ADPA9002ACGZN-R7 [ADI]

GaAs, pHEMT, MMIC, Single Positive Supply, DC to 10 GHz Power Amplifier;
ADPA9002ACGZN-R7
型号: ADPA9002ACGZN-R7
厂家: ADI    ADI
描述:

GaAs, pHEMT, MMIC, Single Positive Supply, DC to 10 GHz Power Amplifier

射频 微波
文件: 总19页 (文件大小:318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GaAs, pHEMT, MMIC, Single Positive Supply,  
DC to 10 GHz Power Amplifier  
ADPA9002  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ADPA9002  
OP1dB: 29 dBm typical  
Gain: up to 15 dB typical  
OIP3: up to 43 dBm typical  
Self biased at VDD = 12 V at 385 mA typical with an optional  
bias control on VGG1 for IDQ adjustment  
50 Ω matched input/output  
GND  
NIC  
NIC  
1
2
3
4
5
6
7
8
24 GND  
23 NIC  
22  
GND  
32-lead, 5 mm × 5 mm LFCSP  
21 RFOUT/V  
GND  
RFIN  
GND  
NIC  
DD  
20  
19  
GND  
NIC  
APPLICATIONS  
18 NIC  
17 GND  
GND  
Military and space  
Test instrumentation  
PACKAGE  
BASE  
GND  
Figure 1.  
GENERAL DESCRIPTION  
The ADPA9002 is a gallium arsenide (GaAs), pseudomorphic  
high electron mobility transistor (pHEMT), monolithic  
microwave integrated circuit (MMIC), power amplifier that  
operates between dc and 10 GHz. The amplifier provides 15 dB  
of gain, 42 dBm of OIP3, and 31.5 dBm of saturated output  
power (PSAT) while requiring 385 mA from a 12 V supply. The  
ADPA9002 is self biased in normal operation and has an  
test equipment applications. The ADPA9002 also features inputs  
and outputs that are internally matched to 50 Ω, housed in a  
RoHS compliant, 5 mm × 5 mm LFCSP premolded cavity  
package, making it compatible with high volume surface-mount  
technology (SMT) assembly equipment.  
Note that throughout this data sheet, multifunction pins, such  
as RFOUT/VDD, are referred to either by the entire pin name or  
by a single function of the pin, for example, VDD, when only that  
function is relevant.  
optional bias control for supply quiescent current (IDQ  
)
adjustment. The amplifier is ideal for military and space and  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADPA9002  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Pin Configuration and Function Descriptions..............................6  
Interface Schematics .....................................................................7  
Typical Performance Characteristics ..............................................8  
Constant IDD Operation ............................................................. 16  
Theory of Operation ...................................................................... 17  
Applications Information .............................................................. 18  
Typical Application Circuit....................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC to 2 GHz ................................................................................. 3  
2 GHz to 5 GHz ............................................................................ 3  
5 GHz to 10 GHz .......................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
REVISION HISTORY  
10/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 19  
 
Data Sheet  
ADPA9002  
SPECIFICATIONS  
DC TO 2 GHz  
TA = 25°C, VDD = 12 V, IDQ = 385 mA, VGG1= GND for nominal self biased operation, and frequency range = dc to 2 GHz, with a 50 Ω  
matched input and output, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min Typ  
DC  
Max  
Unit  
GHz  
dB  
Test Conditions/Comments  
FREQUENCY RANGE  
GAIN  
2
12.5 14.5  
Gain Variation Over Temperature  
NOISE FIGURE  
RETURN LOSS  
Input  
0.01  
dB/°C  
dB  
5
18  
14  
dB  
dB  
Output  
OUTPUT  
Output Power for 1 dB Compression OP1dB  
27  
10  
29  
31  
43  
dBm  
dBm  
dBm  
Saturated Output Power  
PSAT  
Output Third-Order Intercept  
OIP3  
Measurement taken at output power (POUT) per tone =  
14 dBm  
SUPPLY  
Quiescent Current  
IDQ  
385  
12  
mA  
V
For external bias control, adjust VGG1 between −2 V and  
+0.5 V to achieve the desired IDQ  
Drain Voltage  
VDD  
15  
2 GHz TO 5 GHz  
TA = 25°C, VDD = 12 V, IDQ = 385 mA, VGG1 = GND for nominal self biased operation, and frequency range = 2 GHz to 5 GHz, unless  
otherwise noted. 50 Ω matched input/output.  
Table 2.  
Parameter  
Symbol  
Min Typ  
Max Unit  
Test Conditions/Comments  
FREQUENCY RANGE  
GAIN  
Gain Variation Over Temperature  
NOISE FIGURE  
RETURN LOSS  
Input  
2
5
GHz  
dB  
dB/°C  
dB  
13  
15  
0.008  
3
14  
15  
dB  
dB  
Output  
OUTPUT  
Output Power for 1 dB Compression OP1dB  
27  
10  
29  
31.5  
42  
dBm  
dBm  
dBm  
Saturated Output Power  
PSAT  
Output Third-Order Intercept  
OIP3  
Measurement taken at POUT per tone = 14 dBm  
SUPPLY  
Quiescent Current  
IDQ  
385  
12  
mA  
V
For external bias control, adjust VGG1 between −2 V and  
+0.5 V to achieve the desired IDQ  
Drain Voltage  
VDD  
15  
Rev. 0 | Page 3 of 19  
 
 
 
ADPA9002  
Data Sheet  
5 GHz TO 10 GHz  
TA = 25°C, VDD = 12 V, IDQ = 385 mA, VGG1 = GND for nominal self biased operation, and frequency range = 5 GHz to 10 GHz, with a  
50 Ω matched input and output, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Min  
5
Typ  
Max Unit  
Test Conditions/Comments  
FREQUENCY RANGE  
GAIN  
10  
GHz  
dB  
13.5  
15.5  
Gain Variation Over Temperature  
NOISE FIGURE  
0.016  
dB/°C  
dB  
4
RETURN LOSS  
Input  
Output  
19  
13  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
SUPPLY  
OP1dB  
PSAT  
OIP3  
25  
10  
28  
31  
40.5  
dBm  
dBm  
dBm  
Measurement taken at POUT/tone = 14 dBm  
Quiescent Current  
IDQ  
385  
12  
mA  
V
For external bias control, adjust VGG1 between  
−2 V and +0.5 V to achieve the desired IDQ  
Drain Voltage  
VDD  
15  
Rev. 0 | Page 4 of 19  
 
Data Sheet  
ADPA9002  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Parameter  
VDD  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required. θJC is the junction to case  
thermal resistance.  
Rating  
16 V  
VGG1  
RFIN  
−2.5 V to +1 V  
25 dBm  
10.2 W  
Continuous Power Dissipation (PDISS), T = 85°C  
(Derate 113.64 mW/°C Above 85°C)  
Table 5. Thermal Resistance  
Package  
θJC  
Unit  
Output Load Voltage Standing Wave Ratio  
(VSWR)  
7:1  
CG-32-2  
8.8  
°C/W  
Temperature  
Storage Range  
Operating Range  
Peak Reflow (Moisture Sensitivity Level  
(MSL) 3)  
−65°C to +150°C  
−40°C to +85°C  
260°C  
ESD CAUTION  
Junction to Maintain 1 Million Hour Mean  
Time to Failure (MTTF)  
175°C  
Nominal Junction (T = 85°C, VDD = 12 V)  
125.7°C  
ESD Sensitivity  
Human Body Model (HBM)  
Class 1B, passed  
500 V  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 5 of 19  
 
 
 
ADPA9002  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
NIC  
NIC  
1
2
3
4
5
6
7
8
24 GND  
23 NIC  
22  
GND  
ADPA9002  
21 RFOUT/V  
GND  
RFIN  
GND  
NIC  
DD  
TOP VIEW  
20  
19  
GND  
NIC  
(Not to Scale)  
18 NIC  
17 GND  
GND  
PACKAGE  
BASE  
GND  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THESE PINS  
MUST BE CONNECTED TO RF AND DC GROUND.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO RF AND DC GROUND.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 4, 6, 8, 9, 16, 17, 20,  
22, 24, 25, 32  
GND  
Ground. These pins must be connected to RF and dc ground.  
2, 3, 7, 10, 11, 12, 14, 18, NIC  
19, 23, 26, 27, 28, 31  
Not Internally Connected. These pins must be connected to RF and dc ground.  
5
13  
RFIN  
VGG1  
RF Input. This pin is dc-coupled and matched to 50 Ω. See Figure 6 for the interface schematic.  
Gate Voltage. This pin is used for external bias operation of the device. If grounded, the amplifier  
runs in self biased mode at the standard current of 385 mA. Adjusting the voltage above or  
below the ground potential controls the drain current. External bypass capacitors are required  
(see Figure 62). See Figure 7 for the interface schematic.  
15, 29, 30  
21  
ACG3, ACG2, ACG1  
RFOUT/VDD  
AC Ground Pins. These pins are used for low frequency termination. External bypass  
capacitor required (see Figure 62). See Figure 4 and Figure 5 for the interface schematics.  
RF Output for the Amplifier (RFOUT).  
Drain Voltage (VDD). Connect the VDD network to provide the drain current (IDD) (see Figure 62).  
See Figure 5 for the interface schematic.  
EPAD  
Exposed Pad. The exposed pad must be connected to RF and dc ground.  
Rev. 0 | Page 6 of 19  
 
Data Sheet  
ADPA9002  
INTERFACE SCHEMATICS  
GND  
RFIN  
Figure 3. GND Interface Schematic  
Figure 6. RFIN Interface Schematic  
RFIN  
ACG3  
V
GG1  
Figure 7. VGG1 Interface Schematic  
Figure 4. ACG3 Interface Schematic  
ACG1  
ACG2  
RFOUT/V  
DD  
Figure 5. RFOUT/VDD, ACG1, ACG2 Interface Schematic  
Rev. 0 | Page 7 of 19  
 
 
 
 
 
ADPA9002  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
20  
15  
10  
15  
10  
5
5
S22 (dB)  
S21 (dB)  
S11 (dB)  
S22 (dB)  
S21 (dB)  
S11 (dB)  
0
–5  
0
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
100  
200  
300  
400  
500  
0
2
4
6
8
10  
12  
14  
16  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 8. S22, S21, and S11 vs. Frequency, 10 MHz to 500 MHz,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
Figure 11. S22, S21, and S11 vs. Frequency, 500 MHz to 16 GHz,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
18  
18  
16  
14  
12  
10  
16  
14  
12  
10  
8
8
T
T
T
= +85°C  
= +25°C  
= –40°C  
15V, 410mA  
12V, 385mA  
10V, 375mA  
A
A
A
6
6
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Gain vs. Frequency for Various Temperatures, Self Biased Mode,  
DD = 12 V, VGG1 = GND  
Figure 12. Gain vs. Frequency for Various VDD and Quiescent Currents,  
Self Biased Mode, VGG1 = GND  
V
18  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
16  
14  
12  
10  
8
–4  
–8  
–12  
–16  
–20  
500mA  
400mA  
300mA  
385mA, SELF BIASED  
6
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Gain vs. Frequency for Various IDQ, Externally Biased Mode,  
DD = 12 V, Controlled VGG1  
Figure 13. Input Return Loss vs. Frequency for Various Temperatures,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
V
Rev. 0 | Page 8 of 19  
 
Data Sheet  
ADPA9002  
0
0
–4  
–8  
15V, 410mA  
12V, 385mA  
10V, 375mA  
500mA  
400mA  
300mA  
–4  
385mA, SELF BIASED  
–8  
–12  
–16  
–12  
–16  
–20  
–20  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 17. Input Return Loss vs. Frequency for Various IDQ, Externally Biased  
Mode, VDD = 12 V, Controlled VGG1  
Figure 14. Input Return Loss vs. Frequency for Various VDD and Quiescent  
Currents, Self Biased Mode, VGG1 = GND  
0
0
15V, 410mA  
12V, 385mA  
10V, 375mA  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–4  
–8  
–4  
–8  
–12  
–16  
–20  
–12  
–16  
–20  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Output Return Loss vs. Frequency for Various Temperatures,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
Figure 18. Output Return Loss vs. Frequency for Various VDD and Quiescent  
Currents, Self Biased Mode, VGG1 = GND  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
500mA  
400mA  
300mA  
A
A
A
–10  
385mA, SELF BIASED  
–4  
–8  
–20  
–30  
–40  
–12  
–16  
–20  
–50  
–60  
–70  
–80  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 16. Output Return Loss vs. Frequency for Various IDQ, External Biased  
Condition, VDD = 12 V, Controlled VGG1  
Figure 19. Reverse Isolation vs. Frequency for Various Temperatures,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
Rev. 0 | Page 9 of 19  
ADPA9002  
Data Sheet  
16  
16  
14  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
14  
12  
10  
8
12  
10  
8
6
4
2
0
6
4
2
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 20. Noise Figure vs. Frequency, 10 MHz to 100 MHz, for Various  
Temperatures, Self Biased Mode, VDD = 12 V, VGG1 = GND  
Figure 23. Noise Figure vs. Frequency, 100 MHz to 12 GHz, for Various  
Temperatures, Self Biased Mode, VDD = 12 V, VGG1 = GND  
32  
32  
30  
28  
26  
24  
22  
30  
28  
26  
24  
22  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
20  
20  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 21. OP1dB vs. Frequency,10 MHz to 1 GHz for Various Temperatures,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
Figure 24. OP1dB vs. Frequency, 1 GHz to 12 GHz for Various Temperatures,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
32  
32  
30  
28  
26  
24  
30  
28  
26  
24  
500mA  
400mA  
300mA  
385mA, SELF BIASED  
22  
20  
22  
15V, 410mA  
12V, 385mA  
10V, 375mA  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 22. OP1dB vs. Frequency for Various VDD and Quiescent Currents, Self  
Biased Mode, VGG1 = GND  
Figure 25. OP1dB vs. Frequency for Various IDQ  
Externally Biased Mode, VDD = 12 V, Controlled VGG1  
,
Rev. 0 | Page 10 of 19  
Data Sheet  
ADPA9002  
36  
36  
34  
32  
30  
34  
32  
30  
28  
28  
26  
24  
22  
20  
26  
24  
22  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 26. PSAT vs. Low Frequency,10 MHz to 1 GHz for Various Temperatures,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
Figure 29. PSAT vs. Frequency, 1 GHz to 12 GHz for Various Temperatures,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
36  
36  
34  
32  
30  
34  
32  
30  
28  
26  
28  
26  
24  
24  
500mA  
400mA  
300mA  
15V, 410mA  
12V, 385mA  
10V, 375mA  
22  
22  
385mA, SELF BIASED  
20  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 27. PSAT vs. Frequency for Various VDD and Quiescent Currents,  
Self Biased Mode, VGG1 = GND  
Figure 30. PSAT vs. Frequency for Various IDQ, Externally Biased Mode,  
VDD = 12 V, Controlled VGG1  
30  
27  
24  
21  
18  
15  
12  
9
30  
27  
24  
21  
18  
15  
12  
9
6
6
15V, 410mA  
12V, 385mA  
10V, 375mA  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
3
0
3
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 28. Power Added Efficiency (PAE) vs. Frequency for Various Temperatures,  
Self Biased Mode, VDD = 12 V, VGG1 = GND, PAE Measured at PSAT  
Figure 31. PAE vs. Frequency for Various VDD and Quiescent Currents,  
Self Biased Mode, VGG1 = GND, PAE Measured at PSAT  
Rev. 0 | Page 11 of 19  
ADPA9002  
Data Sheet  
30  
27  
24  
21  
18  
15  
12  
9
35  
30  
25  
480  
PAE  
GAIN  
470  
460  
450  
440  
430  
420  
P
OUT  
I
DD  
20  
15  
10  
5
410  
400  
6
500mA  
400mA  
300mA  
385mA, SELF BIASED  
3
0
0
–5  
390  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
5
10  
15  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 32. PAE vs. Frequency for Various IDQ, Externally Biased Mode,  
Figure 35. POUT, Gain, PAE, IDD vs. Input Power, 1 GHz,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
VDD = 12 V, Controlled VGG1, PAE Measured at PSAT  
35  
30  
25  
530  
510  
490  
35  
30  
25  
480  
PAE  
GAIN  
PAE  
GAIN  
470  
460  
450  
440  
430  
420  
P
OUT  
P
OUT  
I
DD  
I
DD  
20  
15  
470  
450  
20  
15  
10  
5
430  
410  
390  
10  
5
410  
400  
390  
0
–5  
0
–5  
0
5
10  
15  
20  
0
5
10  
15  
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 33. POUT, Gain, PAE, Supply Current (IDD) vs. Input Power, 3 GHz,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
