ADR318ARJZ-REEL7 [ADI]

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 1.8 V, PDSO5, LEAD FREE, MO-178AA, SOT-23, 5 PIN, Voltage Reference;
ADR318ARJZ-REEL7
型号: ADR318ARJZ-REEL7
厂家: ADI    ADI
描述:

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 1.8 V, PDSO5, LEAD FREE, MO-178AA, SOT-23, 5 PIN, Voltage Reference

光电二极管 输出元件
文件: 总12页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low Drift SOT-23  
Voltage Reference with Shutdown  
ADR318  
FEATURES  
PIN CONFIGURATION  
Initial accuracy: ±± mV maximum, ±0.27% maximum  
Low temperature coefficient: 2± ppm/°C maximum  
Load regulation: 100 ppm/mA  
1
2
3
5
SHDN  
GND  
ADR318  
V
IN  
TOP VIEW  
(Not to Scale)  
Line regulation: 2± ppm/V  
4
V
V
OUT(FORCE)  
OUT(SENSE)  
Low supply headroom: 0.6 V  
Wide operating range: (VOUT + 0.6 V) to 1± V  
Low power: 120 μA maximum  
Figure 1. 5-Lead SOT-23  
Shutdown to less than 3 μA maximum  
Output current: ± mA  
Wide temperature range: 0°C to 70°C  
Tiny ±-lead SOT-23 package  
APPLICATIONS  
Battery-powered instrumentation  
Portable medical instruments  
Data acquisition systems  
Industrial process control systems  
Fault protection critical systems  
GENERAL DESCRIPTION  
The ADR318 is a precision 1.8 V band gap voltage reference  
featuring high accuracy, high stability, and low power  
consumption in a tiny footprint. Patented temperature drift  
curvature correction techniques minimize nonlinearity of the  
voltage change with temperature. The wide operating range and  
low power consumption with additional shutdown capability  
make the part ideal for battery-powered applications. The  
above the output voltage. This device is specified over the  
industrial operating range of 0°C to 70°C, and is available in a  
tiny 5-lead SOT-23 package.  
The combination of VOUT (SENSE) and shutdown functions also  
enables a number of unique applications, combining precision  
reference/regulation with fault decision and overcurrent  
protection.  
V
OUT (SENSE) pin enables greater accuracy by supporting full  
See the Applications section for details.  
Kelvin operation in PCBs employing thin or long traces.  
The ADR318 is a low dropout voltage (LDV) device that  
provides a stable output voltage from supplies as low as 600 mV  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADR318  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation .........................................................................9  
Device Power Dissipation Considerations.................................9  
Shutdown Mode Operation .........................................................9  
Applications..................................................................................... 10  
Basic Voltage Reference Connection....................................... 10  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Typical Performance Characteristics ............................................. 5  
Terminology ...................................................................................... 8  
Precision Negative Voltage Reference Without Precision  
Resistors....................................................................................... 10  
General-Purpose Current Source ............................................ 10  
High Power Performance with Current Limit ........................... 10  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
REVISION HISTORY  
10/06—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Ordering Guide .......................................................... 12  
Updated Outline Dimensions....................................................... 12  
1/03—Revision 0: Initial Version  
Rev. A | Page 2 of 12  
 
ADR318  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted1.  
Table 1.  
Parameter  
Symbol  
VO  
VOERR  
TCVO  
VIN – VOUT  
ΔVOUT/ΔVIN  
Conditions  
Min  
Typ  
Max  
1.802  
+0.27  
25  
Unit  
V
%
ppm/°C  
mV  
ppm/V  
Initial Accuracy  
1.795 1.8  
−0.27  
5
600  
10  
Initial Accuracy Error  
Temperature Coefficient  
Minimum Supply Voltage Headroom  
Line Regulation  
0°C to 70°C  
VIN = 2.5 V to 15 V,  
0°C < TA < 70°C  
25  
Load Regulation  
ΔVOUT/ΔILOAD  
ISY  
VIN = 3 V, ILOAD = 0 mA to 5 mA,  
0°C < TA < 70°C  
No load  
0°C < TA < 70°C  
0.1 Hz to 10 Hz  
100  
ppm/mA  
Quiescent Current  
100  
120  
140  
μA  
μA  
μV p-p  
Voltage Noise  
eN  
5
Turn-On Settling Time  
Long-Term Stability2  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to Ground  
tR  
20  
50  
40  
85  
25  
30  
μs  
ΔVOUT  
VO_HYS  
RRR  
ISC  
ppm/1000 hours  
ppm  
dB  
mA  
mA  
μA  
nA  
V
fIN = 60 Hz  
VIN = 5.0 V  
VIN = 15.0 V  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
ISHDN  
ILOGIC  
VINL  
3
500  
0.8  
Shutdown Logic High  
VINH  
2.4  
V
1 TMIN = 0°C, TMAX = 70°C.  
2 The long-term stability specification is noncumulative. The drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour period.  
Rev. A | Page 3 of 12  
 
 
 
 
ADR318  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
At 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Rating  
Supply Voltage  
18 V  
Output Short-Circuit Duration to GND  
Observe derating  
curves  
Storage Temperature Range: RJ-5 Package  
Operating Temperature Range  
Junction Temperature Range: RJ-5 Package  
–65°C to +125°C  
0°C to 70°C  
–65°C to +150°C  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Lead Temperature Range (Soldering, 60 sec) 300°C  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
5-Lead SOT-23 (RJ-5)  
230  
146  
°C/W  
ESD CAUTION  
Rev. A | Page 4 of 12  
 
 
 
ADR318  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.802  
0
–5  
V
= 2.5V TO 15V  
IN  
1.801  
MEAN + STANDARD DEVIATION  
–10  
–15  
–20  
–25  
1.800  
MEAN  
1.799  
MEAN – STANDARD DEVIATION  
1.798  
0
10  
20  
30  
40  
50  
60  
70  
15.0  
70  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. Typical Output Voltage vs. Temperature  
Figure 5. Line Regulation vs. Temperature  
110  
100  
90  
2.5  
2.3  
2.1  
1.9  
1.7  
70°C  
25°C  
0°C  
0°C  
25°C  
70°C  
80  
70  
2.5  
5.0  
7.5  
10.0  
12.5  
0
1
2
3
4
5
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 3. Supply Current vs. Input Voltage  
Figure 6. Minimum Input Voltage vs. Load Current  
–30  
–40  
–50  
–60  
–70  
–80  
10V  
2.5V  
TIME (400ms/DIV)  
0
10  
20  
30  
40  
50  
60  
TEMPERATURE (°C)  
Figure 4. Load Regulation vs. Temperature  
Figure 7. Typical Output Voltage Noise 0.1 Hz to 10 Hz  
Rev. A | Page 5 of 12  
 
ADR318  
V
OUT  
V
LOAD OFF  
LOAD ON  
L
I
I
= 5mA  
= 0mA  
L
L
TIME (10ms/DIV)  
TIME (200µs/DIV)  
Figure 8. Typical Output Voltage Noise 10 Hz to 10 kHz  
Figure 11. Load Transient Response, CL = 0 nF  
V
IN  
V
OUT  
LOAD OFF  
LOAD ON  
V
V
L
OUT  
I
I
= 5mA  
= 0mA  
L
L
TIME (40µs/DIV)  
TIME (200µs/DIV)  
Figure 9. Line Transient Response, CBYPASS = 0 μF  
Figure 12. Load Transient Response, CL = 1 nF  
V
IN  
V
OUT  
LOAD OFF  
LOAD ON  
V
V
L
OUT  
I
I
= 5mA  
= 0mA  
L
L
TIME (40µs/DIV)  
TIME (200µs/DIV)  
Figure 10. Line Transient Response, CBYPASS = 0.1 μF  
Figure 13. Load Transient Response, CL = 100 nF  
Rev. A | Page 6 of 12  
ADR318  
V
V
IN  
OUT  
SHUTDOWN PIN  
V
OUT  
TIME (40µs/DIV)  
TIME (4µs/DIV)  
Figure 14. Turn-On/Turn-Off Response at 5 V, RLOAD = 1.8 kΩ  
Figure 16. Shutdown Pin Response  
V
IN  
V
OUT  
TIME (100µs/DIV)  
Figure 15. Turn-On/Turn-Off Response at 5 V, RLOAD = 1.8 kΩ, CBYPASS = 0.1 μF  
Rev. A | Page 7 of 12  
ADR318  
TERMINOLOGY  
where:  
Temperature Coefficient  
Temperature coefficient is the change of output voltage with  
respect to operating temperature changes, normalized by the  
output voltage at 25°C. This parameter is expressed in ppm/°C,  
and can be determined with the following equation:  
VO(t0) = VO at 25°C at Time 0.  
VO(t1) = VO at 25°C after 1000 hours of operation at 25°C.  
Thermal Hysteresis  
Thermal hysteresis is the change of output voltage after the  
device is cycled through temperature from +25°C to −40°C to  
+125°C and back to +25°C. This is a typical value from a sample  
of parts put through such a cycle.  
VO  
(
T2  
)
)
VO  
(
T1  
)
ppm  
°C  
TCVO  
=
×106  
(1)  
VO 25°C  
(
×
(
T2 T1  
)
where:  
VO(25°C) = VO at 25°C.  
V
O_HYS = VO(25°C) − VO_TC  
VO  
(
25°C  
)
VO _TC  
VO _ HYS  
[ppm  
]
=
×106  
(3)  
VO(T1) = VO at Temperature 1.  
VO(T2) = VO at Temperature 2.  
Long-Term Stability  
Long-term stability is the typical shift of output voltage at 25°C  
on a sample of parts subjected to a test of 1000 hours at 25°C.  
VO 25°C  
(
)
where:  
VO(25°C) = VO at 25°C.  
O_TC = VO at 25°C after temperature cycle at +25°C to −40°C to  
+125°C and back to +25°C.  
V
ΔVO = VO(t0) VO(t1)  
VO  
(
t0  
VO  
)
VO  
t0  
t1  
( )  
ΔVO  
[
ppm  
]
=
×106  
(2)  
(
)
Rev. A | Page 8 of 12  
 
ADR318  
THEORY OF OPERATION  
Band gap references are the high performance solution for low  
supply voltage and low power voltage reference applications,  
and the ADR318 is no exception. The uniqueness of this lies in  
its architecture. By observing Figure 17, the ideal zero  
temperature coefficient (TC) band gap voltage is referenced to  
the output, not to ground. Therefore, if noise exists on the  
ground line, it is greatly attenuated on VOUT. The band gap cell  
consists of the PNP pair, Q51 and Q52, running at unequal  
current densities. The difference in voltage base emitter (VBE)  
results in a voltage with a positive TC that is amplified by the  
ratio of 2 × (R58/R54). This proportional-to-absolute  
temperature (PTAT) voltage, combined with VBE Q51 and VBE  
Q52, produces the stable band gap voltage.  
DEVICE POWER DISSIPATION CONSIDERATIONS  
The ADR318 is capable of delivering load currents up to 5 mA  
with an input voltage that ranges from 2.4 V to 15 V. When this  
device is used in applications with high input voltages, care  
should be taken to avoid exceeding the specified maximum  
power dissipation or junction temperature. Doing so results in  
premature device failure. The following formula should be used  
to calculate the devices maximum junction temperature or  
dissipation:  
TJ TA  
PD =  
(4)  
θJA  
where:  
Reduction in band gap curvature is performed by the ratio of  
the resistors R44 and R59, one of which is linearly temperature  
dependent. Precision laser-trimming and other patented circuit  
techniques are used to further enhance the drift performance.  
TJ = the junction temperature.  
TA = the ambient temperatures.  
PD = the device power dissipation.  
θJA = the device package thermal resistance.  
V
IN  
SHUTDOWN MODE OPERATION  
Q1  
V
V
OUT(FORCE)  
OUT(SENSE)  
The ADR318 includes a shutdown feature that is TTL/CMOS  
SHDN  
compatible. A logic low or a 0 V condition on the  
pin is  
R59  
R44  
R58  
required to turn the device off. During shutdown, the output of  
the reference becomes a high impedance state where its  
potential would then be determined by external circuitry. If the  
R49  
R54  
SHDN  
shutdown feature is not used, the  
connected to VIN (Pin 2).  
pin should be  
R53  
Q51  
Q52  
SHDN  
R48  
R60  
R61  
GND  
Figure 17. Simplified Schematic  
Rev. A | Page 9 of 12  
 
 
 
 
ADR318  
APPLICATIONS  
BASIC VOLTAGE REFERENCE CONNECTION  
GENERAL-PURPOSE CURRENT SOURCE  
The circuit in Figure 18 illustrates the basic configuration for  
the ADR318. Decoupling capacitors are not required for circuit  
stability. The ADR318 is capable of driving capacitative loads  
from 0 μF to 10 μF. However, a 0.1 μF ceramic output capacitor  
is recommended to absorb and deliver the charge as is required  
by a dynamic load.  
Many times in low power applications, the need arises for a  
precision current source that can operate on low supply  
voltages. As shown in Figure 20, the ADR318 can be configured  
as a precision current source. The illustrated circuit  
configuration is a floating current source with a grounded load.  
The reference output voltage is bootstrapped across R1 that sets  
the output current into the load. With this configuration, circuit  
precision is maintained for load currents in the range of the  
reference supply current, typically 90 mA, to approximately 5 mA.  
The supply current is a function of ISET and increases slightly at  
ADR318  
GND  
SHUTDOWN  
INPUT  
SHDN  
V
IN  
C
I
a given ISET.  
0.1µF  
V
V
OUT(S)  
OUT(F)  
+V  
DD  
OUTPUT  
V
C
IN  
O
0.1µF  
U1  
ADR318  
Figure 18. Voltage Reference Connection  
V
SHDN  
OUT(F)  
V
OUT(S)  
PRECISION NEGATIVE VOLTAGE REFERENCE  
WITHOUT PRECISION RESISTORS  
GND  
I
R1  
SET  
0.1µF  
)
A negative reference can be easily generated by combining the  
ADR318 with an op amp. Figure 19 shows this simple negative  
reference configuration. VOUT(F) and VOUT(S) are at virtual ground  
and therefore the negative reference can be taken directly from  
the output of the op amp. The op amp should be a dual-supply,  
low offset, rail-to-rail amplifier, such as the OP1177.  
I
SY  
I
(I  
ADJ  
SY SET  
R
I
= I  
SET  
+ I (I )  
SV SET  
L
OUT  
Figure 20. General-Purpose Current Source  
HIGH POWER PERFORMANCE WITH CURRENT LIMIT  
+V  
DD  
In some cases, the user may want higher output current  
delivered to a load and still achieve better than 0.5% accuracy  
out of the ADR318. The accuracy for a reference is normally  
specified with no load (see the Specifications section). However,  
the output voltage changes with the load current.  
V
IN  
ADR318  
V
V
OUT(F)  
SHDN  
OUT(S)  
GND  
The circuit in Figure 21 provides high current without  
compromising the accuracy of the ADR318. The power bipolar  
junction transistor (BJT) Q1 provides the required current, up  
to 1 A. The ADR318 delivers the base drive to Q1 through the  
force pin. The sense pin of the ADR318 is a regulated output  
and is connected to the load.  
–VREF  
OP1177  
–V  
SS  
Figure 19. Negative Reference  
Rev. A | Page 10 of 12  
 
 
 
 
 
 
 
ADR318  
The transistor Q2 protects Q1 during short-circuit limit faults  
A similar circuit function can also be achieved using the  
Darlington transistor configuration, as shown in Figure 22.  
by robbing its base drive. The maximum current is IL, MAX  
=
0.6 V/RS.  
V
IN  
V
IN  
R1  
4.7k  
V
IN  
R1  
4.7k  
ADR318  
V
IN  
SHDN  
GND  
ADR318  
SHDN  
GND  
V
V
OUT(F)  
Q1  
OUT(S)  
V
V
OUT(F)  
Q1  
OUT(S)  
Q2  
R
S
Q2  
R
S
R
L
R
L
Figure 22. High Output Current with Darlington Drive Configuration  
Figure 21. High Power Performance with Current Limit  
Rev. A | Page 11 of 12  
 
 
ADR318  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
5°  
0°  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 23. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Output  
Branding Voltage  
Ordering  
Quantity  
Model  
ADR318ARJ-R2  
ADR318ARJ-REEL  
ADR318ARJ-REEL7  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
REA  
REA  
REA  
L28  
1.800 V  
1.800 V  
1.800 V  
1.800 V  
250  
10,000  
3,000  
3,000  
ADR318ARJZ-REEL71 0°C to 70°C  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03431-0-10/06(A)  
Rev. A | Page 12 of 12  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY