  
Bit 1  
Reserved  
Table 55. Bit Descriptions for the ISC1 Register  
Bit Name  
Bit No.  
Description  
N/A  
7
Reserved.  
SCD1  
[6:0]  
Sink current. Use the following DAC code schedule (see Table 28 for a complete list of values):  
DAC  
Linear Law (mA)  
Square Law (mA)  
0000000  
0000001  
0000010  
0000011  
0
0.000  
0.002  
0.007  
0.017  
0.236  
0.472  
0.709  
1111111  
30  
30  
Rev. 0 | Page 38 of 40  
 
ADP8861  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.65  
2.50 SQ  
2.35  
5
11  
6
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 43. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-20-10)  
Dimensions shown in millimeters  
Figure 44. Tape and Reel Orientation for LFCSP Units  
ORDERING GUIDE  
Model1  
ADP8861ACPZ-RL  
ADP8861DBCB-EVALZ  
ADP886XMB1-EVALZ  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
CP-20-10  
20-Lead LFCSP_WQ, 7”Tape and Reel  
Daughter Card  
USB-to-I2C Adapter Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 39 of 40  
 
ADP8861  
NOTES  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08391-0-4/10(0)  
Rev. 0 | Page 40 of 40  
 
 
 
 
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY