ADR01NBC [ADI]

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10.004 V, UUC6, DIE-6, Voltage Reference;
ADR01NBC
型号: ADR01NBC
厂家: ADI    ADI
描述:

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10.004 V, UUC6, DIE-6, Voltage Reference

输出元件
文件: 总20页 (文件大小:445K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultracompact, Precision  
10.0 V/5.0 V/2.5 V/3.0 V Voltage References  
ADR01/ADR02/ADR03/ADR06  
FEATURES  
PIN CONFIGURATIONS  
Ultracompact SC70-5/TSOT-5  
Low temperature coefficient  
SOIC-8: 3 ppm/°C  
SC70-5/TSOT-5: 9 ppm/°C  
Initial accuracy 0ꢀ.1  
No external capacitor required  
Low noise .0 μV p-p (0ꢀ. Hz to .0ꢀ0 Hz)  
Wide operating range  
ADR0.: .2ꢀ0 V to 40ꢀ0 V  
ADR02: 7ꢀ0 V to 40ꢀ0 V  
ADR01/  
TEMP  
GND  
1
2
3
5
TRIM  
ADR02/  
ADR03/  
ADR06  
V
V
TOP VIEW  
(Not to Scale)  
4
IN  
OUT  
Figure 1. 5-Lead SC70/TSOT Surface-Mount Package  
TP  
1
2
3
4
8
7
6
5
TP  
NIC  
V
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
IN  
TEMP  
GND  
OUT  
ADR03: 4ꢀ5 V to 40ꢀ0 V  
ADR06: 5ꢀ0 V to 40ꢀ0 V  
TOP VIEW  
(Not to Scale)  
TRIM  
High output current .0 mA  
Wide temperature range: –40°C to +.25°C  
NIC = NO INTERNAL CONNECT  
TP = TEST PIN (DO NOT CONNECT)  
Figure 2. 8-Lead SOIC Surface-Mount Package  
ADR0./ADR02/ADR03 pin compatible to industry-  
standard REF0./REF02/REF03.  
GENERAL DESCRIPTION  
APPLICATIONS  
The ADR01, ADR02, ADR03, and ADR06 are precision 10.0 V,  
5.0 V, 2.5 V, and 3.0 V band gap voltage references featuring  
high accuracy, high stability, and low power. The parts are  
housed in tiny SC70-5 and TSOT-5 packages, as well as in  
SOIC-8 versions. The SOIC-8 versions of the ADR01, ADR02,  
and ADR03 are drop-in replacements1 to the industry-standard  
REF01, REF02, and REF03. The small footprint and wide  
operating range make the ADR0x references ideally suited for  
general-purpose and space-constrained applications.  
Precision data acquisition systems  
High resolution converters  
Industrial process control systems  
Precision instruments  
PCMCIA cards  
SELECTION GUIDE  
Part Number  
Output Voltage  
ADR01  
10.0 V  
With an external buffer and a simple resistor network, the  
TEMP terminal can be used for temperature sensing and  
approximation. A TRIM terminal is provided on the devices  
for fine adjustment of the output voltage.  
ADR02  
ADR03  
ADR06  
5.0 V  
2.5 V  
3.0 V  
The ADR01, ADR02, ADR03, and ADR06 are compact, low  
drift voltage references that provide an extremely stable output  
voltage from a wide supply voltage range. They are available in  
SC70-5, TSOT-5, and SOIC-8 packages with A and B grade  
selections. All parts are specified over the extended industrial  
(–40°C to +125°C) temperature range.  
1 ADR01, ADR02, and ADR03 are component-level compatible with REF01,  
REF02, and REF03, respectively. No guarantees for system-level compatibility  
are implied. SOIC-8 versions of ADR01/ADR02/ADR03 are pin-to-pin  
compatible with SOIC-8 versions of REF01/REF02/REF03, respectively, with  
the additional temperature monitoring function.  
Revꢀ I  
Information furnished by Analog Devices is believed to be accurate and reliableꢀ  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its useꢀ  
Specifications subject to change without noticeꢀ No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devicesꢀ Trademarks and  
registered trademarks are the property of their respective ownersꢀ  
One Technology Way, PꢀOꢀ Box 9.06, Norwood, MA 02062-9.06, UꢀSꢀAꢀ  
Tel: 78.ꢀ329ꢀ4700  
Fax: 78.ꢀ46.ꢀ3..3  
wwwꢀanalogꢀcom  
© 2005 Analog Devices, Incꢀ All rights reservedꢀ  
 
ADR01/ADR02/ADR03/ADR06  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Applying the ADR01/ADR02/ADR03/ADR06...................... 15  
Negative Reference..................................................................... 16  
Low Cost Current Source.......................................................... 16  
Precision Current Source with Adjustable Output................ 16  
Programmable 4 mA to 20 mA Current Transmitter............ 17  
Outline Dimensions....................................................................... 18  
Ordering Guides............................................................................. 19  
ADR01 Ordering Guide ............................................................ 19  
ADR02 Ordering Guide ............................................................ 19  
ADR03 Ordering Guide ............................................................ 20  
ADR06 Ordering Guide ............................................................ 20  
ADR01 Electrical Characteristics............................................... 3  
ADR02 Electrical Characteristics............................................... 4  
ADR03 Electrical Characteristics............................................... 5  
ADR06 Electrical Characteristics............................................... 6  
Dice Electrical Characteristics.................................................... 7  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Parameter Definitions and Notes ................................................... 9  
Typical Performance Characteristics ........................................... 10  
Applications..................................................................................... 15  
REVISION HISTORY  
6/03—Rev. B to Rev C  
7/05—Rev. H to Rev. I  
Changes to Features Section ............................................................1  
Changes to General Description Section .......................................1  
Changes to Figure 2...........................................................................1  
Changes to Specifications Section...................................................2  
Addition of Dice Electrical Characteristics and Layout...............6  
Changes to Absolute Maximum Ratings Section..........................7  
Updated SOIC (R-8) Outline Dimensions.................................. 19  
Changes to Ordering Guide.......................................................... 20  
Changes to Table 5............................................................................ 7  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 19  
12/04—Rev. G to Rev. H  
Changes to ADR06 Ordering Guide............................................ 20  
9/04—Rev. F to Rev. G  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Changes to Table 4............................................................................ 6  
Changes to Table 5............................................................................ 7  
Changes to Ordering Guide .......................................................... 19  
2/03—Rev. A to Rev. B  
Added ADR03.....................................................................Universal  
Added TSOT-5 (UJ) Package............................................Universal  
Updated Outline Dimensions....................................................... 18  
7/04—Rev. E to Rev. F  
Changes to ADR02 Electrical Characteristics, Table 2................ 4  
Changes to Ordering Guide .......................................................... 19  
12/02—Rev. 0 to Rev. A  
Changes to Features Section ............................................................1  
Changes to General Description .....................................................1  
Table I deleted ....................................................................................1  
Changes to ADR01 Specifications...................................................2  
Changes to ADR02 Specifications...................................................3  
Changes to Absolute Maximum Ratings Section..........................4  
Changes to Ordering Guide.............................................................4  
Updated Outline Dimensions....................................................... 12  
2/04—Rev. D to Rev. E  
Added C grade ....................................................................Universal  
Changes to Outline Dimensions................................................... 19  
Updated Ordering Guide............................................................... 20  
8/03—Rev. C to Rev D  
Added ADR06.....................................................................Universal  
Change to Figure 27 ....................................................................... 13  
Rev. I | Page 2 of 20  
ADR01/ADR02/ADR03/ADR06  
SPECIFICATIONS  
ADR0. ELECTRICAL CHARACTERISTICS  
VIN = 12.0 V to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
10.010  
10  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
A and C grades  
A and C grades  
9.990 10.000  
9.995 10.000  
3
VOERR  
mV  
%
0.1  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grade  
B grade  
10.005  
5
V
VOERR  
mV  
%
0.05  
10  
TEMPERATURE COEFFICIENT  
TCVO  
ppm/°C  
A grade, SOIC-8, 40°C < TA < +125°C  
A grade, TSOT-5, –40°C < TA < +125°C  
A grade, SC70-5, –40°C < TA < +125°C  
B grade, SOIC-8, –40°C < TA < +125°C  
B grade, TSOT-5, –40°C < TA < +125°C  
B grade, SC70-5, –40°C < TA < +125°C  
C grade, SOIC-8, –40°C < TA < +125°C  
25  
25  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
9
9
40  
10  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
2
VIN VO  
∆VO/∆VIN  
∆VO/∆ILOAD  
VIN = 12.0 V to 40.0 V, –40°C < TA < +125°C  
7
30  
70  
ppm/V  
LOAD REGULATION  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
VIN = 15.0 V  
40  
ppm/mA  
QUIESCENT CURRENT  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
20  
1
mA  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
VOLTAGE OUTPUT AT TEMP PIN  
TEMPERATURE SENSITIVITY  
510  
4
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
1,000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
70  
75  
30  
mA  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.  
Rev. I | Page 3 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ADR02 ELECTRICAL CHARACTERISTICS  
VIN = 7.0 V to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
A and C grades  
A and C grades  
4.995  
5.000 5.005  
VOERR  
5
mV  
0.1  
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grade  
B grade  
4.997  
5.000 5.003  
V
VOERR  
3
mV  
0.06  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, SOIC-8, –40°C < TA < +125°C  
A grade, TSOT-5, –40°C < TA < +125°C  
A grade, SC70-5, –40°C < TA < +125°C  
A grade, SC70-5, –55oC < TA < +125oC  
3
10  
25  
25  
30  
3
9
9
40  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
B grade, SOIC-8, –40°C < TA < +125°C  
B grade, TSOT-5, –40°C < TA < +125°C  
B grade, SC70-5, –40°C < TA < +125°C  
C grade, SOIC-8, –40°C < TA < +125°C  
1
10  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
2
VIN VO  
∆VO/∆VIN  
VIN = 7.0 V to 40.0 V, –40°C < TA < +125°C  
7
7
30  
40  
70  
ppm/V  
ppm/V  
V
IN = 7.0 V to 40.0 V, –55°C < TA < +125°C  
LOAD REGULATION  
∆VO/∆ILOAD  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
VIN = 10.0 V  
40  
ppm/mA  
I
V
LOAD = 0 mA to 10 mA, –55°C < TA < +125°C,  
IN = 10.0 V  
45  
80  
1
ppm/mA  
mA  
QUIESCENT CURRENT  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
10  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
230  
4
tR  
∆VO  
∆VO_HYS  
1,000 hours  
50  
ppm  
ppm  
ppm  
dB  
70  
80  
–55°C < TA < +125°C  
fIN = 10 kHz  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
RRR  
ISC  
–75  
30  
mA  
VOLTAGE OUTPUT AT TEMP PIN VTEMP  
TEMPERATURE SENSITIVITY TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.  
Rev. I | Page 4 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ADR03 ELECTRICAL CHARACTERISTICS  
VIN = 4.5 V to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
2.505  
5
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
A and C grades  
A and C grades  
2.495  
2.500  
VOERR  
mV  
0.2  
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grades  
B grades  
2.4975 2.5000 2.5025  
V
VOERR  
2.5  
0.1  
mV  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, SOIC-8, –40°C < TA < +125°C  
A grade, TSOT-5, –40°C < TA < +125°C  
A grade, SC70-5, –40°C < TA < +125°C  
A grade, SC70-5, –55°C < TA < +125°C  
B grade, SOIC-8, –40°C < TA < +125°C  
B grade, TSOT-5, –40°C < TA < +125°C  
B grade, SC70-5, –40°C < TA < +125°C  
C grade, SOIC-8, –40°C < TA < +125°C  
3
10  
25  
25  
30  
3
9
9
40  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
10  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
2
VIN VO  
∆VO/∆VIN  
VIN = 4.5 V to 40.0 V, –40°C < TA < +125°C  
7
7
30  
40  
70  
ppm/V  
ppm/V  
V
IN = 4.5 V to 40.0 V, –55°C < TA < +125°C  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
IN = 7.0 V  
LOAD = 0 mA to 10 mA, –55°C < TA < +125°C,  
LOAD REGULATION  
∆VO/∆ILOAD  
25  
ppm/mA  
V
I
45  
80  
1
ppm/mA  
VIN = 7.0 V  
QUIESCENT CURRENT  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
6
mA  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
230  
4
tR  
∆VO  
∆VO_HYS  
1,000 hours  
50  
ppm  
ppm  
ppm  
dB  
70  
80  
–55°C < TA < +125°C  
fIN = 10 kHz  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
RRR  
ISC  
–75  
30  
mA  
VOLTAGE OUTPUT AT TEMP PIN VTEMP  
TEMPERATURE SENSITIVITY TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.  
Rev. I | Page 5 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ADR06 ELECTRICAL CHARACTERISTICS  
VIN = 5.0 V to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
3.006  
6
Unit  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
A and C grades  
A and C grades  
2.994  
3.000  
V
VOERR  
mV  
0.2  
3.003  
3
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grade  
B grade  
2.997  
3.000  
V
VOERR  
mV  
0.1  
10  
25  
25  
3
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, SOIC-8, –40°C < TA < +125°C  
A grade, TSOT-5, –40°C < TA < +125°C  
A grade, SC70-5, –40°C < TA < +125°C  
B grade, SOIC-8, –40°C < TA < +125°C  
B grade, TSOT-5, –40°C < TA < +125°C  
B grade, SC70-5, –40°C < TA < +125°C  
C grade, SOIC-8, –40°C < TA < +125°C  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
9
9
40  
10  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN – VO  
2
∆VO/∆VIN  
VIN = 5.0 V to 40.0 V, –40°C < TA < +125°C  
7
30  
70  
ppm/V  
ppm/mA  
LOAD REGULATION  
∆VO/∆ILOAD ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
VIN = 7.0 V  
40  
QUIESCENT CURRENT  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
10  
1
mA  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
510  
4
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
1,000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
70  
–75  
30  
mA  
VOLTAGE OUTPUT AT TEMP PIN VTEMP  
TEMPERATURE SENSITIVITY TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.  
Rev. I | Page 6 of 20  
 
ADR01/ADR02/ADR03/ADR06  
DICE ELECTRICAL CHARACTERISTICS  
VIN = up to 40.0 V, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
ADR01NBC  
ADR02NBC  
VO  
VO  
VO  
25°C  
25°C  
25°C  
9.995  
4.997  
2.4975  
10.004  
5.002  
2.501  
10  
10.005  
5.003  
2.5025  
V
V
V
ADR03BNC  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
ADR01NBC  
ADR02NBC  
ADR03BNC  
TCVO  
–40°C < TA < +125°C  
ppm/°C  
∆VO/∆VIN  
∆VO/∆VIN  
∆VO/∆VIN  
∆VO/∆ILOAD  
IIN  
VIN = 15.0 V to 40.0 V  
VIN = 7.0 V to 40.0 V  
VIN = 4.5 V to 40.0 V  
ILOAD = 0 to 10 mA  
No load  
7
7
7
ppm/V  
ppm/V  
ppm/V  
ppm/mA  
mA  
LOAD REGULATION  
QUIESCENT CURRENT  
VOLTAGE NOISE  
40  
0.65  
25  
eN p-p  
0.1 Hz to 10.0 Hz  
μV p-p  
TEMP  
V
IN  
GND  
TRIM  
V
V
OUT  
(SENSE)  
OUT  
(FORCE)  
DIE SIZE: 0.83mm × 1.01mm  
Figure 3. Die Layout  
Rev. I | Page 7 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ABSOLUTE MAXIMUM RATINGS  
Ratings at 25°C, unless otherwise noted.  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
40.0 V  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Indefinite  
–65°C to +150°C  
–40°C to +125°C  
Junction Temperature Range:  
KS, UJ, and R Packages  
–65°C to +150°C  
Lead Temperature Range (Soldering, 60 Sec) 300°C  
Table 7. Thermal Resistance  
Package Type  
.
Unit  
θJA  
θJC  
SC70-5 (KS-5)  
TSOT-5 (UJ-5)  
SOIC-8 (R-8)  
376  
230  
130  
189  
146  
43  
°C/W  
°C/W  
°C/W  
1 θJA is specified for the worst-case conditions, that is, θJA is specified for  
devices soldered in circuit boards for surface-mount packages.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although these products feature  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. I | Page 8 of 20  
 
ADR01/ADR02/ADR03/ADR06  
PARAMETER DEFINITIONS AND NOTES  
Temperature Coefficient  
The change of output voltage with respect to operating  
temperature changes normalized by the output voltage at 25°C.  
This parameter is expressed in ppm/°C and can be determined  
by the following equation:  
Thermal Hysteresis  
Defined as the change of output voltage after the device is  
cycled through temperatures from +25°C to –40°C to +125°C  
and back to +25°C. This is a typical value from a sample of parts  
put through such a cycle.  
VO (T2 )VO (T1)  
TCVO[ppm/°C] =  
×106  
VO _ HYS =VO (25°C)VO _TC  
VO (25°C)×T2 T1  
VO (25°C)VO _TC  
where:  
VO(25°C) = VO at 25°C.  
VO _ HYS[ppm] =  
×106  
VO (25°C)  
VO(T1) = VO at Temperature 1.  
VO(T2) = VO at Temperature 2.  
where:  
VO(25°C) = VO at 25°C.  
VO_TC = VO at 25°C after temperature cycle at +25°C to –40°C  
Line Regulation  
The change in output voltage due to a specified change in  
input voltage. This parameter accounts for the effects of  
self-heating. Line regulation is expressed in either percent per  
volt, parts-per-million per volt, or microvolts per volt change in  
input voltage.  
to +125°C and back to +25°C.  
Input Capacitor  
Input capacitors are not required on the ADR01/ADR02/  
ADR03/ADR06. There is no limit for the value of the capacitor  
used on the input, but a 1 μF to 10 μF capacitor on the input  
improves transient response in applications where the supply  
suddenly changes. An additional 0.1 μF in parallel also helps to  
reduce noise from the supply.  
Load Regulation  
The change in output voltage due to a specified change in load  
current. This parameter accounts for the effects of self-heating.  
Load regulation is expressed in either microvolts per milliampere,  
parts-per-million per milliampere, or ohms of dc output  
resistance.  
Output Capacitor  
The ADR01/ADR02/ADR03/ADR06 do not require output  
capacitors for stability under any load condition. An output  
capacitor, typically 0.1 μF, filters out any low level noise voltage  
and does not affect the operation of the part. On the other  
hand, the load transient response can be improved with an  
additional 1 μF to 10 μF output capacitor in parallel. A capacitor  
here acts as a source of stored energy for a sudden increase in  
load current. The only parameter that degrades by adding an  
output capacitor is the turn-on time, and it depends on the size  
of the capacitor chosen.  
Long-Term Stability  
Typical shift of output voltage at 25°C on a sample of parts  
subjected to a test of 1,000 hours at 25°C:  
ΔVO = VO (t0 ) VO (t1 )  
VO (t0 )VO (t1)  
ΔVO[ppm] =  
×106  
VO (t0 )  
where:  
VO(t0) = VO at 25°C at Time 0.  
VO(t1) = VO at 25°C after 100 hours of operation at 25°C.  
The majority of the shift is seen in the first 200 hours, and  
as time goes by, the drift decreases significantly. This drift is  
much smaller for the subsequent 1,000 hours of time points  
than for the first.  
Rev. I | Page 9 of 20  
 
ADR01/ADR02/ADR03/ADR06  
TYPICAL PERFORMANCE CHARACTERISTICS  
10.010  
3.002  
3.001  
3.000  
10.005  
10.000  
9.995  
9.990  
9.985  
2.999  
2.998  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. ADR06 Typical Output Voltage vs. Temperature  
Figure 4. ADR01 Typical Output Voltage vs. Temperature  
5.008  
0.8  
0.7  
0.6  
5.004  
5.000  
+125°C  
+25°C  
–40°C  
0.5  
0.4  
4.996  
4.992  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
12  
16  
20  
24  
28  
32  
36  
40  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 8. ADR01 Supply Current vs. Input Voltage  
Figure 5. ADR02 Typical Output Voltage vs. Temperature  
2.502  
0.8  
0.7  
0.6  
+125°C  
2.501  
2.500  
+25°C  
–40°C  
0.5  
0.4  
2.499  
2.498  
8
12  
16  
20  
24  
28  
32  
36  
40  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 6. ADR03 Typical Output Voltage vs. Temperature  
Figure 9. ADR02 Supply Current vs. Input Voltage  
Rev. I | Page 10 of 20  
 
ADR01/ADR02/ADR03/ADR06  
0.85  
0.80  
50  
40  
30  
20  
10  
0
I
= 0mA TO 5mA  
L
0.75  
0.70  
0.65  
V
= 40V  
IN  
+125°C  
0.60  
0.55  
0.50  
+25°C  
–40°C  
V
= 8V  
IN  
–10  
–20  
0.45  
0.40  
5
10  
15  
20  
25  
30  
35  
40  
–40  
0
25  
TEMPERATURE (°C)  
85  
125  
INPUT VOLTAGE (V)  
Figure 13. ADR02 Load Regulation vs. Temperature  
Figure 10. ADR03 Supply Current vs. Input Voltage  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
60  
50  
I
= 0mA TO 10mA  
L
V
= 7V  
IN  
+125°C  
40  
30  
20  
V
= 40V  
IN  
+25°C  
–40°C  
10  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
5
10  
15  
20  
25  
30  
35  
40  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 14. ADR03 Load Regulation vs. Temperature  
Figure 11. ADR06 Supply Current vs. Input Voltage  
40  
30  
40  
30  
I
= 0mA TO 10mA  
L
I
= 0mA TO 10mA  
L
V
= 40V  
IN  
V
= 40V  
IN  
20  
10  
20  
10  
0
V
= 14V  
IN  
0
–10  
–20  
V
= 7V  
IN  
–10  
–20  
–30  
–30  
–40  
–40  
0
50  
TEMPERATURE (°C)  
25  
85  
125  
–40 –25 –10  
5
20  
35  
50  
65  
C)  
80  
95 110 125  
TEMPERATURE (  
°
Figure 12. ADR01 Load Regulation vs. Temperature  
Figure 15. ADR06 Load Regulation vs. Temperature  
Rev. I | Page 11 of 20  
ADR01/ADR02/ADR03/ADR06  
10  
8
2
V
= 14V TO 40V  
IN  
V
= 6V TO 40V  
IN  
0
–2  
–4  
–6  
6
4
2
0
–8  
–2  
–10  
–4  
–40 –25 –10  
5
20  
35 50  
65  
C)  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
C)  
80  
95 110 125  
TEMPERATURE (  
°
TEMPERATURE (  
°
Figure 16. ADR01 Line Regulation vs. Temperature  
Figure 19. ADR06 Line Regulation vs. Temperature  
8
4
5
V
= 8V TO 40V  
IN  
4
3
2
+125°C  
0
–40°C  
–4  
1
0
+25°C  
–8  
0
2
4
6
8
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 20. ADR01 Minimum Input-Output  
Voltage Differential vs. Load Current  
Figure 17. ADR02 Line Regulation vs. Temperature  
4
2
8
4
2
0
V
= 5V TO 40V  
IN  
+125°C  
0
–40°C  
–2  
+25°C  
–4  
–40 –25 –10  
5
20  
35 50  
65  
C)  
80  
95 110 125  
0
2
4
6
8
10  
TEMPERATURE (  
°
LOAD CURRENT (mA)  
Figure 21. ADR02 Minimum Input-Output  
Voltage Differential vs. Load Current  
Figure 18. ADR03 Line Regulation vs. Temperature  
Rev. I | Page 12 of 20  
ADR01/ADR02/ADR03/ADR06  
6
5
4
3
2
1
0
+125°C  
+25°C  
–40oC  
0
2
4
6
8
10  
10  
10  
TIME (1s/DIV)  
LOAD CURRENT (mA)  
Figure 25. ADR02 Typical Noise Voltage 0.1 Hz to 10.0 Hz  
Figure 22. ADR03 Minimum Input-Output  
Voltage Differential vs. Load Current  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+25°C  
+125°C  
–40°C  
0
2
4
6
8
TIME (1ms/DIV)  
LOAD CURRENT (mA)  
Figure 26. ADR02 Typical Noise Voltage 10 Hz to 10 KHz  
Figure 23. ADR06 Minimum Input-Output  
Voltage Differential vs. Load Current  
0.70  
0.65  
0.60  
10V  
8V  
T
= 25°C  
A
V
5V/DIV  
OUT  
0.55  
0.50  
NO LOAD CAPACITOR  
NO INPUT CAPACITOR  
TIME (2.00ms/DIV)  
0
2
4
6
8
LOAD CURRENT (mA)  
Figure 27. ADR02 Line Transient Response  
Figure 24. ADR01 Quiescent Current vs. Load Current  
Rev. I | Page 13 of 20  
 
ADR01/ADR02/ADR03/ADR06  
C
= 0.01μF  
NO LOAD CAPACITOR  
IN  
NO LOAD CAPACITOR  
V
5V/DIV  
IN  
V
10V/DIV  
IN  
LOAD OFF  
LOAD ON  
V
100mV/DIV  
OUT  
V
5V/DIV  
OUT  
LOAD = 5mA  
TIME (4μs/DIV)  
TIME (1.00ms/DIV)  
Figure 31. ADR02 Turn-On Response  
Figure 28. ADR02 Load Transient Response  
C
= 100nF  
LOAD  
V
5V/DIV  
IN  
C
= 0.01μF  
V
10V/DIV  
L
IN  
NO INPUT CAPACITOR  
LOAD OFF  
LOAD ON  
V
100mV/DIV  
OUT  
V
5V/DIV  
OUT  
LOAD = 5mA  
TIME (1.00ms/DIV)  
TIME (4μs/DIV)  
Figure 29. ADR02 Load Transient Response  
Figure 32. ADR02 Turn-Off Response  
V
10V/DIV  
V
10V/DIV  
IN  
IN  
C
= 0.01μF  
L
C
= 0.01μF  
IN  
NO LOAD CAPACITOR  
NO INPUT CAPACITOR  
V
5V/DIV  
OUT  
V
5V/DIV  
OUT  
TIME (4μs/DIV)  
TIME (4μs/DIV)  
Figure 30. ADR02 Turn-Off Response  
Figure 33. ADR02 Turn-On Response  
Rev. I | Page 14 of 20  
ADR01/ADR02/ADR03/ADR06  
APPLICATIONS  
U1  
The ADR01/ADR02/ADR03/ADR06 are high precision, low  
drift 10.0 V, 5.0 V, 2.5 V, and 3.0 V voltage references available  
in an ultracompact footprint. The SOIC-8 version of the devices  
is a drop-in replacement of the REF01/REF02/ REF03 sockets  
with improved cost and performance.  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
V
V
V
O
IN  
IN  
OUT  
C1  
C2  
0.1μF  
TEMP TRIM  
GND  
0.1μF  
These devices are standard band gap references. The band gap  
cell contains two NPN transistors (Q18 and Q19) that differ in  
emitter area by 2×. The difference in their VBE produces a  
proportional-to-absolute temperature current (PTAT) in R14,  
and, when combined with the VBE of Q19, produces a band gap  
voltage, VBG, that is almost constant in temperature. With an  
internal op amp and the feedback network of R5 and R6, VO is  
set precisely at 10.0 V, 5.0 V, 2.5 V, and 3.0 V for the ADR01,  
ADR02, ADR06, and ADR03, respectively. Precision laser  
trimming of the resistors and other proprietary circuit  
techniques are used to further enhance the initial accuracy,  
temperature curvature, and drift performance of the  
ADR01/ADR02/ADR03/ADR06.  
Figure 34. Basic Configuration  
V
IN  
R1  
Q1  
R2  
R3  
R4  
Q23  
Q2  
Q3  
Q7  
Q8  
Q9  
D1  
D2  
Q10  
Q4  
V
O
D3  
C1  
Q13  
R5  
Q12  
R12  
R13  
I1  
The PTAT voltage is made available at the TEMP pin of the  
ADR01/ADR02/ADR03/ADR06. It has a stable 1.96 mV/°C  
temperature coefficient, such that users can estimate the  
temperature change of the device by knowing the voltage  
change at the TEMP pin.  
Q14 Q15  
2X  
Q18  
V
R20  
BG  
1X  
Q19  
TRIM  
R27  
R14  
TEMP  
Q16  
Q17  
Q20  
R6  
R32  
R24  
R41  
R42  
APPLYING THE ADR0./ADR02/ADR03/ADR06  
R17 R11  
GND  
The devices can be used without any external components to  
achieve the specified performance. Because of the internal op  
amp amplifying the band gap cell to 10.0 V/5.0 V/2.5 V/3.0 V,  
power supply decoupling helps the transient response of the  
ADR01/ADR02/ADR03/ADR06. As a result, a 0.1 μF ceramic  
type decoupling capacitor should be applied as close as possible  
to the input and output pins of the device. An optional 1 μF to  
10 μF bypass capacitor can also be applied at the VIN node to  
maintain the input under transient disturbance.  
Figure 35. Simplified Schematic Diagram  
U1  
ADR01/  
ADR02/  
ADR03/  
ADR06  
IN  
V
V
IN  
V
OUT  
V
O
pot  
10kΩ  
TEMP TRIM  
GND  
R1  
470kΩ  
Output Adjustment  
R2  
1kΩ  
The ADR01/ADR02/ADR03/ADR06 trim terminal can be used  
to adjust the output voltage over a nominal voltage. This feature  
allows a system designer to trim system errors by setting the  
reference to a voltage other than 10.0 V/5.0 V/2.5 V/3.0 V. For  
finer adjustment, a series resistor of 470 kΩ can be added. With  
the configuration shown in Figure 36, the ADR01 can be  
adjusted from 9.70 V to 10.05 V, the ADR02 can be adjusted  
from 4.95 V to 5.02 V, the ADR06 can be adjusted from 2.8 V to  
3.3 V, and the ADR03 can be adjusted from 2.3 V to 2.8 V.  
Adjustment of the output does not significantly affect the  
temperature performance of the device, provided the  
temperature coefficients of the resistors are relatively low.  
Figure 36. Optional Trim Adjustment  
Temperature Monitoring  
As described previously, the ADR01/ADR02/ADR03/ADR06  
provide a TEMP output (Pin 3) that varies linearly with  
temperature. This output can be used to monitor the temperature  
change in the system. The voltage at VTEMP is approximately  
550 mV at 25°C, and the temperature coefficient is approximately  
1.96 mV/°C (see Figure 37). A voltage change of 39.2 mV at the  
TEMP pin corresponds to a 20°C change in temperature.  
Rev. I | Page 15 of 20  
 
 
ADR01/ADR02/ADR03/ADR06  
U1  
0.80  
V
= 15V  
IN  
SAMPLE SIZE = 5  
ADR01/  
ADR02/  
ADR03/  
ADR06  
0.75  
0.70  
V
V
OUT  
+5V TO +15V  
IN  
0.65  
0.60  
TEMP TRIM  
GND  
+15V  
U2  
ΔV  
/ΔT 1.96mV/°C  
TEMP  
V+  
OP1177  
V–  
0.55  
0.50  
0.45  
–V  
REF  
–15V  
Figure 39. Negative Reference  
0.40  
–50  
–25  
0
25  
50  
75  
100  
125  
V
IN  
TEMPERATURE (°C)  
I
IN  
Figure 37. Voltage at TEMP Pin vs. Temperature  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
OUT  
The TEMP function is provided as a convenience rather than a  
precise feature. Because the voltage at the TEMP node is  
acquired from the band gap core, current pulling from this pin  
has a significant effect on VOUT. Care must be taken to buffer the  
TEMP output with a suitable low bias current op amp, such as  
the AD8601, AD820, or OP1177, all of which would result in  
less than a 100 μV change in ΔVOUT (see Figure 38). Without  
buffering, even tens of microamps drawn from the TEMP pin  
can cause VOUT to fall out of specification.  
I
SET  
= 10V/R  
SET  
R
SET  
GND  
V
L
I
0.6mA  
Q
R
L
I
= I  
+ I  
SET Q  
L
Figure 40. Low Cost Current Source  
U1  
ADR01/  
ADR02/  
PRECISION CURRENT SOURCE WITH  
ADJUSTABLE OUTPUT  
ADR03/  
15V  
ADR06  
V
V
V
V
O
IN  
IN  
OUT  
A precision current source, on the other hand, can be  
implemented with the circuit shown in Figure 41. By adding a  
mechanical or digital potentiometer, this circuit becomes an  
adjustable current source. If a digital potentiometer is used, the  
load current is simply the voltage across terminals B to W of the  
TEMP TRIM  
GND  
V+  
OP1177  
V–  
V
TEMP  
1.9mV/°C  
U2  
digital potentiometer divided by RSET  
.
Figure 38. Temperature Monitoring  
VREF ×D  
RSET  
(1)  
I L  
=
NEGATIVE REFERENCE  
where D is the decimal equivalent of the digital potentiometer  
input code.  
Without using any matching resistors, a negative reference can  
be configured, as shown in Figure 39. For the ADR01, the  
voltage difference between VOUT and GND is 10.0 V. Because  
OUT is at virtual ground, U2 closes the loop by forcing the  
GND pin to be the negative reference node. U2 should be a  
U1  
ADR01/  
ADR02/  
ADR03/  
V
0V TO (5V + V )  
ADR06  
L
precision op amp with a low offset voltage characteristic.  
V
V
OUT  
+12V  
IN  
B
AD5201  
W
TEMP TRIM  
GND  
LOW COST CURRENT SOURCE  
100k  
Ω
A
Unlike most references, the ADR01/ADR02/ADR03/ADR06  
employ an NPN Darlington in which the quiescent current  
remains constant with respect to the load current, as shown in  
Figure 24. As a result, a current source can be configured as  
shown in Figure 40 where ISET = (VOUT − VL)/RSET. IL is simply  
the sum of ISET and IQ. Although simple, IQ varies typically from  
0.55 mA to 0.65 mA, limiting this circuit to general-purpose  
applications.  
+12V  
R
1k  
Ω
SET  
U2  
V+  
OP1177  
V–  
–5V TO V  
V
L
L
R
L
1kΩ  
I
L
–12V  
Figure 41. Programmable 0 mA to 5 mA Current Source  
Rev. I | Page 16 of 20  
 
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
To optimize the resolution of this circuit, dual-supply op amps  
should be used because the ground potential of ADR02 can  
swing from −5.0 V at zero scale to VL at full scale of the  
potentiometer setting.  
C1, in the range of 1 pF to 10 pF should be connected between  
VP and the output terminal of U4 to filter any oscillation.  
Vt  
It  
R1′  
R1R2  
R1R2′  
ZO  
=
=
(3)  
1  
PROGRAMMABLE 4 mA TO 20 mA CURRENT  
TRANSMITTER  
In this circuit, an ADR01 provides the stable 10.000 V reference  
for the AD5544 quad 16-bit DAC. The resolution of the  
adjustable current is 0.3 μA/step; the total worst-case INL error  
is merely 4 LSB. Such error is equivalent to 1.2 μA or a 0.006%  
system error, which is well below most systems’ requirements.  
The result is shown in Figure 43 with measurement taken at 25°C  
and 70°C; total system error of 4 LSB at both 25°C and 70°C.  
Because of their precision, adequate current handling, and small  
footprint, the devices are suitable as the reference sources for  
many high performance converter circuits. One of these  
applications is the multichannel 16-bit, 4 mA to 20 mA current  
transmitter in the industrial control market (see Figure 42).  
This circuit employs a Howland current pump at the output,  
which yields better efficiency, a lower component count, and a  
higher voltage compliance than the conventional design with op  
amps and MOSFETs. In this circuit, if the resistors are matched  
such that R1 = R1, R2 = R2, R3 = R3, the load current is  
5
R
= 500Ω  
L
I
= 0mA TO 20mA  
L
4
3
(R2 + R3) R1  
R3′  
V
REF ×D  
IL =  
×
(2)  
2N  
2
where D is similarly the decimal equivalent of the DAC input  
code and N is the number of bits of the DAC.  
25°C  
70°C  
1
According to Equation 2, R3can be used to set the sensitivity.  
R3can be made as small as necessary to achieve the current  
needed within U4 output current driving capability. On the  
other hand, other resistors can be kept high to conserve power.  
0
–1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
In this circuit, the AD8512 is capable of delivering 20 mA of  
current, and the voltage compliance approaches 15.0 V.  
Figure 43. Result of Programmable 4 mA to 20 mA Current Transmitter  
Precision-Boosted Output Regulator  
0V TO –10V  
A precision voltage output with boosted current capability can  
be realized with the circuit shown in Figure 44. In this circuit,  
U2 forces VO to be equal to VREF by regulating the turn-on of  
N1, thereby making the load current furnished by VIN. In this  
configuration, a 50 mA load is achievable at VIN of 15.0 V.  
Moderate heat is generated on the MOSFET, and higher current  
can be achieved with a replacement of a larger device. In  
addition, for a heavy capacitive load with a fast edging input  
signal, a buffer should be added at the output to enhance the  
5V  
U2  
+15V  
R1  
150kΩ  
R2  
15kΩ  
U1  
V
RF  
V
V
DD  
IO  
15V  
10V  
AD5544  
IO  
V
U3  
–15V  
REF  
IN  
OUT  
V
VP  
X
R3  
50Ω  
GND  
TEMP TRIM  
GND  
C1  
10pF  
U4  
DIGITAL INPUT  
CODE 20%–100% FULL SCALE  
AD8512  
V
O
R3'  
50Ω  
R2'  
15kΩ  
transient response.  
V
U1 = ADR01/ADR02/ADR03/ADR06, REF01  
U2 = AD5543/AD5544/AD5554  
U3, U4 = AD8512  
L
VN  
R1'  
150kΩ  
N1  
LOAD  
500Ω  
V
V
O
IN  
R
200Ω  
C
L
1μF  
U1  
L
2N7002  
15V  
4–20mA  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
Figure 42. Programmable 4 mA to 20 mA Transmitter  
V
OUT  
V+  
IN  
The Howland current pump yields a potentially infinite output  
impedance, which is highly desirable, but resistance matching  
is critical in this application. The output impedance can be  
determined using Equation 3. As can be seen by this equation, if  
the resistors are perfectly matched, ZO is infinite. On the other  
hand, if they are not matched, ZO is either positive or negative. If  
the latter is true, oscillation may occur. For this reason, a capacitor,  
OP1177  
TEMP TRIM  
GND  
V–  
U2  
Figure 44. Precision-Boosted Output Regulator  
Rev. I | Page 17 of 20  
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
1.35  
1.25  
1.15  
2.40  
2.10  
1.80  
5
1
4
3
2
PIN 1  
0.65 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.30  
0.15  
0.22  
0.08  
0.10 MA  
X
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203-AA  
Figure 45. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-5)  
Dimensions shown in millimeters  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 46. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 47. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. I | Page 18 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ORDERING GUIDES  
ADR0. ORDERING GUIDE  
Output  
Initial  
Temperature  
Coefficient  
(ppm/°C)  
10  
10  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
40  
40  
10 (Typ)  
Number of  
Voltage Accuracy  
Package  
Description  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
SC70  
Package  
Option  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Top  
Parts per  
Reel/Tray  
98  
1,000  
98  
1,000  
98  
1,000  
Temperature  
Range (°C)  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
Model  
ADR01AR  
Mark.  
ADR01  
ADR01  
ADR01  
ADR01  
ADR01  
ADR01  
ADR01  
ADR01  
R8A  
VO (V)  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
(mV) (1)  
10  
10  
10  
10  
5
5
5
0.1  
0.1  
0.1  
0.1  
0.05  
0.05  
0.05  
0.05  
0.1  
0.1  
0.1  
0.05  
0.05  
0.05  
0.1  
0.1  
0.1  
0.05  
0.05  
0.05  
0.1  
ADR01AR-REEL7  
ADR01ARZ2  
ADR01ARZ-REEL72  
ADR01BR  
ADR01BR-REEL7  
ADR01BRZ2  
98  
ADR01BRZ-REEL72  
ADR01AUJ-REEL7  
ADR01AUJ-R2  
ADR01AUJZ-REEL72  
ADR01BUJ-REEL7  
ADR01BUJ-R2  
ADR01BUJZ-REEL72  
ADR01AKS-REEL7  
ADR01AKS-R2  
ADR01AKSZ-REEL72  
ADR01BKS-REEL7  
ADR01BKS-R2  
ADR01BKSZ-REEL72  
ADR01CRZ2  
5
R-8  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
10  
10  
10  
5
5
5
10  
10  
10  
5
5
5
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
R8A  
R1E  
R8B  
R8B  
R1F  
R8A  
R8A  
R1E  
R8B  
R8B  
R1F  
ADR01  
ADR01  
SC70  
SC70  
SC70  
SC70  
SC70  
3,000  
98  
2,500  
360  
10  
10  
5
SOIC-8  
SOIC-8  
Dice  
ADR01CRZ-REEL2  
ARR01NBC  
0.1  
0.05  
R-8  
1 First line shows part number ADR01; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.  
2 Z = Pb-free part.  
ADR02 ORDERING GUIDE  
Output  
Initial  
Temperature  
Coefficient  
(ppm/°C)  
10  
10  
10  
10  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
40  
40  
10 (Typ)  
Number of  
Parts per  
Reel/Tray  
98  
2,500  
1,000  
98  
2,500  
2,500  
98  
Voltage Accuracy  
Package  
Description  
Package  
Option  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Top  
Temperature  
Range (°C)  
Model  
Mark.  
VO (V)  
(mV) (1)  
ADR02AR  
5
5
5
5
5
5
5
5
5
5
5
5
5
3
3
3
3
5
5
5
3
3
3
5
5
5
3
3
3
5
5
3
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.06  
0.06  
0.06  
0.06  
0.1  
0.1  
0.1  
0.06  
0.06  
0.06  
0.1  
0.1  
0.1  
0.06  
0.06  
0.06  
0.1  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
SC70  
ADR02  
ADR02  
ADR02  
ADR02  
ADR02  
ADR02  
ADR02  
ADR02  
ADR02  
ADR02  
R9A  
R9A  
R9A  
R9B  
R9B  
R1H  
R9A  
R9A  
R1G  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
-40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
ADR02AR-REEL  
ADR02AR-REEL7  
ADR02ARZ2  
ADR02ARZ-REEL2  
ADR02ARZ-REEL72  
ADR02BR  
ADR02BR-REEL7  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
R-8  
R-8  
R-8  
1,000  
98  
ADR02BRZ2  
ADR02BRZ-REEL72  
ADR02AUJ-REEL7  
ADR02AUJ-R2  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
ADR02AUJZ-REEL72  
ADR02BUJ-REEL7  
ADR02BUJ-R2  
ADR02BUJZ-REEL72  
ADR02AKS-REEL7  
ADR02AKS-R2  
SC70  
SC70  
SC70  
SC70  
ADR02AKSZ-REEL72  
ADR02BKS-REEL7  
ADR02BKS-R2  
R9B  
R9B  
R1H  
ADR02  
ADR02  
ADR02BKSZ-REEL72  
ADR02CRZ2  
SC70  
3,000  
98  
2,500  
360  
5.0  
5.0  
5
SOIC-8  
SOIC-8  
Dice  
ADR02CRZ-REEL2  
ARR02NBC  
0.1  
0.06  
R-8  
1 First line shows part number ADR02; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.  
2 Z = Pb-free part.  
Rev. I | Page 19 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ADR03 ORDERING GUIDE  
Output  
Voltage Accuracy  
(mV) (1)  
Initial  
Temperature  
Coefficient  
(ppm/°C)  
10  
10  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
40  
40  
10 (Typ)  
Number of  
Parts per  
Reel/Tray  
98  
1,000  
98  
Package  
Description  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
SC70  
Package  
Option  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Top  
Temperature  
Range (°C)  
–40 to +125  
–40 to +125  
-40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
Model  
Mark.  
ADR03  
ADR03  
ADR03  
ADR03  
ADR03  
ADR03  
ADR03  
ADR03  
RFA  
VO (V)  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
ADR03AR  
5
5
5
5
2.5  
2.5  
2.5  
2.5  
5
5
5
2.5  
2.5  
2.5  
5
5
5
2.5  
2.5  
2.5  
5
0.2  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
ADR03AR-REEL7  
ADR03ARZ2  
ADR03ARZ-REEL72  
ADR03BR  
1,000  
98  
ADR03BR-REEL7  
1,000  
98  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
98  
ADR03BRZ2  
ADR03BRZ-REEL72  
ADR03AUJ-REEL7  
ADR03AUJ-R2  
ADR03AUJZ-REEL72  
ADR03BUJ-REEL7  
ADR03BUJ-R2  
ADR03BUJZ-REEL72  
ADR03AKS-REEL7  
ADR03AKS-R2  
ADR03AKSZ-REEL72  
ADR03BKS-REEL7  
ADR03BKS-R2  
ADR03BKSZ-REEL72  
ADR03CRZ2  
R-8  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
RFA  
R1J  
RFB  
RFB  
R1K  
RFA  
RFA  
R1J  
RFB  
RFB  
RFB  
ADR03  
ADR03  
SC70  
SC70  
SC70  
SC70  
SC70  
SOIC-8  
SOIC-8  
Dice  
ADR03CRZ-REEL2  
ADR03NBC  
5
2.5  
R-8  
2,500  
360  
1 First line shows part number ADR03; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.  
2 Z = Pb-free part.  
ADR06 ORDERING GUIDE  
Output  
Voltage Accuracy  
(mV) (1)  
Initial  
Temperature  
Coefficient  
(ppm/°C)  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
Number of  
Parts per  
Reel/Tray  
98  
1,000  
98  
1,000  
98  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
Package  
Description  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
SC70  
SC70  
SC70  
SC70  
SC70  
Package  
Option  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
Top  
Temperature  
Range (°C)  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
Model  
Mark.  
ADR06  
ADR06  
ADR06  
ADR06  
ADR06  
ADR06  
RWA  
VO (V)  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
ADR06AR  
ADR06AR-REEL7  
ADR06BR  
6
6
3
3
3
3
6
6
6
3
3
3
6
6
6
3
3
3
6
6
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.2  
0.2  
ADR06BR-REEL7  
ADR06BRZ2  
ADR03BRZ-REEL72  
ADR06AUJ-REEL7  
ADR06AUJ-R2  
ADR06AUJZ-REEL72  
ADR06BUJ-REEL7  
ADR06BUJ-R2  
RWA  
R1L  
RWB  
RWB  
R1M  
RWA  
RWA  
R1L  
RWB  
RWB  
R1M  
ADR06  
ADR06  
ADR06BUJZ-REEL72  
ADR06AKS-REEL7  
ADR06AKS-R2  
ADR06AKSZ-REEL72  
ADR06BKS-REEL7  
ADR06BKS-R2  
ADR06BKSZ-REEL72  
ADR06CRZ2  
SC70  
SOIC-8  
SOIC-8  
3,000  
98  
2,500  
40  
40  
ADR06CRZ-REEL2  
R-8  
1 First line shows part number ADR06; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.  
2 Z = Pb-free part.  
©
2005 Analog Devices, Incꢀ All rights reservedꢀ Trademarks and  
registered trademarks are the property of their respective ownersꢀ  
C02747–0–7/05(I)  
Rev. I | Page 20 of 20  
 
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY