ADPA7007AEHZ-R7 [ADI]

20 GHz to 44 GHz, GaAs, pHEMT, 31.5 dBm 1">(>1 W), MMIC Power Amplifier;
ADPA7007AEHZ-R7
型号: ADPA7007AEHZ-R7
厂家: ADI    ADI
描述:

20 GHz to 44 GHz, GaAs, pHEMT, 31.5 dBm 1">(>1 W), MMIC Power Amplifier

文件: 总23页 (文件大小:589K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
20 GHz to 44 GHz, GaAs, pHEMT,  
31.5 dBm (>1 W), MMIC Power Amplifier  
Data Sheet  
ADPA7007  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ADPA7007  
Output P1dB: 29 dBm typical at 34 GHz to 44 GHz  
PSAT: 31.5 dBm typical at 26 GHz to 34 GHz  
Gain: 20.5 dB typical at 34 GHz to 44 GHz  
Output IP3: up to 42.5 dBm typical  
Supply voltage: 5 V at 1400 mA  
50 Ω matched input/output  
18-terminal, 7 mm × 7 mm LCC_HS package  
Integrated power detector  
1
2
3
4
13  
12  
11  
10  
V
V
V
V
V
V
V
V
DD1  
DD3  
DD5  
DD2  
DD4  
DD6  
GG2  
APPLICATIONS  
GG1  
Military and space  
Test instrumentation  
Communications  
Figure 1.  
GENERAL DESCRIPTION  
The ADPA7007 is a gallium arsenide (GaAs), pseudomorphic  
high electron mobility transfer (pHEMT), monolithic microwave  
integrated circuit (MMIC), 31.5 dBm saturated output power  
(>1 W) power amplifier, with an integrated temperature  
compensated, on-chip power detector that operates between  
20 GHz and 44 GHz. The ADPA7007 provides 20.5 dB of small  
signal gain and approximately 32 dBm of saturated output power  
at 32 GHz from a 5 V supply (see Figure 26). The ADPA7007  
has an output IP3 of 42.5 dBm and is ideal for linear  
applications such as electronic countermeasure and  
instrumentation applications requiring >30 dBm of efficient  
saturated output power. The RF input/outputs are internally  
matched and dc blocked for ease of integration into higher level  
assemblies. The ADPA7007 is packaged in a 7 mm × 7 mm,  
18-terminal ceramic leadless chip carrier with heat sink  
(LCC_HS) that exhibits low thermal resistance and is  
compatible with surface-mount manufacturing techniques.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADPA7007  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Typical Performance Characteristics .............................................8  
Constant IDD Operation............................................................. 15  
Theory of Operation ...................................................................... 16  
Applications Information ............................................................. 17  
Biasing ADPA7007 with the HMC980LP4E.............................. 18  
Application Circuit Setup ......................................................... 18  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
20 GHz to 26 GHz Frequency Range ........................................ 3  
26 GHz to 34 GHz Frequency Range ........................................ 3  
34 GHz to 44 GHz Frequency Range ........................................ 4  
Absolute Maximum Ratings ........................................................... 5  
Thermal Resistance...................................................................... 5  
Electrostatic Discharge (ESD) Ratings...................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions ............................ 6  
Interface Schematics .................................................................... 7  
Limiting VGATE and VNEG for ADPA7007 VGGx Absolute  
Maximum Rating Requirement ............................................... 18  
HMC980LP4E Bias Sequence................................................... 21  
Constant Drain Current Biasing vs. Constant Gate Voltage  
Biasing.......................................................................................... 21  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
REVISION HISTORY  
7/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 23  
 
Data Sheet  
ADPA7007  
SPECIFICATIONS  
20 GHz TO 26 GHz FREQUENCY RANGE  
TA = 25°C, drain bias voltage (VDD) = 5 V, and quiescent drain current (IDQ) = 1400 mA for nominal operation, unless otherwise noted.  
50 Ω matched input/output.  
Table 1.  
Parameter  
Symbol Min Typ  
Max Unit  
Test Conditions/Comments  
FREQUENCY RANGE  
GAIN  
20  
26  
GHz  
dB  
18  
20  
Gain Flatness  
1
dB  
Gain Variation over  
Temperature  
0.021  
dB/°C  
NOISE FIGURE  
RETURN LOSS  
Input  
6
dB  
12  
12  
dB  
dB  
Output  
OUTPUT  
Output Power for 1 dB  
Compression  
P1dB  
26.5 29  
dBm  
Saturated Output Power  
Output Third-Order  
Intercept  
PSAT  
IP3  
30  
39  
dBm  
dBm  
Measurement taken at output power (POUT) per tone = 16 dBm  
Measured at PSAT  
POWER ADDED EFFICIENCY  
SUPPLY  
PAE  
11  
%
Adjust VGGx from −1.5 V up to 0 V to achieve the desired IDQ,  
VGGx = −0.685 V typical to achieve IDQ = 1400 mA  
Quiescent Drain Current  
Drain Bias Voltage  
IDQ  
VDD  
1400  
5
mA  
V
4
26 GHz TO 34 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, and IDQ = 1400 mA for nominal operation, unless otherwise noted. 50 Ω matched input/output.  
Table 2.  
Parameter  
Symbol Min Typ  
Max Unit  
Test Conditions/Comments  
FREQUENCY RANGE  
GAIN  
Gain Flatness  
26  
34  
GHz  
dB  
dB  
19.5 21.5  
0.5  
Gain Variation over  
Temperature  
0.021  
dB/°C  
NOISE FIGURE  
RETURN LOSS  
Input  
5.5  
dB  
13  
13  
dB  
dB  
Output  
OUTPUT  
Output Power for 1 dB  
Compression  
P1dB  
28  
30  
dBm  
Saturated Output Power  
Output Third-Order  
Intercept  
PSAT  
IP3  
31.5  
42.5  
dBm  
dBm  
Measurement taken at POUT per tone = 16 dBm  
Measured at PSAT  
POWER ADDED EFFICIENCY  
SUPPLY  
PAE  
14  
%
Adjust VGGx from −1.5 V up to 0 V to achieve the desired IDQ,  
VGGx = −0.685 V typical to achieve IDQ = 1400 mA  
Current  
Voltage  
IDQ  
VDD  
1400  
5
mA  
V
4
Rev. 0 | Page 3 of 23  
 
 
 
ADPA7007  
Data Sheet  
34 GHz TO 44 GHz FREQUENCY RANGE  
TA = 25°C, VDD = 5 V, and IDQ = 1400 mA for nominal operation, unless otherwise noted. 50 Ω matched input/output.  
Table 3.  
Parameter  
Symbol Min Typ  
Max Unit  
Test Conditions/Comments  
FREQUENCY RANGE  
GAIN  
34  
44  
GHz  
dB  
18.5 20.5  
Gain Flatness  
1
dB  
Gain Variation over  
Temperature  
0.04  
dB/°C  
NOISE FIGURE  
RETURN LOSS  
Input  
6
dB  
15  
18  
dB  
dB  
Output  
OUTPUT  
Output Power for 1 dB  
Compression  
P1dB  
28.5 29  
dBm  
Saturated Output Power  
Output Third-Order  
Intercept  
PSAT  
IP3  
31  
41  
dBm  
dBm  
Measurement taken at POUT per tone = 16 dBm  
Measured at PSAT  
POWER ADDED EFFICIENCY  
SUPPLY  
PAE  
13  
%
Adjust VGGx from −1.5 V up to 0 V to achieve the desired IDQ,  
VGGx = −0.685 V typical to achieve IDQ = 1400 mA  
Current  
Voltage  
IDQ  
VDD  
1400  
5
mA  
V
4
Rev. 0 | Page 4 of 23  
 
Data Sheet  
ADPA7007  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Thermal performance is directly linked to system design and  
operating environment. Careful attention to the printed circuit  
board (PCB) thermal design is required.  
Parameter  
Rating  
Drain Bias Voltage (VDDx  
Gate Bias Voltage (VGGx  
Radio Frequency Input Power (RFIN)  
)
6.0 V  
)
−1.6 V to 0 V  
27 dBm  
12.33 W  
θJC is the channel to case thermal resistance, channel to bottom  
Continuous Power Dissipation (PDISS),  
T = 85°C (Derate 137 mW/°C  
Above 85°C)  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature to Maintain  
1,000,000 Hour Mean Time to Failure  
(MTTF)  
of die using die attach epoxy.  
Table 5. Thermal Resistance  
Package Type  
−55°C to +150°C  
−40°C to +85°C  
175°C  
θJC  
Unit  
EH-18-11  
7.3  
°C/W  
1 θJC is determined by simulation under the following conditions: the heat  
transfer is due solely to thermal conduction from the channel, through the  
ground pad, to the PCB. The ground pad is held constant at the operating  
temperature of 85°C.  
Nominal Junction Temperature  
(T = 85°C, VDD = 5 V, IDQ = 1400 mA)  
Peak Reflow Temperature1  
136.1°C  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
260°C  
MSL3  
The following ESD information is provided for handling of  
ESD sensitive devices in an ESD protected area only.  
Moisture Sensitivity Level  
1 See the Ordering Guide for additional information.  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
ESD Ratings for ADPA7007  
Table 6. ADPA7007, 18-Terminal LCC_HS  
ESD Model  
Withstand Threshold (V)  
Class  
HBM  
250  
1A  
ESD CAUTION  
Rev. 0 | Page 5 of 23  
 
 
 
 
 
ADPA7007  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
13  
12  
11  
10  
V
V
V
V
V
V
V
V
DD1  
DD3  
DD5  
DD2  
DD4  
DD6  
GG2  
2
3
4
ADPA7007  
GG1  
NOTES  
1. NIC = NO INTERNAL CONNECTION. NOTE  
THAT DATA SHOWN HEREIN WAS  
MEASURED WITH THESE PINS EXTERNALLY  
CONNECTED TO RF AND DC GROUND.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO RF AND DC GROUND.  
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
Drain Bias for the Amplifier.  
1, 2, 3, 11, 12, 13  
V
V
DD1, VDD3, VDD5  
DD6, VDD4, VDD2  
,
4, 10  
5, 9  
VGG1, VGG2  
NIC  
Amplifier Gate Control. ESD protection diodes are included and turn on below −1.5 V.  
Not Internally Connected. Note that data shown herein was measured with these pins externally  
connected to RF and dc ground.  
6, 8, 15, 17  
7
14  
GND  
RFIN  
VDET  
Ground Pins. Connect the GND pins and the exposed pad to RF and dc ground.  
RF Signal Input. This pin is ac-coupled and internally matched to 50 Ω.  
Detector Diode Used for Measuring the RF Output Power. Detection via VDET requires the application  
of a dc bias voltage through an external series resistor. Used in combination with VREF, the difference  
voltage, VREF − VDET, is a temperature compensated dc voltage proportional to the RF output power.  
16  
18  
RFOUT  
VREF  
RF Signal Output. RFOUT is ac-coupled and internally matched to 50 Ω.  
Reference Diode Used for Temperature Compensation of VDET RF Output Power Measurements.  
Detection via VERF requires the application of a dc bias voltage through an external series resistor.  
Used in combination with VDET, this voltage provides temperature compensation to VDET RF output  
power measurements.  
EPAD  
Exposed Pad. The exposed pad must be connected to RF and dc ground.  
Rev. 0 | Page 6 of 23  
 
Data Sheet  
ADPA7007  
INTERFACE SCHEMATICS  
GND  
V
,
GG1  
V
GG2  
Figure 3. GND Interface Schematic  
Figure 7. VGG1, VGG2 Interface Schematic  
VREF  
RFOUT  
Figure 8. RFOUT Interface Schematic  
Figure 4. VREF Interface Schematic  
V
TO V  
DD1  
DD6  
VDET  
Figure 5. VDET Interface Schematic  
Figure 9. VDD1 to VDD6 Interface Schematic  
RFIN  
Figure 6. RFIN Interface Schematic  
Rev. 0 | Page 7 of 23  
 
ADPA7007  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
30  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
25  
20  
15  
10  
INPUT RETURN LOSS  
5
0
GAIN  
OUTPUT RETURN LOSS  
–5  
+85°C  
+25°C  
–40°C  
–10  
–15  
–20  
14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Gain and Return Loss vs. Frequency, VDD = 5 V, IDQ = 1400 mA  
Figure 13. Gain vs. Frequency for Various Temperatures, VDD = 5 V,  
IDQ = 1400 mA  
28  
26  
24  
22  
20  
18  
16  
26  
24  
22  
20  
18  
1000mA  
16  
1200mA  
4V  
5V  
14  
1400mA  
1500mA  
1600mA  
1800mA  
14  
12  
12  
10  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 11. Gain vs. Frequency for Various VDD, IDQ = 1400 mA  
Figure 14. Gain vs. Frequency for Various IDQ, VDD = 5 V  
0
0
+85°C  
+25°C  
–40°C  
4V  
5V  
–5  
–10  
–15  
–20  
–25  
–5  
–10  
–15  
–20  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
–25  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Input Return Loss vs. Frequency for Various VDD  
IDQ = 1400 mA  
,
Figure 12. Input Return Loss vs. Frequency for Various Temperatures,  
VDD = 5 V, IDQ = 1400 mA  
Rev. 0 | Page 8 of 23  
 
Data Sheet  
ADPA7007  
0
0
–5  
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–10  
–15  
–20  
–25  
1000mA  
1200mA  
1400mA  
1500mA  
1600mA  
1800mA  
–20  
–25  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. Input Return Loss vs. Frequency for Various IDQ, VDD = 5 V  
Figure 19. Output Return Loss vs. Frequency for Various Temperature,  
VDD = 5 V, IDQ = 1400 mA  
0
0
4V  
5V  
–5  
–10  
–15  
–20  
–5  
–10  
–15  
1000mA  
1200mA  
1400mA  
1500mA  
1600mA  
1800mA  
–20  
–25  
–25  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 17. Input Return Loss vs Frequency for Various VDD  
IDQ = 1400 mA  
,
Figure 20. Output Return Loss vs. Frequency for Various IDQ  
,
VDD = 5 V  
0
10  
9
8
7
6
5
4
3
2
1
0
+85°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
+85°C  
+25°C  
–40°C  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 18. Reverse Isolation vs. Frequency for Various Temperatures,  
VDD = 5 V, IDQ = 1400 mA  
Figure 21. Noise Figure vs. Frequency for Various Temperatures,  
VDD = 5 V, IDQ = 1400 mA  
Rev. 0 | Page 9 of 23  
ADPA7007  
Data Sheet  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
4V  
5V  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 22. Output P1dB vs. Frequency for Various Temperatures,  
VDD = 5 V, IDQ = 1400 mA  
Figure 25. Output P1dB vs. Frequency for Various VDD, IDQ = 1400 mA  
36  
34  
32  
30  
28  
26  
24  
22  
20  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
18  
16  
14  
12  
10  
1000mA  
1200mA  
1400mA  
1500mA  
1600mA  
1800mA  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 23. Output P1dB vs. Frequency for Various IDQ, VDD = 5 V  
Figure 26. PSAT vs. Frequency for Various Temperatures, VDD = 5 V,  
IDQ = 1400 mA  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
36  
34  
32  
30  
28  
26  
24  
22  
20  
1000mA  
18  
1200mA  
4V  
5V  
1400mA  
1500mA  
1600mA  
1800mA  
16  
14  
16  
14  
12  
10  
12  
10  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 24. PSAT vs. Frequency for Various VDD, IDQ = 1400 mA  
Figure 27. PSAT vs. Frequency for Various IDQ, VDD = 5 V  
Rev. 0 | Page 10 of 23  
 
Data Sheet  
ADPA7007  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
+85°C  
+25°C  
–40°C  
4V  
5V  
4
2
0
4
2
0
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 28. Power Added Efficiency (PAE) vs. Frequency for Various Temperatures,  
VDD = 5 V, IDQ = 1400 mA, PAE Measured at PSAT  
Figure 31. PAE vs. Frequency for Various VDD, IDQ = 1400 mA,  
PAE Measured at PSAT  
20  
18  
16  
14  
12  
10  
32  
28  
24  
20  
16  
12  
8
2300  
P
GAIN  
PAE  
OUT  
2175  
2050  
1925  
1800  
1675  
1550  
1425  
1300  
I
DD  
8
1000mA  
6
1200mA  
1400mA  
4
2
0
1500mA  
1600mA  
1800mA  
4
0
–15  
–10  
–5  
0
5
10  
15  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 29. PAE vs. Frequency for Various IDQ, VDD = 5 V, IDQ = 1400 mA,  
PAE Measured at PSAT  
Figure 32. POUT, Gain, PAE, and IDD vs. Input Power, 20 GHz, VDD = 5 V,  
IDD = 1400 mA  
32  
28  
24  
20  
16  
12  
8
2100  
36  
32  
28  
24  
20  
16  
12  
8
2110  
P
GAIN  
PAE  
OUT  
P
OUT  
GAIN  
PAE  
I
DD  
2020  
1930  
1840  
1750  
1660  
1570  
1480  
1390  
1300  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
I
DD  
4
4
0
–15  
0
–15  
–10  
–5  
0
5
10  
15  
–10  
–5  
0
5
10  
15  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 30. POUT, Gain, PAE, and Drain Current with RF Applied (IDD) vs. Input  
Power, 22 GHz, VDD = 5 V, IDD = 1400 mA  
Figure 33. POUT, Gain, PAE, and IDD vs. Input Power,  
30 GHz, VDD = 5 V, IDD = 1400 mA  
Rev. 0 | Page 11 of 23  
ADPA7007  
Data Sheet  
36  
2020  
1940  
1860  
1780  
1700  
1620  
1540  
1460  
1380  
1300  
32  
28  
24  
20  
16  
12  
8
2020  
1930  
1840  
1750  
1660  
1570  
1480  
1390  
P
GAIN  
PAE  
P
OUT  
GAIN  
PAE  
I
DD  
OUT  
32  
28  
24  
20  
16  
12  
8
I
DD  
4
4
0
–15  
0
–15  
1300  
15  
–10  
–5  
0
5
10  
15  
–10  
–5  
0
5
10  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 34. POUT, Gain, PAE, and IDD vs. Input Power,  
34 GHz, VDD = 5 V, IDD = 1400 mA  
Figure 37. POUT, Gain, PAE, and IDD vs. Input Power,  
38 GHz, VDD = 5 V, IDD = 1400 mA  
32  
28  
24  
20  
16  
12  
8
2260  
2140  
2020  
1900  
1780  
1660  
1540  
1420  
1300  
50  
P
GAIN  
PAE  
OUT  
45  
40  
35  
30  
25  
20  
15  
I
DD  
4V  
5V  
4
0
–15  
–10  
–5  
0
5
10  
15  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 38. Output IP3 vs. Frequency for Various VDD  
POUT per Tone = 16 dBm, IDQ = 1400 mA  
,
Figure 35. POUT, Gain, PAE, and IDD vs. Input Power,  
44 GHz, VDD = 5 V, IDD = 1400 mA  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
1000mA  
1200mA  
1400mA  
1500mA  
1600mA  
1800mA  
+85°C  
+25°C  
–40°C  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 36. Output IP3 vs. Frequency for Various Temperatures,  
POUT per Tone = 16 dBm, VDD = 5 V, IDQ = 1400 mA  
Figure 39. Output IP3 vs Frequency for Various IDQ, POUT per Tone = 16 dBm,  
VDD = 5 V  
Rev. 0 | Page 12 of 23  
Data Sheet  
ADPA7007  
2100  
1800  
1500  
1200  
900  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20GHz  
22GHz  
28GHz  
30GHz  
32GHz  
34GHz  
38GHz  
44GHz  
600  
300  
15  
–1.5 –1.4 –1.3 –1.2 –1.1 –1.0 –0.9 –0.8 –0.7 –0.6 –0.5  
10  
12  
14  
16  
18  
20  
22  
V
(V)  
P
OUT  
PER TONE (dBm)  
GGx  
Figure 40. IDQ vs. VGGx  
Figure 43. IM3 vs. POUT per Tone, VDD = 5 V, IDQ = 1400 mA  
2200  
2100  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
11  
10  
9
20GHz  
22GHz  
28GHz  
30GHz  
32GHz  
34GHz  
38GHz  
44GHz  
20GHz  
22GHz  
28GHz  
30GHz  
32GHz  
34GHz  
38GHz  
44GHz  
8
7
6
5
–10  
–15  
–10  
–5  
0
5
10  
15  
–5  
0
5
10  
15  
RF INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
Figure 41. IDD vs. RF Input Power at Various Frequencies,  
VDD = 5 V, IDD = 1400 mA  
Figure 44. Power Dissipation vs. RF Input Power at TA = 85°C, VDD = 5 V,  
IDQ = 1400 mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10.00  
1.00  
0.10  
20GHz  
22GHz  
28GHz  
30GHz  
32GHz  
34GHz  
38GHz  
44GHz  
+85°C  
+25°C  
–40°C  
0.01  
4
6
8
10  
12  
14  
16  
18  
20  
4
8
12  
16  
20  
24  
28  
32  
P
PER TONE (dBm)  
OUTPUT POWER (dBm)  
OUT  
Figure 45. VREF − VDET vs. Output Power for Various Temperatures at 30 GHz  
Figure 42. Third-Order Intermodulation Distortion (IM3) vs. POUT per Tone,  
VDD = 4 V, IDQ = 1400 mA  
Rev. 0 | Page 13 of 23  
 
ADPA7007  
Data Sheet  
10  
10  
8dBm  
20dBm  
+85°C  
+25°C  
–40°C  
10dBm  
12dBm  
22dBm  
24dBm  
26dBm  
28dBm  
14dBm  
16dBm  
18dBm  
1
1
0.1  
0.1  
0.01  
0.01  
4
8
12  
16  
20  
24  
28  
32  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
OUTPUT POWER (dBm)  
Figure 46. VREF − VDET vs. Output Power for Various Temperatures at 20 GHz  
Figure 48. VREF − VDET vs. Frequency for Various POUT Levels  
4
10  
+85°C  
+25°C  
–40°C  
22GHz  
24GHz  
26GHz  
28GHz  
30GHz  
32GHz  
34GHz  
36GHz  
38GHz  
40GHz  
42GHz  
44GHz  
46GHz  
3
2
1
1
0
–1  
–2  
–3  
–4  
0.1  
0.01  
–12  
0
2
4
6
8
10 12 14  
4
8
12  
16  
20  
24  
28  
32  
RF INPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 47. VREF − VDET vs. Output Power for Various Temperatures at 40 GHz  
Figure 49. Gate Current (IGG) vs. RF Input Power at Various Frequencies,  
VDD = 5 V, IDQ = 1400 mA  
Rev. 0 | Page 14 of 23  
Data Sheet  
ADPA7007  
CONSTANT IDD OPERATION  
Biased with HMC980LP4E active bias controller (see Figure 56), TA = 25°C, VDD = 5 V, and IDD = 1800 mA for nominal operation, unless  
otherwise noted. Data measured with constant IDD  
.
34  
32  
30  
28  
26  
24  
22  
20  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
18  
1200mA  
1400mA  
1600mA  
1800mA  
2000mA  
+85°C  
+25°C  
–40°C  
16  
14  
12  
10  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 50. Output P1dB vs. Frequency for Various Temperatures  
Figure 52. Output P1dB vs. Frequency for Various Drain Currents  
34  
32  
30  
28  
26  
24  
22  
20  
34  
32  
30  
28  
26  
24  
22  
20  
18  
18  
16  
14  
12  
10  
1200mA  
1400mA  
1600mA  
1800mA  
2000mA  
+85°C  
+25°C  
–40°C  
16  
14  
12  
10  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 51. PSAT vs. Frequency for Various Temperatures  
Figure 53. PSAT vs. Frequency for Various Drain Currents  
Rev. 0 | Page 15 of 23  
 
ADPA7007  
Data Sheet  
THEORY OF OPERATION  
The simplified architecture of the ADPA7007 power amplifier  
is shown in Figure 54. The ADPA7007 is a cascaded, three-  
stage amplifier with a combined gain of 21.5 dB and a PSAT  
value of 31.5 dBm.  
A portion of the RF output signal is directionally coupled to a  
diode for detection of the RF output power. When the diode is  
dc biased, the diode rectifies the RF power and makes the RF  
power available for measurement as a dc voltage at VDET. To  
allow temperature compensation of VDET, an identical and  
symmetrically located circuit (minus the coupled RF power) is  
available via VREF. The difference of VREF − VDET provides a  
temperature compensated signal that is proportional to the RF  
output.  
The drain current is controlled by the voltage on the VGG1 and  
VGG2 pins. These pins must be connected together and driven  
by a negative voltage in the −1.5 V to 0 V range (typical gate  
bias voltage for a quiescent drain current bias of 1400 mA is  
−0.685 V). Simplified bias pin connections to the dedicated  
gain stages are shown in Figure 54.  
To obtain optimal performance from the ADPA7007 and avoid  
damaging the device, follow the recommended biasing  
sequences described in the Applications Information section.  
V
V
V
V
V
V
DD5  
DD6  
DD3 DD4  
DD1 DD2  
RFIN  
RFOUT  
V
V
GG1 GG2  
Figure 54. Simplified Architecture of ADPA7007  
Rev. 0 | Page 16 of 23  
 
 
Data Sheet  
ADPA7007  
APPLICATIONS INFORMATION  
Figure 55 shows the basic connections for operating the  
ADPA7007. All measurements for this device were taken using  
the typical application circuit shown in Figure 55.  
The following is the recommended bias sequence during  
power-down:  
1. Turn off the RF signal.  
Capacitive bypassing is required for all VGGx and VDDx pins. VGG1  
and VGG2 are the gate bias pins, and VDD1 to VDD6 are the drain  
bias pins for the cascaded amplifier.  
2. Decrease the gate bias voltages, VGG1 and VGG2, to −1.5 V to  
achieve an IDQ = 0 mA (approximately).  
3. Decrease all drain bias voltages to 0 V.  
4. Increase the VGGx gate bias voltage to 0 V.  
The power supply and gate voltage decoupling capacitors  
shown in Figure 55 represent the configuration that was used to  
characterize and qualify the device. There may be scopes to  
reduce the number of capacitors, but scopes vary from system  
to system. It is recommended to first remove or combine the  
largest capacitors that are farthest from the device. The  
following is the recommended bias sequence during power-up:  
The VDD = 5 V and IDQ = 1400 mA bias conditions are recom-  
mended to optimize overall performance when the gate voltage  
is being held at a fixed value (note that with the gate voltage held at  
a fixed value, the drain current, IDD, increases as the RF input  
power level is increased, as shown in Figure 41). Unless otherwise  
noted, the data shown was taken using the recommended bias  
conditions. Operation of the ADPA7007 at different bias  
conditions can result in different performance. Biasing the  
ADPA7007 for higher quiescent drain current typically results  
in higher gain and output P1dB at the expense of increased  
power dissipation (see Table 8).  
1. Connect the power supply ground to circuit ground (GND).  
2. Set the gate bias voltages, VGG1 and VGG2, to −1.5 V.  
3. Set all drain bias voltages (VDDx) to 5 V.  
4. Increase the gate bias voltage to achieve the quiescent  
supply current and set IDQ = 1400 mA.  
5. Apply the RF signal.  
Table 8. Power Selection1, 2  
IDQ (mA)  
Gain (dB)  
Output P1dB (dBm)  
Output IP3 (dBm)  
PDISS (W)  
VGGx (V)  
−0.73  
−0.68  
−0.63  
1200  
1400  
1600  
15.80  
16.20  
16.50  
31.89  
31.93  
31.95  
42.90  
41.30  
39.55  
6
7
8
1 Data taken at the following nominal bias conditions: VDD = 5 V, TA = 25°C, frequency = 32 GHz.  
2 Adjust VGG1 and VGG2 from −1.5 V to 0 V to achieve the desired quiescent drain current, IDQ  
.
V
V
,
,
DD1  
DD3  
V
DD5  
C15  
4.7µF  
C9  
1000pF  
C3  
100pF  
C2  
100pF  
C8  
1000pF  
C14  
4.7µF  
+5V  
+5V  
V
GG1  
C1  
100pF  
C7  
1000pF  
C13  
4.7µF  
C31  
4.7µF  
C26  
1000pF  
C21  
100pF  
100kΩ  
100kΩ  
10kΩ  
10kΩ  
4
3
2
1
VREF  
18  
5
6
7
8
9
+
17  
16  
15  
14  
10kΩ  
10kΩ  
RFIN  
RFOUT  
ADPA7007  
VOUT = VREF – VDET  
VDET  
10  
11  
12  
13  
SUGGESTED CIRCUIT  
–5V  
V
GG2  
C16  
4.7µF  
C10  
1000pF  
C4  
100pF  
C6  
100pF  
C12  
1000pF  
C18  
4.7µF  
C17  
4.7µF  
C11  
1000pF  
C5  
100pF  
C23  
100pF  
C19  
1000pF  
C30  
4.7µF  
V
,
,
DD2  
DD4  
V
V
DD6  
Figure 55. Typical Application Circuit  
Rev. 0 | Page 17 of 23  
 
 
 
ADPA7007  
Data Sheet  
BIASING ADPA7007 WITH THE HMC980LP4E  
The HMC980LP4E is an active bias controller that measures  
and regulates drain current by automatically adjusting the gate  
voltage. The HMC980LP4E can control the biasing of RF  
amplifiers with drain voltages up to 16.5 V and currents up to  
1.6 A. The controller provides constant drain current biasing  
over temperature and device to device variation, and properly  
sequences gate and drain voltages to ensure the safe operation  
of the amplifier.  
Two HMC980LP4E devices are needed to support current  
levels at 1800 mA because a single HMC980LP4E device can  
support a maximum current of 1600 mA. In the application  
circuit shown in Figure 56 and Figure 57, the ADPA7007 drain  
voltage and drain current are set by the following equations:  
VDRAIN = VDD IDRAIN × 0.85 Ω  
where:  
VDRAIN = 5 V, the drain voltage from Pin 17 and Pin 18 of the  
(1)  
The HMC980LP4E offers self protection in the event of a short  
circuit, as well as an internal charge pump that generates the  
negative voltage required on the gate of the ADPA7007. The  
HMC980LP4E also provides the option to use an external  
negative voltage source. The HMC980LP4E is also available in  
die form as the HMC980.  
HMC980LP4E.  
V
DD = 5.765 V, the supply voltage to the HMC980LP4E.  
I
DRAIN = 1800 mA, the constant drain current from Pin 17 and  
Pin 18 on the HMC980LP4E.  
150 Ω  
R10 =  
(2)  
IDRAIN  
APPLICATION CIRCUIT SETUP  
where:  
Figure 56 shows a schematic of an application circuit using the  
two HMC980LP4E devices to control the ADPA7007. When  
using an external negative supply for VNEG, refer to the  
schematic in Figure 57.  
I
DRAIN = 900 mA (for each HMC980LP4E, per the dual bias  
setup in Figure 56).  
R10 = 166.66 Ω.  
LIMITING VGATE AND VNEG FOR ADPA7007 VGGX  
ABSOLUTE MAXIMUM RATING REQUIREMENT  
Although the ADPA7007 is specified with a quiescent drain  
current of 1400 mA, the operational drain current, IDRAIN, required  
to achieve the maximum output power from the ADPA7007  
must be set closer to 1800 mA. The IDRAIN current increases to  
approximately 1800 mA when the RF input power is 15 dBm,  
the approximate input compression point (see Figure 41). As a  
result, a target IDRAIN of 1800 mA is chosen.  
When using the HMC980LP4E to control the ADPA7007, set  
the minimum voltages for the VNEG and VGATE pins of the  
HMC980LP4E to −1.5 V to keep these voltages within the absolute  
maximum rating limits for the VGGx pins of the ADPA7007. To  
set the minimum voltages, use the R15 and R16 resistors shown  
in Figure 56 and Figure 57. Refer to the AN-1363 Application  
Note, Meeting Biasing Requirements of Externally Biased  
RF/Microwave Amplifiers with Active Bias Controllers, for more  
information and calculations for R15 and R16.  
Rev. 0 | Page 18 of 23  
 
 
 
Data Sheet  
ADPA7007  
R13  
R12  
R11  
301Ω  
R10  
165Ω  
4.7kΩ 301Ω  
R14  
10kΩ  
VDD  
5.765V  
24 23 22 21 20 19  
VDD  
VDRAIN  
VDRAIN  
VGATE  
VNEG  
1
2
3
4
5
6
18  
17  
16  
15  
C15  
C16  
C17  
C18  
C19  
C20  
C1  
4.7µF  
C2  
VDD  
4.7µF  
1000pF  
100pF  
100pF  
1000pF  
4.7µF  
10nF  
S0  
S1  
HMC980LP4E  
C21  
4.7µF  
C22  
1000pF  
C23  
100pF  
EN  
EN  
C24  
100pF  
C25  
1000pF  
C26  
4.7µF  
14 VG2  
13  
ALM  
VG2_CONT  
R16  
475kΩ  
7
8
9
10 11 12  
4
3
2
1
18  
17  
16  
15  
14  
5
6
7
8
9
VDRAIN = 5V  
= 1.8A  
I
DRAIN  
RFIN  
RFOUT  
C3  
ADPA7007  
R15  
100pF  
VDIG  
3.3V TO 5.0V  
732kΩ  
C6  
D1 DUAL  
1µF SCHOTTKY  
C4  
4.7µF  
C5  
10nF  
10  
11  
12  
13  
C7  
10µF  
C27  
4.7µF  
C28  
1000pF  
C29  
100pF  
C30  
100pF  
C31  
1000pF  
C32  
4.7µF  
R19  
R18  
R17  
301Ω  
4.7kΩ 301Ω  
C33  
4.7µF  
C34  
1000pF  
C35  
100pF  
C36  
100pF  
C37  
1000pF  
C38  
4.7µF  
R20  
10kΩ  
VDD  
5.765V  
24 23 22 21 20 19  
VDD  
VDRAIN  
VDRAIN  
1
2
3
4
5
6
18  
17  
C8  
4.7µF  
C9  
VDD  
10nF  
S0  
S1  
16 VGATE  
HMC980LP4E  
VNEG  
15  
EN  
EN  
14 VG2  
13  
ALM  
VG2_CONT  
7
8
9
10 11 12  
C10  
100pF  
VDIG  
3.3V TO 5.0V  
C11  
4.7µF  
C12  
10nF  
Figure 56. Application Circuit Using Dual HMC980LP4E with ADPA7007  
Rev. 0 | Page 19 of 23  
 
ADPA7007  
Data Sheet  
R13  
R12  
R11  
301Ω  
R10  
165Ω  
4.7kΩ 301Ω  
R14  
10kΩ  
VDD  
5.765V  
24 23 22 21 20 19  
VDD  
VDRAIN  
VDRAIN  
VGATE  
VNEG  
1
2
3
4
5
6
18  
17  
16  
15  
C15  
C16  
C17  
C18  
C19  
C20  
C1  
4.7µF  
C2  
VDD  
4.7µF  
1000pF  
100pF  
100pF  
1000pF  
4.7µF  
10nF  
S0  
S1  
HMC980LP4E  
C21  
4.7µF  
C22  
1000pF  
C23  
100pF  
EN  
EN  
C24  
100pF  
C25  
1000pF  
C26  
4.7µF  
14 VG2  
13  
ALM  
VG2_CONT  
R16  
475kΩ  
7
8
9
10 11 12  
4
3
2
1
18  
17  
16  
15  
14  
5
6
7
8
9
VDRAIN = 5V  
= 1.8A  
I
DRAIN  
RFIN  
RFOUT  
C3  
ADPA7007  
100pF  
VDIG  
3.3V TO 5.0V  
C4  
4.7µF  
C5  
10nF  
10  
11  
12  
13  
C27  
4.7µF  
C28  
1000pF  
C29  
100pF  
C30  
100pF  
C31  
1000pF  
C32  
4.7µF  
R19  
R18  
R17  
301Ω  
4.7kΩ 301Ω  
C33  
4.7µF  
C34  
1000pF  
C35  
100pF  
C36  
100pF  
C37  
1000pF  
C38  
4.7µF  
R20  
10kΩ  
VDD  
5.765V  
24 23 22 21 20 19  
VDD  
VDRAIN  
VDRAIN  
1
2
3
4
5
6
18  
17  
16  
15  
C8  
4.7µF  
C9  
VDD  
10nF  
S0  
S1  
VNEG  
–1.5V  
VGATE  
VNEG  
HMC980LP4E  
EN  
EN  
14 VG2  
13  
ALM  
VG2_CONT  
7
8
9
10 11 12  
C10  
100pF  
VDIG  
3.3V TO 5.0V  
C11  
4.7µF  
C12  
10nF  
Figure 57. Application Circuit Using Dual HMC980LP4E with ADPA7007 and External Negative Voltage Source  
Rev. 0 | Page 20 of 23  
 
Data Sheet  
ADPA7007  
HMC980LP4E BIAS SEQUENCE  
T
V
DD  
The dc supply sequencing in the Power-Up Sequence section  
and the Power-Down Sequence section is required to prevent  
damage to the HMC980LP4E when using it to control the  
ADPA7007.  
VDRAIN  
EN  
1
Power-Up Sequence  
3
VGATE  
The power-up sequence is as follows:  
1. Set VDIG (Pin 9) of both HMC980LP4E devices to 3.3 V.  
2. Set the VDD pins of both HMC980LP4E devices to  
5.765 V.  
3. Set VNEG (Pin 15) of both HMC980LP4E devices to  
−1.5 V. This step is not needed if using an internally  
generated voltage.  
4. Set EN (Pin 5) of both HMC980LP4E devices to 3.3 V  
(transitioning from 0 V to 3.3 V turns on VGATE and  
VDRAIN).  
CH1 2V CH2 1V  
CH3 2V CH4 2V  
M20.0ms  
A
CH1  
1.12V  
50.00%  
Figure 59. Turn Off HMC980LP4E Outputs to ADPA7007  
CONSTANT DRAIN CURRENT BIASING vs.  
CONSTANT GATE VOLTAGE BIASING  
Power-Down Sequence  
The HMC980LP4E uses a feedback loop to continuously adjust  
VGATE to maintain a constant drain current over dc supply  
variation, temperature, RF input/output level, and device to  
device variation. Constant drain current bias is the preferred  
method for reducing time in calibration procedures and for  
maintaining consistent performance over time.  
The power-down sequence is as follows:  
1. Set EN (Pin 5 of both HMC980LP4E devices) to 0 V  
(transitioning from 3.3 V to 0 V turns off VDRAIN and  
VGATE).  
2. Set VNEG (Pin 15 of both HMC980LP4E devices) to 0 V.  
This step is not needed if using an internally generated  
voltage.  
In comparison to a constant gate voltage bias, where the current  
increases when RF power is applied, a constant drain current has  
a slightly lower output P1dB. This output P1db is shown in  
Figure 63, where the RF performance is slightly lower than  
constant gate bias voltage operation due to a lower drain current at  
high input power (see Figure 60) as the HMC980LP4E reaches  
1 dB compression.  
3. Set the VDD pins of both HMC980LP4E devices to 0 V.  
4. Set VDIG (Pin 9 of both HMC980LP4E devices) to 0 V.  
When the HMC980LP4E bias control circuit is set up, toggle  
the bias to the ADPA7007 on or off by applying 3.3 V or 0 V,  
respectively, to the EN pin of the HMC980LP4E. At EN = 3.3 V,  
the VGATE pin of the HMC980LP4E drops to −1.5 V and the  
VDRAIN pin of the HMC980LP4E turns on at 5 V. VGATE  
then rises until IDRAIN = 1800 mA, and the closed control loop  
regulates IDRAIN at 1800 mA. When EN = 0 V, VGATE is set to  
−1.5 V, and VDRAIN is set to 0 V (see Figure 58 and Figure 59).  
The output P1dB performance for constant drain current bias  
can be increased toward constant gate voltage bias performance  
by increasing the set current toward the IDD value it reaches  
under RF drive in the constant gate voltage bias condition (see  
Figure 63).  
The limit of increasing drain current under the constant  
current operation is set by the thermal limitations found in  
Table 4 with the maximum power dissipation specification. As  
the IDD increase continues, the actual output P1dB does not  
continue to increase indefinitely but the power dissipation  
increases linearly. Therefore, take the trade-off between the  
power dissipation and output P1dB performance into  
consideration when using constant drain current biasing.  
T
V
DD  
VDRAIN  
EN  
1
3
VGATE  
CH1 2V CH2 1V  
CH3 2V CH4 2V  
M20.0ms  
CH1 1.12V  
A
50.00%  
Figure 58. Turn On HMC980LP4E Outputs to ADPA7007  
Rev. 0 | Page 21 of 23  
 
 
 
 
 
 
ADPA7007  
Data Sheet  
2200  
2000  
1800  
1600  
1400  
1200  
18  
16  
14  
12  
10  
8
CONSTANT GATE VOLTAGE  
CONSTANT DRAIN CURRENT  
6
4
CONSTANT GATE VOLTAGE  
CONSTANT DRAIN CURRENT  
2
1000  
–15  
0
–15  
–10  
–5  
0
5
10  
15  
–10  
–5  
0
5
10  
15  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 60. Drain Current vs. Input Power, VDD = 5 V, Frequency = 32 GHz,  
Constant Drain Current Bias (IDRAIN Setpoint = 1800 mA) and Constant Gate  
Voltage Bias (VGGx ≈ −0.68 V)  
Figure 62. PAE vs. Input Power, VDD = 5 V, Frequency = 32 GHz,  
Constant Drain Current Bias (IDRAIN Setpoint = 1800 mA) and Constant Gate  
Voltage Bias (VGGx ≈ −0.68 V)  
34  
30  
26  
22  
18  
14  
34  
32  
30  
28  
26  
24  
22  
20  
18  
CONSTANT GATE VOLTAGE  
CONSTANT DRAIN CURRENT  
10  
16  
14  
12  
10  
CONSTANT GATE VOLTAGE  
CONSTANT DRAIN CURRENT  
6
2
–15  
–10  
–5  
0
5
10  
15  
18 20 22 24 26 28 30 32 34 36 38 40 42 44  
INPUT POWER (dBm)  
FREQUENCY (GHz)  
Figure 61. Output Power vs. Input Power, VDD = 5 V, Frequency = 32 GHz,  
Constant Drain Current Bias (IDRAIN Setpoint = 1800 mA) and Constant Gate  
Voltage Bias (VGGx ≈ −0.68 V)  
Figure 63. Output P1dB vs. Frequency, VDD = 5 V, Constant Drain Current Bias  
(IDRAIN Setpoint = 1800 mA) and Constant Gate Voltage Bias  
(VGGx ≈ −0.68 V))  
Rev. 0 | Page 22 of 23  
 
 
Data Sheet  
ADPA7007  
OUTLINE DIMENSIONS  
3.55  
3.45  
3.35  
1.75  
1.65  
1.55  
7.20  
7.00 SQ  
6.80  
0.31  
0.25  
0.19  
0.35 REF  
0.89  
1.05  
PIN 1  
INDICATOR  
14  
18  
13  
10  
1
0.60  
0.50  
0.40  
3.10  
3.00  
2.90  
4.50  
4.40  
4.30  
4.55 BSC  
SQ  
4
1.00 BSC  
9
5
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
1.21  
1.15  
1.09  
0.80 REF  
0.63  
0.57  
0.51  
1.444  
1.317  
1.190  
5.40 SQ  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SECTION OF THIS DATA SHEET.  
Figure 64. 18-Terminal Ceramic Leadless Chip Carrier with Heat Sink [LCC_HS]  
(EH-18-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
MSL  
Package  
Option  
Model1  
Rating2  
Package Description  
ADPA7007AEHZ  
ADPA7007AEHZ-R7 −40°C to +85°C MSL3  
ADPA7007-EVALZ  
−40°C to +85°C MSL3  
18-Terminal Ceramic Leadless Chip Carrier with Heat Sink [LCC_HS] EH-18-1  
18-Terminal Ceramic Leadless Chip Carrier with Heat Sink [LCC_HS] EH-18-1  
1 Z = RoHS Compliant Part.  
2 See the Absolute Maximum Ratings section for additional information.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D21544-7/20(0)  
Rev. 0 | Page 23 of 23  
 
 

相关型号:

ADPA9002

GaAs, pHEMT, MMIC, Single Positive Supply, DC to 10 GHz Power Amplifier
ADI

ADPA9002-EVALZ

GaAs, pHEMT, MMIC, Single Positive Supply, DC to 10 GHz Power Amplifier
ADI

ADPA9002ACGZN

GaAs, pHEMT, MMIC, Single Positive Supply, DC to 10 GHz Power Amplifier
ADI

ADPA9002ACGZN-R7

GaAs, pHEMT, MMIC, Single Positive Supply, DC to 10 GHz Power Amplifier
ADI

ADPD103

TEMPERATURE AND POWER SPECIFICATIONS
ADI

ADPD103BCBZRL7

TEMPERATURE AND POWER SPECIFICATIONS
ADI

ADPD103BCPZ

TEMPERATURE AND POWER SPECIFICATIONS
ADI

ADPD103BCPZRL

TEMPERATURE AND POWER SPECIFICATIONS
ADI

ADPD105

Photometric Front Ends
ADI

ADPD105BCBZR7

Photometric Front Ends
ADI

ADPD105BCPZ

Photometric Front Ends
ADI

ADPD105BCPZRL

Photometric Front Ends
ADI