Figure 36. POUT, Gain, PAE, IDD vs. Input Power, 6 GHz,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
35  
30  
25  
540  
520  
500  
35  
520  
PAE  
GAIN  
PAE  
GAIN  
30  
25  
500  
480  
P
P
OUT  
OUT  
I
I
DD  
DD  
480  
460  
20  
15  
20  
15  
460  
440  
440  
420  
400  
380  
10  
5
10  
5
420  
400  
380  
0
–5  
0
–5  
0
5
10  
15  
20  
0
5
10  
15  
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 34. POUT, Gain, PAE, IDD vs. Input Power, 8 GHz,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
Figure 37. POUT, Gain, PAE, IDD vs. Input Power, 10 GHz,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
Rev. 0 | Page 12 of 19  
Data Sheet  
ADPA9002  
50  
6
5
4
3
45  
40  
35  
30  
1GHz  
2GHz  
3GHz  
4GHz  
5GHz  
6GHz  
7GHz  
8GHz  
9GHz  
10GHz  
2
1
0
25  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
0
1
2
3
4
5
6
7
8
9
10 11 12  
–5  
0
5
10  
15  
20  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 41. OIP3 vs. Frequency for Various Temperatures,  
OUT per Tone = 14 dBm, Self Biased Mode, VDD = 12 V, VGG1 = GND  
Figure 38. Power Dissipation vs. Input Power for Various Frequencies at TA  
85°C, Self Biased Mode, VDD = 12 V, VGG1 = GND  
=
P
50  
50  
45  
40  
35  
45  
40  
35  
30  
30  
500mA  
400mA  
300mA  
SELF BIASED  
25  
25  
20  
15V, 410mA  
12V, 385mA  
10V, 375mA  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 42. OIP3 vs. Frequency for Various IDQ, Externally Biased Mode,  
Figure 39. OIP3 vs. Frequency for Various VDD and Quiescent Currents,  
Self Biased Mode, VGG1 = GND, POUT per Tone = 14 dBm  
VDD = 12 V, Controlled VGG1, POUT per Tone = 14 dBm  
100  
90  
80  
70  
60  
50  
45  
40  
35  
50  
40  
30  
1GHz  
2GHz  
3GHz  
4GHz  
5GHz  
6GHz  
7GHz  
8GHz  
9GHz  
10GHz  
30  
10dBm  
12dBm  
14dBm  
16dBm  
18dBm  
20  
10  
0
25  
20dBm  
20  
0
2
4
6
8
10  
PER TONE (dBm)  
OUT  
12  
14  
16  
18  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12  
P
FREQUENCY (GHz)  
Figure 43. Third-Order Intermodulation Distortion Relative to Carrier (IM3) vs.  
OUT per Tone for Various Frequencies, Self Biased Mode, VDD = 10 V,  
GG1 = GND  
Figure 40. OIP3 vs. Frequency for Various POUT per Tone, Self Biased Mode,  
DD = 12 V, VGG1 = GND  
P
V
V
Rev. 0 | Page 13 of 19  
ADPA9002  
Data Sheet  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
30  
1GHz  
1GHz  
2GHz  
3GHz  
4GHz  
5GHz  
6GHz  
7GHz  
8GHz  
9GHz  
10GHz  
2GHz  
3GHz  
4GHz  
5GHz  
6GHz  
7GHz  
8GHz  
9GHz  
10GHz  
40  
30  
20  
10  
0
20  
10  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
P
PER TONE (dBm)  
P
OUT  
PER TONE (dBm)  
OUT  
Figure 44. IM3 vs. POUT per Tone for Various Frequencies, Self Biased Mode,  
DD = 12 V, VGG1 = GND  
Figure 47. IM3 vs. POUT per Tone for Various Frequencies, Self Biased Mode,  
DD = 15 V, VGG1 = GND  
V
V
60  
60  
55  
50  
45  
55  
50  
45  
40  
35  
30  
40  
35  
30  
15V, 410mA  
12V, 385mA  
10V, 375mA  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
25  
20  
25  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 45. OIP2 vs. Frequency for Various Temperatures,  
OUT per Tone = 14 dBm, Self Biased, VDD = 12 V, VGG1 = GND  
Figure 48. OIP2 vs. Frequency for Various VDD and Quiescent Currents, Self  
Biased Mode, VGG1 = GND, POUT per Tone = 14 dBm  
P
60  
60  
55  
50  
45  
55  
50  
45  
40  
40  
35  
30  
35  
10dBm  
30  
25  
20  
12dBm  
14dBm  
16dBm  
18dBm  
20dBm  
500mA  
400mA  
300mA  
SELF BIASED  
25  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 46. OIP2 vs. Frequency for Various IDQ, Externally Biased Mode,  
DD = 12 V, Controlled VGG1, POUT per Tone = 14 dBm  
Figure 49. OIP2 vs. Frequency for Various POUT per Tone, Self Biased Mode,  
DD = 12 V, VGG1 = GND  
V
V
Rev. 0 | Page 14 of 19  
Data Sheet  
ADPA9002  
570  
570  
545  
520  
495  
470  
1GHz  
1GHz  
2GHz  
3GHz  
4GHz  
5GHz  
6GHz  
7GHz  
8GHz  
9GHz  
10GHz  
2GHz  
3GHz  
4GHz  
5GHz  
6GHz  
7GHz  
8GHz  
9GHz  
10GHz  
545  
520  
495  
470  
445  
420  
395  
370  
445  
420  
395  
370  
–5  
0
5
10  
15  
20  
–5  
0
5
10  
15  
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 50. IDD vs. Input Power for Various Frequencies,  
Self Biased Mode, VDD = 12 V, VGG1 = GND  
Figure 53. IDD vs. Input Power for Various Frequencies,  
DD = 12 V, IDQ = 400 mA, Controlled VGG1  
V
0.5  
0.4  
0.3  
500  
1GHz  
2GHz  
3GHz  
4GHz  
5GHz  
6GHz  
7GHz  
8GHz  
9GHz  
10GHz  
450  
400  
0.2  
0.1  
350  
300  
250  
0
–0.1  
–0.2  
–5  
0
5
10  
15  
20  
2
4
6
8
10  
(V)  
12  
14  
16  
INPUT POWER (dBm)  
V
DD  
Figure 54. IDQ vs. VDD, VGG1 = GND, Self Biased Mode  
Figure 51. Gate 1 Current (IGG1) vs. Input Power for Various Frequencies,  
DD = 12 V, IDQ = 400 mA, Controlled VGG1  
V
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
–2.0  
–1.5  
–1.0  
–0.5  
(V)  
0
0.5  
1.0  
V
GG1  
Figure 52. IDQ vs. VGG1, VDD = 12 V, Externally Biased Mode  
Rev. 0 | Page 15 of 19  
 
ADPA9002  
Data Sheet  
CONSTANT IDD OPERATION  
Biased with the HMC980LP4E active bias controller for constant IDD operation. TA = 25°C, VDD = 12 V, and IDQ = 400 mA for nominal  
operation, unless otherwise noted.  
32  
32  
30  
28  
26  
24  
22  
20  
30  
28  
26  
24  
22  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
15V  
12V  
10V  
A
A
A
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 55. OP1dB vs. Frequency for Various Temperatures, VDD = 12 V,  
Constant IDD = 400 mA  
Figure 58. OP1dB vs. Frequency for Various Supply Voltages,  
Constant IDD = 400 mA  
32  
34  
32  
30  
28  
26  
24  
30  
28  
26  
24  
22  
20  
500mA  
400mA  
300mA  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
22  
20  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 56. OP1dB vs. Frequency for Various Constant IDD, VDD = 12 V  
Figure 59. PSAT vs. Frequency for Various Temperatures, VDD = 12 V,  
Constant IDD = 400 mA  
34  
34  
32  
30  
28  
26  
24  
32  
30  
28  
26  
24  
500mA  
400mA  
300mA  
15V  
12V  
10V  
22  
22  
20  
20  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 57. PSAT vs. Frequency for Various Supply Voltages,  
Constant IDD = 400 mA  
Figure 60. PSAT vs. Frequency for Various Constant IDD, VDD = 12 V  
Rev. 0 | Page 16 of 19  
 
Data Sheet  
ADPA9002  
THEORY OF OPERATION  
The ADPA9002 is a GaAs, MMIC, pHEMT, cascode distributed  
power amplifier. The cascode distributed architecture of the  
ADPA9002 uses a fundamental cell consisting of a stack of two  
field effect transistors (FETs) with the source of the upper FET  
connected to the drain of the lower FET. The fundamental cell  
is then duplicated several times with an RFIN transmission line  
interconnecting the gates of the lower FETs and an RFOUT  
transmission line interconnecting the drains of the upper FETs.  
ACG1 ACG2  
allowing adjustment of the quiescent drain current above and  
below the 385 mA nominal. As an example, Figure 52 shows that,  
by adjusting VGG1 from approximately −0.3 V to +0.3 V, quiescent  
drain currents from 250 mA to 450 mA can be obtained.  
The ADPA9002 has single-ended input and output ports whose  
impedances are nominally equal to 50 Ω over the dc to 10 GHz  
frequency range. Consequently, the ADPA9002 can be directly  
inserted into a 50 Ω system with no required impedance  
matching circuitry. Similarly, the input and output impedances  
are sufficiently stable across variations in temperature and  
supply voltage so that no impedance matching compensation is  
required. The RF output port additionally functions as the VDD  
bias, requiring an RF choke through which dc bias is applied.  
Though the device operates down to dc, blocking capacitors are  
recommended at the RF input and output ports to prevent  
damages on the RF stages when loading the dc bias supplies. The  
RF choke and blocking capacitor at the RF output together  
constitute a bias tee. In practice, the external RF choke and dc  
blocking capacitor selections limit the lowest frequency of  
operation.  
RFOUT/  
RFIN  
V
DD  
V
ACG3  
GG1  
Figure 61. Simplified Schematic of the Cascode Distributed Amplifier  
Additional circuit design techniques are used around each cell  
to optimize the overall bandwidth, output power, and noise  
figure. The major benefit of this architecture is that a high  
output level is maintained across a bandwidth far greater than a  
single instance of the fundamental cell provides. A simplified  
schematic of this architecture is shown in Figure 61.  
ACG1 through ACG3 are nodes at which ac terminations  
(capacitors) to ground can be provided. The use of such  
terminations serves to roll off the gain at frequencies below  
200 MHz, allowing the flattest possible gain response to be  
obtained over various frequencies.  
It is critical to supply low inductance ground connections to the  
GND pins and to the package base exposed pad to ensure stable  
operation. To achieve optimal performance from the ADPA9002  
and to prevent damage to the device, do not exceed the absolute  
maximum ratings.  
For simplified biasing without the need for a negative voltage  
rail, VGG1 can be connected directly to GND. With VDD = 12 V  
and VGG1 grounded, a quiescent drain current of 385 mA (typical)  
results. An externally generated VGG1 can optionally be applied,  
Rev. 0 | Page 17 of 19  
 
 
ADPA9002  
Data Sheet  
APPLICATIONS INFORMATION  
Capacitive bypassing is required for VDD and VGG1, as shown in  
Figure 62. Both the RFIN and RFOUT/VDD pins are dc-coupled.  
Use of an external dc blocking capacitor at RFIN is recommended.  
Use of an external RF choke plus a dc blocking capacitor (for  
example, a bias tee) at the RFOUT/VDD pin is required. For  
wideband applications, ensure that the frequency responses of  
the external biasing and blocking components are adequate for  
use across the entire frequency range of the application.  
4. Increase the VGG1 pin to achieve the IDQ  
5. Apply the RF signal to the RFIN pin.  
.
The recommended bias sequence during power-down for  
externally biased operation is as follows:  
1. Turn off the RFIN signal.  
2. Decrease the VGG1 pin to −2 V to achieve a typical IDQ of 0 mA.  
3. Set VDD to 0 V.  
4. Set the VGG1 pin to 0 V.  
The ADPA9002 operates in either self biased or externally  
biased mode. Ground the VGG1 pin to operate the device in self  
biased mode. For the externally biased configuration, adjust the  
Take care to ensure adherence to the values shown in the  
Absolute Maximum Ratings section.  
V
GG1 pin within −2 V to +0.5 V to set the target drain.  
Unless otherwise noted, all measurements and data shown were  
taken using the typical application circuit (see Figure 62) and  
biased per the conditions in this section. The bias conditions  
described in this section are the operating points recommended  
to optimize the overall device performance. Operation using  
other bias conditions may result in performance that differs  
from what is shown in the Typical Performance Characteristics  
section. To obtain optimal performance while not damaging the  
device, follow the recommended biasing sequences described in  
this section.  
The recommended bias sequence during power-up for self biased  
operation is as follows:  
1. Connect the VGG1 pin to ground and ground all GND pins.  
2. Set VDD to 12 V.  
3. Apply the RF signal to the RFIN pin.  
The recommended bias sequence during power-down for self  
biased operation is as follows:  
1. Turn off the RFIN signal.  
2. Set VDD to 0 V.  
TYPICAL APPLICATION CIRCUIT  
The recommended bias sequence during power-up for externally  
biased operation is as follows:  
In Figure 62, the drain voltage (VDD) must be applied through an  
external broadband bias tee connected at the RFOUT/VDD pin and  
connect an external dc block to the RFIN pin. Use optional  
capacitors if the device is operated below 200 MHz.  
1. Connect all GND pins to ground.  
2. Set the VGG1 pin to −2 V.  
3. Set VDD to 12 V.  
NOTE 2  
C1  
1000pF  
C5  
0.01µF  
C9  
4.7µF  
V
DD  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
RFOUT  
RFIN  
NOTE 1  
NOTE 2  
NOTE 1  
C3  
1000pF  
C8  
0.01µF  
C10  
4.7µF  
C4  
1000pF  
C7  
0.01µF  
C11  
4.7µF  
V
GG1  
NOTES  
1. DRAIN VOLTAGE (V ) MUST BE APPLIED THROUGH AN ETERNAL BIAS TEE CONNECTED  
DD  
AT THE RFOUT/V PIN AND AN EXTERNAL DC BLOCK MUST BE CONNECTED AT THE RFIN PIN.  
DD  
2. USE OPTIONAL CAPACITORS IF THE DEVICE IS OPERATED BELOW 200MHz.  
Figure 62. Typical Application Circuit  
Rev. 0 | Page 18 of 19  
 
 
 
Data Sheet  
ADPA9002  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR AREA OPTIONS  
(SEE DETAIL A)  
25  
24  
32  
1
0.50  
BSC  
3.20  
3.10 SQ  
3.00  
EXPOSED  
PAD  
17  
16  
8
9
0.45  
0.40  
0.35  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
3.50 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.35  
1.25  
1.15  
0.60 REF  
0.40  
0.050 MAX  
0.035 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
SEATING  
PLANE  
0.08  
0.203 REF  
Figure 63. 32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV]  
5 mm × 5 mm Body and 1.25 mm Package Height  
(CG-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model1  
Temperature  
MSL Rating2 Description3  
ADPA9002ACGZN  
ADPA9002ACGZN-R7  
ADPA9002-EVALZ  
−40°C to +85°C  
−40°C to +85°C  
3
3
32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV]  
32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV]  
Evaluation Board  
CG-32-2  
CG-32-2  
1 Z = RoHS Compliant Part.  
2 See the Absolute Maximum Ratings section for additional information.  
3 The lead finish of the ADPA9002ACGZN and the ADPA9002ACGZN-R7 is nickel palladium gold (NiPdAu).  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D21196-0-10/19(0)  
Rev. 0 | Page 19 of 19  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY