ADR3425 [ADI]

Micropower, High Accuracy Voltage References; 微功耗,高精度电压基准
ADR3425
型号: ADR3425
厂家: ADI    ADI
描述:

Micropower, High Accuracy Voltage References
微功耗,高精度电压基准

文件: 总24页 (文件大小:895K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower, High Accuracy  
Voltage References  
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
FEATURES  
PIN CONFIGURATION  
Initial accuracy: 0.1ꢀ (maximum)  
GND FORCE  
GND SENSE  
ENABLE  
1
6
5
4
V
V
V
FORCE  
OUT  
OUT  
IN  
Maximum temperature coefficient: 8 ppm/°C  
Operating temperature range: −40°C to +125°C  
Output current: +10 mA source/−3 mA sink  
Low quiescent current: 100 μA (maximum)  
Low dropout voltage: 250 mV at 2 mA  
Output noise (0.1 Hz to 10 Hz): <10 μV p-p at 1.2 V (typical)  
6-lead SOT-23  
ADR34xx  
SENSE  
2
3
TOP VIEW  
(Not to Scale)  
Figure 1. 6-Lead SOT-23  
APPLICATIONS  
Precision data acquisition systems  
Industrial instrumentation  
Medical devices  
Battery-powered devices  
GENERAL DESCRIPTION  
Table 2. Voltage Reference Choices from Analog Devices  
The ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/  
ADR3440/ADR3450 are low cost, low power, high precision  
CMOS voltage references, featuring 0ꢀ1ꢁ initial accuracy, low  
operating current, and low output noise in a small SOT-23  
packageꢀ For high accuracy, output voltage and temperature  
coefficient are trimmed digitally during final assembly using  
Analog Devices, Incꢀ, patented DigiTrim® technologyꢀ  
High Voltage,  
High Perfor-  
mance  
VOUT  
(V)  
Low Cost/  
Low Power Power  
Ultralow Low  
Noise  
0.5/1.0  
1.2  
ADR130  
ADR3412  
ADR280  
2.048  
2.5  
ADR360  
ADR3420  
ADR3425  
AD1582  
ADR361  
ADR3430  
AD1583  
ADR363  
REF191  
ADR430  
ADR440  
Stability and system reliability are further improved by the low  
output voltage hysteresis of the device and low long-term output  
voltage driftꢀ Furthermore, the low operating current of the  
device (100 μA maximum) facilitates usage in low power  
devices, and its low output noise helps maintain signal integrity  
in critical signal processing systemsꢀ  
ADR291 ADR431  
REF192  
ADR03  
AD780  
ADR441  
ADR433  
ADR443  
3.0  
REF193  
ADR06  
AD780  
These CMOS are available in a wide range of output voltages, all  
of which are specified over the industrial temperature range of  
−40°C to +125°Cꢀ  
3.3  
ADR366  
REF196  
ADR3433  
4.096  
ADR3440  
AD1584  
ADR364  
ADR3450  
AD1585  
ADR365  
ADR292 ADR434  
Table 1. Selection Guide  
Model  
Output Voltage (V)  
Input Voltage Range (V)  
2.3 to 5.5  
2.3 to 5.5  
2.7 to 5.5  
3.2 to 5.5  
3.5 to 5.5  
4.3 to 5.5  
5.2 to 5.5  
REF198  
ADR293 ADR435  
REF195 ADR445  
ADR444  
ADR3412  
ADR3420  
ADR3425  
ADR3430  
ADR3433  
ADR3440  
ADR3450  
1.200  
2.048  
2.500  
3.000  
3.300  
4.096  
5.000  
5.0  
ADR02  
AD586  
ADR01  
AD587  
10.0  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR3412 Electrical Characteristics .......................................... 3  
ADR3420 Electrical Characteristics .......................................... 4  
ADR3425 Electrical Characteristics .......................................... 5  
ADR3430 Electrical Characteristics .......................................... 6  
ADR3433 Electrical Characteristics .......................................... 7  
ADR3440 Electrical Characteristics .......................................... 8  
ADR3450 Electrical Characteristics .......................................... 9  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 12  
Terminology.................................................................................... 18  
Theory of Operation ...................................................................... 19  
Power Dissipation....................................................................... 19  
Applications Information.............................................................. 20  
Basic Voltage Reference Connection....................................... 20  
Input and Output Capacitors.................................................... 20  
4-Wire Kelvin Connections ...................................................... 20  
VIN Slew Rate Considerations................................................... 20  
Shutdown/Enable Feature ......................................................... 20  
Sample Applications................................................................... 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Absolute Maximum Ratings and Minimum Operating  
Condition......................................................................................... 10  
Thermal Resistance .................................................................... 10  
REVISION HISTORY  
6/10—Rev. A to Rev. B  
Added ADR3430 Electrical Characteristics Section.....................4  
Added Table 4; Renumbered Sequentially .....................................4  
Added ADR3440 Electrical Characteristics Section and  
Added ADR3412, ADR3420, ADR3433..................... Throughout  
Changes to Table 1 and Table 2....................................................... 1  
Added ADR3412 Electrical Characteristics Section  
and Table 3......................................................................................... 3  
Added ADR3420 Electrical Characteristics Section  
and Table 4......................................................................................... 4  
Added ADR3433 Electrical Characteristics Section and  
Table 7, Renumbered Subsequent Tables ...................................... 7  
Replaced Figure 5 Through Figure 7 ........................................... 12  
Replaced Figure 11 Through Figure 13 ....................................... 13  
Table 5 .................................................................................................5  
Changes to Table 6.............................................................................6  
Changes to Figure 2...........................................................................8  
Changes to Figure 4 and Figure 5....................................................9  
Changes to Figure 11...................................................................... 10  
Changes to Figure 36 and Figure 37 Caption ............................. 14  
Changes to Figure 39 and Theory of Operation Section .......... 16  
Changes to Figure 40 and Figure 41............................................. 17  
Changes to Negative Reference Section, Boosted Output  
4/10—Rev. 0 to Rev. A  
Current Reference Section, Figure 43, and Figure 44................ 18  
Changes to Ordering Guide.......................................................... 19  
Added ADR3430 and ADR3440.......................................Universal  
Changes to Table 1, Table 2, and Figure 1 ..................................... 1  
Changes to Table 3............................................................................ 3  
3/10—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
SPECIFICATIONS  
ADR3412 ELECTRICAL CHARACTERISTICS  
VIN = 2.3 V to 5.5 V, TA = 25°C, ILOAD = 0 mA, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
VOUT  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
1.1988  
1.2000 1.2012  
VOERR  
0.1  
1.2  
8
%
mV  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
TCVOUT  
−40°C ≤ TA ≤ +125°C  
ppm/°C  
ppm/V  
ppm/V  
ΔVO/ΔVIN VIN = 2.3 V to 5.5 V  
VIN = 2.3 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
7
50  
160  
LOAD REGULATION  
Sourcing  
ΔVO/ΔIL  
IL = 0 mA to 10 mA,  
VIN = 2.8 V, −40°C ≤ TA ≤ +125°C  
IL = 0 mA to −3 mA,  
14  
7
30  
50  
ppm/mA  
ppm/mA  
Sinking  
VIN = 2.8 V, −40°C ≤ TA ≤ +125°C  
OUTPUT CURRENT CAPACITY  
Sourcing  
Sinking  
IL  
VIN = 2.8 V to 5.5 V  
VIN = 2.8 V to 5.5 V  
10  
−3  
mA  
mA  
QUIESCENT CURRENT  
Normal Operation  
IQ  
ENABLE > VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
ENABLE < 0.7 V  
85  
100  
5
μA  
μA  
μA  
V
Shutdown  
DROPOUT VOLTAGE1  
VDO  
IL = 0 mA, −40°C ≤ TA ≤ +125°C  
IL = 2 mA, −40°C ≤ TA ≤ +125°C  
1
1
1.1  
1.15  
V
ENABLE PIN  
Shutdown Voltage  
ENABLE Voltage  
ENABLE Pin Leakage Current  
OUTPUT VOLTAGE NOISE  
VL  
VH  
IEN  
0
0.7  
VIN  
3
V
V
μA  
VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz to 10 kHz  
f = 1 kHz  
0.85  
8
28  
en p-p  
μV p-p  
μV rms  
μV/√Hz  
OUTPUT VOLTAGE NOISE  
DENSITY  
en  
0.6  
OUTPUT VOLTAGE HYSTERESIS2  
RIPPLE REJECTION RATIO  
LONG-TERM STABILITY  
ΔVOUT_HYS TA = +25°C to −40°C to +125°C to +25°C  
RRR fIN = 60 Hz  
ΔVOUT_LTD 1000 hours at 50°C  
tR  
70  
ppm  
dB  
−60  
30  
ppm  
μs  
TURN-ON SETTLING TIME  
100  
CIN = 0.1 μF, CL = 0.1 μF, RLoad = 1 k  
1 Refers to the minimum difference between VIN and VOUT such that VOUT maintains a minimum accuracy of 0.1%. See the Terminology section.  
2 See the Terminology section. The part is placed through the temperature cycle in the order of temperatures shown.  
Rev. B | Page 3 of 24  
 
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
ADR3420 ELECTRICAL CHARACTERISTICS  
VIN = 2.3 V to 5.5 V, TA = 25°C, ILOAD = 0 mA, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
VOUT  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
2.0459  
2.0480 2.0500  
0.1  
VOERR  
%
2.048 mV  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
TCVOUT  
−40°C ≤ TA ≤ +125°C  
8
ppm/°C  
ppm/V  
ppm/V  
ΔVO/ΔVIN  
VIN = 2.3 V to 5.5 V  
VIN = 2.3 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
7
50  
160  
LOAD REGULATION  
Sourcing  
ΔVO/ΔIL  
IL = 0 mA to 10 mA,  
VIN = 2.8 V, −40°C ≤ TA ≤ +125°C  
IL = 0 mA to −3 mA,  
12  
7
30  
50  
ppm/mA  
ppm/mA  
Sinking  
VIN = 2.8 V, −40°C ≤ TA ≤ +125°C  
OUTPUT CURRENT CAPACITY  
Sourcing  
Sinking  
IL  
VIN = 2.8 V to 5.5 V  
VIN = 2.8 V to 5.5 V  
10  
−3  
mA  
mA  
QUIESCENT CURRENT  
Normal Operation  
IQ  
ENABLE > VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
ENABLE < 0.7 V  
85  
100  
5
μA  
μA  
μA  
mV  
mV  
Shutdown  
DROPOUT VOLTAGE1  
VDO  
IL = 0 mA, −40°C ≤ TA ≤ +125°C  
IL = 2 mA, −40°C ≤ TA ≤ +125°C  
100  
150  
250  
300  
ENABLE PIN  
Shutdown Voltage  
ENABLE Voltage  
ENABLE Pin Leakage Current  
OUTPUT VOLTAGE NOISE  
VL  
VH  
IEN  
0
0.7  
VIN  
3
V
V
μA  
VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz to 10 kHz  
f = 1 kHz  
0.85  
15  
38  
en p-p  
μV p-p  
μV rms  
μV/√Hz  
OUTPUT VOLTAGE NOISE  
DENSITY  
en  
0.9  
OUTPUT VOLTAGE HYSTERESIS2  
RIPPLE REJECTION RATIO  
LONG-TERM STABILITY  
ΔVOUT_HYS  
RRR  
TA = +25°C to −40°C to +125°C to +25°C  
fIN = 60 Hz  
70  
ppm  
dB  
−60  
30  
ΔVOUT_LTD  
tR  
1000 hours at 50°C  
ppm  
μs  
TURN-ON SETTLING TIME  
400  
CIN = 0.1 μF, CL = 0.1 μF, RLoad = 1 kΩ  
1 Refers to the minimum difference between VIN and VOUT such that VOUT maintains a minimum accuracy of 0.1%. See the Terminology section.  
2 See the Terminology section. The part is placed through the temperature cycle in the order of temperatures shown.  
Rev. B | Page 4 of 24  
 
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
ADR3425 ELECTRICAL CHARACTERISTICS  
VIN = 2.7 V to 5.5 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
VOUT  
Conditions  
Min  
Typ  
Max  
2.5025  
0.1  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
2.4975  
2.500  
VOERR  
%
2.5  
mV  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
TCVOUT  
−40°C ≤ TA ≤ +125°C  
2.5  
5
8
ppm/°C  
ppm/V  
ppm/V  
ΔVO/ΔVIN  
VIN = 2.7 V to 5.5 V  
VIN = 2.7 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
50  
120  
LOAD REGULATION  
Sourcing  
ΔVO/ΔIL  
IL = 0 mA to 10 mA,  
VIN = 3.0 V, −40°C ≤ TA ≤ +125°C  
IL = 0 mA to −3 mA,  
10  
10  
30  
50  
ppm/mA  
ppm/mA  
Sinking  
VIN = 3.0 V, −40°C ≤ TA ≤ +125°C  
OUTPUT CURRENT CAPACITY  
Sourcing  
Sinking  
IL  
VIN = 3.0 V to 5.5 V  
VIN = 3.0 V to 5.5 V  
10  
−3  
mA  
mA  
QUIESCENT CURRENT  
Normal Operation  
IQ  
ENABLE ≥ VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
ENABLE ≤ 0.7 V  
85  
100  
5
μA  
μA  
μA  
mV  
mV  
Shutdown  
DROPOUT VOLTAGE1  
VDO  
IL = 0 mA, TA = −40°C ≤ TA ≤ +125°C  
IL = 2 mA, TA = −40°C ≤ TA ≤ +125°C  
50  
75  
200  
250  
ENABLE PIN  
Shutdown Voltage  
ENABLE Voltage  
ENABLE Pin Leakage Current  
OUTPUT VOLTAGE NOISE  
VL  
VH  
IEN  
0
0.7  
VIN  
3
V
V
μA  
VIN × 0.85  
ENABLE = VIN, TA = −40°C ≤ TA ≤ +125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz to 10 kHz  
1
en p-p  
18  
42  
1
μV p-p  
μV rms  
ꢀV/√Hz  
OUTPUT VOLTAGE NOISE  
DENSITY  
en  
f = 1 kHz  
OUTPUT VOLTAGE HYSTERESIS2 ΔVOUT_HYS  
TA = +25°C to −40°C to +125°C to +25°C  
fIN = 60 Hz  
70  
ppm  
dB  
RIPPLE REJECTION RATIO  
LONG-TERM STABILITY  
TURN-ON SETTLING TIME  
RRR  
−60  
30  
ΔVOUT_LTD  
tR  
1000 hours at 50°C  
ppm  
μs  
600  
CIN = 0.1 μF, CL = 0.1 μF, RLoad = 1 kΩ  
1 Refers to the minimum difference between VIN and VOUT such that VOUT maintains a minimum accuracy of 0.1%. See the Terminology section.  
2 See the Terminology section. The part is placed through the temperature cycle in the order of temperatures shown.  
Rev. B | Page 5 of 24  
 
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
ADR3430 ELECTRICAL CHARACTERISTICS  
VIN = 3.2 V to 5.5 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
Symbol  
VOUT  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
2.9970  
3.0000 3.0030  
VOERR  
0.1  
3.0  
%
mV  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
TCVOUT  
−40°C ≤ TA ≤ +125°C  
2.5  
5
8
ppm/°C  
ppm/V  
ppm/V  
ΔVO/ΔVIN VIN = 3.2 V to 5.5 V  
VIN = 3.2 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
50  
120  
LOAD REGULATION  
Sourcing  
ΔVO/ΔIL  
IL = 0 mA to 10 mA,  
VIN = 3.5 V, −40°C ≤ TA ≤ +125°C  
IL = 0 mA to −3 mA,  
9
30  
50  
ppm/mA  
ppm/mA  
Sinking  
10  
VIN = 3.5 V, −40°C ≤ TA ≤ +125°C  
OUTPUT CURRENT CAPACITY  
Sourcing  
Sinking  
IL  
VIN = 3.5 V to 5.5 V  
VIN = 3.5 V to 5.5 V  
10  
−3  
mA  
mA  
QUIESCENT CURRENT  
Normal Operation  
IQ  
ENABLE ≥ VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
ENABLE ≤ 0.7 V  
85  
100  
5
μA  
μA  
μA  
mV  
mV  
Shutdown  
DROPOUT VOLTAGE1  
VDO  
IL = 0 mA, TA = −40°C ≤ TA ≤ +125°C  
IL = 2 mA, TA = −40°C ≤ TA ≤ +125°C  
50  
75  
200  
250  
ENABLE PIN  
Shutdown Voltage  
ENABLE Voltage  
ENABLE Pin Leakage Current  
OUTPUT VOLTAGE NOISE  
VL  
VH  
IEN  
0
0.7  
VIN  
3
V
V
μA  
VIN × 0.85  
ENABLE = VIN, TA = −40°C ≤ TA ≤ +125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz to 10 kHz  
0.85  
22  
45  
en p-p  
μV p-p  
μV rms  
ꢀV/√Hz  
ppm  
dB  
OUTPUT VOLTAGE NOISE DENSITY en  
f = 1 kHz  
1.1  
70  
OUTPUT VOLTAGE HYSTERESIS2  
RIPPLE REJECTION RATIO  
LONG-TERM STABILITY  
ΔVOUT_HYS TA = +25°C to −40°C to +125°C to +25°C  
RRR fIN = 60 Hz  
ΔVOUT_LTD 1000 hours at 50°C  
tR  
−60  
30  
ppm  
μs  
TURN-ON SETTLING TIME  
700  
CIN = 0.1 μF, CL = 0.1 μF, RLoad = 1 kΩ  
1 Refers to the minimum difference between VIN and VOUT such that VOUT maintains a minimum accuracy of 0.1%. See the Terminology section.  
2 See the Terminology section. The part is placed through the temperature cycle in the order of temperatures shown.  
Rev. B | Page 6 of 24  
 
 
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
ADR3433 ELECTRICAL CHARACTERISTICS  
VIN = 3.5 V to 5.5 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 7.  
Parameter  
Symbol  
VOUT  
Conditions  
Min  
Typ Max  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
3.2967  
3.30 3.3033  
VOERR  
0.1  
3.3  
8
%
mV  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
TCVOUT  
−40°C ≤ TA ≤ +125°C  
ppm/°C  
ppm/V  
ppm/V  
ΔVO/ΔVIN VIN = 3.5 V to 5.5 V  
5
50  
VIN = 3.5 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
120  
LOAD REGULATION  
Sourcing  
ΔVO/ΔIL  
IL = 0 mA to 10 mA,  
VIN = 3.8 V, −40°C ≤ TA ≤ +125°C  
IL = 0 mA to −3 mA,  
9
30  
50  
ppm/mA  
ppm/mA  
Sinking  
10  
VIN = 3.8 V, −40°C ≤ TA ≤ +125°C  
OUTPUT CURRENT CAPACITY  
Sourcing  
Sinking  
IL  
VIN = 3.8 V to 5.5 V  
VIN = 3.8 V to 5.5 V  
10  
−3  
mA  
mA  
QUIESCENT CURRENT  
Normal Operation  
IQ  
ENABLE > VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
ENABLE < 0.7 V  
85  
100  
5
μA  
μA  
μA  
mV  
mV  
Shutdown  
DROPOUT VOLTAGE1  
VDO  
IL = 0 mA, −40°C ≤ TA ≤ +125°C  
IL = 2 mA, −40°C ≤ TA ≤ +125°C  
50  
75  
200  
250  
ENABLE PIN  
Shutdown Voltage  
ENABLE Voltage  
ENABLE Pin Leakage Current  
OUTPUT VOLTAGE NOISE  
VL  
VH  
IEN  
0
0.7  
VIN  
3
V
V
μA  
VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz to 10 kHz  
f = 1 kHz  
0.85  
25  
46  
en p-p  
μV p-p  
μV rms  
μV/√Hz  
ppm  
dB  
OUTPUT VOLTAGE NOISE DENSITY en  
1.2  
70  
OUTPUT VOLTAGE HYSTERESIS2  
RIPPLE REJECTION RATIO  
LONG-TERM STABILITY  
ΔVOUT_HYS TA = +25°C to −40°C to +125°C to +25°C  
RRR fIN = 60 Hz  
ΔVOUT_LTD 1000 hours at 50°C  
tR  
-60  
30  
ppm  
μs  
TURN-ON SETTLING TIME  
750  
CIN = 0.1 μF, CL = 0.1 μF, RLoad = 1 kΩ  
1 Refers to the minimum difference between VIN and VOUT such that VOUT maintains a minimum accuracy of 0.1%. See the Terminology section.  
2 See the Terminology section. The part is placed through the temperature cycle in the order of temperatures shown.  
Rev. B | Page 7 of 24  
 
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
ADR3440 ELECTRICAL CHARACTERISTICS  
VIN = 4.3 V to 5.5 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 8.  
Parameter  
Symbol  
VOUT  
Conditions  
Min  
Typ  
Max  
4.1000  
0.1  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
4.0919  
4.0960  
VOERR  
%
4.096  
8
mV  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
TCVOUT  
−40°C ≤ TA ≤ +125°C  
2.5  
3
ppm/°C  
ppm/V  
ppm/V  
ΔVO/ΔVIN  
VIN = 4.3 V to 5.5 V  
VIN = 4.3 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
50  
120  
LOAD REGULATION  
Sourcing  
ΔVO/ΔIL  
IL = 0 mA to 10 mA,  
VIN = 4.6 V, −40°C ≤ TA ≤ +125°C  
IL = 0 mA to −3 mA,  
6
30  
50  
ppm/mA  
ppm/mA  
Sinking  
15  
VIN = 4.6 V, −40°C ≤ TA ≤ +125°C  
OUTPUT CURRENT CAPACITY  
Sourcing  
Sinking  
IL  
VIN = 4.6 V to 5.5 V  
VIN = 4.6 V to 5.5 V  
10  
−3  
mA  
mA  
QUIESCENT CURRENT  
Normal Operation  
IQ  
ENABLE ≥ VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
ENABLE ≤ 0.7 V  
85  
100  
5
μA  
μA  
μA  
mV  
mV  
Shutdown  
DROPOUT VOLTAGE1  
VDO  
IL = 0 mA, TA = −40°C ≤ TA ≤ +125°C  
IL = 2 mA, TA = −40°C ≤ TA ≤ +125°C  
50  
75  
200  
250  
ENABLE PIN  
Shutdown Voltage  
ENABLE Voltage  
ENABLE Pin Leakage Current  
OUTPUT VOLTAGE NOISE  
VL  
VH  
IEN  
0
0.7  
VIN  
3
V
V
μA  
VIN × 0.85  
ENABLE = VIN, TA = −40°C ≤ TA ≤ +125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz to 10 kHz  
en p-p  
29  
53  
1.4  
μV p-p  
μV rms  
ꢀV/√Hz  
OUTPUT VOLTAGE NOISE  
DENSITY  
en  
f = 1 kHz  
OUTPUT VOLTAGE HYSTERESIS2 ΔVOUT_HYS  
TA = +25°C to −40°C to +125°C to +25°C  
fIN = 60 Hz  
70  
ppm  
dB  
RIPPLE REJECTION RATIO  
LONG-TERM STABILITY  
TURN-ON SETTLING TIME  
RRR  
−60  
30  
ΔVOUT_LTD  
tR  
1000 hours at 50°C  
ppm  
μs  
800  
CIN = 0.1 μF, CL = 0.1 μF, RLoad = 1 kΩ  
1 Refers to the minimum difference between VIN and VOUT such that VOUT maintains a minimum accuracy of 0.1%. See the Terminology section.  
2 See the Terminology section. The part is placed through the temperature cycle in the order of temperatures shown.  
Rev. B | Page 8 of 24  
 
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
ADR3450 ELECTRICAL CHARACTERISTICS  
VIN = 5.2 V to 5.5 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 9.  
Parameter  
Symbol  
VOUT  
Conditions  
Min  
Typ  
Max  
5.0050  
0.1  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
4.9950  
5.0000  
VOERR  
%
5.0  
mV  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
TCVOUT  
−40°C ≤ TA ≤ +125°C  
2.5  
3
8
ppm/°C  
ppm/V  
ppm/V  
ΔVO/ΔVIN  
VIN = 5.2 V to 5.5 V  
VIN = 5.2 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
50  
120  
LOAD REGULATION  
Sourcing  
ΔVO/ΔIL  
IL = 0 mA to 10 mA,  
VIN = 5.5 V, −40°C ≤ TA ≤ +125°C  
IL = 0 mA to −3 mA,  
3
30  
50  
ppm/mA  
ppm/mA  
Sinking  
19  
VIN = 5.5 V, −40°C ≤ TA ≤ +125°C  
OUTPUT CURRENT CAPACITY  
Sourcing  
Sinking  
IL  
VIN = 5.5 V  
VIN = 5.5 V  
10  
−3  
mA  
mA  
QUIESCENT CURRENT  
Normal Operation  
IQ  
ENABLE ≥ VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
ENABLE ≤ 0.7 V  
85  
100  
5
μA  
μA  
μA  
mV  
mV  
Shutdown  
DROPOUT VOLTAGE1  
VDO  
IL = 0 mA, TA = −40°C ≤ TA ≤ +125°C  
IL = 2 mA, TA = −40°C ≤ TA ≤ +125°C  
50  
75  
200  
250  
ENABLE PIN  
Shutdown Voltage  
ENABLE Voltage  
ENABLE Pin Leakage Current  
OUTPUT VOLTAGE NOISE  
VL  
VH  
IEN  
0
0.7  
VIN  
3
V
V
μA  
VIN × 0.85  
ENABLE = VIN, TA = −40°C ≤ TA ≤ +125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz to 10 kHz  
1
en p-p  
35  
60  
1.5  
μV p-p  
μV rms  
ꢀV/√Hz  
OUTPUT VOLTAGE NOISE  
DENSITY  
en  
f = 1 kHz  
OUTPUT VOLTAGE HYSTERESIS2 ΔVOUT_HYS  
TA = +25°C to −40°C to +125°C to +25°C  
fIN = 60 Hz  
70  
ppm  
dB  
RIPPLE REJECTION RATIO  
LONG-TERM STABILITY  
TURN-ON SETTLING TIME  
RRR  
−58  
30  
ΔVOUT_LTD  
tR  
1000 hours at 50°C  
ppm  
ꢀs  
900  
CIN = 0.1 μF, CL = 0.1 μF, RLoad = 1 kΩ  
1 Refers to the minimum difference between VIN and VOUT such that VOUT maintains a minimum accuracy of 0.1%. See the Terminology section.  
2 See the Terminology section. The part is placed through the temperature cycle in the order of temperatures shown.  
Rev. B | Page 9 of 24  
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
ABSOLUTE MAXIMUM RATINGS AND MINIMUM OPERATING CONDITION  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 10.  
Parameter  
Rating  
Supply Voltage  
6 V  
VIN  
0.1 V/ms  
−40°C to +125°C  
−65°C to +125°C  
−65°C to +150°C  
Table 11. Thermal Resistance  
Package Type  
ENABLE to GND SENSE Voltage  
VIN Minimum Slew Rate  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature Range  
θJA  
θJC  
Unit  
6-Lead SOT-23 (RJ-6)  
230  
92  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 10 of 24  
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND FORCE  
1
6
V
FORCE  
OUT  
OUT  
IN  
ADR34xx  
5
4
V
V
SENSE  
GND SENSE  
ENABLE  
2
3
TOP VIEW  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 12. Pin Function Descriptions  
Pin No.  
Mnemonic  
GND FORCE  
GND SENSE  
ENABLE  
Description  
Ground Force Connection.1  
1
2
3
4
5
6
Ground Voltage Sense Connection. Connect directly to the point of lowest potential in the application.1  
Enable Connection. Enables or disables the device.  
Input Voltage Connection.  
Reference Voltage Output Sensing Connection. Connect directly to the voltage input of the load devices.1  
Reference Voltage Output.1  
VIN  
VOUT SENSE  
VOUT FORCE  
1 See the Applications Information section for more information on force/sense connections.  
Rev. B | Page 11 of 24  
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
2.5010  
2.5008  
2.5006  
2.5004  
2.5002  
2.5000  
2.4998  
2.4996  
2.4994  
2.4992  
2.4990  
5.0025  
5.0020  
5.0015  
5.0010  
5.0005  
5.0000  
4.9995  
4.9990  
4.9985  
4.9980  
4.9975  
V
= 5.5V  
V
= 5.5V  
IN  
IN  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (ºC)  
TEMPERATURE (ºC)  
Figure 3. ADR3425 Output Voltage vs. Temperature  
Figure 6. ADR3450 Output Voltage vs. Temperature  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
1
2
3
4
5
6
7
8
9
10  
11  
0
1
2
3
4
5
6
7
8
9
10 MORE  
TEMPERATURE COEFFICIENT (ppm/°C)  
TEMPERATURE COEFFICIENT (ppm/°C)  
Figure 4. ADR3425 Temperature Coefficient Distribution  
Figure 7. ADR3450 Temperature Coefficient Distribution  
24  
22  
35  
ADR3412  
ADR3420  
ADR3425  
ADR3430  
ADR3433  
ADR3412  
ADR3420  
ADR3425  
ADR3430  
ADR3433  
I
= 0mA TO +10mA  
I
= 0mA TO –3mA  
L
L
20  
18  
16  
14  
12  
10  
8
30  
SOURCING  
SINKING  
ADR3440  
ADR3450  
ADR3440  
ADR3450  
25  
20  
15  
10  
5
6
4
2
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Load Regulation vs. Temperature (Sourcing)  
Figure 8. Load Regulation vs. Temperature (Sinking)  
Rev. B | Page 12 of 24  
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
400  
–40°C  
+25°C  
+125°C  
350  
300  
T
T
T
= –40°C  
= +25°C  
= +125°C  
A
A
A
250  
200  
150  
100  
50  
0
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10  
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 9. ADR3412 Dropout Voltage vs. Load Current  
Figure 12. ADR3425 Dropout Voltage vs. Load Current  
450  
400  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
–40°C  
+25°C  
+125°C  
T
T
T
= –40°C  
= +25°C  
= +125°C  
A
A
A
0
–50  
–3 –2 –1  
0
0
1
2
3
4
5
6
7
8
9
10  
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 13. ADR3450 Dropout Voltage vs. Load Current  
Figure 10. ADR3420 Dropout Voltage vs. Load Current  
140  
120  
100  
80  
ADR3412  
ADR3420  
ADR3425  
ADR3430  
ADR3433  
FREQUENCY GEN = 1Hz  
V
C
R
= 2V/DIV  
IN  
ADR3440  
ADR3450  
= C = 0.1µF  
IN OUT  
= 1k  
L
2
60  
V
= 500mV/DIV  
OUT  
40  
20  
1
0
CH1 500mV  
CH2 2.00V  
M100µs  
A
CH2  
2.36V  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 11. ADR3412 Start-Up (Turn-On Settle) Time  
Figure 14. Line Regulation vs. Temperature  
Rev. B | Page 13 of 24  
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
0
C
C
= 1.1µF  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
= 0.1µF  
IN  
1
10µV/DIV  
TIME = 1s/DIV  
CH1 RMS = 3.14µV  
–90  
CH1 pk-pk = 18µV  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 15. ADR3425 Output Voltage Noise (0.1 Hz to 10 Hz)  
Figure 18. ADR3425 Ripple Rejection Ratio vs. Frequency  
C
R
= C = 0.1µF  
L
IN  
L
=
1
V
IN  
= 2V/DIV  
1
100µV/DIV  
TIME = 200µs/DIV  
2
V
OUT  
= 1V/DIV  
TIME = 1s/DIV  
CH1 pk-pk = 300µV  
CH1 RMS = 42.0µV  
Figure 16. ADR3425 Output Voltage Noise (10 Hz to 10 kHz)  
Figure 19. ADR3425 Start-Up Response  
12  
10  
8
ENABLE  
V
V
C
= 1V/DIV  
ENABLE  
= 3.0v  
IN  
= C = 0.1µF  
IN  
L
L
R
=
1
6
4
V
= 1V/DIV  
OUT  
TIME = 200µs/DIV  
2
2
0
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 17. ADR3425 Output Noise Spectral Density  
Figure 20. ADR3425 Restart Response from Shutdown  
Rev. B | Page 14 of 24  
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
0
C
C
= 1.1µF  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
= 0.1µF  
IN  
1
10µV/DIV  
–90  
CH1 pk-pk = 33.4µV  
CH1 RMS = 5.68µV  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 21. ADR3450 Output Voltage Noise (0.1 Hz to 10 Hz)  
Figure 24. ADR3450 Ripple Rejection Ratio vs. Frequency  
C
C
R
= 0µF  
= 0.1µF  
IN  
L
L
=
V
IN  
2V/DIV  
1
1
V
OUT  
2V/DIV  
TIME = 200µs/DIV  
100µV/DIV  
2
CH1 pk-pk = 446µV  
CH1 RMS = 60.3µV  
Figure 22. ADR3450 Output Voltage Noise (10 Hz to 10 kHz)  
Figure 25. ADR3450 Start-Up Response  
12  
10  
8
ENABLE  
V
V
C
R
= 2V/DIV  
ENABLE  
= 5.5V  
IN  
= C = 0.1µF  
IN  
L
L
1
=
6
V
= 2V/DIV  
OUT  
4
TIME = 200µs/DIV  
2
2
0
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 23. ADR3450 Output Noise Spectral Density  
Figure 26. ADR3450 Restart Response from Shutdown  
Rev. B | Page 15 of 24  
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
ENABLE  
1V/DIV  
ENABLE  
2V/DIV  
C
= C = 0.1µF  
L
= 5V  
= 1k  
IN  
IN  
C
= C = 0.1µF  
L
= 3V  
= 1k  
IN  
V
R
V
R
IN  
L
L
1
1
V
= 1V/DIV  
V
= 2V/DIV  
OUT  
2
OUT  
2
TIME = 200µs/DIV  
TIME = 200µs/DIV  
Figure 27. ADR3425 Shutdown Response  
Figure 30. ADR3450 Shutdown Response  
V
= 100mV/DIV  
IN  
5.5V  
5.2V  
3.2V  
2.7V  
C
= C = 0.1µF  
L
IN  
1
500mV/DIV  
C
= C = 0.1µF  
L
IN  
2
V
= 10mV/DIV  
OUT  
2
V
= 5mV/DIV  
OUT  
TIME = 1ms/DIV  
TIME = 1ms/DIV  
1
Figure 28. ADR3425 Line Transient Response  
Figure 31. ADR3450 Line Transient Response  
I
L
+10mA  
–3mA  
SOURCING  
SOURCING  
SINKING  
I
+10mA  
–3mA  
L
SINKING  
SINKING  
SINKING  
C
C
R
=
=
0.1µF  
0.1µF  
= 500  
IN  
C
C
R
=
=
0.1µF  
0.1µF  
= 250Ω  
IN  
L
L
L
L
5.0V  
2.5V  
V
= 20mV/DIV  
V
= 20mV/DIV  
OUT  
OUT  
TIME = 1ms/DIV  
TIME = 1ms/DIV  
Figure 29. ADR3425 Load Transient Response  
Figure 32. ADR3450 Load Transient Response  
Rev. B | Page 16 of 24  
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
7
6
5
4
3
2
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5.5 V  
IN  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
RELATIVE SHIFT IN V  
OUT  
(%)  
Figure 33. Supply Current vs. Temperature  
Figure 36. Output Voltage Drift Distribution After Reflow (SHR Drift)  
2.0  
8
T
= +25°C +150°C –50°C +25°C  
A
–40°C  
+25°C  
+125°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
7
6
5
4
3
2
1
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
ENABLE VOLTAGE (% of V  
)
IN  
OUTPUT VOLTAGE HYSTERESIS (ppm)  
Figure 37. ADR3450 Thermally Induced Output Voltage Hysteresis Distribution  
Figure 34. Supply Current vs. ENABLE Pin Voltage  
80  
10  
C
C
= 0.1µF  
= 1.1µF  
L
L
60  
40  
1
20  
0
–20  
–40  
–60  
–80  
0.1  
0.01  
0
200  
400  
600  
800  
1000  
0.01  
0.1  
1
10  
100  
1k  
10k  
ELAPSED TIME (Hours)  
FREQUENCY (Hz)  
Figure 35. ADR3450 Output Impedance vs. Frequency  
Figure 38. ADR3450 Typical Long-Term Output Voltage Drift  
(Four Devices, 1000 Hours)  
Rev. B | Page 17 of 24  
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
TERMINOLOGY  
ΔVOUT _ HYS =VOUT (25°C) VOUT _ TC [V]  
OUT (25°C) VOUT _ TC  
Dropout Voltage (VDO  
)
Dropout voltage, sometimes referred to as supply voltage  
headroom or supply-output voltage differential, is defined as  
the minimum voltage differential between the input and output  
such that the output voltage is maintained to within 0.1%  
accuracy.  
V
ΔVOUT _ HYS  
=
×106 [ppm]  
V
OUT (25°C)  
where:  
V
V
OUT(25°C) is the output voltage at 25°C.  
OUT_TC is the output voltage after temperature cycling.  
V
DO = (VIN − VOUT)min | IL = constant  
Long-Term Stability (ΔVOUT_LTD  
)
Because the dropout voltage depends upon the current passing  
through the device, it is always specified for a given load current.  
In series-mode devices, dropout voltage typically increases  
proportionally to load current (see Figure 8 and Figure 14).  
Long-term stability refers to the shift in output voltage at 50°C  
after 1000 hours of operation in a 50°C environment. Ambient  
temperature is kept at 50°C to ensure that the temperature  
chamber does not switch randomly between heating and cooling,  
which can cause instability over the 1000 hour measurement.  
This is also expressed as either a shift in voltage or a difference  
in ppm from the nominal output.  
Temperature Coefficient (TCVOUT  
)
The temperature coefficient relates the change in output voltage  
to the change in ambient temperature of the device, as normalized  
by the output voltage at 25°C. This parameter is expressed in  
ppm/°C and can be determined by the following equation:  
ΔVOUT _ LTD = VOUT (t1 ) VOUT (t0 ) [V]  
VOUT (t1 ) VOUT (t0 )  
max{VOUT (T1 ,T2 ,T3 )}min{VOUT (T1 ,T2 ,T3 )}  
ΔVOUT _ LTD  
=
×106 [ppm]  
TCVOUT  
=
×
VOUT (T2 ) × (T3 T1 )  
106 [ppm/ °C]  
VOUT (t0 )  
where:  
VOUT(t0) is the VOUT at 50°C at Time 0.  
(1)  
VOUT(t1) is the VOUT at 50°C after 1000 hours of operation  
at 50°C.  
where:  
VOUT(T) is the output voltage at Temperature T.  
T1 = −40°C.  
T2 = +25°C.  
T3 = +125°C.  
Line Regulation  
Line regulation refers to the change in output voltage in response  
to a given change in input voltage and is expressed in percent  
per volt, ppm per volt, or μV per volt change in input voltage.  
This parameter accounts for the effects of self-heating.  
This three-point method ensures that TCVOUT accurately  
portrays the maximum difference between any of the three  
temperatures at which the output voltage of the part is  
measured.  
Load Regulation  
Load regulation refers to the change in output voltage in  
response to a given change in load current and is expressed in  
μV per mA, ppm per mA, or ohms of dc output resistance. This  
parameter accounts for the effects of self-heating.  
The TCVOUT for the ADR3412/ADR3425/ADR3430/ADR3433/  
ADR3440/ADR3450 is guaranteed via statistical means. This is  
accomplished by recording output voltage data for a large  
number of units over temperature, computing TCVOUT for each  
individual device via Equation 1, then defining the maximum  
TCVOUT limits as the mean TCVOUT for all devices extended by  
six standard deviations (6σ).  
Solder Heat Resistance (SHR) Drift  
SHR drift refers to the permanent shift in output voltage  
induced by exposure to reflow soldering, expressed in units of  
ppm. This is caused by changes in the stress exhibited upon the  
die by the package materials when exposed to high tempera-  
tures. This effect is more pronounced in lead-free soldering  
processes due to higher reflow temperatures.  
Thermally Induced Output Voltage Hysteresis (ΔVOUT_HYS  
Thermally induced output voltage hysteresis represents the  
change in output voltage after the device is exposed to a  
)
specified temperature cycle. This is expressed as either a shift in  
voltage or a difference in ppm from the nominal output.  
Rev. B | Page 18 of 24  
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
THEORY OF OPERATION  
V
IN  
LONG-TERM STABILITY  
One of the key parameters of the ADR34xx references is long-  
term stability. Regardless of output voltage, internal testing  
during development showed a typical drift of approximately  
30 ppm after 1000 hours of continuous, nonloaded operation  
in a 50°C environment.  
BAND GAP  
VOLTAGE  
REFERENCE  
V
BG  
ENABLE  
V
V
FORCE  
SENSE  
OUT  
OUT  
R
FB1  
GND FORCE  
It is important to understand that long-term stability is not  
guaranteed by design and that the output from the device may  
shift beyond the typical 30 ppm specification at any time,  
especially during the first 200 hours of operation. For systems  
that require highly stable output voltages over long periods of  
time, the designer should consider burning in the devices prior  
to use to minimize the amount of output drift exhibited by the  
reference over time. See the AN-713 Application Note, The  
Effect of Long-Term Drift on Voltage References, at www.analog.com  
for more information regarding the effects of long-term drift  
and how it can be minimized.  
R
FB2  
GND SENSE  
Figure 39. Block Diagram  
The ADR3412/ADR3425/ADR3430/ADR3433/ADR3440/  
ADR3450 use a patented voltage reference architecture to  
achieve high accuracy, low temperature coefficient (TC), and  
low noise in a CMOS process. Like all band gap references, the  
references combine two voltages of opposite TCs to create an  
output voltage that is nearly independent of ambient temper-  
ature. However, unlike traditional band gap voltage references, the  
temperature-independent voltage of the references are arranged  
to be the base-emitter voltage, VBE, of a bipolar transistor at  
room temperature rather than the VBE extrapolated to 0 K (the  
VBE of bipolar transistor at 0 K is approximately VG0, the band  
gap voltage of silicon). A corresponding positive-TC voltage is  
then added to the VBE voltage to compensate for its negative TC.  
POWER DISSIPATION  
The ADR34xx voltage references are capable of sourcing up to  
10 mA of load current at room temperature across the rated  
input voltage range. However, when used in applications subject  
to high ambient temperatures, the input voltage and load cur-  
rent should be carefully monitored to ensure that the device  
does not exceeded its maximum power dissipation rating. The  
maximum power dissipation of the device can be calculated via  
the following equation:  
The key benefit of this technique is that the trimming of the  
initial accuracy and TC can be performed without interfering  
with one another, thereby increasing overall accuracy across  
temperature. Curvature correction techniques further reduce  
the temperature variation.  
TJ TA  
PD =  
[W]  
θJA  
where:  
The band gap voltage (VBG) is then buffered and amplified to  
produce stable output voltages of 2.5 V and 5.0 V. The output  
buffer can source up to 10 mA and sink up to −3 mA of load  
current.  
PD is the device power dissipation.  
TJ is the device junction temperature.  
TA is the ambient temperature.  
θJA is the package (junction-to-air) thermal resistance.  
The ADR34xx family leverages Analog Devices patented  
DigiTrim technology to achieve high initial accuracy and low  
TC, and precision layout techniques lead to very low long-term  
drift and thermal hysteresis.  
Because of this relationship, acceptable load current in high  
temperature conditions may be less than the maximum current-  
sourcing capability of the device. In no case should the part be  
operated outside of its maximum power rating because doing so  
can result in premature failure or permanent damage to the device.  
Rev. B | Page 19 of 24  
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
APPLICATIONS INFORMATION  
voltages can be sensed accurately. These voltages are fed back  
BASIC VOLTAGE REFERENCE CONNECTION  
V
into the internal amplifier and used to automatically correct for  
the voltage drop across the current-carrying output and ground  
lines, resulting in a highly accurate output voltage across the  
load. To achieve the best performance, the sense connections  
should be connected directly to the point in the load where the  
output voltage should be the most accurate. See Figure 41 for an  
example application.  
OUT  
2.5V  
V
IN  
4
6
V
V
FORCE  
SENSE  
2.7V TO  
5.5V  
IN  
ENABLE  
OUT  
3
5
V
OUT  
0.1µF  
1µF  
0.1µF  
ADR34xx  
2
1
GND SENSE  
GND FORCE  
OUTPUT CAPACITOR(S) SHOULD  
BE MOUNTED AS CLOSE  
Figure 40. Basic Reference Connection  
TO V  
FORCE PIN AS POSSIBLE.  
OUT  
The circuit shown in Figure 40 illustrates the basic configuration  
for the ADR34xx references. Bypass capacitors should be  
connected according to the following guidelines.  
0.1µF  
6
4
V
V
V
FORCE  
IN  
IN  
OUT  
3
5
ENABLE  
V
SENSE  
OUT  
INPUT AND OUTPUT CAPACITORS  
SENSE CONNECTIONS  
SHOULD CONNECT AS  
CLOSE TO LOAD  
LOAD  
A 1 μF to 10 μF electrolytic or ceramic capacitor can be  
connected to the input to improve transient response in  
applications where the supply voltage may fluctuate. An  
additional 0.1 μF ceramic capacitor should be connected  
in parallel to reduce high frequency supply noise.  
ADR34xx  
1µF  
0.1µF  
DEVICE AS POSSIBLE.  
2
1
GND SENSE  
GND FORCE  
Figure 41. Application Showing Kelvin Connection  
A ceramic capacitor of at least a 0.1 μF must be connected to  
the output to improve stability and help filter out high fre-  
quency noise. An additional 1 μF to 10 μF electrolytic or  
ceramic capacitor can be added in parallel to improve transient  
performance in response to sudden changes in load current;  
however, the designer should keep in mind that doing so  
increases the turn-on time of the device.  
It is always advantageous to use Kelvin connections whenever  
possible. However, in applications where the IR drop is negligi-  
ble or an extra set of traces cannot be routed to the load, the  
force and sense pins for both VOUT and GND can simply be tied  
together, and the device can be used in the same fashion as a  
normal 3-terminal reference (as shown in Figure 40).  
Best performance and stability is attained with low ESR (for  
example, less than 1 Ω), low inductance ceramic chip-type  
output capacitors (X5R, X7R, or similar). If using an electrolytic  
capacitor on the output, a 0.1 ꢀF ceramic capacitor should be  
placed in parallel to reduce overall ESR on the output.  
VIN SLEW RATE CONSIDERATIONS  
In applications with slow-rising input voltage signals, the refer-  
ence exhibits overshoot or other transient anomalies that appear  
on the output. These phenomena also appear during shutdown  
as the internal circuitry loses power.  
4-WIRE KELVIN CONNECTIONS  
To avoid such conditions, ensure that the input voltage wave-  
form has both a rising and falling slew rate of at least 0.1 V/ms.  
Current flowing through a PCB trace produces an IR voltage  
drop, and with longer traces, this drop can reach several  
millivolts or more, introducing a considerable error into the  
output voltage of the reference. A 1 inch long, 5 millimeter wide  
trace of 1 ounce copper has a resistance of approximately  
100 mΩ at room temperature; at a load current of 10 mA, this  
can introduce a full millivolt of error. In an ideal board layout,  
the reference should be mounted as close to the load as possible  
to minimize the length of the output traces, and, therefore, the  
error introduced by voltage drop. However, in applications  
where this is not possible or convenient, force and sense  
connections (sometimes referred to as Kelvin sensing  
connections) are provided as a means of minimizing the IR  
drop and improving accuracy.  
SHUTDOWN/ENABLE FEATURE  
The ADR34xx references can be switched to a low power shut-  
down mode when a voltage of 0.7 V or lower is input to the  
ENABLE pin. Likewise, the reference becomes operational for  
ENABLE voltages of 0.85 × VIN or higher. During shutdown, the  
supply current drops to less than 5 μA, useful in applications that  
are sensitive to power consumption.  
If using the shutdown feature, ensure that the ENABLE pin  
voltage does not fall between 0.7 V and 0.85 × VIN because this  
causes a large increase in the supply current of the device and  
may keep the reference from starting up correctly (see Figure 34).  
If not using the shutdown feature, however, the ENABLE pin  
can simply be tied to the VIN pin, and the reference remains  
operational continuously.  
Kelvin connections work by providing a set of high impedance  
voltage-sensing lines to the output and ground nodes. Because  
very little current flows through these connections, the IR drop  
across their traces is negligible, and the output and ground  
Rev. B | Page 20 of 24  
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
SAMPLE APPLICATIONS  
Negative Reference  
4
6
V
+5V  
V
V
FORCE  
SENSE  
IN  
IN  
OUT  
R1  
10k  
3
5
ENABLE  
V
OUT  
1µF  
0.1µF  
Figure 42 shows how to connect the ADR3450 and a standard  
CMOS op amp, such as the AD8663, to provide a negative  
reference voltage. This configuration provides two main  
advantages: first, it only requires two devices and, therefore,  
does not require excessive board space; second, and more  
importantly, it does not require any external resistors, meaning  
that the performance of this circuit does not rely on choosing  
expensive parts with low temperature coefficients to ensure  
accuracy.  
0.1µF  
ADR3450  
R2  
10kꢀ  
2
1
GND SENSE  
GND FORCE  
+15V  
–5V  
ADA4000-1  
R3  
5kꢀ  
–15V  
+VDD  
Figure 43. ADR3450 Bipolar Output Reference  
1µF  
0.1µF  
4
3
6
5
AD8663  
V
V
FORCE  
SENSE  
IN  
OUT  
Boosted Output Current Reference  
–5V  
ENABLE  
V
Figure 44 shows a configuration for obtaining higher current  
drive capability from the ADR34xx references without  
sacrificing accuracy. The op amp regulates the current flow  
through the MOSFET until VOUT equals the output voltage of  
the reference; current is then drawn directly from VIN instead of  
from the reference itself, allowing increased current drive  
capability.  
OUT  
0.1µF  
ADR3450  
0.1µF  
–VDD  
2
1
GND SENSE  
GND FORCE  
Figure 42. ADR3450 Negative Reference  
In this configuration, the VOUT pins of the reference sit at virtual  
ground, and the negative reference voltage and load current are  
taken directly from the output of the operational amplifier. Note  
that in applications where the negative supply voltage is close to  
the reference output voltage, a dual-supply, low offset, rail-to-  
rail output amplifier must be used to ensure an accurate output  
voltage. The operational amplifier must also be able to source or  
sink an appropriate amount of current for the application.  
V
IN  
+16V  
U6  
R1  
100  
2N7002  
4
3
6
V
V
FORCE  
SENSE  
IN  
OUT  
AD8663  
ENABLE  
V
5
OUT  
V
OUT  
1µF 0.1µF  
0.1µF  
ADR34xx  
C
L
0.1µF  
R
200ꢀ  
L
Bipolar Output Reference  
2
1
GND SENSE  
GND FORCE  
Figure 43 shows a bipolar reference configuration. By connecting  
the output of the ADR3450 to the inverting terminal of an  
operational amplifier, it is possible to obtain both positive and  
negative reference voltages. R1 and R2 must be matched as  
closely as possible to ensure minimal difference between the  
negative and positive outputs. Resistors with low temperature  
coefficients must also be used if the circuit is used in environments  
with large temperature swings; otherwise, a voltage difference  
develops between the two outputs as the ambient temperature  
changes.  
Figure 44. Boosted Output Current Reference  
Because the current-sourcing capability of this circuit depends  
only on the ID rating of the MOSFET, the output drive capability  
can be adjusted to the application simply by choosing an  
appropriate MOSFET. In all cases, the VOUT SENSE pin should  
be tied directly to the load device to maintain maximum output  
voltage accuracy.  
Rev. B | Page 21 of 24  
 
 
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
OUTLINE DIMENSIONS  
3.00  
2.90  
2.80  
6
1
5
2
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
4°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.30 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 45. 6-Lead Small Outline Transistor Package (SOT-23)  
(RJ-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Ordering  
Quantity Branding  
Model1  
Output Voltage (V)  
1.200  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
Package Option  
RJ-6  
RJ-6  
ADR3412ARJZ-R2  
ADR3412ARJZ-R7  
ADR3420ARJZ-R2  
ADR3420ARJZ-R7  
ADR3425ARJZ-R2  
ADR3425ARJZ-R7  
ADR3430ARJZ-R2  
ADR3430ARJZ-R7  
ADR3433ARJZ-R2  
ADR3433ARJZ-R7  
ADR3440ARJZ-R2  
ADR3440ARJZ-R7  
ADR3450ARJZ-R2  
ADR3450ARJZ-R7  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
R2R  
R2R  
R2V  
R2V  
R2X  
R2X  
R2Z  
R2Z  
R31  
R31  
R33  
R33  
R34  
R34  
1.200  
2.048  
2.048  
RJ-6  
RJ-6  
2.500  
2.500  
RJ-6  
RJ-6  
3.000  
3.000  
RJ-6  
RJ-6  
3.300  
3.300  
RJ-6  
RJ-6  
4.096  
4.096  
RJ-6  
RJ-6  
5.000  
5.000  
RJ-6  
RJ-6  
1 Z = RoHS Compliant Part.  
Rev. B | Page 22 of 24  
 
 
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
NOTES  
Rev. B | Page 23 of 24  
ADR3412/ADR3420/ADR3425/ADR3430/ADR3433/ADR3440/ADR3450  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08440-0-6/10(B)  
Rev. B | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY