ADPA1105ACGZN [ADI]

46 dBm (40 W), 0.9 GHz to 1.6 GHz, GaN Power Amplifier;
ADPA1105ACGZN
型号: ADPA1105ACGZN
厂家: ADI    ADI
描述:

46 dBm (40 W), 0.9 GHz to 1.6 GHz, GaN Power Amplifier

文件: 总16页 (文件大小:710K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
46 dBm (40 W), 0.9 GHz to 1.6 GHz,  
GaN Power Amplifier  
Data Sheet  
ADPA1105  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Output power with PIN = 19 dBm: 46 dBm typical  
Small signal gain: 34.5 dB typical at 0.9 GHz to 1.4 GHz  
Power gain with PIN = 19 dBm: 27 dB typical  
Bandwidth: 0.9 GHz to 1.6 GHz  
PAE with PIN = 19 dBm: 60% typical at 0.9 GHz to 1.4 GHz  
Supply voltage: VDD = 50 V at 400 mA on 10% duty cycle  
32-Lead, 5 mm × 5 mm, LFSCP_CAV package  
ADPA1105  
1
2
3
4
5
6
7
8
GND  
NC  
NC  
24 GND  
23 NC  
NC  
22  
21 RFOUT  
20 RFOUT  
19 GND  
RFIN  
RFIN  
GND  
NC  
GND  
APPLICATIONS  
NC  
18  
17 GND  
Weather radar  
Marine radar  
Military radar  
PACKAGE  
BASE  
GND  
Figure 1.  
GENERAL DESCRIPTION  
The ADPA1105 is a gallium nitride (GaN), broadband power  
amplifier that delivers 46 dBm (40 W) with 60% typical power  
added efficiency (PAE) across a bandwidth of 0.9 GHz to  
1.4 GHz. The ADPA1105 provides 0.5 dB gain flatness across  
a bandwidth of 0.9 GHz to 1.4 GHz.  
The ADPA1105 is ideal for pulsed applications such as wireless  
infrastructure, radar, public mobile radio, and general-purpose  
amplifications.  
The ADPA1105 comes in a 32-lead, lead frame chip scale  
package, premolded cavity (LFCSP_CAV).  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADPA1105  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Pin Configuration and Function Descriptions .............................5  
Interface Schematics .....................................................................5  
Typical Performance Characteristics .............................................6  
Theory of Operation ...................................................................... 13  
Applications Information ............................................................. 14  
Basic Connections...................................................................... 14  
Thermal Management............................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings ........................................................... 4  
Thermal Resistance...................................................................... 4  
Electrostatic Discharge (ESD) Ratings...................................... 4  
ESD Caution.................................................................................. 4  
REVISION HISTORY  
10/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
ADPA1105  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
TA = 25°C, supply voltage (VDD) = 50 V, IDQ = 400 mA, pulse width = 100 μs, 10% duty cycle, and frequency range = 0.9 GHz to 1.4 GHz, unless  
otherwise noted.  
Table 1.  
Parameter  
FREQUENCY RANGE  
GAIN  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
0.9  
1.4  
GHz  
Small Signal Gain  
Gain Flatness  
RETURN LOSS  
Input  
32  
34.5  
0.5  
dB  
dB  
16  
9
dB  
dB  
Output  
POWER  
Output Power (POUT  
)
Input Power (PIN) = 19 dBm  
Power Gain  
PIN = 19 dBm  
44  
25  
46  
27  
dBm  
dB  
PAE  
PIN = 19 dBm  
60  
%
TARGET QUIESCENT CURRENT  
IDQ  
400  
mA  
Adjust the gate control voltage (VGG1, VGG2) to be between −4 V  
and 0 V to achieve an IDQ = 400 mA typical value  
TA = 25°C, VDD = 50 V, IDQ = 400 mA, pulse width = 100 μs, 10% duty cycle, and frequency range = 1.4 GHz to 1.6 GHz, unless otherwise noted.  
Table 2.  
Parameter  
FREQUENCY RANGE  
GAIN  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
1.4  
1.6  
GHz  
Small Signal Gain  
Gain Flatness  
RETURN LOSS  
Input  
30.5  
32.5  
0.9  
dB  
dB  
11  
14  
dB  
dB  
Output  
POWER  
POUT  
PIN = 19 dBm  
Power Gain  
PIN = 19 dBm  
PAE  
44  
25  
46  
27  
dBm  
dB  
PIN = 19 dBm  
TARGET QUIESCENT CURRENT  
57  
%
IDQ  
400  
mA  
Adjust the gate control voltage (VGG1, VGG2) to be between  
−4 V and 0 V to achieve an IDQ = 400 mA typical value  
Rev. 0 | Page 3 of 16  
 
 
ADPA1105  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
the PCB thermal design is required.  
Parameter  
Rating  
Drain Bias Voltage (VDD1, VDD2  
Gate Bias Voltage (VGG1, VGG2  
Radio Frequency Input Power (RFIN)  
Maximum Drain Bias  
)
55 V dc  
−5 V to 0 V dc  
30 dBm  
)
θJC is the junction to case thermal resistance (°C/W) of the device.  
Table 4. Thermal Resistance  
Package Type1  
Pulse Width  
Duty Cycle  
500 μs  
20%  
θJC  
Unit  
Drain Bias Pulse Width = 100 μs at 10% Duty Cycle  
CG-32-2  
Drain Bias Pulse Width = 100 μs2  
Drain Bias Pulse Width = 200 μs3  
Maximum Pulsed Power Dissipation (PDISS),  
Base Temperature (TBASE) = 85°C, Derate  
473 mW/°C Above 85°C  
Nominal Pulsed Peak Channel Temperature,  
PIN = 19 dBm, PDISS = 33.6 W at 0.9 GHz  
54.5 W  
155.9°C  
2.11  
2.82  
°C/W  
°C/W  
1 The θJC value was determined by measuring θJC under the following  
conditions: the heat transfer is solely because of the thermal conduction  
from the channel through the ground pad to the PCB, and the ground pad is  
held constant at the operating temperature of 85°C.  
2 At 10% duty cycle.  
Drain Bias Pulse Width = 200 μs at 20% Duty Cycle  
Maximum Pulsed Power Dissipation (PDISS  
)
40.8 W  
3 At 20% duty cycle.  
(Base Temperature (TBASE) = 85°C, Derate  
355 mW/°C Above 85°C)  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
Nominal Pulsed Peak Channel Temperature  
PIN = 19 dBm, PDISS = 33.6 W at 0.9 GHz1  
Maximum Channel Temperature  
Maximum Peak Reflow Temperature  
Storage Temperature Range  
179.7°C  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
200°C  
260°C  
−60°C to  
+125°C  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
ESD Ratings for ADPA1105  
Table 5. ADPA1105, 32-Lead LFCSP_CAV  
Operating Temperature Range  
−40°C to +85°C  
ESD Model  
Withstand Threshold (V)  
Class  
1 Worst case frequency for PDISS  
.
HBM  
250  
1A  
Stresses at or above those listed under Absolute Maximum Ratings  
may cause permanent damage to the product. This is a stress  
rating only; functional operation of the product at these or any  
other conditions above those indicated in the operational section  
of this specification is not implied. Operation beyond the  
maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. 0 | Page 4 of 16  
 
 
 
 
Data Sheet  
ADPA1105  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
GND  
NC  
NC  
24 GND  
23 NC  
NC  
22  
21 RFOUT  
20 RFOUT  
19 GND  
ADPA1105  
TOP VIEW  
(Not to Scale)  
RFIN  
RFIN  
GND  
NC  
GND  
NC  
18  
17 GND  
NOTES  
1. THE NC PINS ARE NOT CONNECTED INTERNALLY.  
HOWEVER, ALL DATA SHOWN IS MEASURED  
WITH THE NC PINS CONNECTED TO RF AND DC  
GROUND EXTERNALLY.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO RF AND DC GROUND.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 6, 8, 9, 16, 17, 19,  
24, 25, 32  
GND  
The GND pins must be connected to RF and dc ground. See Figure 6 for the interface schematic.  
2, 3, 7, 12, 13, 18, 22, NC  
23, 26, 27, 29, 30  
The NC pins are not connected internally. However, all data shown is measured with the NC pins  
connected to RF and dc ground externally.  
4, 5  
10  
RFIN  
VGG1  
RF Input. The RFIN pins are ac-coupled and are matched to 50 Ω. See Figure 3 for the interface schematic.  
Gate Control, First Stage Gate Bias. See Figure 3 for the interface schematic.  
11  
VGG2  
Gate Control, Second Stage Gate Bias. See Figure 4 for the interface schematic.  
14  
VDET  
Detector Diode to Measure RF Output Power. Output power detection via VDET requires the application  
of a dc bias voltage through an external series resistor. Used in combination with the VREF pin, the  
difference in voltage (VREF − VDET) is a temperature compensated dc voltage that is proportional to  
the RF output power.  
15  
VREF  
Reference Diode for Temperature Compensation of VDET RF Output Power Measurements. VREF  
requires the application of a dc bias voltage through an external series resistor.  
20, 21  
28  
31  
RFOUT  
VDD2  
VDD1  
RF Output. The RFOUT pins are ac-coupled and are matched to 50 Ω. See Figure 4 for the interface schematic.  
Amplifier Power Supply Voltage, Second Stage Drain Bias. See Figure 4 for the interface schematic.  
Amplifier Power Supply Voltage, First Stage Drain Bias. See Figure 3 for the interface schematic.  
Exposed Pad. The exposed pad must be connected to RF and dc ground.  
EPAD  
INTERFACE SCHEMATICS  
V
DD1  
RFIN  
VREF  
V
GG1  
Figure 5. VREF Interface  
Figure 3. RFIN, VGG1, and VDD1 Interface  
V
DD2  
RFOUT  
GND  
V
GG2  
VDET  
Figure 6. GND Interface  
Figure 4. RFOUT, VGG2, VDD2, and VDET Interface  
Rev. 0 | Page 5 of 16  
 
 
 
 
 
ADPA1105  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
40  
35  
30  
38  
36  
34  
32  
30  
28  
26  
24  
25  
SMALL SIGNAL GAIN  
20  
15  
INPUT RETURN LOSS  
OUTPUT RETURN LOSS  
10  
5
0
–5  
–10  
–15  
–20  
+85°C  
+25°C  
–40°C  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Small Signal Gain and Return Loss vs. Frequency  
Figure 10. Small Signal Gain vs. Frequency at Various Temperatures  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
-2  
-4  
–2  
-6  
–4  
–6  
-8  
-10  
-12  
-14  
–16  
–18  
–20  
–8  
–10  
–12  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Input Return Loss vs. Frequency at Various Temperatures  
Figure 11. Output Return Loss vs. Frequency at Various Temperatures  
38  
38  
36  
34  
32  
30  
28  
50V  
45V  
40V  
36  
34  
32  
30  
28  
26  
24  
500mA  
26  
400mA  
300mA  
24  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Small Signal Gain vs. Frequency at Various Supply Voltages,  
IDQ = 400 mA  
Figure 12. Small Signal Gain vs. Frequency at Various IDQ, VDD1 and VDD2 = 50 V  
Rev. 0 | Page 6 of 16  
 
Data Sheet  
ADPA1105  
48  
35  
30  
25  
20  
15  
10  
5
47  
46  
45  
44  
43  
42  
41  
40  
39  
21dBm  
20dBm  
19dBm  
18dBm  
17dBm  
16dBm  
15dBm  
21dBm  
20dBm  
19dBm  
18dBm  
17dBm  
16dBm  
15dBm  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. Output Power (POUT) vs. Frequency at Various PIN Levels  
Figure 16. Gain vs. Frequency at Various PIN Levels  
70  
60  
50  
40  
30  
47  
46  
45  
44  
43  
42  
41  
40  
21dBm  
20  
20dBm  
19dBm  
18dBm  
10  
+85°C  
+25°C  
–40°C  
17dBm  
16dBm  
15dBm  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. PAE vs. Frequency at Various PIN Levels  
Figure 17. POUT vs. Frequency at Various Temperatures, PIN = 19 dBm  
47  
70  
60  
50  
40  
30  
20  
46  
45  
44  
43  
42  
41  
40  
39  
38  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. POUT vs. Frequency at Various Temperatures, PIN = 16 dBm  
Figure 18. PAE vs. Frequency at Various Temperatures, PIN = 16 dBm  
Rev. 0 | Page 7 of 16  
ADPA1105  
Data Sheet  
70  
60  
50  
40  
30  
20  
10  
32  
30  
28  
26  
24  
22  
20  
18  
16  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 19. PAE vs. Frequency at Various Temperatures, PIN = 19 dBm  
Figure 22. Gain vs. Frequency at Various Temperatures, PIN = 19 dBm  
32  
30  
47  
46  
45  
44  
43  
42  
28  
26  
24  
22  
20  
41  
+85°C  
+25°C  
–40°C  
50V  
45V  
40V  
18  
16  
0.9  
40  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 20. Gain vs. Frequency at Various Temperatures, PIN = 16 dBm  
Figure 23. POUT vs. Frequency at Various Supply Voltages, PIN = 19 dBm,  
IDQ = 400 mA  
47  
46  
45  
44  
43  
42  
70  
60  
50  
40  
30  
20  
41  
10  
50V  
45V  
40V  
50V  
45V  
40V  
40  
0.9  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 24. PAE vs. Frequency at Various Supply Voltages, PIN = 16 dBm,  
IDQ = 400 mA  
Figure 21. POUT vs. Frequency at Various Supply Voltages, PIN = 16 dBm,  
IDQ = 400 mA  
Rev. 0 | Page 8 of 16  
Data Sheet  
ADPA1105  
70  
60  
50  
40  
30  
20  
10  
32  
30  
28  
26  
24  
22  
20  
18  
16  
50V  
45V  
40V  
50V  
45V  
40V  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 25. PAE vs. Frequency at Various Supply Voltages, PIN = 19 dBm,  
IDQ = 400 mA  
Figure 28. Gain vs. Frequency at Various Supply Voltages, PIN = 19 dBm,  
IDQ = 400 mA  
32  
30  
47  
46  
45  
44  
43  
42  
28  
26  
24  
22  
20  
41  
50V  
45V  
40V  
500mA  
400mA  
300mA  
18  
16  
0.9  
40  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 26. Gain vs. Frequency at Various Supply Voltages, PIN = 16 dBm,  
IDQ = 400 mA  
Figure 29. POUT vs. Frequency at Various IDQ Supply Currents, PIN = 19 dBm,  
VDD = 50 V  
47  
46  
45  
44  
43  
42  
70  
60  
50  
40  
30  
20  
41  
10  
500mA  
400mA  
300mA  
500mA  
400mA  
300mA  
40  
0.9  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 30. PAE vs. Frequency at Various IDQ Supply Currents, PIN = 16 dBm,  
VDD = 50 V  
Figure 27. POUT vs. Frequency at Various IDQ Supply Currents, PIN = 16 dBm,  
VDD = 50 V  
Rev. 0 | Page 9 of 16  
ADPA1105  
Data Sheet  
70  
60  
50  
40  
30  
20  
10  
32  
30  
28  
26  
24  
22  
20  
18  
16  
500mA  
400mA  
300mA  
500mA  
400mA  
300mA  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.6  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 31. PAE vs. Frequency at Various IDQ Supply Currents, PIN = 19 dBm,  
VDD = 50 V  
Figure 34. Gain vs. Frequency at Various IDQ Currents,  
PIN = 19 dBm  
32  
30  
47  
46  
45  
28  
26  
24  
22  
20  
44  
43  
42  
41  
PW = 500µs, DUTY CYCLE = 20%  
PW = 200µs, DUTY CYCLE = 20%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 50µs, DUTY CYCLE = 5%  
PW = 20µs, DUTY CYCLE = 2%  
500mA  
400mA  
300mA  
18  
16  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 32. Gain vs. Frequency at Various IDQ Supply Currents, PIN = 16 dBm,  
VDD = 50 V  
Figure 35. POUT vs. Frequency at Various Pulse Widths  
and Duty Cycles, PIN = 19 dBm  
47  
46  
70  
60  
50  
40  
30  
20  
10  
45  
44  
43  
42  
41  
PW = 500µs, DUTY CYCLE = 20%  
PW = 500µs, DUTY CYCLE = 20%  
PW = 200µs, DUTY CYCLE = 20%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 50µs, DUTY CYCLE = 5%  
PW = 20µs, DUTY CYCLE = 2%  
PW = 200µs, DUTY CYCLE = 20%  
PW = 100µs, DUTY CYCLE = 10%  
40  
PW = 50µs, DUTY CYCLE = 5%  
PW = 20µs, DUTY CYCLE = 2%  
39  
0.9  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 33. POUT vs. Frequency at Various Pulse Widths (PW)  
and Duty Cycles, PIN = 16 dBm  
Figure 36. PAE vs. Frequency at Various Pulse Widths  
and Duty Cycles, PIN = 16 dBm  
Rev. 0 | Page 10 of 16  
Data Sheet  
ADPA1105  
70  
60  
50  
40  
30  
20  
32  
30  
28  
26  
24  
22  
20  
18  
16  
PW = 500µs, DUTY CYCLE = 20%  
PW = 500µs, DUTY CYCLE = 20%  
PW = 200µs, DUTY CYCLE = 20%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 50µs, DUTY CYCLE = 5%  
PW = 20µs, DUTY CYCLE = 2%  
PW = 200µs, DUTY CYCLE = 20%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 50µs, DUTY CYCLE = 5%  
PW = 20µs, DUTY CYCLE = 2%  
10  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 37. PAE vs. Frequency at Various Pulse Widths  
and Duty Cycles, PIN = 19 dBm  
Figure 40. Gain vs. Frequency at Various Pulse Widths  
and Duty Cycles, PIN = 19 dBm  
32  
30  
28  
26  
24  
22  
20  
18  
16  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
P
OUT  
GAIN  
PAE  
I
DD  
800  
700  
600  
PW = 500µs, DUTY CYCLE = 20%  
PW = 200µs, DUTY CYCLE = 20%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 50µs, DUTY CYCLE = 5%  
PW = 20µs, DUTY CYCLE = 2%  
500  
400  
0
300  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
–6 –4 –2  
0
2
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 38. Gain vs. Frequency at Various Pulse Widths  
and Duty Cycles, PIN = 16 dBm  
Figure 41. POUT, Gain, PAE, and IDD vs. Input Power  
at 1.2 GHz  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1800  
1675  
1550  
1425  
1300  
1175  
1050  
925  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
P
P
OUT  
OUT  
GAIN  
GAIN  
PAE  
PAE  
I
I
DD  
DD  
800  
800  
700  
675  
600  
550  
500  
425  
400  
0
300  
0
300  
–7 –5 –3 –1  
1
3
5
7
9
11 13 15 17 19 21 23  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 39. POUT, Gain, PAE, and Supply Current (IDD) vs. PIN  
at 0.9 GHz  
Figure 42. POUT, Gain, PAE, and IDD vs. PIN  
at 1.6 GHz  
Rev. 0 | Page 11 of 16  
ADPA1105  
Data Sheet  
45  
45  
40  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
1.6GHz  
1.5GHz  
1.4GHz  
1.3GHz  
1.2GHz  
1.1GHz  
1.0GHz  
0.9GHz  
1.6GHz  
1.5GHz  
1.4GHz  
1.3GHz  
1.2GHz  
1.1GHz  
1.0GHz  
0.9GHz  
0
–6  
0
–6  
–1  
4
9
14  
19  
24  
–1  
4
9
14  
19  
24  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 46. PDISS vs. PIN, Drain Bias Pulse Width = 200 μs  
at 20% Duty Cycle, TBASE = 85°C  
Figure 43. PDISS vs. PIN, Drain Bias Pulse Width = 100 μs  
at 10% Duty Cycle, TBASE = 85°C  
45  
40  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
1.6GHz  
1.5GHz  
1.4GHz  
1.3GHz  
1.2GHz  
1.1GHz  
1.0GHz  
0.9GHz  
1.6GHz  
1.5GHz  
1.4GHz  
1.3GHz  
1.2GHz  
1.1GHz  
1.0GHz  
0.9GHz  
0
–6  
0
–6  
–1  
4
9
14  
19  
24  
–1  
4
9
14  
19  
24  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 47. PDISS vs. PIN, Drain Bias Pulse Width = 50 μs  
at 5% Duty Cycle, TBASE = 85°C  
Figure 44. PDISS vs. PIN, Drain Bias Pulse Width = 20 μs  
at 2% Duty Cycle, TBASE = 85°C  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
10  
+85°C  
+25°C  
–40°C  
1
0.1  
0.01  
0
–50  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
OUTPUT POWER (dBm)  
V
AND V  
(V)  
GG2  
GG1  
Figure 45. Detector Voltage (VREF − VDET) vs. Output Power for  
Various Temperatures at 1.2 GHz  
Figure 48. IDQ vs. VGG1 and VGG2, VDD1 and VDD2 = 50 V,  
Representative of a Typical Device  
Rev. 0 | Page 12 of 16  
Data Sheet  
ADPA1105  
THEORY OF OPERATION  
The ADPA1105 is a GaN power amplifier that delivers 46 dBm  
(40 W) of pulsed power. The device consists of two cascaded  
gain stages. A simplified view of this architecture is shown in  
the basic block diagram in Figure 49.  
The recommended dc biasing results in a typical pulsed RF  
output power and PAE of 46 dBm and 60%, respectively, at  
1.5 GHz when the input power is 19 dBm.  
A portion of the RF output signal is directionally coupled to a  
diode to detect the RF output power. When the diode is dc biased,  
the diode rectifies the RF power and makes the RF power  
available for measurement as a dc voltage at the VDET pin. A  
symmetrical diode circuit that is not coupled to the RF output,  
which contains a dc voltage output at the VREF pin, is referenced  
to accomplish temperature compensation. The difference of  
VREF − VDET provides a temperature compensated signal that  
is proportional to the RF output.  
The ADPA1105 has single-ended RFIN and RFOUT ports that  
are dc blocked. The impedances of these ports are nominally  
50 Ω over the 0.9 GHz to 1.6 GHz operating frequency range.  
Consequently, the ADPA1105 can be directly inserted into a  
50 Ω system without the need for external impedance matching  
components or ac coupling capacitors.  
The pulsed bias voltages applied to the VDD1 and VDD2 pins bias  
the drains of the first and second gain stages, respectively (a single  
common supply voltage must be used). The negative dc voltages  
applied to the VGG1 and VGG2 pins bias the gates of the first and  
second gain stages, respectively, to allow control of the drain  
currents for each stage (a single common gate voltage must  
be used).  
V
V
DD2  
DD1  
RFIN  
RFOUT  
DIRECTIONAL  
COUPLER  
V
V
GG2  
GG1  
VREF VDET  
Figure 49. Basic Block Diagram  
Rev. 0 | Page 13 of 16  
 
 
ADPA1105  
Data Sheet  
APPLICATIONS INFORMATION  
Apply a voltage between 0 V and −4 V to the VGG1 and VGG2  
BASIC CONNECTIONS  
lines to set the bias level and drain current. Because the  
ADPA1105 cannot support continuous operation, the device  
must be operated in pulsed mode by pulsing either the gate  
voltage or the drain voltage.  
The basic connections for operating the ADPA1105 are shown  
in Figure 50. Apply a power supply voltage between 20 V and 50 V  
to the VDD1 and VDD2 pins. Decouple each pin with the capacitor  
values shown in Figure 50. Place 3.9 Ω resistors in series with the  
two 1000 pF power supply decoupling capacitors connected to Pin  
28 and Pin 31 (VDD2 and VDD1). Tie together the two gate voltage  
pins, VGG1 and VGG2, and drive the pins as shown in Figure 50.  
Pin 2, Pin 3, Pin 7, Pin 12, Pin 13, Pin 18, Pin 22, Pin 23, Pin 26,  
Pin 27, Pin 29, and Pin 30 are designated as no connect (NC) pins.  
Although these pins are not internally connected, the pins were  
all connected to ground during the characterization of the device  
and provide some additional thermal relief.  
In gate pulsed mode, VDD is held at a fixed level (nominally  
+50 V) while the gate voltage is pulsed between −4 V (off) and  
approximately −2.3 V (on). The exact on level can be adjusted  
to achieve the desired quiescent drain current.  
In drain pulsed mode, the VDD voltage is pulsed on and off  
while the gate voltage is held at a fixed negative level between  
0 V and −4 V. Because high currents and voltages are being  
switched on and off, a metal-oxide semiconductor field effect  
transistor (MOSFET) and a MOSFET switch driver are required  
in the circuit. Large capacitors are also required, which act as  
local reservoirs of charge and help provide the drain current  
required by the ADPA1105 while maintaining a steady drain  
voltage during the on time of the pulse.  
The decoupling capacitors on the VDD1, VDD2, VGG1, and VGG2  
lines represent the configuration that was used to characterize  
and qualify the ADPA1105. The user can reduce the number of  
capacitors, but the result varies from system to system. General  
guidance is to first remove or combine the largest capacitors  
that are farthest from the device.  
The ADPA1105-EVALZ evaluation board package includes a  
plugin pulser board that contains the required circuitry to  
implement drain pulsed mode. See the ADPA1105-EVALZ for  
more information.  
External bias is provided to the on-chip RF detection circuit via  
two 715 Ω resistors that are pulled up to 5 V, which results in a  
current draw of approximately 12 mA. An operation amplifier  
configured as a differential amplifier can be used to subtract  
VDET from VREF to yield a temperature compensated voltage  
that is proportional to the RF output power.  
V
DD  
50V/2A  
C13  
0.39nF  
C3  
1000pF  
C14  
1000pF  
C12  
0.39nF  
3.9Ω  
3.9Ω  
V
V
DD2  
DD1  
1
2
3
4
5
6
7
8
24  
GROUND  
PAD  
23  
22  
21  
20  
19  
18  
17  
RFOUT  
RFIN  
5V  
V
V
GG2  
GG1  
V
715Ω  
715Ω  
GG  
C4  
1µF  
C6  
0.01µF  
C10  
100pF  
(0V TO –4V)  
VREF  
VDET  
C5  
1µF  
C7  
0.01µF  
C11  
100pF  
Figure 50. Basic Connection  
Rev. 0 | Page 14 of 16  
 
 
 
Data Sheet  
ADPA1105  
POWER DISSIPATED  
DURING THE PULSE  
THERMAL MANAGEMENT  
Proper thermal management is critical to achieve the specified  
performance and rated operating life. Pulsed biasing is required  
to limit the average power dissipated and maintain a safe channel  
temperature. The channel (or die) temperature correlates  
closely with the mean time to failure.  
T
CHAN  
tRISE = θ × P  
JC  
DISS  
T
BASE  
TIME  
Consider a continuous bias case (see Figure 51). When bias is  
applied, the channel temperature (TCHAN) of the device rises  
through a turn on transient interval and eventually settles to a  
steady state value. Calculate the θJC thermal resistance of the  
device as the rise in TCHAN above the starting TBASE divided by the  
total device PDISS with the following equation:  
Figure 52. Pulsed Bias at Low Duty Cycle  
Transient thermal measurements were performed on the  
ADPA1105 amplifier at several different bias pulse widths and  
duty cycles to obtain the thermal resistance values listed in Table 7.  
Table 7. Pulse Settings and Thermal Resistance Values  
θJC = tRISE/PDISS  
where:  
RISE is the peak rise in the TCHAN of the device above the TBASE (°C).  
DISS is the power dissipation (W) of the device.  
(1)  
Pulse Settings  
Pulse Width (μs)  
Duty Cycle (%)  
θJC (°C/W)  
2.11  
2.82  
t
P
100  
200  
300  
10  
20  
30  
3.54  
T
CHAN  
Narrower pulse widths and/or lower duty cycles can result in  
greater reliability.  
tRISE = θ × P  
JC  
DISS  
The ADPA1105 amplifier is designed for low duty cycle pulsed  
applications. However, there can be brief periods of time when  
the device operates (perhaps accidently) under continuous  
bias conditions. The thermal resistance increases to 6.5°C/W  
under these conditions. Even at the nominal quiescent bias  
T
BASE  
TIME  
Figure 51. Continuous Bias  
Next, consider a pulsed bias case at low duty cycle (see Figure 52).  
When bias is applied, the TCHAN of the device can be described  
as a series of exponentially rising and decaying pulses. The peak  
channel temperature reached during consecutive pulses increases  
during the turn on transient interval, and eventually settles to a  
steady state condition where peak channel temperatures from  
pulse to pulse stabilize.  
V
DD1 and VDD2 = 50 V and IDD = 0.4 A), the 20 W power  
dissipation results in a 130°C channel temperature rise above  
the base temperature. Use extreme caution in this case to ensure  
that the device does not exceed the device maximum reliable  
channel temperature of 200°C.  
Rev. 0 | Page 15 of 16  
 
 
 
 
ADPA1105  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR AREA OPTIONS  
25  
24  
32  
(SEE DETAIL A)  
1
0.50  
BSC  
3.20  
3.10 SQ  
3.00  
EXPOSED  
PAD  
17  
16  
8
9
0.45  
0.40  
0.35  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
3.50 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.35  
1.25  
1.15  
0.60 REF  
0.40  
0.050 MAX  
0.035 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
SEATING  
PLANE  
0.08  
0.203 REF  
Figure 53. 32-Lead Lead frame Chip Scale Package, Premolded Cavity [LFCSP_CAV]  
5 mm × 5 mm Body and 1.25 mm Package Height  
(CG-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2, 3  
Temperature MSL Rating4 Package Description  
Package Option  
ADPA1105ACGZN  
−40°C to  
+85°C  
MSL3  
32-Lead Lead Frame Chip Scale Package, Premolded Cavity  
[LFCSP_CAV]  
CG-32-2  
ADPA1105ACGZN-R7 −40°C to  
+85°C  
MSL3  
32-Lead Lead Frame Chip Scale Package, Premolded Cavity  
[LFCSP_CAV]  
CG-32-2  
ADPA1105-EVALZ  
Evaluation Board  
1 All models are RoHS compliant parts.  
2 The lead finish of the ADPA1105ACGZN and the ADPA1105ACGZN-R7 is nickel palladium gold (NiPdAu).  
3 When ordering the evaluation board, use the reference model number ADPA1105-EVALZ.  
4 See the Absolute Maximum Ratings section for more information.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D21925-10/20(0)  
Rev. 0 | Page 16 of 16  
 
 

相关型号:

ADPA1105ACGZN-R7

46 dBm (40 W), 0.9 GHz to 1.6 GHz, GaN Power Amplifier
ADI

ADPA1107

45.0 dBm (35 W), 4.8 GHz to 6.0 GHz, GaN Power Amplifier
ADI

ADPA1107-EVALZ

45.0 dBm (35 W), 4.8 GHz to 6.0 GHz, GaN Power Amplifier
ADI

ADPA1107ACPZN

45.0 dBm (35 W), 4.8 GHz to 6.0 GHz, GaN Power Amplifier
ADI

ADPA1107ACPZN-R7

45.0 dBm (35 W), 4.8 GHz to 6.0 GHz, GaN Power Amplifier
ADI

ADPA7001CHIPS

Wideband Power Amplifier
ADI

ADPA7001CHIPS-SX

Wideband Power Amplifier
ADI

ADPA7002C-KIT

GaAs, pHEMT, MMIC,1/2 W, Power Amplifier
ADI

ADPA7002CHIP

GaAs, pHEMT, MMIC,1/2 W, Power Amplifier
ADI

ADPA7007

20 GHz to 44 GHz, GaAs, pHEMT, 31.5 dBm 1">(>1 W), MMIC Power Amplifier
ADI

ADPA7007-EVALZ

20 GHz to 44 GHz, GaAs, pHEMT, 31.5 dBm 1">(>1 W), MMIC Power Amplifier
ADI

ADPA7007AEHZ

20 GHz to 44 GHz, GaAs, pHEMT, 31.5 dBm 1">(>1 W), MMIC Power Amplifier
ADI