ADR121 [ADI]

Precision, Micropower LDO Voltage References in TSOT; 在TSOT精密,微功耗LDO电压基准
ADR121
型号: ADR121
厂家: ADI    ADI
描述:

Precision, Micropower LDO Voltage References in TSOT
在TSOT精密,微功耗LDO电压基准

文件: 总20页 (文件大小:588K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Micropower LDO Voltage  
References in TSOT  
ADR121/ADR125/ADR127  
FEATURES  
PIN CONFIGURATION  
Initial accuracy  
A grade: 0.24%  
B grade: 0.12%  
Maximum tempco  
1
1
1
NC  
GND  
1
2
3
6
5
4
NC  
NC  
ADR12x  
TOP VIEW  
(Not to Scale)  
V
V
OUT  
IN  
A grade: 25 ppm/°C  
B grade: 9 ppm/°C  
NC = NO CONNECT  
1
MUST BE LEFT FLOATING  
Low dropout: 300 mV for ADR121, ADR125  
High output current: +5 mA/−2 mA  
Low typical operating current: 85 μA  
Input range: 2.7 V to 18 V  
Temperature range: −40°C to +125°C  
Tiny TSOT (UJ-6) package  
Figure 1.  
APPLICATIONS  
Battery-powered instrumentation  
Portable medical equipment  
Data acquisition systems  
Automotive  
GENERAL DESCRIPTION  
The ADR121/ADR125/ADR127 are a family of micropower,  
high precision, series mode, band gap references with sink and  
source capability. The parts feature high accuracy and low  
power consumption in a tiny package. The ADR12x design  
includes a patented temperature drift curvature correction  
technique that minimizes the nonlinearities in the output  
voltage vs. temperature characteristics.  
The ADR12x is a low dropout voltage reference, requiring only  
300 mV for ADR121/ADR125 and 1.45 V for ADR127 above  
the nominal output voltage on the input to provide a stable  
output voltage. This low dropout performance coupled with the  
low 85 μA operating current makes the ADR12x ideal for  
battery-powered applications.  
Available in an extended industrial temperature range of −40°C  
to +125°C, the ADR12x is housed in the tiny TSOT (UJ-6)  
package.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights ofthird parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADR121/ADR125/ADR127  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.......................................................................................7  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 16  
Power Dissipation Considerations........................................... 16  
Notes ............................................................................................ 16  
Applications..................................................................................... 17  
Basic Voltage Reference Connection....................................... 17  
Stacking Reference ICs for Arbitrary Outputs ....................... 17  
Negative Precision Reference Without Precision Resistors.. 17  
General-Purpose Current Source ............................................ 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR121 Electrical Characteristics............................................. 3  
ADR125 Electrical Characteristics............................................. 4  
ADR127 Electrical Characteristics............................................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
REVISION HISTORY  
6/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADR121/ADR125/ADR127  
SPECIFICATIONS  
ADR121 ELECTRICAL CHARACTERISTICS  
@ TA = 25°C, VIN = 2.8 V to 18 V, IOUT = 0 mA, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions/Comments  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
B Grade  
A Grade  
VO  
@ 25°C  
2.497  
2.494  
2.5  
2.5  
2.503  
2.506  
V
V
INITIAL ACCURACY ERROR  
B Grade  
A Grade  
VOERR  
TCVO  
VDO  
@ 25°C  
−0.12  
−0.24  
+0.12  
+0.24  
%
%
TEMPERATURE COEFFICIENT  
B Grade  
A Grade  
−40°C < TA < +125°C  
3
15  
9
25  
ppm/°C  
ppm/°C  
mV  
DROPOUT (VOUT − VIN)  
LOAD REGULATION  
IOUT = 0 mA  
300  
−50  
−40°C < TA < +125°C; VIN = 3.0 V,  
0 mA < IOUT < 5 mA  
−40°C < TA < +125°C; VIN = 3.0 V,  
−2 mA < IOUT < 0 mA  
2.8 V to 18 V  
80  
50  
300  
300  
+50  
ppm/mA  
ppm/mA  
LINE REGULATION  
IOUT = 0 mA  
+3  
ppm/V  
dB  
PSRR  
f = 1 Khz  
−90  
60  
RIPPLE REJECTION  
QUIESCENT CURRENT  
f = 60 Hz  
dB  
ΔVOUT/ΔVIN  
IQ  
−40°C < TA < +125°C, no load  
VIN = 18 V  
VIN = 2.8 V  
95  
80  
18  
40  
125  
95  
μA  
μA  
SHORT-CIRCUIT CURRENT TO GROUND  
VOLTAGE NOISE  
VIN = 2.8 V  
VIN = 18 V  
mA  
mA  
@ 25°C  
f = 10 KHz  
500  
10  
nV/√Hz  
μV p-p  
μs  
0.1 Hz to 10 Hz  
To 0.1%, CL = 0.2 μF  
1000 hours @ 25°C  
See the Terminology section  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY  
100  
150  
300  
ppm/1000 hrs  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
Rev. 0 | Page 3 of 20  
 
ADR121/ADR125/ADR127  
ADR125 ELECTRICAL CHARACTERISTICS  
@ TA = 25°C, VIN = 5.3 V to 18 V, IOUT = 0 mA, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
B Grade  
A Grade  
VO  
@ 25°C  
4.994  
4.988  
5.0  
5.0  
5.006  
5.012  
V
V
2.497  
INITIAL ACCURACY ERROR  
B Grade  
A Grade  
VOERR  
TCVO  
VDO  
@ 25°C  
−0.12  
−0.24  
+0.12  
+0.24  
%
%
TEMPERATURE COEFFICIENT  
B Grade  
A Grade  
−40°C < TA < +125°C  
3
15  
9
25  
ppm/°C  
ppm/°C  
mV  
DROPOUT (VOUT − VIN)  
LOAD REGULATION  
IOUT = 5 mA  
300  
−40°C < TA < +125°C; VIN = 3.0 V,  
0 mA < IOUT < 5 mA  
−40°C < TA < +125°C; VIN = 3.0 V,  
−2 mA < IOUT < 0 mA  
5.3 V < VIN < 18 V  
35  
35  
200  
200  
30  
ppm/mA  
ppm/mA  
LINE REGULATION  
IOUT = 0 mA  
ppm/V  
dB  
PSRR  
f = 60 Hz  
−90  
60  
RIPPLE REJECTION  
QUIESCENT CURRENT  
f = 60 Hz  
dB  
ΔVOUT/ΔVIN  
IQ  
−40°C < TA < +125°C, no load  
VIN = 18 V  
VIN = 3.0 V  
95  
80  
25  
40  
125  
95  
μA  
μA  
SHORT-CIRCUIT CURRENT TO GROUND  
VOLTAGE NOISE  
VIN = 5.3 V  
VIN = 18 V  
mA  
mA  
@ 25°C  
f = 10 Khz  
900  
20  
nV/√Hz  
μV p-p  
μs  
0.1 Hz to 10 Hz  
To 0.1%, CL = 0.2 μF  
1000 hours @ 25°C  
See the Terminology section  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY  
100  
150  
300  
ppm/1000 hrs  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
Rev. 0 | Page 4 of 20  
 
ADR121/ADR125/ADR127  
ADR127 ELECTRICAL CHARACTERISTICS  
@ TA = 25°C, 2.7 V to 18 V, IOUT = 0 mA, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
B Grade  
A Grade  
VO  
@ 25°C  
1.2485 1.25  
1.2470 1.25  
1.2515  
1.2530  
V
V
INITIAL ACCURACY ERROR  
B Grade  
A Grade  
VOERR  
TCVO  
VDO  
@ 25°C  
−0.12  
−0.24  
+0.12  
+0.24  
%
%
TEMPERATURE COEFFICIENT  
B Grade  
A Grade  
−40°C < TA < +125°C  
3
15  
9
25  
ppm/°C  
ppm/°C  
V
DROPOUT (VOUT − VIN)  
LOAD REGULATION  
IOUT = 0 mA  
1.45  
−40°C < TA < +125°C; VIN = 3.0 V,  
0 mA < IOUT < 5 mA  
−40°C < TA < +125°C; VIN = 3.0 V,  
−2 mA < IOUT < 0 mA  
2.7 V to 18 V  
85  
65  
400  
400  
90  
ppm/mA  
ppm/mA  
LINE REGULATION  
IOUT = 0 mA  
30  
ppm/V  
dB  
PSRR  
F = 60 Hz  
−90  
60  
RIPPLE REJECTION  
QUIENSCENT CURRENT  
f = 60 Hz  
dB  
ΔVOUT/ΔVIN  
IQ  
−40°C < TA < +125°C, no load  
VIN = 18 V  
VIN = 2.7 V  
95  
80  
15  
30  
125  
95  
μA  
μA  
SHORT-CIRCUIT CURRENT TO GROUND  
VIN = 2.7 V  
mA  
mA  
V
IN = 18 V  
VOLTAGE NOISE  
Noise Density  
@ 25°C  
f = 10 kHz  
0.1 Hz to 10 Hz  
To 0.1%, CL = 0.2 μF  
1000 hours @ 25°C  
See the Terminology section  
300  
5
nV/√Hz  
μV p-p  
μs  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY  
80  
150  
300  
ppm/1000 hrs  
ppm  
OUTPUT VOLTAGE HYSTERESIS  
Rev. 0 | Page 5 of 20  
 
ADR121/ADR125/ADR127  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Ratings  
VIN to GND  
20 V  
Internal Power Dissipation  
TSOT (UJ-6)  
40 mW  
Storage Temperature Range  
Specified Temperature Range  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
−65°C to +150°C  
−40°C to +125°C  
THERMAL RESISTANCE  
215°C  
220°C  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
TSOT (UJ-6)  
230  
146  
°C/W  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 20  
 
ADR121/ADR125/ADR127  
TERMINOLOGY  
Temperature Coefficient  
Long-Term Stability  
The change of output voltage with respect to operating  
temperature change normalized by the output voltage at 25°C.  
This parameter is expressed in ppm/°C and can be determined  
by  
Typical shift of output voltage at 25°C on a sample of parts  
subjected to a test of 1000 hours at 25°C.  
ΔVO =VO  
(
tO  
)
VO  
VO tO  
VO  
(
t1  
)
(
)
VO  
t1  
( )  
ΔVO ppm  
[
]
=
×106  
VO  
(
T2  
)
VO  
(
T
)
tO  
( )  
1
TCVO  
[ppm/°C  
]
=
×106  
VO  
(
25°C  
)
×
(
T2 T  
)
1
where:  
where:  
VO(25°C) = VO at 25°C.  
VO(t0) = VO at 25°C at Time 0.  
VO(t1) = VO at 25°C after 1000 hours operating at 25°C.  
VO(T1) = VO at Temperature 1.  
VO(T2) = VO at Temperature 2.  
Thermal Hysteresis  
The change of output voltage after the device is cycled through  
temperatures from +25°C to −40°C to +125°C and back to  
+25°C. This is a typical value from a sample of parts put  
through such a cycle.  
Line Regulation  
The change in the output due to a specified change in input  
voltage. This parameter accounts for the effects of self-heating.  
Line regulation is expressed in either percent per volt, parts-  
per-million per volt, or microvolts per voltage changes in input  
voltage.  
where:  
VO (25°C) = VO at 25°C.  
V
OTC = VO at 25°C after temperature cycle at +25°C to −40°C to  
+125°C and back to +25°C.  
Load Regulation  
The change in output voltage due to a specified change in load  
current. This parameter accounts for the effects of self-heating.  
Load regulation is expressed in either microvolts per milliam-  
pere, parts-per-million per milliampere, or ohms of dc output  
resistance.  
Rev. 0 | Page 7 of 20  
 
 
ADR121/ADR125/ADR127  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.256  
5
4
3
2
1
0
1.254  
1.252  
1.250  
1.248  
1.246  
1.244  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
95 110 125  
95 110 125  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
40  
40  
50  
50  
50  
TEMPERATURE (°C)  
TEMPERATURE COEFFICIENT (ppm/°C)  
Figure 2. ADR127 VOUT vs. Temperature  
Figure 5. ADR127 Temperature Coefficient  
2.510  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
5
4
3
2
1
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
–50 –40 –30 –20 –10  
0
10  
20  
30  
TEMPERATURE (°C)  
TEMPERATURE COEFFICIENT (ppm/°C)  
Figure 3. ADR121 VOUT vs. Temperature  
Figure 6. ADR125 Temperature Coefficient  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
4.980  
5
4
3
2
1
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
–50 –40 –30 –20 –10  
0
10  
20  
30  
TEMPERATURE (°C)  
TEMPERATURE COEFFICIENT (ppm/°C)  
Figure 4. ADR125 VOUT vs. Temperature  
Figure 7. ADR121 Temperature Coefficient  
Rev. 0 | Page 8 of 20  
 
 
ADR121/ADR125/ADR127  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
120  
100  
80  
60  
40  
20  
0
+25°C  
–40°C  
+25°C  
+125°C  
–40°C  
+125°C  
–2  
–1  
0
1
2
3
4
5
5
5
2
2
5
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
Figure 8. ADR127 Minimum Input Voltage vs. Load Current  
Figure 11. ADR127 Supply Current vs. Input Voltage  
3.5  
120  
100  
80  
60  
40  
20  
0
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
+125°C  
+25°C  
+125°C  
+25°C  
–40°C  
–40°C  
–2  
–1  
0
1
2
3
4
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
Figure 9. ADR121 Minimum Input Voltage vs. Load Current  
Figure 12. ADR121 Supply Current vs. Input Voltage  
120  
100  
80  
60  
40  
20  
0
6.2  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
+125°C  
+25°C  
–40°C  
+25°C  
+125°C  
–40°C  
6
7
8
9
10 11 12 13 14 15 16 17 18  
INPUT VOLTAGE (V)  
–2  
–1  
0
1
2
3
4
LOAD CURRENT (mA)  
Figure 13. ADR125 Supply Current vs. Input Voltage  
Figure 10. ADR125 Minimum Input Voltage vs. Load Current  
Rev. 0 | Page 9 of 20  
ADR121/ADR125/ADR127  
6
0
–10  
–20  
–30  
–40  
–50  
+125°C  
— +25°C  
–40°C  
5
4
3
2
1
0
V
= 2.7V TO 18V  
IN  
–2  
–1  
0
1
2
3
4
5
5
5
–40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 14. ADR127 Supply Current vs. Load Current  
Figure 17. ADR127 Line Regulation vs. Temperature  
6
3
2
+125°C  
— +25°C  
–40°C  
5
4
3
2
1
0
1
0
V
= 2.8V TO 18V  
IN  
–1  
–2  
–3  
–2  
–1  
0
1
2
3
4
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 15. ADR121 Supply Current vs. Load Current  
Figure 18. ADR121 Line Regulation vs. Temperature  
6
5
4
3
2
1
0
6
4
+125°C  
— +25°C  
–40°C  
2
V
= 5.3V TO 18V  
IN  
0
–2  
–4  
–6  
–2  
–1  
0
1
2
3
4
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 16. ADR125 Supply Current vs. Load Current  
Figure 19. ADR125 Line Regulation vs. Temperature  
Rev. 0 | Page 10 of 20  
ADR121/ADR125/ADR127  
200  
150  
100  
50  
C
= C  
= 0.1µF  
IN  
OUT  
2mA SINKING, V = 3V  
IN  
CH1 p-p  
5.76µV  
0
1
–50  
–100  
–150  
–200  
CH1 rms  
0.862µV  
5mA SOURCING, V = 3V  
IN  
2µV/DIV  
TIME (1s/DIV)  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 20. ADR127 Load Regulation vs. Temperature  
Figure 23. ADR127 0.1 Hz to 10 Hz Noise  
100  
80  
C
IN  
= C  
OUT  
= 0.1µF  
60  
2mA SINKING, V = 5V  
IN  
40  
20  
CH1 p-p  
10.8µV  
0
–20  
–40  
–60  
–80  
–100  
1
5mA SOURCING, V = 5V  
IN  
CH1 rms  
1.75µV  
5µV/DIV  
TIME (1s/DIV)  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 24. ADR121 0.1 Hz to 10 Hz Noise  
Figure 21. ADR121 Load Regulation vs. Temperature  
50  
40  
C
= C  
= 0.1µF  
IN  
OUT  
30  
2mA SINKING, V = 6V  
IN  
20  
10  
CH1 p-p  
20.6µV  
0
–10  
–20  
–30  
–40  
–50  
1
CH1 rms  
3.34µV  
5mA SOURCING, V = 6V  
IN  
10µV/DIV  
TIME (1s/DIV)  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 22. ADR125 Load Regulation vs. Temperature  
Figure 25. ADR125 0.1 Hz to 10 Hz Noise  
Rev. 0 | Page 11 of 20  
ADR121/ADR125/ADR127  
C
C
C
= C  
= C  
= C  
= 0.1µF  
IN  
OUT  
V
C
1V/DIV  
IN  
= C  
= 0.1µF  
IN  
OUT  
CH1 p-p  
287µV  
1
1
CH1 rms  
38.8µV  
V
OUT  
500mV/DIV  
2
TIME (200µs/DIV)  
TIME (1s/DIV)  
50µV/DIV  
Figure 26. ADR127 10 Hz to 10 KHz Noise  
Figure 29. ADR127 Turn-On Response  
= 0.1µF  
OUT  
IN  
V
1V/DIV  
IN  
C
= C  
= 0.1µF  
IN  
OUT  
CH1 p-p  
450µV  
1
1
CH1 rms  
58.1µV  
V
OUT  
500mV/DIV  
TIME (40µs/DIV)  
100µV/DIV  
TIME (1s/DIV)  
2
Figure 27. ADR121 10 Hz to 10 KHz Noise  
Figure 30. ADR127 Turn-On Response  
= 0.1µF  
OUT  
IN  
V
1V/DIV  
IN  
C
= C  
= 0.1µF  
IN  
OUT  
CH1 p-p  
788µV  
1
1
CH1 rms  
115µV  
200µV/DIV  
TIME (1s/DIV)  
2
V
OUT  
500mV/DIV  
TIME (100µs/DIV)  
Figure 28. ADR125 10 Hz to 10 KHz Noise  
Figure 31. ADR127 Turn-Off Response  
Rev. 0 | Page 12 of 20  
ADR121/ADR125/ADR127  
C
= C  
= 0.1µF  
IN  
OUT  
V
1V/DIV  
V
IN  
IN  
C
= C  
= 0.1µF  
2V/DIV  
IN  
OUT  
1
1
V
V
OUT  
OUT  
2V/DIV  
1V/DIV  
2
TIME (100µs/DIV)  
2
TIME (100µs/DIV)  
Figure 32. ADR121 Turn-On Response  
Figure 35. ADR125 Turn-On Response  
C
= C  
= 0.1µF  
IN  
OUT  
V
C
1V/DIV  
IN  
V
IN  
= C  
= 0.1µF  
2V/DIV  
IN  
OUT  
1
1
V
OUT  
V
OUT  
2V/DIV  
TIME (20µs/DIV)  
TIME (40µs/DIV)  
1V/DIV  
2
2
Figure 33. ADR121 Turn-On Response  
Figure 36. ADR125 Turn-On Response  
C
= C  
= 0.1µF  
IN  
OUT  
V
IN  
V
IN  
1V/DIV  
2V/DIV  
1
1
V
V
OUT  
OUT  
1V/DIV  
2V/DIV  
TIME (200µs/DIV)  
2
2
TIME (20µs/DIV)  
Figure 34. ADR121 Turn-Off Response  
Figure 37. ADR125 Turn-Off Response  
Rev. 0 | Page 13 of 20  
ADR121/ADR125/ADR127  
C
= C  
= 0.1µF  
IN  
IN  
IN  
OUT  
2.50V  
1.25V  
V
1V/DIV  
IN  
LINE INTERRUPTION  
V
C
500mV/DIV  
1
IN  
= C  
= 0.1µF  
IN  
OUT  
625LOAD  
2mA SINKING  
2
1
2
V
OUT  
TIME (40µs/DIV)  
20mV/DIV  
V
OUT  
TIME (200µs/DIV)  
500mV/DIV  
Figure 38. ADR127 Line Transient Response  
Figure 41. ADR127 Load Transient Response (Sinking)  
C
= C  
= 0.1µF  
OUT  
LINE INTERRUPTION  
1V/DIV  
1.25V  
0V  
1
V
C
500mV/DIV  
IN  
= C  
= 0.1µF  
IN  
OUT  
250LOAD  
5mA SOURCING  
1
TIME (400µs/DIV)  
2
2
V
V
OUT  
500mV/DIV  
OUT  
100mV/DIV  
TIME (40µs/DIV)  
Figure 39. ADR121 Line Transient Response  
Figure 42. ADR127 Load Transient Response (Sourcing)  
C
= C  
= 0.1µF  
OUT  
5V  
V
C
1V/DIV  
V
IN  
IN  
= C  
= 0.1µF  
1V/DIV  
IN  
OUT  
1
1250LOAD  
2mA SINKING  
2.5V  
1
2
2
V
V
OUT  
OUT  
TIME (40µs/DIV)  
10mV/DIV  
500mV/DIV  
TIME (400µs/DIV)  
Figure 40. ADR125 Line Transient Response  
Figure 43. ADR121 Load Transient Response (Sinking)  
Rev. 0 | Page 14 of 20  
ADR121/ADR125/ADR127  
0
–20  
2.5V  
0V  
V
1V/DIV  
–40  
IN  
C
= C  
= 0.1µF  
IN  
OUT  
500LOAD  
–60  
5mA SOURCING  
1
–80  
1
–100  
–120  
–140  
–160  
–180  
–200  
2
V
OUT  
100mV/DIV  
TIME (40µs/DIV)  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Figure 44. ADR121 Load Transient Response (Sourcing)  
Figure 47. ADR121/ADR125/ADR127 PSRR  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10V  
5V  
V
C
2V/DIV  
IN  
= C  
= 0.1µF  
IN  
OUT  
2.5kLOAD  
2mA SINKING  
ADR127  
ADR121  
ADR125  
1
2
V
OUT  
1
TIME (40µs/DIV)  
20mV/DIV  
0
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 48. ADR121/ADR125/ADR127 Output Impedance vs. Frequency  
Figure 45. ADR125 Load Transient Response (Sinking)  
5V  
0V  
V
C
2V/DIV  
IN  
= C  
= 0.1µF  
IN  
OUT  
1kLOAD  
5mA SOURCING  
1
2
V
OUT  
100mV/DIV  
TIME (40µs/DIV)  
Figure 46. ADR125 Load Transient Response (Sourcing)  
Rev. 0 | Page 15 of 20  
ADR121/ADR125/ADR127  
THEORY OF OPERATION  
The ADR12x band gap references are the high performance  
solution for low supply voltage and low power applications. The  
uniqueness of these products lies in their architecture.  
NOTES  
Input Capacitor  
Input capacitors are not required on the ADR12x. There is no  
limit for the value of the capacitor used on the input, but a 1 μF  
to 10 μF capacitor on the input improved transient response in  
the applications where there is a sudden supply change. An  
additional 0.1 μF capacitor in parallel also helps reduce noise  
from the supply.  
POWER DISSIPATION CONSIDERATIONS  
The ADR12x family is capable of delivering load currents to  
5 mA with an input range from 3.0 V to 18 V. When this device  
is used in applications with large input voltages, care must be  
taken to avoid exceeding the specified maximum power  
dissipation or junction temperature, because this could result in  
premature device failure.  
Output Capacitor  
The ADR12x requires a small 0.1 μF capacitor for stability.  
Additional 0.1 μF to 10 μF capacitance in parallel can improve  
load transient response. This acts as a source of stored energy  
for a sudden increase in load current. The only parameter  
affected with the additional capacitance is turn-on time.  
Use the following formula to calculate a devices maximum  
junction temperature or dissipation:  
TJ TA  
PD  
=
θJA  
where:  
TJ is the junction temperature.  
TA is the ambient temperature.  
PD is the device power dissipation.  
θJA is the device package thermal resistance.  
Rev. 0 | Page 16 of 20  
 
ADR121/ADR125/ADR127  
APPLICATIONS  
Table 6. Required Outputs  
U1/U2  
BASIC VOLTAGE REFERENCE CONNECTION  
VOUT2  
1.25 V  
1.25 V  
2.5 V  
VOUT1  
3.75 V  
6.25 V  
7.5 V  
The circuit in Figure 4 illustrates the basic configuration for the  
ADR12x family voltage reference.  
ADR127/ADR121  
ADR127/ADR125  
ADR121/ADR125  
1
6
NC  
NC  
NC  
ADR12x  
GND  
NEGATIVE PRECISION REFERENCE WITHOUT  
PRECISION RESISTORS  
2
3
5
4
INPUT  
OUTPUT  
0.1µF  
V
V
OUT  
A negative reference is easily generated by adding an op amp,  
A1, and is configured as shown in Figure 51. VOUT1 is at virtual  
ground and, therefore, the negative reference can be taken  
directly from the output of the op amp. The op amp must be  
dual-supply, low offset, and rail-to-rail if the negative supply  
voltage is close to the reference output.  
IN  
+
+
0.1µF  
Figure 49. Basic Configuration for the ADR12x Family  
STACKING REFERENCE ICs FOR ARBITRARY  
OUTPUTS  
1
6
NC  
NC  
NC  
Some applications may require two reference voltage sources  
that are a combined sum of the standard outputs. Figure 50  
shows how this stacked output reference can be implemented.  
ADR127  
2
3
GND  
5
4
V
V
OUT  
+V  
IN  
DD  
1
6
NC  
NC  
NC  
0.1µF  
ADR12x  
GND  
1k  
2
3
5
4
2
3
V+  
–V  
AD8603  
OUTPUT1  
0.1µF  
REF  
V
V
OUT  
IN  
V–  
+
+
+
0.1µF  
–V  
DD  
Figure 51. Negative Reference  
INPUT  
1
6
NC  
NC  
GENERAL-PURPOSE CURRENT SOURCE  
ADR12x  
OUTPUT2  
In low power applications, the need can arise for a precision  
current source that can operate on low supply voltages. The  
ADR12x can be configured as a precision current source (see  
Figure 52). The circuit configuration shown is a floating current  
source with a grounded load. The references output voltage is  
bootstrapped across RSET, which sets the output current into the  
load. With this configuration, circuit precision is maintained for  
load currents ranging from the references supply current,  
typically 85 μA, to approximately 5 mA.  
2
3
GND  
NC  
5
4
V
V
OUT  
IN  
+
+
0.1µF  
0.1µF  
Figure 50. Stacking References with ADR12x  
Two reference ICs are used and fed from an unregulated input,  
VIN. The outputs of the individual ICs are connected in series,  
which provide two output voltages, VOUT1 and VOUT2. VOUT1 is the  
terminal voltage of U1, while VOUT2 is the sum of this voltage  
and the terminal of U2. U1 and U2 are chosen for the two  
voltages that supply the required outputs (see Table 6). For  
example, if U1 and U2 are ADR127 and VIN ≥ 3.95 V, VOUT1 is  
1.25 V and VOUT2 is 2.5 V.  
1
6
NC  
NC  
NC  
ADR12x  
GND  
2
3
5
4
+V  
V
V
OUT  
DD  
IN  
I
SET  
R1  
RL  
I
SY  
P1  
Figure 52. ADR12x Trim Configuration  
Rev. 0 | Page 17 of 20  
 
 
 
 
 
ADR121/ADR125/ADR127  
OUTLINE DIMENSIONS  
2.90 BSC  
6
1
5
2
4
3
2.80 BSC  
1.60 BSC  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.60  
0.45  
0.30  
0.50  
0.30  
0.10 MAX  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AA WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 53. 6-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output  
Initial  
Temperature  
Voltage  
(VO)  
Accuracy  
(mV/%)  
Coefficient  
(ppm/°C)  
Package  
Description  
Package  
Option  
Temperature  
Range (°C)  
Ordering  
Quantity  
3000  
Model  
Branding  
ADR121AUJZ-  
REEL71  
ADR121AUJZ-  
R21  
ADR121BUJZ-  
REEL71  
ADR125AUJZ-  
REEL71  
ADR125AUJZ-  
R21  
ADR125BUJZ-  
REEL71  
ADR127AUJZ-  
REEL71  
ADR127AUJZ-  
R21  
2.5  
2.5  
2.5  
2.5  
5.0  
5.0  
5.0  
3
0.24  
25  
25  
9
6-Lead TSOT  
6-Lead TSOT  
6-Lead TSOT  
6-Lead TSOT  
6-Lead TSOT  
6-Lead TSOT  
6-Lead TSOT  
6-Lead TSOT  
6-Lead TSOT  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
−40°C to  
+125°C  
−40°C to  
+125°C  
−40°C to  
+125°C  
−40°C to  
+125°C  
−40°C to  
+125°C  
−40°C to  
+125°C  
−40°C to  
+125°C  
−40°C to  
+125°C  
R0N  
2.5  
0.24  
0.12  
0.24  
0.24  
0.12  
0.24  
0.24  
0.12  
250  
R0N  
R0P  
R0Q  
R0Q  
R0R  
R0S  
R0S  
R0T  
2.5  
3000  
3000  
250  
5.0  
25  
25  
9
5.0  
5.0  
3000  
3000  
250  
1.25  
1.25  
1.25  
25  
25  
9
3
ADR127BUJZ-  
REEL71  
1.5  
−40°C to  
+125°C  
3000  
1 Z = Pb-free part.  
Rev. 0 | Page 18 of 20  
 
 
ADR121/ADR125/ADR127  
NOTES  
Rev. 0 | Page 19 of 20  
ADR121/ADR125/ADR127  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05725-0-6/06(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADR121AUJZ

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO6, LEAD FREE, MO-193AA, TSOT-23, 6 PIN, Voltage Reference
ADI

ADR121AUJZ-R2

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121AUJZ-R21

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121AUJZ-REEL7

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121AUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO6, ROHS COMPLIANT, MO-193AA, TSOT-6
ROCHESTER

ADR121AUJZ-REEL71

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121AUJZR2

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO6, LEAD FREE, MO-193-AA, TSOT-6, Voltage Reference
ADI

ADR121AUJZREEL7

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO6, LEAD FREE, MO-193-AA, TSOT-6, Voltage Reference
ADI

ADR121BUJZ

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO6, LEAD FREE, MO-193AA, TSOT-23, 6 PIN, Voltage Reference
ADI

ADR121BUJZ-R2

IC IC,VOLT REFERENCE,FIXED,2.5V,BIPOLAR,TSOP,6PIN,PLASTIC, Voltage Reference
ADI

ADR121BUJZ-REEL7

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121BUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO6, ROHS COMPLIANT, MO-193AA, TSOT-6
ROCHESTER