ADR425ARM [ADI]

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5 V, PDSO8, MO-187AA, MSOP-8, Voltage Reference;
ADR425ARM
型号: ADR425ARM
厂家: ADI    ADI
描述:

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5 V, PDSO8, MO-187AA, MSOP-8, Voltage Reference

光电二极管 输出元件
文件: 总24页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultraprecision, Low Noise, 2.048 V/2.500 V/  
3.00 V/5.00 V XFET® Voltage References  
ADR420/ADR421/ADR423/ADR425  
PIN CONFIGURATION  
FEATURES  
Low noise (0.1 Hz to 10 Hz)  
ADR420: 1.75 μV p-p  
ADR421: 1.75 μV p-p  
ADR423: 2.0 μV p-p  
ADR425: 3.4 μV p-p  
TP  
1
2
8
TP  
NIC  
V
ADR420/  
ADR421/  
ADR423/  
ADR425  
V
7
6
IN  
NIC  
3
4
OUT  
TOP VIEW  
(Not to Scale)  
GND  
5
TRIM  
Low temperature coefficient: 3 ppm/°C  
Long-term stability: 50 ppm/1,000 hours  
Load regulation: 70 ppm/mA  
Line regulation: 35 ppm/V  
Low hysteresis: 40 ppm typical  
Wide operating range  
ADR420: 4 V to 18 V  
ADR421: 4.5 V to 18 V  
ADR423: 5 V to 18 V  
ADR425: 7 V to 18 V  
NIC = NO INTERNAL CONNECTION  
TP = TEST PIN (DO NOT CONNECT)  
Figure 1. 8-Lead SOIC, 8-Lead MSOP  
GENERAL DESCRIPTION  
The ADR42x are a series of ultraprecision, second-generation  
eXtra implanted junction FET (XFET) voltage references  
featuring low noise, high accuracy, and excellent long-term  
stability in SOIC and MSOP footprints.  
Patented temperature drift curvature correction technique and  
XFET technology minimize nonlinearity of the voltage change  
with temperature. The XFET architecture offers superior  
accuracy and thermal hysteresis to the band gap references. It  
also operates at lower power and lower supply headroom than  
the buried Zener references.  
Quiescent current: 0.5 mA maximum  
High output current: 10 mA  
Wide temperature range: 40°C to +125°C  
APPLICATIONS  
Precision data acquisition systems  
High resolution converters  
Battery-powered instrumentation  
Portable medical instruments  
Industrial process control systems  
Precision instruments  
The superb noise and the stable and accurate characteristics of  
the ADR42x make them ideal for precision conversion  
applications such as optical networks and medical equipment.  
The ADR42x trim terminal can also be used to adjust the out-  
put voltage over a ±±.ꢀ5 range without compromising any  
other performance. The ADR42x series voltage references  
offer two electrical grades and are specified over the extended  
industrial temperature range of −4±°C to +12ꢀ°C. Devices have  
8-lead SOIC or 3±5 smaller, 8-lead MSOP packages.  
Optical network control circuits  
ADR42x PRODUCTS  
Table 1.  
Initial Accuracy  
Output Voltage (VO)  
Model  
mV  
1, 3  
1, 3  
1.5, 4  
2, 6  
%
Temperature Coefficient (ppm/°C)  
ADR420  
ADR421  
ADR423  
ADR425  
2.048  
2.50  
3.00  
5.00  
0.05, 0.15  
0.04, 0.12  
0.04, 0.13  
0.04, 0.12  
3, 10  
3, 10  
3, 10  
3, 10  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
ADR420/ADR421/ADR423/ADR425  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
ADR42± Electrical Specifications................................................... 3  
ADR421 Electrical Specifications................................................... 4  
ADR423 Electrical Specifications................................................... ꢀ  
ADR42ꢀ Electrical Specifications................................................... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Parameter Definitions.................................................................... 1ꢀ  
Theory of Operation ...................................................................... 16  
Device Power Dissipation Considerations.............................. 16  
Basic Voltage Reference Connections...................................... 16  
Noise Performance ..................................................................... 16  
Turn-On Time ............................................................................ 16  
Applications..................................................................................... 17  
Output Adjustment .................................................................... 17  
Reference for Converters in Optical Network  
Control Circuits.......................................................................... 17  
A Negative Precision Reference  
Without Precision Resistors...................................................... 17  
High Voltage Floating Current Source.................................... 18  
Kelvin Connections.................................................................... 18  
Dual-Polarity References........................................................... 18  
Programmable Current Source ................................................ 19  
Programmable DAC Reference Voltage.................................. 19  
Precision Voltage Reference for Data Converters.................. 2±  
Precision Boosted Output Regulator....................................... 2±  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
REVISION HISTORY  
6/05—Rev. F to Rev. G  
1/03—Rev. B to Rev. C.  
Changes to Table 1............................................................................ 1  
Changes to Ordering Guide .......................................................... 22  
Changed Mini_SOIC to MSOP........................................Universal  
Changes to Ordering Guide.............................................................4  
Corrections to Y-axis labels in TPCs 21 and 24 ............................9  
Enhancement to Figure 13 ............................................................ 1ꢀ  
Updated Outline Dimensions....................................................... 16  
2/05—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 22  
3/02—Rev. A to Rev. B.  
Edits to Ordering Guide ...................................................................4  
Deletion of Precision Voltage Regulator section........................ 1ꢀ  
Addition of Precision Boosted Output Regulator section ....... 1ꢀ  
Addition of Figure 13..................................................................... 1ꢀ  
7/04—Rev. D to Rev. E.  
Changes to Ordering Guide ............................................................ ꢀ  
3/04—Rev. C to Rev. D.  
Changes to Table I ............................................................................ 1  
Changes to Ordering Guide ............................................................ 4  
Updated Outline Dimensions....................................................... 16  
Rev. 0 to Rev. A.  
Addition of ADR423 and ADR42ꢀ to  
ADR42±/ADR421...............................................................Universal  
Rev. G | Page 2 of 24  
ADR420/ADR421/ADR423/ADR425  
ADR420 ELECTRICAL SPECIFICATIONS  
@ VIN = ꢀ.± V to 1ꢀ.± V, TA = 2ꢀ°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
2.045  
3  
Typ  
Max  
2.051  
+3  
Unit  
V
mV  
Output Voltage, A Grade  
Initial Accuracy  
VO  
VOERR  
2.048  
+0.15  
2.049  
+1  
%
0.15  
2.047  
1  
Output Voltage, B Grade  
Initial Accuracy  
VO  
VOERR  
2.048  
V
mV  
+0.05  
10  
%
0.05  
Temperature Coefficient A Grade,  
Temperature Coefficient, B Grade  
Supply Voltage Headroom  
Line Regulation  
TCVO  
2
1
ppm°C  
ppm/°C  
V
40°C < TA < +125°C  
3
VIN – VO  
2
VIN = 5 V to 18 V  
10  
35  
70  
ppm/V  
ΔVO/ΔVIN  
40°C < TA < +125°C  
ILOAD = 0 mA to 10 mA  
Load Regulation  
ppm/mA  
ΔVO/ΔILOAD  
40°C < TA < +125°C  
No load  
Quiescent Current  
IIN  
390  
500  
600  
μA  
μA  
40°C < TA < +125°C  
0.1 Hz to 10 Hz  
1 kHz  
Voltage Noise  
eN p-p  
eN  
tR  
1.75  
60  
10  
μV p-p  
nV/√Hz  
μs  
ppm  
ppm  
dB  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
1,000 hours  
fIN = 10 kHz  
50  
ΔVO  
VO_HYS  
RRR  
ISC  
40  
75  
27  
mA  
Rev. G | Page 3 of 24  
 
ADR420/ADR421/ADR423/ADR425  
ADR421 ELECTRICAL SPECIFICATIONS  
@ VIN = ꢀ.± V to 1ꢀ.± V, TA = 2ꢀ°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
2.497  
3  
Typ  
Max  
2.503  
+3  
Unit  
Output Voltage, A Grade  
Initial Accuracy  
VO  
VOERR  
2.500  
V
mV  
+0.12  
2.501  
+1  
%
0.12  
2.499  
1  
Output Voltage, B Grade  
Initial Accuracy  
VO  
VOERR  
2.500  
V
mV  
+0.04  
10  
%
0.04  
Temperature Coefficient, A Grade  
Temperature Coefficient, B Grade  
Supply Voltage Headroom  
Line Regulation  
TCVO  
2
1
ppm/°C  
ppm/°C  
V
40°C < TA < +125°C  
3
2
VIN VO  
ΔVO/ΔVIN  
VIN = 5 V to 18 V  
10  
35  
70  
ppm/V  
40°C < TA < +125°C  
ILOAD = 0 mA to 10 mA  
Load Regulation  
ppm/mA  
ΔVO/ΔILOAD  
40°C < TA < +125°C  
No load  
Quiescent Current  
IIN  
390  
500  
600  
μA  
μA  
40°C < TA < +125°C  
0.1 Hz to 10 Hz  
1 kHz  
Voltage Noise  
eN p-p  
eN  
tR  
1.75  
80  
10  
μV p-p  
nV/√Hz  
μs  
ppm  
ppm  
dB  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
1,000 hours  
fIN = 10 kHz  
50  
ΔVO  
VO_HYS  
RRR  
ISC  
40  
75  
27  
mA  
Rev. G | Page 4 of 24  
 
ADR420/ADR421/ADR423/ADR425  
ADR423 ELECTRICAL SPECIFICATIONS  
@ VIN = ꢀ.± V to 1ꢀ.± V, TA = 2ꢀ°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
3.004  
+4  
Unit  
Output Voltage, A Grade  
Initial Accuracy  
VO  
VOERR  
2.996  
4  
3.000  
V
mV  
+0.13  
3.0015  
+1.5  
+0.04  
10  
%
0.13  
2.9985  
1.5  
Output Voltage, B Grade  
Initial Accuracy  
VO  
VOERR  
3.000  
V
mV  
%
0.04  
Temperature Coefficient, A Grade  
Temperature Coefficient, B Grade  
Supply Voltage Headroom  
Line Regulation  
TCVO  
2
1
ppm/°C  
ppm/°C  
V
40°C < TA < +125°C  
3
2
VIN VO  
ΔVO/ΔVIN  
VIN = 5 V to 18 V  
10  
35  
70  
ppm/V  
40°C < TA < +125°C  
ILOAD = 0 mA to 10 mA  
Load Regulation  
ppm/mA  
ΔVO/ΔILOAD  
40°C < TA < +125°C  
No load  
Quiescent Current  
IIN  
390  
500  
600  
μA  
μA  
40°C < TA < +125°C  
0.1 Hz to 10 Hz  
1 kHz  
Voltage Noise  
eN p-p  
eN  
tR  
2
μV p-p  
nV/√Hz  
μs  
ppm  
ppm  
dB  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
90  
10  
50  
40  
75  
27  
1,000 hours  
fIN = 10 kHz  
ΔVO  
VO_HYS  
RRR  
ISC  
mA  
Rev. G | Page 5 of 24  
 
ADR420/ADR421/ADR423/ADR425  
ADR425 ELECTRICAL SPECIFICATIONS  
@ VIN = 7.± V to 1ꢀ.± V, TA = 2ꢀ°C, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
Conditions  
Min  
4.994  
6  
Typ  
5.000  
Max  
5.006  
+6  
Unit  
V
mV  
Output Voltage, A Grade  
Initial Accuracy  
VO  
VOERR  
+0.12  
5.002  
+2  
%
V
mV  
0.12  
4.998  
2  
Output Voltage, B Grade  
Initial Accuracy  
VO  
VOERR  
5.000  
+0.04  
10  
3
%
0.04  
Temperature Coefficient, A Grade  
Temperature Coefficient, B Grade  
Supply Voltage Headroom  
Line Regulation  
TCVO  
2
1
ppm/°C  
ppm/°C  
V
40°C < TA < +125°C  
2
VIN VO  
ΔVO/ΔVIN  
VIN = 7 V to 18 V  
40°C < TA < +125°C  
ILOAD = 0 mA to 10 mA  
10  
35  
70  
ppm/V  
Load Regulation  
ppm/mA  
ΔVO/ΔILOAD  
40°C < TA < +125°C  
No load  
40°C < TA < +125°C  
0.1 Hz to 10 Hz  
1 kHz  
Quiescent Current  
IIN  
390  
500  
600  
μA  
μA  
μV p-p  
nV/√Hz  
μs  
ppm  
ppm  
dB  
Voltage Noise  
eN p-p  
eN  
tR  
∆VO  
VO_HYS  
RRR  
ISC  
3.4  
110  
10  
50  
40  
75  
27  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
1,000 hours  
fIN = 10 kHz  
mA  
Rev. G | Page 6 of 24  
 
ADR420/ADR421/ADR423/ADR425  
ABSOLUTE MAXIMUM RATINGS  
These ratings apply at 2ꢀ°C, unless otherwise noted.  
Table 6.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage  
18 V  
Indefinite  
Output Short-Circuit Duration to GND  
Storage Temperature Range R, RM Packages  
Operating Temperature Range ADR42x  
Junction Temperature Range R, RM Packages  
Lead Temperature (Soldering, 60 sec)  
65°C to +150°C  
−40°C to +125°C  
65°C to +150°C  
300°C  
Table 7.  
Package Type  
1
Unit  
θJA  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
190  
130  
°C/W  
°C/W  
1 θJA is specified for the worst-case conditions, that is, θJA is specified for  
devices soldered in the circuit board for surface-mount packages.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. G | Page 7 of 24  
 
 
ADR420/ADR421/ADR423/ADR425  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
TP  
1
2
8
TP  
NIC  
V
TP  
1
2
8
TP  
NIC  
V
ADR420/  
ADR421/  
ADR423/  
ADR425  
ADR420/  
ADR421/  
ADR423/  
ADR425  
V
V
7
6
7
6
IN  
IN  
NIC  
3
4
NIC  
3
4
OUT  
OUT  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
GND  
5
TRIM  
GND  
5
TRIM  
NIC = NO INTERNAL CONNECTION  
TP = TEST PIN (DO NOT CONNECT)  
NIC = NO INTERNAL CONNECTION  
TP = TEST PIN (DO NOT CONNECT)  
Figure 2. Pin Configuration for 8-Lead SOIC  
Figure 3. Pin Configuration for 8-Lead MSOP  
Table 8. Pin Function Descriptions  
Pin No. Mnemonic Description  
1, 8  
TP  
Test Pin. There are actual connections in TP pins but they are reserved for factory testing purposes. Users should not  
connect anything to TP pins; otherwise, the device may not function properly.  
2
VIN  
Input Voltage.  
3, 7  
4
5
NIC  
GND  
TRIM  
No Internal Connect. NICs have no internal connections.  
Ground Pin = 0 V.  
Trim Terminal. It can be used to adjust the output voltage over a 0.5% range without affecting the temperature  
coefficient.  
6
VOUT  
Output Voltage.  
Rev. G | Page 8 of 24  
 
ADR420/ADR421/ADR423/ADR425  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.0025  
5.0023  
2.0495  
2.0493  
2.0491  
2.0489  
2.0487  
2.0485  
2.0483  
2.0481  
2.0479  
2.0477  
2.0475  
5.0021  
5.0019  
5.0017  
5.0015  
5.0013  
5.0011  
5.0009  
5.0007  
5.0005  
–40  
–10  
20  
50  
80  
110 125  
–40  
–10  
20  
50  
80  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. ADR420 Typical Output Voltage vs. Temperature  
Figure 7. ADR425 Typical Output Voltage vs. Temperature  
0.55  
2.5015  
2.5013  
2.5011  
2.5009  
2.5007  
2.5005  
2.5003  
2.5001  
2.4999  
2.4997  
2.4995  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
+125°C  
+25°C  
–40°C  
–40  
–10  
20  
50  
80  
110 125  
4
6
8
10  
12  
14  
15  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 8. ADR420 Supply Current vs. Input Voltage  
Figure 5. ADR421 Typical Output Voltage vs. Temperature  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
3.0010  
3.0008  
3.0006  
3.0004  
3.0002  
3.0000  
2.9998  
2.9996  
2.9994  
2.9992  
2.9990  
+125°C  
+25°C  
–40°C  
4
6
8
10  
12  
14  
15  
–40  
–10  
20  
50  
80  
110 125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 9. ADR421 Supply Current vs. Input Voltage  
Figure 6. ADR423 Typical Output Voltage vs. Temperature  
Rev. G | Page 9 of 24  
 
ADR420/ADR421/ADR423/ADR425  
0.55  
70  
60  
50  
40  
30  
20  
10  
0
I
= 0mA TO 5mA  
L
0.50  
+125°C  
0.45  
V
= 5V  
IN  
0.40  
+25°C  
V
= 6.5V  
0.35  
IN  
–40°C  
0.30  
0.25  
4
6
8
10  
12  
14 15  
–40  
–10  
20  
50  
80  
110 125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 10. ADR423 Supply Current vs. Input Voltage  
Figure 13. ADR421 Load Regulation vs. Temperature  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
70  
60  
50  
40  
30  
20  
10  
0
I
= 0mA TO 10mA  
L
+125°C  
V
= 7V  
IN  
+25°C  
–40°C  
V
= 15V  
IN  
6
8
10  
12  
14  
15  
–40  
–10  
20  
50  
80  
110 125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 11. ADR425 Supply Current vs. Input Voltage  
Figure 14. ADR423 Load Regulation vs. Temperature  
70  
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
V
= 15V  
IN  
= 0mA TO 10mA  
I
= 0mA TO 5mA  
L
I
L
V
= 4.5V  
IN  
V
= 6V  
IN  
0
–40  
–40  
–10  
20  
50  
80  
110 125  
–10  
20  
50  
80  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. ADR420 Load Regulation vs. Temperature  
Figure 15. ADR425 Load Regulation vs. Temperature  
Rev. G | Page 10 of 24  
ADR420/ADR421/ADR423/ADR425  
6
5
4
3
2
1
14  
12  
10  
8
V
= 4.5V TO 15V  
V
= 7.5V TO 15V  
IN  
IN  
6
4
2
0
–40  
0
–40  
–10  
20  
50  
80  
110 125  
–10  
20  
50  
80  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. ADR420 Line Regulation vs. Temperature  
Figure 19. ADR425 Line Regulation vs. Temperature  
6
5
4
3
2
1
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V TO 15V  
IN  
–40°C  
+25°C  
+85°C  
0
–40  
–10  
20  
50  
80  
110 125  
0
1
2
3
4
5
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 20. ADR420 Minimum Input/Output Voltage  
Differential vs. Load Current  
Figure 17. ADR421 Line Regulation vs. Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
0
9
8
7
6
5
4
3
2
1
V
= 5V TO 15V  
IN  
–40°C  
+25°C  
+125°C  
0
–40  
0
1
2
3
4
5
–10  
20  
50  
80  
110  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 21. ADR421 Minimum Input/Output Voltage  
Differential vs. Load Current  
Figure 18. ADR423 Line Regulation vs. Temperature  
Rev. G | Page 11 of 24  
ADR420/ADR421/ADR423/ADR425  
2.5  
2.0  
–40°C  
+25°C  
1.5  
+125°C  
1.0  
0.5  
0
TIME (1s/DIV)  
0
1
2
3
4
5
LOAD CURRENT (mA)  
Figure 22. ADR423 Minimum Input/Output Voltage  
Differential vs. Load Current  
Figure 25. ADR421 Typical Noise Voltage 0.1 Hz to 10 Hz  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–40°C  
+25°C  
+125°C  
TIME (1s/DIV)  
0
1
2
3
4
5
LOAD CURRENT (mA)  
Figure 23. ADR425 Minimum Input/Output Voltage  
Differential vs. Load Current  
Figure 26. Typical Noise Voltage 10 Hz to 10 kHz  
30  
25  
20  
15  
10  
5
1k  
TEMPERATURE  
SAMPLE SIZE – 160  
+25°C  
–40°C  
+25°C  
+125°C  
ADR425  
ADR420  
ADR423  
ADR421  
100  
10  
10  
0
100  
FREQUENCY (Hz)  
1k  
10k  
DEVIATION (ppm)  
Figure 24. ADR421 Typical Hysteresis  
Figure 27. Voltage Noise Density vs. Frequency  
Rev. G | Page 12 of 24  
 
ADR420/ADR421/ADR423/ADR425  
C
= 100nF  
1mA LOAD  
1V/DIV  
L
C
= 0μF  
BYPASS  
LINE INTERRUPTION  
500mV/DIV  
V
OUT  
V
V
IN  
LOAD OFF  
OUT  
500mV/DIV  
2V/DIV  
LOAD ON  
TIME (100  
μs/DIV)  
TIME (100μs/DIV)  
Figure 28. ADR421 Line Transient Response, no CBYPASS  
Figure 31. ADR421 Load Transient Response, CL = 100 nF  
C
= 0.01μF  
IN  
NO LOAD  
C
= 0.1μF  
BYPASS  
LINE INTERRUPTION  
500mV/DIV  
V
V
IN  
V
2V/DIV  
OUT  
OUT  
500mV/DIV  
V
2V/DIV  
IN  
TIME (100  
μs/DIV)  
TIME (4μs/DIV)  
Figure 32. ADR421 Turn-Off Response  
Figure 29. ADR421 Line Transient Response, CBYPASS = 0.1 μF  
C
= 0.01μF  
IN  
NO LOAD  
C
= 0  
μF  
1mA LOAD  
1V/DIV  
L
V
V
2V/DIV  
OUT  
V
OUT  
LOAD OFF  
2V/DIV  
IN  
2V/DIV  
LOAD ON  
TIME (4μs/DIV)  
TIME (100μs/DIV)  
Figure 33. ADR421 Turn-On Response  
Figure 30. ADR421 Load Transient Response, no CL  
Rev. G | Page 13 of 24  
 
ADR420/ADR421/ADR423/ADR425  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
C
= 0.01μF  
LOAD  
NO INPUT CAP  
V
2V/DIV  
OUT  
ADR425  
ADR423  
ADR421  
V
2V/DIV  
IN  
ADR420  
100k  
0
10  
TIME (4μs/DIV)  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 37. Output Impedance vs. Frequency  
Figure 34. ADR421 Turn-Off Response  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
C
= 0.01μF  
LOAD  
NO INPUT CAP  
V
2V/DIV  
OUT  
V
2V/DIV  
IN  
TIME (4μs/DIV)  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 38. Ripple Rejection vs. Frequency  
Figure 35. ADR421 Turn-On Response  
C
R
C
= 0.1μF  
BYPASS  
= 500Ω  
L
L
= 0  
V
5V/DIV  
2V/DIV  
OUT  
V
IN  
TIME (100μs/DIV)  
Figure 36. ADR421 Turn-On/Turn-Off Response  
Rev. G | Page 14 of 24  
 
ADR420/ADR421/ADR423/ADR425  
PARAMETER DEFINITIONS  
Temperature Coefficient  
Thermal Hysteresis  
The change of output voltage over the operating temperature  
range is normalized by the output voltage at 2ꢀ°C, and  
expressed in ppm/°C as  
The change of output voltage after the device is cycled through  
temperatures from +2ꢀ°C to −4±°C to +12ꢀ°C and back to  
+2ꢀ°C. This is a typical value from a sample of parts put  
through such a cycle  
VO  
(
T2  
)
VO  
(
T
)
1
TCVO  
(
ppm/ °C  
)
=
×6  
VO _ HYS = VO  
(
2ꢀ°C  
)
VO _ TC  
VO 2ꢀ°C  
(
)
×
(
T2 T  
)
1
VO  
(
2ꢀ°C  
)
VO _ TC  
where:  
VO (2ꢀ°C) = VO at 2ꢀ°C.  
VO (T1) = VO at Temperature 1.  
VO _ HYS ppm  
(
)
=
×6  
VO 2ꢀ°C  
(
)
VO (T2) = VO at Temperature 2.  
where:  
VO (2ꢀ°C) = VO at 2ꢀ°C.  
O_TC = VO at 2ꢀ °C after temperature cycle at +2ꢀ°C to −4±°C  
Line Regulation  
V
The change in output voltage due to a specified change in input  
voltage. It includes the effects of self-heating. Line regulation is  
expressed in either percent-per-volt, parts-per-million per volt,  
or microvolts-per-volt change in input voltage.  
to +12ꢀ°C and back to +2ꢀ°C.  
Input Capacitor  
Input capacitors are not required on the ADR42x. There is no  
limit for the value of the capacitor used on the input, but a 1 μF  
to 1± μF capacitor on the input improves transient response in  
applications where the supply suddenly changes. An additional  
±.1 μF capacitor in parallel also helps to reduce noise from the  
supply.  
Load Regulation  
The change in output voltage due to a specified change in load  
current. It includes the effects of self-heating. Load regulation is  
expressed in either microvolts-per-milliampere, parts-per-  
million per milliampere, or ohms of dc output resistance.  
Output Capacitor  
Long-Term Stability  
The ADR42x do not need output capacitors for stability under  
any load condition. An output capacitor, typically ±.1 μF, filters  
out any low level noise voltage and does not affect the operation  
of the part. On the other hand, the load transient response can  
be improved with an additional 1 μF to 1± μF output capacitor  
in parallel. A capacitor here acts as a source of stored energy for  
sudden increase in load current. The only parameter that  
degrades by adding an output capacitor is the turn-on time, and  
it depends on the size of the selected capacitor.  
Typical shift of output voltage at 2ꢀ°C on a sample of parts  
subjected to operation life test of 1,±±± of hours at 12ꢀ°C  
ΔVO = VO  
ΔVO ppm  
(
t0  
)
VO  
(
t1  
)
VO t0  
(
)
VO  
(t0 )  
t1  
( )  
(
)
=
×6  
VO  
where:  
VO (t0) = VO at 2ꢀ°C at Time ±.  
VO (t1) = VO at 2ꢀ°C after 1,±±± hours operation at 12ꢀ°C.  
Rev. G | Page 15 of 24  
 
ADR420/ADR421/ADR423/ADR425  
THEORY OF OPERATION  
The ADR42x series of references uses a new reference genera-  
tion technique known as XFET (eXtra implanted junction FET).  
This technique yields a reference with low supply current, good  
thermal hysteresis, and exceptionally low noise. The core of the  
XFET reference consists of two junction field-effect transistors  
(JFET), one having an extra channel implant to raise its pinch-  
off voltage. By running the two JFETs at the same drain current,  
the difference in pinch-off voltage can be amplified and used to  
form a highly stable voltage reference.  
DEVICE POWER DISSIPATION CONSIDERATIONS  
The ADR42x family of references is guaranteed to deliver load  
currents to 1± mA with an input voltage that ranges from 4.ꢀ V  
to 18 V. When these devices are used in applications at higher  
currents, the following equation should be used to account for  
the temperature effects due to power dissipation increases:  
TJ = PD × θJA + TA  
where:  
(2)  
TJ and TA are the junction and ambient temperatures,  
respectively.  
PD is the device power dissipation.  
The intrinsic reference voltage is about ±.ꢀ V with a negative  
temperature coefficient of about −12± ppm/°C. This slope is  
essentially constant to the dielectric constant of silicon and can  
be closely compensated by adding a correction term generated  
in the same fashion as the proportional-to-temperature (PTAT)  
term used to compensate band gap references. The primary  
advantage over a band gap reference is that the intrinsic  
temperature coefficient is approximately 3± times lower  
(therefore requiring less correction). This results in much lower  
noise because most of the noise of a band gap reference comes  
from the temperature compensation circuitry.  
θJA is the device package thermal resistance.  
BASIC VOLTAGE REFERENCE CONNECTIONS  
Voltage references, in general, require a bypass capacitor  
connected from VOUT to GND. The circuit in Figure 4±  
illustrates the basic configuration for the ADR42x family of  
references. Other than a ±.1 μF capacitor at the output to help  
improve noise suppression, a large output capacitor at the  
output is not required for circuit stability.  
Figure 39 shows the basic topology of the ADR42x series. The  
temperature correction term is provided by a current source  
with a value designed to be proportional to absolute  
temperature. The general equation is  
TP  
1
2
8
7
6
TP  
ADR420/  
ADR421/  
ADR423/  
ADR425  
V
NIC  
IN  
10μF  
+
OUTPUT  
0.1μF  
NIC  
3
4
0.1μF  
TOP VIEW  
(Not to Scale)  
5
TRIM  
V
OUT = G × (ΔVP R1 × IPTAT  
)
(1)  
NIC = NO INTERNAL CONNECTION  
TP = TEST PIN (DO NOT CONNECT)  
where:  
G is the gain of the reciprocal of the divider ratio.  
ΔVP is the difference in pinch-off voltage between the two JFETs.  
PTAT is the positive temperature coefficient correction current.  
Figure 40. Basic Voltage Reference Configuration  
NOISE PERFORMANCE  
I
The noise generated by ADR42x references is typically less  
than 2 μV p-p over the ±.1 Hz to 1± Hz band for the ADR42±,  
ADR421, and ADR423. Figure 2ꢀ shows the ±.1 Hz to 1± Hz  
noise of the ADR421, which is only 1.7ꢀ μV p-p. The noise  
measurement is made with a band-pass filter made of a 2-pole  
high-pass filter with a corner frequency at ±.1 Hz and a 2-pole  
low-pass filter with a corner frequency at 1± Hz.  
ADR42x are created by on-chip adjustment of R2 and R3 to  
achieve 2.±48 V or 2.ꢀ±± V at the reference output, respectively.  
V
IN  
I
I
1
1
ADR420/ADR421/  
ADR423/ADR425  
I
PTAT  
V
TURN-ON TIME  
OUT  
R2  
R3  
At power-up (cold start), the time required for the output  
voltage to reach its final value within a specified error band is  
defined as the turn-on settling time. Two components typically  
associated with this are the time for the active circuits to settle  
and the time for the thermal gradients on the chip to stabilize.  
Figure 32 to Figure 36 show the turn-on settling time for the  
ADR421.  
*
ΔV  
P
R1  
*EXTRA CHANNEL IMPLANT  
= G(ΔV – R1 × I  
V
)
PTAT  
GND  
OUT  
P
Figure 39. Simplified Schematic  
Rev. G | Page 16 of 24  
 
 
 
ADR420/ADR421/ADR423/ADR425  
APPLICATIONS  
OUTPUT ADJUSTMENT  
SOURCE FIBER  
GIMBAL + SENSOR  
DESTINATION  
The ADR42x trim terminal can be used to adjust the output  
voltage over a ±±.ꢀ5 range. This feature allows the system  
designer to trim system errors out by setting the reference to  
a voltage other than the nominal. This is also helpful if the  
part is used in a system at temperature to trim out any error.  
Adjustment of the output has a negligible effect on the  
temperature performance of the device. To avoid degrading  
temperature coefficients, both the trimming potentiometer  
and the two resistors need to be low temperature coefficient  
types, preferably <1±± ppm/°C.  
FIBER  
LASER BEAM  
ACTIVATOR  
RIGHT  
MEMS MIRROR  
PREAMP  
ACTIVATOR  
LEFT  
AMPL  
DAC  
AMPL  
DAC  
ADR421  
CONTROL  
ELECTRONICS  
ADR421  
ADR421  
ADC  
DSP  
INPUT  
2
OUTPUT  
= ±0.5%  
V
6
5
IN  
V
O
V
O
Figure 42. All-Optical Router Network  
ADR420/  
ADR421/  
ADR423/  
ADR425  
A NEGATIVE PRECISION REFERENCE  
WITHOUT PRECISION RESISTORS  
R1  
470kΩ  
R
P
TRIM  
GND  
10kΩ  
In many current-output CMOS DAC applications where the  
output signal voltage must be of the same polarity as the  
reference voltage, a current-switching DAC is often recon-  
figured into a voltage-switching DAC with a 1.2ꢀ V reference,  
an op amp, a pair of resistors, and an additional operational  
amplifier at the output to reinvert the signal. A negative voltage  
reference should be used because an additional operational  
amplifier is not required for either reinversion (current-  
switching mode) or amplification (voltage-switching mode) of  
the DAC output voltage. In general, any positive voltage  
reference can be converted into a negative voltage reference  
through the use of an operational amplifier and a  
10kΩ (ADR420)  
15kΩ (ADR421)  
4
R2  
Figure 41. Output Trim Adjustment  
REFERENCE FOR CONVERTERS IN OPTICAL  
NETWORK CONTROL CIRCUITS  
In the high capacity, all-optical router network of Figure 42,  
arrays of micromirrors direct and route optical signals from  
fiber to fiber, without first converting them to electrical form,  
which reduces the communication speed. The tiny micro-  
mechanical mirrors are positioned so that each is illuminated  
by a single wave length that carries unique information and  
can be passed to any desired input and output fiber. The mirrors  
are tilted by the dual-axis actuators controlled by precision  
analog-to-digital converters (ADCs) and digital-to-analog  
converters (DACs) within the system. Due to the microscopic  
movement of the mirrors, not only is the precision of the  
converters important, but the noise associated with these  
controlling converters is extremely critical, because total noise  
within the system can be multiplied by the numbers of  
converters used. Consequently, the exceptional low noise of the  
ADR42x is necessary to maintain the stability of the control  
loop for this application.  
pair of matched resistors in an inverting configuration. The  
disadvantage to this approach is that the largest single source of  
error in the circuit is the relative matching of the resistors used.  
A negative reference can easily be generated by adding a  
precision op amp and configuring as shown in Figure 43. VOUT  
is at virtual ground and, therefore, the negative reference can be  
taken directly from the output of the op amp. The op amp must  
be dual-supply, low offset and have rail-to-rail capability if  
negative supply voltage is close to the reference output.  
Rev. G | Page 17 of 24  
 
 
ADR420/ADR421/ADR423/ADR425  
+V  
DD  
V
IN  
2
2
V
IN  
R
LW  
V
ADR420/  
ADR421/  
ADR423/  
ADR425  
ADR420/  
ADR421/  
ADR423/  
ADR425  
OUT  
SENSE  
V
IN  
R
LW  
V
OUT  
FORCE  
A1  
6
V
OUT  
V
OUT  
6
GND  
4
GND  
4
R
L
A1 = OP191  
–V  
A1  
REF  
A1 = OP777, OP193  
Figure 45. Advantage of Kelvin Connection  
–V  
DD  
DUAL-POLARITY REFERENCES  
Figure 43. Negative Reference  
Dual-polarity references can easily be made with an op amp and  
a pair of resistors. In order not to defeat the accuracy obtained  
by the ADR42x, it is imperative to match the resistance toler-  
ance and the temperature coefficient of all components.  
HIGH VOLTAGE FLOATING CURRENT SOURCE  
The circuit in Figure 44 can be used to generate a floating  
current source with minimal self-heating. This particular  
configuration can operate on high supply voltages determined  
by the breakdown voltage of the N-channel JFET.  
V
IN  
2
1
μF  
0.1μF  
V
V
IN  
6
+5V  
OUT  
+V  
R1  
10k  
S
R2  
10k  
Ω
Ω
U1  
ADR425  
SST111  
VISHAY  
+10V  
V+  
U2  
2
TRIM  
GND  
4
5
V
IN  
–5V  
OP1177  
V–  
ADR420/  
ADR421/  
ADR423/  
ADR425  
R3  
5k  
Ω
–10V  
V
OUT  
6
Figure 46. +5 V and −5 V Reference Using ADR425  
2N3904  
OP09  
GND  
4
+2.5V  
R
L
+10V  
2.10kΩ  
2
V
V
IN  
–V  
6
5
OUT  
S
U1  
ADR425  
R1  
5.6kΩ  
Figure 44. High Voltage Floating Current Source  
TRIM  
GND  
4
KELVIN CONNECTIONS  
R2  
5.6kΩ  
V+  
U2  
In many portable instrumentation applications where PC board  
cost and area are important considerations, circuit intercon-  
nects are often narrow. These narrow lines can cause large  
voltage drops if the voltage reference is required to provide load  
currents to various functions. In fact, a circuits interconnects  
can exhibit a typical line resistance of ±.4ꢀ mΩ/square (1 oz. Cu,  
for example). Force and sense connections, also referred to as  
Kelvin connections, offer a convenient method of eliminating  
the effects of voltage drops in circuit wires. Load currents flow-  
ing through wiring resistance produce an error (VERROR = R × IL)  
at the load. However, the Kelvin connection in Figure 4ꢀ  
overcomes the problem by including the wiring resistance  
within the forcing loop of the op amp. Because the op amp  
senses the load voltage, op amp loop control forces the output to  
compensate for the wiring error and to produce the correct  
voltage at the load.  
OP1177  
V–  
–2.5V  
–10V  
Figure 47. +2.5 V and −2.5 V Reference Using ADR425  
Rev. G | Page 18 of 24  
 
 
 
 
ADR420/ADR421/ADR423/ADR425  
PROGRAMMABLE CURRENT SOURCE  
PROGRAMMABLE DAC REFERENCE VOLTAGE  
Together with a digital potentiometer and a Howland current  
pump, the ADR42ꢀ forms the reference source for a program-  
mable current as  
With a multichannel DAC, such as the quad, 12-bit voltage  
output AD7398, one of its internal DACs, and an ADR42x  
voltage reference can be used as a common programmable  
VREFX for the rest of the DACs. The circuit configuration is  
shown in Figure 49. The relationship of VREFX to VREF depends  
on the digital code and the ratio of R1 and R, and is given by  
R2 + R2  
A
B
R1  
IL =  
×VW  
(3)  
(4)  
R2B  
R2  
R1  
D
VREF × 1+  
and  
VREFX  
=
(ꢀ)  
R2  
1+  
×
D
2N R1  
VW =  
×VREF  
2N  
where:  
where:  
D = Decimal equivalent of input code.  
N = Number of bits.  
D = Decimal equivalent of the input code.  
N = Number of bits.  
V
V
REF = Applied external reference.  
REFX = Reference voltage for DACs A to D.  
C1  
10pF  
V
R1'  
50kΩ  
R2'  
DD  
2
1kΩ  
Table 9. VREFX vs. R1 and R2  
R1, R2  
Digital Code  
VREF  
V
DD  
V
TRIM  
U1  
5
6
IN  
R1 = R2  
R1 = R2  
R1 = R2  
R1 = 3R2  
R1 = 3R2  
R1 = 3R2  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
2 VREF  
1.3 VREF  
VREF  
4 VREF  
1.6 VREF  
VREF  
AD5232  
U2  
V+  
A2  
OP2177  
ADR425  
DIGITAL POT  
C2  
V
10pF  
DD  
V
OUT  
GND  
4
V–  
A
R2  
10Ω  
B
U2  
V+  
A1  
OP2177  
V
SS  
B
W
R1  
50kΩ  
R2  
A
1kΩ  
V–  
LOAD  
V
SS  
VL  
R2  
±0.1%  
R1  
±0.1%  
V
A
REF  
V
A
IL  
OUT  
V
Figure 48. Programmable Current Source  
REF  
DACA  
V
IN  
ADR425  
R1' and R2' must be equal to R1 and R2A + R2B, respectively.  
Theoretically, R2B can be made as small as needed to achieve  
V
B
REF  
V
V
V
B
C
D
OUT  
OUT  
OUT  
V
V
V
= V  
= V  
= V  
(D  
(D  
(D  
)
)
)
OB  
OC  
OD  
REFX  
REFX  
REFX  
B
C
D
the current needed within A2 output current driving capability.  
In the example shown in Figure 48, OP2177 is able to deliver a  
maximum of 1± mA. Because the current pump uses both  
positive and negative feedback, Capacitors C1 and C2 are  
needed to ensure that negative feedback prevails and, therefore,  
avoids oscillation. This circuit also allows bidirectional current  
flow if the inputs VA and VB of the digital potentiometer are  
supplied with the dual-polarity references as previously shown.  
DACB  
V
C
REF  
DACC  
V
D
REF  
DACD  
AD7398  
Figure 49. Programmable DAC Reference  
Rev. G | Page 19 of 24  
 
 
 
ADR420/ADR421/ADR423/ADR425  
PRECISION VOLTAGE REFERENCE FOR DATA  
CONVERTERS  
PRECISION BOOSTED OUTPUT REGULATOR  
A precision voltage output with boosted current capability  
can be realized with the circuit shown in Figure ꢀ1. In this  
circuit, U2 forces VO to be equal to VREF by regulating the turn  
on of N1. Therefore, the load current is furnished by VIN. In  
this configuration, a ꢀ± mA load is achievable at VIN of ꢀ V.  
Moderate heat is generated on the MOSFET, and higher current  
can be achieved by replacing the larger device. In addition, for  
a heavy capacitive load with step input, a buffer may be added  
at the output to enhance the transient response.  
The ADR42x family has a number of features that make it ideal  
for use with ADCs and DACs. The exceptionally low noise,  
tight temperature coefficient, and high accuracy characteristics  
make the ADR42x ideal for low noise applications such as  
cellular base station applications.  
AD77±1 is an example of an ADC that is well suited for the  
ADR42x. The ADR421 is used as the precision reference for  
the converter in Figure ꢀ±. The AD77±1 is a 16-bit ADC with  
on-chip digital filtering intended for measuring wide dynamic  
range and low frequency signals, such as those representing  
chemical, physical, or biological processes. It contains a charge-  
balancing (Σ-Δ) ADC, calibration microcontroller with on-chip  
static RAM, clock oscillator, and serial communications port.  
N1  
V
V
O
IN  
R
L
25Ω  
5V  
2
U1  
V
IN  
2N7002  
6
5
V
+
OUT  
V+  
U2  
ADR421  
AD8601  
+5V  
ANALOG  
SUPPLY  
TRIM  
GND  
4
V–  
0.1μF  
10μF  
AD7701  
AV  
V
DV  
DD  
DD  
SLEEP  
MODE  
0.1μF  
Figure 51. Precision Boosted Output Regulator  
V
IN  
V
OUT  
REF  
DATA READY  
DRDV  
CS  
0.1μF  
ADR420/  
ADR421/  
ADR423/  
ADR425  
READ (TRANSMIT)  
SERIAL CLOCK  
SERIAL CLOCK  
SCLK  
SDATA  
GND  
CLKIN  
RANGES  
BP/UP  
CAL  
SELECT  
CLKOUT  
CALIBRATE  
SC1  
SC2  
ANALOG  
INPUT  
A
IN  
ANALOG  
GROUND  
DGND  
AGND  
0.1μF  
0.1μF  
10μF  
DV  
SS  
AV  
SS  
–5V  
ANALOG  
SUPPLY  
0.1μF  
Figure 50. Voltage Reference for 16-Bit ADC AD7701  
Rev. G | Page 20 of 24  
 
 
 
ADR420/ADR421/ADR423/ADR425  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 52. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.00  
BSC  
8
1
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 53. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. G | Page 21 of 24  
 
ADR420/ADR421/ADR423/ADR425  
ORDERING GUIDE  
Temp  
Package  
Description  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
MSOP  
MSOP  
MSOP  
MSOP  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
MSOP  
Package  
Option  
R-8  
R-8  
R-8  
Top  
Mark  
ADR420  
ADR420  
ADR420  
ADR420  
R4A  
R4A  
L0C  
L0C  
ADR420  
ADR420  
ADR420  
ADR420  
ADR421  
ADR421  
ADR421  
ADR421  
R5A  
Output  
Voltage (VO)  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.50  
2.50  
2.50  
2.50  
2.50  
2.50  
2.50  
2.50  
2.50  
2.50  
2.50  
2.50  
3.00  
3.00  
3.00  
3.00  
3.00  
3.00  
3.00  
3.00  
3.00  
3.00  
3.00  
3.00  
5.00  
Initial Accuracy  
Temp Co.  
Model  
ADR420AR  
Range (°C)  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
mV  
%
(ppm/°C)  
10  
10  
10  
10  
10  
10  
10  
10  
3
3
3
3
3
3
3
3
3
1
1
1
1
3
3
3
3
3
3
3
3
1
1
1
1
4
4
4
4
4
4
1.5  
1.5  
4
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.05  
0.05  
0.05  
0.05  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.04  
0.04  
0.04  
0.04  
0.13  
0.13  
0.13  
0.13  
0.13  
0.13  
0.04  
0.04  
0.13  
0.13  
0.04  
0.04  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.04  
0.04  
0.04  
0.04  
ADR420AR-REEL7  
ADR420ARZ1  
ADR420ARZ-REEL71  
ADR420ARM  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
ADR420ARM-REEL7  
ADR420ARMZ1  
ADR420ARMZ-REEL71 −40 to +125  
ADR420BR  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
ADR420BR-REEL7  
3
3
3
ADR420BRZ1  
ADR420BRZ-REEL71  
ADR421AR  
10  
10  
10  
10  
10  
10  
10  
10  
3
3
3
3
10  
10  
10  
10  
10  
10  
3
ADR421AR-REEL7  
ADR421ARZ1  
ADR421ARZ-REEL71  
ADR421ARM  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
ADR421ARM-REEL7  
MSOP  
MSOP  
MSOP  
R5A  
R06  
R06  
ADR421ARMZ1  
ADR421ARMZ-REEL71 −40 to +125  
ADR421BR  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
MSOP  
ADR421  
ADR421  
ADR421  
ADR421  
ADR423  
ADR423  
ADR423  
ADR423  
R6A  
ADR421BR-REEL7  
ADR421BRZ1  
ADR421BRZ-REEL71  
ADR423AR  
ADR423AR-REEL7  
ADR423ARZ1  
ADR423ARZ-REEL71  
ADR423ARM  
R-8  
RM-8  
RM-8  
R-8  
ADR423ARM-REEL7  
ADR423BR  
MSOP  
R6A  
SOIC_N  
SOIC_N  
MSOP  
ADR423  
ADR423  
R0U  
ADR423BR-REEL7  
R-8  
3
ADR423ARMZ1  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
10  
10  
3
ADR423ARMZ-REEL71 −40 to +125  
MSOP  
R0U  
4
ADR423BRZ1  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
MSOP  
MSOP  
MSOP  
MSOP  
ADR423  
ADR423  
ADR425  
ADR425  
ADR425  
ADR425  
R7A  
R7A  
R0V  
R0V  
1.5  
1.5  
6
6
6
6
6
6
6
6
2
2
2
ADR423BRZ-REEL71  
ADR425AR  
3
10  
10  
10  
10  
10  
10  
10  
10  
3
ADR425AR-REEL7  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
ADR425ARZ1  
ADR425ARZ-REEL71  
ADR425ARM  
ADR425ARM-REEL7  
ADR425ARMZ1  
ADR425ARMZ-REEL71 −40 to +125  
ADR425BR  
−40 to +125  
−40 to +125  
−40 to +125  
−40 to +125  
SOIC_N  
SOIC_N  
SOIC_N  
SOIC_N  
ADR425  
ADR425  
ADR425  
ADR425  
ADR425BR-REEL7  
5.00  
5.00  
5.00  
3
3
3
ADR425BRZ1  
ADR425BRZ-REEL71  
2
1 Z = Pb-free part.  
Rev. G | Page 22 of 24  
 
 
ADR420/ADR421/ADR423/ADR425  
NOTES  
Rev. G | Page 23 of 24  
ADR420/ADR421/ADR423/ADR425  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02432-0-6/05(G)  
Rev. G | Page 24 of 24  

相关型号:

ADR425ARM-REEL7

Ultraprecision Low Noise, 2.048 V/2.500 V/ 3.00 V/5.00 V XFET Voltage References
ADI

ADR425ARMZ

Ultraprecision, Low Noise, 2.048 V/2.500 V/ 3.00 V/5.00 V XFET® Voltage References
ADI

ADR425ARMZ-REEL7

Ultraprecision, Low Noise, 2.048 V/2.500 V/ 3.00 V/5.00 V XFET® Voltage References
ADI

ADR425ARZ

Ultraprecision, Low Noise, 2.048 V/2.500 V/ 3.00 V/5.00 V XFET® Voltage References
ADI

ADR425ARZ-REEL7

Ultraprecision, Low Noise, 2.048 V/2.500 V/ 3.00 V/5.00 V XFET® Voltage References
ADI

ADR425BR

Ultraprecision Low Noise, 2.048 V/2.500 V/ 3.00 V/5.00 V XFET Voltage References
ADI

ADR425BR-REEL7

Ultraprecision Low Noise, 2.048 V/2.500 V/ 3.00 V/5.00 V XFET Voltage References
ADI

ADR425BRZ

Ultraprecision, Low Noise, 2.048 V/2.500 V/ 3.00 V/5.00 V XFET® Voltage References
ADI

ADR425BRZ-REEL7

Ultraprecision, Low Noise, 2.048 V/2.500 V/ 3.00 V/5.00 V XFET® Voltage References
ADI

ADR425_15

Ultraprecision, Low Noise Voltage References
ADI

ADR430

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR430A

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI