ADPA1107-EVALZ [ADI]

45.0 dBm (35 W), 4.8 GHz to 6.0 GHz, GaN Power Amplifier;
ADPA1107-EVALZ
型号: ADPA1107-EVALZ
厂家: ADI    ADI
描述:

45.0 dBm (35 W), 4.8 GHz to 6.0 GHz, GaN Power Amplifier

文件: 总20页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
45.0 dBm (35 W), 4.8 GHz to 6.0 GHz,  
GaN Power Amplifier  
ADPA1107  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
POUT with PIN = 27.0 dBm: 45.0 dBm typical at 5.4 GHz to 6.0 GHz  
Small signal gain: 30.5 dB typical at 4.8 GHz to 5.4 GHz  
Frequency range: 4.8 GHz to 6.0 GHz  
ADPA1107  
PAE with PIN = 27.0 dBm: 56.5% typical at 5.4 GHz to 6.0 GHz  
VREF  
VDD: 28 V at IDQ = 350 mA with a 10% duty cycle  
40-lead, 6 mm × 6 mm, LFCSP  
GND  
RFIN  
GND  
GND  
RFOUT  
GND  
APPLICATIONS  
Weather radars  
Marine radars  
Military radars  
VDET  
PACKAGE  
BASE  
GND  
Figure 1.  
GENERAL DESCRIPTION  
The ADPA1107 is a gallium nitride (GaN), broadband power  
amplifier, delivering 45.0 dBm (35 W) with 56.5% typical power  
added efficiency (PAE) across a bandwidth of 4.8 GHz to  
6.0 GHz. The ADPA1107 provides 0.5 dB gain flatness from  
5.4 GHz to 6.0 GHz.  
The ADPA1107 is ideal for pulsed applications such as radar,  
public mobile radio, and general-purpose amplification.  
The ADPA1107 is housed in a 40-lead, 6 mm × 6 mm, lead  
frame chip scale package (LFCSP).  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2021 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADPA1107  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................6  
Interface Schematics .....................................................................7  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 16  
Applications Information.............................................................. 17  
Basic Connections...................................................................... 17  
Thermal Management ............................................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Electrostatic Discharge (ESD) Ratings ...................................... 5  
ESD Caution.................................................................................. 5  
REVISION HISTORY  
7/2021—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
Data Sheet  
ADPA1107  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
Base temperature (TBASE) = 25°C, supply voltage (VDD) = 28 V, quiescent current (IDQ) = 350 mA, pulse width = 100 µs, 10% duty cycle,  
and frequency range = 4.8 GHz to 5.4 GHz, unless otherwise noted.  
Table 1.  
Parameter  
FREQUENCY RANGE  
GAIN  
Min  
4.8  
Typ  
Max  
5.4  
Unit  
GHz  
Test Conditions/Comments  
Small Signal Gain  
Gain Flatness  
RETURN LOSS  
Input  
28.0  
30.5  
1.3  
dB  
dB  
16.0  
13.5  
dB  
dB  
Output  
POWER  
Output Power (POUT  
)
Input Power (PIN) = 25.0 dBm  
PIN = 27.0 dBm  
Power Gain  
PIN = 25.0 dBm  
PIN = 27.0 dBm  
45.5  
45.5  
dBm  
dBm  
43.5  
16.5  
20.5  
18.5  
dB  
dB  
Power Added Efficiency (PAE)  
PIN = 25.0 dBm  
PIN = 27.0 dBm  
56.5  
55.0  
350  
%
%
QUIESCENT CURRENT (IDQ)  
mA  
Adjust the gate control voltage (VGG1) between −4 V and −2 V to  
achieve an IDQ = 350 mA typical  
Rev. 0 | Page 3 of 20  
 
 
ADPA1107  
Data Sheet  
TBASE = 25°C, VDD = 28 V, I DQ = 350 mA, pulse width = 100 µs, 10% duty cycle, and frequency range = 5.4 GHz to 6.0 GHz, unless  
otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
FREQUENCY RANGE  
GAIN  
5.4  
6.0  
GHz  
Small Signal Gain  
Gain Flatness  
27.0  
29.5  
0.5  
dB  
dB  
RETURN LOSS  
Input  
Output  
7.5  
12.0  
dB  
dB  
POWER  
POUT  
PIN = 25.0 dBm  
PIN = 27.0 dBm  
Power Gain  
PIN = 25.0 dBm  
PIN = 27.0 dBm  
PAE  
45.0  
45.0  
dBm  
dBm  
43.0  
16.0  
20.3  
18.0  
dB  
dB  
PIN = 25.0 dBm  
PIN = 27.0 dBm  
IDQ  
56.0  
56.5  
350  
%
%
mA  
Adjust the gate control voltage (VGG1) between −4 V and −2 V to achieve an  
IDQ = 350 mA typical  
Rev. 0 | Page 4 of 20  
Data Sheet  
ADPA1107  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
Overall thermal performance is directly linked to printed circuit  
board (PCB) design and operating environment. Careful  
attention to PCB thermal design is required.  
Parameter  
Drain Bias Voltage (VDD1A, VDD1B, VDD2A, and VDD2B  
Negative Gate Bias Voltage (VGG1), VDD = 28 V  
(Nominal Drain Voltage)  
RF Input Power (RFIN)  
Drain and Gate Bias  
Pulse Width  
Rating  
35 V dc  
−8 V dc to  
−1 V dc  
31 dBm  
)
θJC is the channel to case thermal resistance (channel to exposed  
metal on the underside of the device).  
1000 µs  
40%  
Table 4. Thermal Resistance  
Package Type1  
Duty Cycle  
θJC  
Unit  
Maximum Pulsed Power Dissipation (PDISS  
)
CP-40-7  
Drain Bias Pulse Width = 100 µs and  
TBASE = 85°C  
At 10% Duty Cycle, Derate 581 mW/°C  
Above 85°C  
At 40% Duty Cycle, Derate 538 mW/°C  
Above 85°C  
Drain Bias Pulse Width = 1000 µs and  
TBASE = 85°C  
Drain Bias Pulse Width = 100 µs at 10% Duty Cycle  
Drain Bias Pulse Width = 100 µs at 40% Duty Cycle  
Drain Bias Pulse Width = 1000 µs at 10% Duty Cycle  
1.72 °C/W  
1.86 °C/W  
2.18 °C/W  
81.4 W  
75.2 W  
1 θJC was determined under the following conditions: the heat transfer is due  
solely to the thermal conduction from the channel through the ground pad  
to the PCB, and the ground pad is held constant at the operating  
temperature of 85°C.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
At 10% Duty Cycle, Derate 459 mW/°C  
Above 85°C  
Temperature  
64.2 W  
Nominal Pulsed Peak Channel, TBASE = 85°C,  
PIN = 27 dBm  
Drain Bias Pulse Width = 100 µs  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
ESD Ratings for ADPA1107  
Table 5. ADPA1107, 40-Lead LFCSP  
PDISS = 27.9 W at 5.4 GHz, and at  
10% Duty Cycle  
133°C  
ESD Model  
Withstand Threshold (V)  
Class  
PDISS = 29.2 W at 5.4 GHz and at  
40% Duty Cycle  
139.3°C  
HBM  
500  
1B  
Drain Bias Pulse Width = 1000 µs  
ESD CAUTION  
PDISS = 28.3 W at 5.4 GHz and at  
10% Duty Cycle  
Maximum Channel  
146.7°C  
225°C  
Maximum Peak Reflow for Moisture Sensitivity 260°C  
Level (MSL) 31  
Storage Range  
Operating Range  
−60°C to +125°C  
−40°C to +85°C  
1 See the Ordering Guide section.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 5 of 20  
 
 
 
 
ADPA1107  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
40 39 38 37 36 35 34 33 32 31  
30  
NIC  
NIC  
1
2
NIC  
29 NIC  
28  
NIC  
3
4
NIC  
27 VREF  
NIC  
ADPA1107  
TOP VIEW  
(Not to Scale)  
26  
25  
5
6
GND  
RFOUT  
GND  
RFIN  
GND  
NIC  
24 GND  
23  
22  
7
8
VDET  
NIC  
NIC  
9
NIC  
21 NIC  
10  
11 12 13 14 15 16 17 18 19 20  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE  
NOT CONNECTED INTERNALLY, HOWEVER, ALL DATA  
SHOWN WAS MEASURED WITH THESE PINS CONNECTED  
TO RF AND DC GROUND EXTERNALLY.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED  
TO RF AND DC GROUND  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1 to 4, 8 to 12, 14 to 17,  
20 to 22, 28 to 31, 34 to 37, 40  
NIC  
Not Internally Connected. These pins are not connected internally, however, all data  
shown was measured with the NIC pins connected to RF and dc ground externally.  
5, 7, 24, 26  
GND  
The GND pins must be connected to RF and dc ground. See Figure 3 for the interface  
schematic.  
6
RFIN  
RF Input. The RFIN pin is ac-coupled and matched to 50 Ω. See Figure 4 for the  
interface schematic.  
13, 38  
VDD1B, VDD1A  
VDD2B, VDD2A  
VDET  
Power Supply Voltage for the Amplifier. First stage drain bias. See Figure 4 for the  
interface schematic.  
Power Supply Voltage for the Amplifier. Second stage drain bias. See Figure 5 for the  
interface schematic.  
Detector Diode to Measure RF Output Power. Output power detection via the VDET  
pin requires the application of a dc bias voltage through an external series resistor.  
Used in combination with the VREF pin, the difference voltage (VREF − VDET) is a  
temperature compensated dc voltage that is proportional to the RF output power.  
See Figure 5 for the interface schematic.  
18, 19, 32, 33  
23  
25  
27  
39  
RFOUT  
VREF  
RF Output. The RFOUT pin is ac-coupled and matched to 50 Ω. See Figure 5 for the  
interface schematic.  
Reference Diode for Temperature Compensation of VDET RF Output Power  
Measurements. See Figure 6 for the interface schematic.  
Gate Control Voltage Pin. See Figure 4 and Figure 5 for the interface schematic.  
Exposed Pad. The exposed pad must be connected to RF and dc ground.  
VGG1  
EPAD  
Rev. 0 | Page 6 of 20  
 
Data Sheet  
ADPA1107  
INTERFACE SCHEMATICS  
VDD2A/VDD2B  
RFOUT  
GND  
VGG1  
VDET  
Figure 3. GND Interface Schematic  
Figure 5. RFOUT, VGG1, VDD2A, VDD2B, and VDET Interface Schematic  
VDD1A/VDD1B  
RFIN  
VGG1  
VREF  
Figure 6. VREF Interface Schematic  
Figure 4. RFIN, VGG1, VDD1A, and VDD1B Interface Schematic  
Rev. 0 | Page 7 of 20  
 
 
 
 
 
ADPA1107  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
40  
35  
30  
25  
36  
34  
32  
30  
28  
26  
24  
22  
20  
20  
15  
INPUT RETURN LOSS  
SMALL SIGNAL GAIN  
OUTPUT RETURN LOSS  
10  
5
0
–5  
+85°C  
+25°C  
–40°C  
–10  
–15  
–20  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.0  
6.0  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Small Signal Gain vs. Frequency at  
Various Temperatures  
Figure 7. Small Signal Gain and Return Loss (Response) vs. Frequency  
5
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–2  
–40°C  
–4  
–6  
–8  
–5  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–15  
–20  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 11. Output Return Loss vs. Frequency at  
Various Temperatures  
Figure 8. Input Return Loss vs. Frequency at  
Various Temperatures  
34  
32  
30  
28  
26  
24  
22  
20  
34  
32  
30  
28  
26  
24  
22  
20  
450mA  
350mA  
250mA  
24V  
28V  
32V  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Small Signal Gain vs. Frequency at  
Various Quiescent Currents and VDD1x and VDD2x = 28 V  
Figure 9. Small Signal Gain vs. Frequency at  
Various Supply Voltages and IDQ = 350 mA  
Rev. 0 | Page 8 of 20  
 
Data Sheet  
ADPA1107  
46.0  
45.5  
45.0  
44.5  
44.0  
43.5  
43.0  
25  
20  
15  
10  
5
23dBm  
23dBm  
24dBm  
25dBm  
26dBm  
27dBm  
28dBm  
29dBm  
24dBm  
25dBm  
26dBm  
27dBm  
28dBm  
29dBm  
42.5  
42.0  
41.5  
0
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.0  
6.0  
6.2  
6.2  
6.2  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.0  
6.0  
6.2  
6.2  
6.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. POUT vs. Frequency at  
Various PIN Levels  
Figure 16. Gain vs. Frequency at  
Various PIN Levels  
65  
60  
55  
50  
45  
40  
35  
47  
46  
45  
44  
43  
42  
41  
23dBm  
24dBm  
25dBm  
26dBm  
27dBm  
28dBm  
29dBm  
+85°C  
+25°C  
–40°C  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. PAE vs Frequency at  
Various PIN Levels  
Figure 17. POUT vs. Frequency at  
Various Temperatures and PIN = 27 dBm  
47  
46  
45  
44  
43  
42  
41  
65  
60  
55  
50  
45  
40  
35  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. POUT vs. Frequency at  
Various Temperatures and PIN = 25 dBm  
Figure 18. PAE vs. Frequency at  
Various Temperatures and PIN = 25 dBm  
Rev. 0 | Page 9 of 20  
ADPA1107  
Data Sheet  
65  
60  
55  
50  
45  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
40  
35  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.0  
6.0  
6.2  
6.2  
6.2  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.2  
6.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 19. PAE vs. Frequency at  
Figure 22. Gain vs. Frequency at  
Various Temperatures and PIN = 27 dBm  
Various Temperatures and PIN = 27 dBm  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
47  
46  
45  
44  
43  
42  
41  
+85°C  
+25°C  
–40°C  
24V  
28V  
32V  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 20. Gain vs. Frequency at  
Figure 23. POUT vs. Frequency at  
Various Supply Voltages and PIN = 27 dBm, IDQ = 350 mA  
Various Temperatures and PIN = 25 dBm  
47  
46  
45  
44  
43  
42  
41  
65  
60  
55  
50  
45  
40  
35  
24V  
28V  
32V  
24V  
28V  
32V  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 24. PAE vs. Frequency at  
Various Supply Voltages, PIN = 25 dBm, and IDQ = 350 mA  
Figure 21. POUT vs. Frequency at  
Various Supply Voltages, PIN = 25 dBm, and IDQ = 350 mA  
Rev. 0 | Page 10 of 20  
Data Sheet  
ADPA1107  
65  
60  
55  
50  
45  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
24V  
28V  
32V  
24V  
28V  
32V  
40  
35  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.2  
6.2  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.2  
6.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 25. PAE vs. Frequency at  
Various Supply Voltages, PIN = 27 dBm, and IDQ = 350 mA  
Figure 28. Gain vs. Frequency at  
Various Supply Voltages, PIN = 27 dBm, and IDQ = 350 mA  
22  
47  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
46  
45  
44  
43  
42  
41  
450mA  
350mA  
250mA  
24V  
28V  
32V  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 26. Gain vs. Frequency at  
Various Supply Voltages, PIN = 25 dBm, and IDQ = 350 mA  
Figure 29. POUT vs. Frequency at  
Various Quiescent Currents, PIN = 27 dBm, and VDD = 28 V  
47  
65  
46  
45  
44  
43  
42  
41  
60  
55  
50  
45  
40  
35  
450mA  
350mA  
250mA  
450mA  
350mA  
250mA  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 30. PAE vs. Frequency at  
Various Quiescent Currents, PIN = 25 dBm, and VDD = 28 V  
Figure 27. POUT vs. Frequency at  
Various Quiescent Currents, PIN = 25 dBm, and VDD = 28 V  
Rev. 0 | Page 11 of 20  
ADPA1107  
Data Sheet  
65  
60  
55  
50  
45  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
450mA  
350mA  
250mA  
450mA  
350mA  
250mA  
40  
35  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.2  
6.2  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.2  
6.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 31. PAE vs. Frequency at  
Various Quiescent Currents, PIN = 27 dBm, and VDD = 28 V  
Figure 34. Gain vs. Frequency at  
PIN = 27 dBm and Various Quiescent Currents  
22  
47  
46  
45  
44  
43  
42  
41  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PW = 100µs, DUTY CYCLE = 40%  
PW = 100µs, DUTY CYCLE = 20%  
PW = 10µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 300µs, DUTY CYCLE = 10%  
PW = 500µs, DUTY CYCLE = 10%  
PW = 1000µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 5%  
PW = 100µs, DUTY CYCLE = 2%  
450mA  
350mA  
250mA  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 32. Gain vs. Frequency at  
Various Quiescent Currents, PIN = 25 dBm, and VDD = 28 V  
Figure 35. POUT vs. Frequency at  
IN = 27 dBm and Various Pulse Widths (PW) and Duty Cycles  
P
47  
65  
46  
45  
44  
43  
42  
41  
60  
55  
50  
45  
40  
35  
PW = 100µs, DUTY CYCLE = 40%  
PW = 100µs, DUTY CYCLE = 20%  
PW = 10µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 300µs, DUTY CYCLE = 10%  
PW = 500µs, DUTY CYCLE = 10%  
PW = 1000µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 5%  
PW = 100µs, DUTY CYCLE = 2%  
PW = 100µs, DUTY CYCLE = 40%  
PW = 100µs, DUTY CYCLE = 20%  
PW = 10µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 300µs, DUTY CYCLE = 10%  
PW = 500µs, DUTY CYCLE = 10%  
PW = 1000µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 5%  
PW = 100µs, DUTY CYCLE = 2%  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 33. POUT vs. Frequency at  
PIN = 25 dBm and Various Pulse Widths (PW) and Duty Cycles  
Figure 36. PAE vs. Frequency at  
PIN = 25 dBm and Various Pulse Widths (PW) and Duty Cycles  
Rev. 0 | Page 12 of 20  
Data Sheet  
ADPA1107  
65  
60  
55  
50  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PW = 100µs, DUTY CYCLE = 40%  
PW = 100µs, DUTY CYCLE = 20%  
PW = 10µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 300µs, DUTY CYCLE = 10%  
PW = 500µs, DUTY CYCLE = 10%  
PW = 1000µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 5%  
PW = 100µs, DUTY CYCLE = 2%  
PW = 100µs, DUTY CYCLE = 40%  
PW = 100µs, DUTY CYCLE = 20%  
PW = 10µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 300µs, DUTY CYCLE = 10%  
PW = 500µs, DUTY CYCLE = 10%  
PW = 1000µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 5%  
PW = 100µs, DUTY CYCLE = 2%  
45  
40  
35  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 37. PAE vs. Frequency at  
PIN = 27 dBm and Various Pulse Widths (PW) and Duty Cycles  
Figure 40. Gain vs. Frequency at  
PIN = 27 dBm and Various Pulse Widths (PW) and Duty Cycles  
22  
21  
20  
19  
18  
17  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2800  
P
OUT  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
GAIN  
PAE  
I
DD  
16  
PW = 100µs, DUTY CYCLE = 40%  
PW = 100µs, DUTY CYCLE = 20%  
PW = 10µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 10%  
PW = 300µs, DUTY CYCLE = 10%  
PW = 500µs, DUTY CYCLE = 10%  
PW = 1000µs, DUTY CYCLE = 10%  
PW = 100µs, DUTY CYCLE = 5%  
PW = 100µs, DUTY CYCLE = 2%  
15  
14  
13  
12  
600  
400  
0
200  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
(dBm)  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
P
FREQUENCY (GHz)  
IN  
Figure 38. Gain vs. Frequency at  
IN = 25 dBm and Various Pulse Widths (PW) and Duty Cycles  
Figure 41. POUT, Gain, PAE, and IDD vs. PIN at 5.4 GHz  
P
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
P
P
OUT  
OUT  
GAIN  
GAIN  
PAE  
PAE  
I
I
DD  
DD  
600  
600  
400  
400  
0
200  
0
200  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
(dBm)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
(dBm)  
P
P
IN  
IN  
Figure 39. POUT, Gain, PAE, and IDD vs. PIN at 4.8 GHz  
Figure 42. POUT, Gain, PAE, and IDD vs. PIN at 6.0 GHz  
Rev. 0 | Page 13 of 20  
ADPA1107  
Data Sheet  
35  
35  
30  
25  
20  
15  
10  
5
4.8GHz  
4.8GHz  
5.0GHz  
5.2GHz  
5.4GHz  
5.6GHz  
5.8GHz  
6.0GHz  
5.0GHz  
5.2GHz  
5.4GHz  
5.6GHz  
5.8GHz  
6.0GHz  
30  
25  
20  
15  
10  
5
0
–10  
0
–10  
0
10  
20  
30  
0
10  
20  
30  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 43. Power Dissipation vs. PIN  
Drain Bias Pulse Width = 100 µs, 10% Duty Cycle, and TBASE = 85°C  
,
Figure 46. Power Dissipation vs. PIN,  
Drain Bias Pulse Width = 100 µs, 20% Duty Cycle, and TBASE = 85°C  
35  
35  
4.8GHz  
4.8GHz  
5.0GHz  
5.0GHz  
30  
30  
5.2GHz  
5.2GHz  
5.4GHz  
5.6GHz  
5.4GHz  
5.6GHz  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
5.8GHz  
6.0GHz  
5.8GHz  
6.0GHz  
0
–10  
0
–10  
0
10  
20  
30  
0
10  
20  
30  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 44. Power Dissipation vs. PIN  
Drain Bias Pulse Width = 100 µs, 2% Duty Cycle, and TBASE = 85°C  
,
Figure 47. Power Dissipation vs. PIN,  
Drain Bias Pulse Width = 100 µs, 5% Duty Cycle, and TBASE = 85°C  
10  
1500  
1400  
1300  
1200  
1100  
1000  
900  
+85°C  
+25°C  
–40°C  
1
800  
700  
600  
0.1  
500  
400  
300  
200  
100  
0.01  
0
–3.0  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
–2.9  
–2.8  
–2.7  
–2.6  
–2.5  
–2.4  
–2.3  
–2.2  
P
(dBm)  
VGG1 (V)  
OUT  
Figure 48. IDQ vs. VGG1,  
VDD1x and VDD2x = 28 V, Representative of a Typical Device  
Figure 45. Detector Voltage (VREF − VDET) vs. POUT at  
Various Temperatures and 5.4 GHz  
Rev. 0 | Page 14 of 20  
Data Sheet  
ADPA1107  
0
+85°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
FREQUENCY (GHz)  
Figure 49. Reverse Isolation vs. Frequency at  
Various Temperatures at VDD1x and VDD2x = 28 V  
Rev. 0 | Page 15 of 20  
ADPA1107  
Data Sheet  
THEORY OF OPERATION  
The ADPA1107 is a GaN, broadband power amplifier that  
delivers 45 dBm (35 W) of pulsed power. The device consists of  
two cascaded gain stages. A simplified block diagram is shown  
in Figure 50.  
must be used). The negative dc voltage applied to the VGG1 pin  
biases the gates of the first and the second gain stages,  
respectively, to allow control of the drain currents of each stage  
A portion of the RF output signal is directionally coupled to a  
diode for detection of the RF output power. When the diode is  
dc biased, the diode rectifies the RF power and makes the RF  
power available for measurement as a dc voltage at the VDET  
pin. To allow temperature compensation of VDET, an identical  
and symmetrically located circuit, minus the coupled RF power,  
is available via VREF. Taking the difference of VREF − VDET  
provides a temperature compensated signal that is proportional  
to the RF output power (see Figure 51).  
The ADPA1107 has single-ended RFIN and RFOUT ports that  
are ac-coupled. The impedances of these ports are nominally  
50 Ω over the 4.8 GHz to 6.0 GHz frequency range. Consequently,  
the ADPA1107 can be directly inserted into a 50 Ω system  
without the need for external impedance matching components  
or ac coupling capacitors.  
The drain bias voltage applied to the VDD1A, VDD1B,  
VDD2A, and VDD2B pins biases the drains of the first and the  
second gain stages, respectively (a single common supply voltage  
VDD1A VDD2A VDD2A  
VREF  
VGG1  
RFIN  
RFOUT  
DIRECTIONAL  
COUPLER  
VDET  
VDD1B VDD2B VDD2B  
Figure 50. Simplified Block Diagram  
Rev. 0 | Page 16 of 20  
 
 
Data Sheet  
ADPA1107  
APPLICATIONS INFORMATION  
In gate pulsed mode, VDDxA and VDDxB are held at a fixed  
level (nominally +28 V), while the gate voltage is pulsed between  
−4 V (off) and approximately −2.6 V (on). The exact on level  
BASIC CONNECTIONS  
The basic connections for operating the ADPA1107 are shown  
in Figure 51. Apply a power supply voltage of between 28 V and  
32 V on all VDDxA and VDDxB pins. Decouple the VDDxA  
and VDDxB pins with the capacitor values shown in Figure 51.  
The VDD1x pins require a 2.55 Ω resistor in series with the  
decoupling capacitor to assist with making the ADPA1107  
unconditionally stable. The VGG1 pin is used to set the IDQ of all  
stages. The decoupling capacitors on the VDDxA, VDDxB, and  
VGG1 lines represent the configuration that was used to  
characterize and qualify the ADPA1107.  
can be adjusted to achieve the desired IDQ  
.
In drain pulsed mode, VDDxA and VDDxB are pulsed on and  
off while the gate voltage is held at a fixed negative level  
between −2 V and −4 V. Because high currents and voltages are  
being switched on and off, a metal-oxide semiconductor field  
effect transistor (MOSFET) and a MOSFET switch driver are  
required in the circuit. Large capacitors are also required, which  
act as local reservoirs of charge and help provide the drain  
current required by the ADPA1107 while maintaining a steady  
drain voltage during the on time of the pulse.  
Pin 1 through Pin 4, Pin 8 through Pin 12, Pin 14 through  
Pin 17, Pin 20 through Pin 22, Pin 28 through Pin 31, Pin 34  
through Pin 37, and Pin 40 are designated as no internal  
connection (NIC) pins. Although the NIC pins are not  
internally connected, the NIC pins were all connected to  
ground during the characterization of the device.  
The ADPA1107-EVALZ includes a plug-in pulser board that  
contains the required circuitry to implement drain pulsed  
mode. See the ADPA1107A-EVALZ user guide (UG-1962)  
for additional information.  
To safely turn power on, the VGG1 voltage must be set to −4 V  
before the VDDxA and the VDDxB voltages are applied. After  
VGG1 is increased to achieve the desired IDQ, the RF input can  
be applied.  
Apply a voltage between −2 V and −4 V to the VGG1 line to set  
the drain current. The device can be operated by pulsing either  
the gate voltage or the drain voltage.  
To safely turn power off, remove the RF input signal and decrease  
VGG1 to −4 V. VDDxA and VDDxB can then be decreased to 0  
V before increasing VGG1 to 0 V.  
Rev. 0 | Page 17 of 20  
 
 
ADPA1107  
Data Sheet  
VDD1A  
VDD2A  
VGG1  
1 µF  
2200pF  
1000pF  
1000pF  
2.55Ω  
1
2
3
4
NIC  
30  
29  
NIC  
NIC  
VREF  
NIC  
NIC  
NIC  
5V  
28  
27  
NIC  
VREF  
10kΩ  
1pF  
GND  
RFIN  
5
GND  
26  
25  
RFOUT  
6
5V  
DIRECTIONAL  
COUPLER  
GND  
NIC  
NIC  
NIC  
GND  
24  
23  
22  
21  
7
8
VDET  
GROUND  
PAD  
10kΩ  
1pF  
NIC  
NIC  
9
VDET  
10  
VDD1B  
VDD2B  
1000pF  
1000pF  
2.55Ω  
Figure 51. Basic Connections  
Rev. 0 | Page 18 of 20  
 
Data Sheet  
ADPA1107  
Next, consider a pulsed bias condition at a low duty cycle (see  
THERMAL MANAGEMENT  
Figure 53). When bias is applied, the TCHAN of the device can be  
described as a series of exponentially rising and decaying  
pulses. The peak channel temperature reached during  
consecutive pulses increases during the turn on transient interval,  
and eventually, settles to a steady state condition where peak  
channel temperatures from pulse to pulse stabilize.  
Proper thermal management is critical to achieve the specified  
performance and rated operating life. Pulsed biasing limits  
the average power dissipated and maintains a safe channel  
temperature. The channel (or die) temperature correlates  
closely with the mean time to failure (MTTF).  
Consider a continuous bias condition (see Figure 52). When  
bias is applied, the channel temperature (TCHAN) of the device  
rises through a turn on transient interval and eventually settles  
to a steady state value. The θJC of the device is the rise in TCHAN  
above the starting TBASE divided by the total device PDISS, which is  
calculated by  
POWER DISSIPATED  
DURING THE PULSE  
T
CHAN  
tRISE = θ × P  
JC  
DISS  
T
BASE  
θ
JC = tRISE/PDISS  
where:  
RISE is the rise in TCHAN of the device above the TBASE (°C).  
DISS is the power dissipation (W) of the device.  
(1)  
TIME  
Figure 53. Pulsed Bias Condition at a Low Duty Cycle  
t
P
Table 7 shows the thermal resistance values for various pulse  
conditions.  
Table 7. Pulse Settings and Thermal Resistance Values  
T
CHAN  
Pulse Settings  
tRISE = θ × P  
JC  
DISS  
Pulse Width (µs)  
Duty Cycle (%)  
θJC (°C/W)  
1.72  
1.76  
T
100  
100  
500  
10  
20  
10  
BASE  
TIME  
2.10  
Figure 52. Channel Temperature Rise for Continuous Bias Condition  
Narrower pulse widths and/or lower duty cycles can result in  
greater reliability.  
Rev. 0 | Page 19 of 20  
 
 
 
 
ADPA1107  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
31  
40  
1
30  
0.50  
BSC  
4.70  
EXPOSED  
PAD  
4.60 SQ  
4.50  
10  
21  
20  
11  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
END VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD-5  
Figure 54. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm Body and 0.75 mm Package Height  
(CP-40-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature  
−40°C to +85°C  
−40°C to +85°C  
MSL Rating2  
MSL3  
Description3  
Package Option  
CP-40-7  
CP-40-7  
ADPA1107ACPZN  
ADPA1107ACPZN-R7  
ADPA1107-EVALZ  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
MSL3  
1 The ADPA1107ACPZN and ADPA1107ACPZN-R7 models are RoHS compliant parts.  
2 See the Absolute Maximum Ratings section for additional information.  
3 The lead finish of ADPA1107ACPZN and ADPA1107ACPZN-R7 is nickel palladium gold (NiPdAu).  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D26290-7/21(0)  
Rev. 0 | Page 20 of 20  
 
 

相关型号:

ADPA1107ACPZN

45.0 dBm (35 W), 4.8 GHz to 6.0 GHz, GaN Power Amplifier
ADI

ADPA1107ACPZN-R7

45.0 dBm (35 W), 4.8 GHz to 6.0 GHz, GaN Power Amplifier
ADI

ADPA7001CHIPS

Wideband Power Amplifier
ADI

ADPA7001CHIPS-SX

Wideband Power Amplifier
ADI

ADPA7002C-KIT

GaAs, pHEMT, MMIC,1/2 W, Power Amplifier
ADI

ADPA7002CHIP

GaAs, pHEMT, MMIC,1/2 W, Power Amplifier
ADI

ADPA7007

20 GHz to 44 GHz, GaAs, pHEMT, 31.5 dBm 1">(>1 W), MMIC Power Amplifier
ADI

ADPA7007-EVALZ

20 GHz to 44 GHz, GaAs, pHEMT, 31.5 dBm 1">(>1 W), MMIC Power Amplifier
ADI

ADPA7007AEHZ

20 GHz to 44 GHz, GaAs, pHEMT, 31.5 dBm 1">(>1 W), MMIC Power Amplifier
ADI

ADPA7007AEHZ-R7

20 GHz to 44 GHz, GaAs, pHEMT, 31.5 dBm 1">(>1 W), MMIC Power Amplifier
ADI

ADPA9002

GaAs, pHEMT, MMIC, Single Positive Supply, DC to 10 GHz Power Amplifier
ADI

ADPA9002-EVALZ

GaAs, pHEMT, MMIC, Single Positive Supply, DC to 10 GHz Power Amplifier
ADI