ADR439A [ADI]

Ultralow Noise XFET Voltage References with Current Sink and Source Capability; 超低噪声XFET基准电压与电流库和源能力
ADR439A
型号: ADR439A
厂家: ADI    ADI
描述:

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
超低噪声XFET基准电压与电流库和源能力

文件: 总24页 (文件大小:1182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise XFET® Voltage References  
with Current Sink and Source Capability  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
PIN CONFIGURATIONS  
FEATURES  
Low noise (0.1 Hz to 10 Hz): 3.5 µV p-p @ 2.5 V output  
No external capacitor required  
Low temperature coefficient  
A Grade: 10 ppm/°C max  
TP  
1
2
3
4
8
7
6
5
TP  
ADR43x  
TOP VIEW  
(Not to Scale)  
V
IN  
NC  
NC  
V
OUT  
GND  
TRIM  
B Grade: 3 ppm/°C max  
NC = NO CONNECT  
Load regulation: 15 ppm/mA  
Line regulation: 20 ppm/V  
Wide operating range  
Figure 1. 8-Lead MSOP  
(RM Suffix)  
ADR430: 4.1 V to 18 V  
ADR431: 4.5 V to 18 V  
ADR433: 5.0 V to 18 V  
ADR434: 6.1 V to 18 V  
ADR435: 7.0 V to 18 V  
TP  
1
2
3
4
8
7
6
5
TP  
NC  
V
ADR43x  
TOP VIEW  
(Not to Scale)  
V
IN  
NC  
OUT  
GND  
TRIM  
ADR439: 6.5 V to 18 V  
NC = NO CONNECT  
High output current: +30 mA/20 mA  
Wide temperature range: 40°C to +125°C  
Figure 2. 8-Lead SOIC  
(R Suffix)  
APPLICATIONS  
Precision data acquisition systems  
High resolution data converters  
Medical instruments  
Industrial process control systems  
Optical control circuits  
Precision instruments  
GENERAL DESCRIPTION  
The ADR43x series is a family of XFET voltage references  
featuring low noise, high accuracy, and low temperature drift  
performance. Using ADIs patented temperature drift curvature  
correction and XFET (eXtra implanted junction FET) technology,  
the ADR43xs voltage change versus temperature nonlinearity is  
minimized.  
All versions are specified over the extended industrial tempera-  
ture range (−40°C to +125°C).  
Table 1. Selection Guide  
Accuracy  
VOUT (V) (mV)  
Temperature Coefficient  
(ppm/°C)  
Model  
ADR430B  
ADR430A  
ADR43±B  
ADR43±A  
ADR433B  
ADR433A  
ADR434B  
ADR434A  
ADR435B  
ADR435A  
ADR439B  
ADR439A  
2.048  
2.048  
2.500  
2.500  
3.000  
3.000  
4.096  
4.096  
5.000  
5.000  
4.500  
4.500  
±±  
±3  
±±  
±3  
±±.4  
±4  
±±.5  
±5  
±2  
±6  
3
±0  
3
±0  
3
±0  
3
±0  
3
±0  
3
The XFET references operate at lower current (800 µA) and  
supply headroom (2 V) than buried-Zener references. Buried-  
Zener references require more than 5 V headroom for operations.  
The ADR43x XFET references are the only low noise solutions  
for 5 V systems.  
The ADR43x series has the capability to source up to 30 mA  
and sink up to 20 mA of output current. It also comes with a  
TRIM terminal to adjust the output voltage over a 0.5% range  
without compromising performance. The ADR43x is available  
in the 8-lead mini SOIC and 8-lead SOIC packages.  
±2  
±5.4  
±0  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
ADR430 Electrical Characteristics............................................. 3  
ADR431 Electrical Characteristics............................................. 4  
ADR433 Electrical Characteristics............................................. 5  
ADR434 Electrical Characteristics............................................. 6  
ADR435 Electrical Characteristics............................................. 7  
ADR439 Electrical Characteristics............................................. 8  
Absolute Maximum Ratings............................................................ 9  
Package Type................................................................................. 9  
ESD Caution.................................................................................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 15  
Basic Voltage Reference Connections...................................... 15  
Noise Performance ..................................................................... 15  
Turn-On Time ............................................................................ 15  
Applications..................................................................................... 16  
Output Adjustment .................................................................... 16  
Reference for Converters in Optical Network Control  
Circuits......................................................................................... 16  
Negative Precision Reference without Precision Resistors... 16  
High Voltage Floating Current Source.................................... 17  
Kelvin Connections.................................................................... 17  
Dual Polarity References ........................................................... 17  
Programmable Current Source ................................................ 18  
Programmable DAC Reference Voltage.................................. 18  
Precision Voltage Reference for Data Converters.................. 19  
Precision Boosted Output Regulator....................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
REVISION HISTORY  
9/04—Data Sheet Changed from Rev. A to Rev. B  
Added New Grade ..............................................................Universal  
Changes to Specifications................................................................ 3  
Replaced Figure 3, Figure 4, Figure 5........................................... 10  
Updated Ordering Guide............................................................... 21  
6/04—Data Sheet Changed from Rev. 0 to Rev. A  
Changes to Format .............................................................Universal  
Changes to the Ordering Guide.................................................... 20  
12/03—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
SPECIFICATIONS  
ADR430 ELECTRICAL CHARACTERISTICS  
VIN = 4.1 V to 18 V, ILOAD = 0 mA, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Output Voltage  
B Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
2.047  
2.045  
2.048  
2.048  
2.049  
2.05±  
V
V
A Grade  
Initial Accuracy  
B Grade  
B Grade  
A Grade  
A Grade  
VOERR  
VOERR  
VOERR  
VOERR  
±
0.05  
3
mV  
%
mV  
%
0.±5  
Temperature Coefficient  
SOIC-8 (B Grade)  
SOIC-8 (A Grade)  
MSOP-8  
TCVO  
TCVO  
TCVO  
∆VO/∆VIN  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
VIN = 4.± V to ±8 V  
−40°C < TA < +±25°C  
ILOAD = 0 mA to ±0 mA, VIN = 5.0 V  
−40°C < TA < +±25°C  
ILOAD = −±0 mA to 0 mA, VIN = 5.0 V  
−40°C < TA < +±25°C  
No load, −40°C < TA < +±25°C  
0.± Hz to ±0.0 Hz  
±
2
2
3
±0  
±0  
ppm/°C  
ppm/°C  
ppm/V  
Line Regulation  
5
20  
±5  
Load Regulation  
∆VO/∆ILOAD  
ppm/mA  
±5  
800  
ppm/mA  
µA  
µV p-p  
Quiescent Current  
Voltage Noise  
IIN  
eN p-p  
eN  
560  
3.5  
60  
Hz  
nV√  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability±  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
± kHz  
tR  
CIN = 0  
±,000 h  
±0  
40  
20  
–70  
40  
µs  
∆VO  
VO_HYS  
RRR  
ISC  
VIN  
VIN − VO  
ppm  
ppm  
dB  
mA  
V
fIN = ±0 kHz  
Supply Voltage Operating Range  
Supply Voltage Headroom  
4.±  
2
±8  
V
± The long-term stability specification is noncumulative. The drift in subsequent ±,000 hour periods is significantly lower than in the first ±,000 hour period.  
Rev. B | Page 3 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR431 ELECTRICAL CHARACTERISTICS  
VIN = 4.5 V to 18 V, ILOAD = 0 mA, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Output Voltage  
B Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
2.499  
2.497  
2.500  
2.500  
2.50±  
2.503  
V
V
A Grade  
Initial Accuracy  
B Grade  
B Grade  
A Grade  
A Grade  
VOERR  
VOERR  
VOERR  
VOERR  
±
0.04  
3
mV  
%
mV  
%
0.±3  
Temperature Coefficient  
SOIC-8 (B Grade)  
SOIC-8 (A Grade)  
MSOP-8  
TCVO  
TCVO  
TCVO  
∆VO/∆VIN  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
VIN = 4.5 V to ±8 V  
±
2
2
3
±0  
±0  
ppm/°C  
ppm/°C  
ppm/°C  
Line Regulation  
−40°C < TA < +±25°C  
5
20  
±5  
ppm/V  
Load Regulation  
∆VO/∆ILOAD  
ILOAD = 0 mA to ±0 mA, VIN = 5.0 V  
−40°C < TA < +±25°C  
ILOAD = −±0 mA to 0 mA, VIN = 5.0 V  
−40°C < TA < +±25°C  
No load, −40°C < TA < +±25°C  
0.± Hz to ±0.0 Hz  
± kHz  
ppm/mA  
±5  
800  
ppm/mA  
µA  
µV p-p  
Quiescent Current  
IIN  
580  
3.5  
80  
Voltage Noise  
eN p-p  
eN  
Hz  
nV√  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability±  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
tR  
CIN = 0  
±0  
µs  
∆VO  
VO_HYS  
RRR  
ISC  
±,000 h  
40  
20  
−70  
40  
ppm  
ppm  
dB  
mA  
V
fIN = ±0 kHz  
Supply Voltage Operating Range  
Supply Voltage Headroom  
VIN  
VIN – VO  
4.5  
2
±8  
V
± The long-term stability specification is noncumulative. The drift in subsequent ±,000 hour periods is significantly lower than in the first ±,000 hour period.  
Rev. B | Page 4 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR433 ELECTRICAL CHARACTERISTICS  
VIN = 5 V to 18 V, ILOAD = 0 mA , TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Output Voltage  
B Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
2.9985  
2.996  
3.000  
3.000  
3.00±5  
3.004  
V
V
A Grade  
Initial Accuracy  
B Grade  
B Grade  
A Grade  
A Grade  
Temperature Coefficient  
SOIC-8 (B Grade)  
SOIC-8 (A Grade)  
MSOP-8  
VOERR  
VOERR  
VOERR  
VOERR  
TCVO  
±.5  
0.05  
4
mV  
%
mV  
%
0.±3  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
VIN = 5 V to ±8 V  
±
2
2
3
±0  
±0  
ppm/°C  
ppm/°C  
ppm/°C  
Line Regulation  
∆VO/∆VIN  
−40°C < TA < +±25°C  
ILOAD = 0 mA to ±0 mA, VIN = 6 V  
−40°C < TA < +±25°C  
ILOAD = −±0 mA to 0 mA, VIN = 6 V  
−40°C < TA < +±25°C  
No load, −40°C < TA < +±25°C  
0.± Hz to ±0.0 Hz  
5
20  
±5  
ppm/V  
Load Regulation  
∆VO/∆ILOAD  
ppm/mA  
±5  
800  
ppm/mA  
µA  
µV p-p  
Quiescent Current  
Voltage Noise  
IIN  
eN p-p  
eN  
590  
3.75  
90  
Hz  
nV√  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability±  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
± kHz  
tR  
CIN = 0  
±,000 h  
±0  
40  
20  
−70  
40  
µs  
∆VO  
VO_HYS  
RRR  
ISC  
VIN  
VIN − VO  
ppm  
ppm  
dB  
mA  
V
fIN = ±0 kHz  
Supply Voltage Operating Range  
Supply Voltage Headroom  
5
2
±8  
V
±The long-term stability specification is noncumulative. The drift in subsequent ±,000 hour periods is significantly lower than in the first ±,000 hour period.  
Rev. B | Page 5 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR434 ELECTRICAL CHARACTERISTICS  
VIN = 6.1 V to 18 V, ILOAD = 0 mA, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Output Voltage  
B Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
4.0945  
4.09±  
4.096  
4.096  
4.0975  
4.±0±  
V
V
A Grade  
Initial Accuracy  
B Grade  
B Grade  
A Grade  
A Grade  
Temperature Coefficient  
SOIC-8 (B Grade)  
SOIC-8 (A Grade)  
MSOP-8  
VOERR  
VOERR  
VOERR  
VOERR  
TCVO  
±.5  
0.04  
5
mV  
%
mV  
%
0.±3  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
VIN = 6.± V to ±8 V  
−40°C < TA < +±25°C  
ILOAD = 0 mA to ±0 mA, VIN = 7 V  
−40°C < TA < +±25°C  
ILOAD = −±0 mA to 0 mA, VIN = 7 V  
−40°C < TA < +±25°C  
No load, −40°C < TA < +±25°C  
0.± Hz to ±0.0 Hz  
±
2
2
3
±0  
±0  
ppm/°C  
ppm/°C  
ppm/°C  
Line Regulation  
∆VO/∆VIN  
5
20  
±5  
ppm/V  
Load Regulation  
∆VO/∆ILOAD  
ppm/mA  
±5  
800  
ppm/mA  
µA  
µV p-p  
Quiescent Current  
Voltage Noise  
IIN  
eN p-p  
eN  
595  
6.25  
±00  
±0  
40  
20  
Hz  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability±  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
± kHz  
nV√  
µs  
tR  
CIN = 0  
±,000 h  
∆VO  
VO_HYS  
RRR  
ISC  
VIN  
VIN − VO  
ppm  
ppm  
dB  
mA  
V
fIN = ±0 kHz  
−70  
40  
Supply Voltage Operating Range  
Supply Voltage Headroom  
6.±  
2
±8  
V
± The long-term stability specification is noncumulative. The drift in subsequent ±,000 hour periods is significantly lower than in the first ±,000 hour period.  
Rev. B | Page 6 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR435 ELECTRICAL CHARACTERISTICS  
VIN = 7 V to 18 V, ILOAD = 0 mA, TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
Output Voltage  
B Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
4.998  
4.994  
5.000  
5.000  
5.002  
5.006  
V
V
A Grade  
Initial Accuracy  
B Grade  
B Grade  
A Grade  
A Grade  
Temperature Coefficient  
SOIC-8 (B Grade)  
SOIC-8 (A Grade)  
MSOP-8  
VOERR  
VOERR  
VOERR  
VOERR  
TCVO  
2
0.04  
6
mV  
%
mV  
%
0.±2  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
VIN = 7 V to ±8 V  
−40°C < TA < +±25°C  
ILOAD = 0 mA to ±0 mA, VIN = 8 V  
−40°C < TA < +±25°C  
ILOAD = −±0 mA to 0 mA, VIN = 8 V  
−40°C < TA < +±25°C  
No load, −40°C < TA < +±25°C  
0.± Hz to ±0 Hz  
±
2
2
3
±0  
±0  
ppm/°C  
ppm/°C  
ppm/°C  
Line Regulation  
∆VO/∆VIN  
∆VO/∆ILOAD  
5
20  
±5  
ppm/V  
Load Regulation  
ppm/mA  
±5  
800  
ppm/mA  
µA  
µV p-p  
Quiescent Current  
Voltage Noise  
IIN  
eN p-p  
eN  
620  
8
Hz  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability±  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
± kHz  
±±5  
±0  
40  
20  
−70  
40  
nV/√  
µs  
tR  
CIN = 0  
±,000 h  
∆VO  
VO_HYS  
RRR  
ISC  
VIN  
VIN − VO  
ppm  
ppm  
dB  
mA  
V
fIN = ±0 kHz  
Supply Voltage Operating Range  
Supply Voltage Headroom  
7
2
±8  
V
± The long-term stability specification is noncumulative. The drift in subsequent ±,000 hour periods is significantly lower than in the first ±,000 hour period.  
Rev. B | Page 7 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR439 ELECTRICAL CHARACTERISTICS  
VIN = 6.5 V to 18 V, ILOAD = 0 mV, TA = 25°C, unless otherwise noted.  
Table 7.  
Parameter  
Output Voltage  
B Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
4.498  
4.4946  
4.500  
4.500  
4.502  
4.5054  
V
V
A Grade  
Initial Accuracy  
B Grade  
B Grade  
A Grade  
A Grade  
Temperature Coefficient  
SOIC-8 (B Grade)  
SOIC-8 (A Grade)  
MSOP-8  
VOERR  
VOERR  
VOERR  
VOERR  
TCVO  
2
mV  
%
mV  
%
0.04  
5.4  
0.±2  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
VIN = 6.5 V to ±8 V  
±
2
2
3
±0  
±0  
ppm/°C  
ppm/°C  
ppm/°C  
Line Regulation  
∆VO/∆VIN  
−40°C < TA < +±25°C  
ILOAD = 0 mA to ±0 mA, VIN = 6.5 V  
−40°C < TA < +±25°C  
ILOAD = −±0 mA to 0 mA, VIN = 6.5 V  
−40°C < TA < +±25°C  
No load, −40°C < TA < +±25°C  
0.± Hz to ±0.0 Hz  
5
20  
±5  
ppm/V  
Load Regulation  
∆VO/∆ILOAD  
ppm/mA  
±5  
800  
ppm/mA  
µA  
µV p-p  
Quiescent Current  
Voltage Noise  
IIN  
eN p-p  
eN  
600  
7.5  
±±0  
±0  
40  
20  
Hz  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability±  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
± kHz  
nV/√  
tR  
CIN = 0  
±,000 h  
µs  
∆VO  
VO_HYS  
RRR  
ISC  
VIN  
VIN − VO  
ppm  
ppm  
dB  
mA  
V
fIN = ±0 kHz  
−70  
40  
Supply Voltage Operating Range  
Supply Voltage Headroom  
6.5  
2
±8  
V
± The long-term stability specification is noncumulative. The drift in subsequent ±,000 hour periods is significantly lower than in the first ±,000 hour period.  
Rev. B | Page 8 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ABSOLUTE MAXIMUM RATINGS  
@ 25°C, unless otherwise noted.  
Table 8.  
Parameter  
Supply Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range (R, RM Packages)  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature Range (Soldering, 60 s)  
PACKAGE TYPE  
Rating  
Table 9.  
20 V  
Indefinite  
−65°C to +±25°C  
−40°C to +±25°C  
−65°C to +±50°C  
300°C  
1
Package Type  
8-Lead SOIC (R)  
8-Lead MSOP (RM)  
θJC  
Unit  
°C/W  
°C/W  
θJA  
±30  
±90  
43  
± θJA is specified for worst-case conditions (device soldered in circuit board for  
surface-mount packages).  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions beyond those indicated in the operational  
sections of this specification is not implied. Absolute maximum  
ratings apply individually only, not in combination.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 9 of 24  
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
TYPICAL PERFORMANCE CHARACTERISTICS  
Default conditions: 5 V, CL = 5 pF, G = 2, Rg = Rf = 1 kΩ, RL = 2 kΩ, VO = 2 V p-p, Frequency = 1 MHz, TA = 25°C.  
0.8  
2.5009  
0.7  
0.6  
2.5007  
2.5005  
2.5003  
2.5001  
2.4999  
2.4997  
2.4995  
+125°C  
+25°C  
–40°C  
0.5  
0.4  
0.3  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
4
6
8
10  
12  
14  
16  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 6. ADR435 Supply Current vs. Input Voltage  
Figure 3. ADR431 VOUT vs. Temperature  
700  
650  
600  
550  
500  
450  
400  
4.0980  
4.0975  
4.0970  
4.0965  
4.0960  
4.0955  
4.0950  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. ADR435 Supply Current vs. Temperature  
Figure 4. ADR434 VOUT vs. Temperature  
0.60  
0.58  
0.56  
0.54  
0.52  
0.50  
0.48  
0.46  
0.44  
0.42  
0.40  
5.0025  
5.0020  
5.0015  
5.0010  
5.0005  
5.0000  
4.9995  
4.9990  
+125°C  
+25°C  
–40°C  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
6
8
10  
12  
14  
16  
18  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 8. ADR431 Supply Current vs. Input Voltage  
Figure 5. ADR435 VOUT vs. Temperature  
Rev. B | Page ±0 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
610  
580  
550  
520  
490  
460  
430  
400  
2.5  
2.0  
–40°C  
1.5  
+25°C  
1.0  
+125°C  
0.5  
0
–10  
–5  
0
5
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 9. ADR431 Supply Current vs. Temperature  
Figure 12. ADR431 Minimum Input/Output  
Differential Voltage vs. Load Current  
1.9  
15  
12  
9
I
= 0mA to 10mA  
L
NO LOAD  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
6
3
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. ADR431 Load Regulation vs. Temperature  
Figure 13. ADR431 Minimum Headroom vs. Temperature  
15  
12  
9
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
= 0mA to 10mA  
L
–40°C  
+25°C  
6
+125°C  
3
0
–10  
–5  
0
5
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 14. ADR435 Minimum Input/Output  
Differential Voltage vs. Load Current  
Figure 11. ADR435 Load Regulation vs. Temperature  
Rev. B | Page ±± of 24  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
1.9  
C
= 0.01µF  
LOAD  
NO LOAD  
NO INPUT CAPACITOR  
V
= 1V/DIV  
OUT  
1.7  
1.5  
1.3  
1.1  
0.9  
V
= 2V/DIV  
IN  
TIME = 4µs/DIV  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 15. ADR435 Minimum Headroom vs. Temperature  
Figure 18. ADR431 Turn-On Response, 0.01 µF Load Capacitor  
20  
16  
12  
8
C
= 0.01µF  
IN  
V
= 7V TO 18V  
IN  
NO LOAD  
V
= 1V/DIV  
OUT  
V
= 2V/DIV  
4
IN  
TIME = 4µs/DIV  
0
–4  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 16. ADR435 Line Regulation vs. Temperature  
Figure 19. ADR431 Turn-Off Response  
C
= 0.01µF  
LINE  
INTERRUPTION  
IN  
BYPASS CAPACITOR = 0µF  
NO LOAD  
V
= 1V/DIV  
OUT  
500mV/DIV  
V
IN  
V
= 50mV/DIV  
OUT  
V
= 2V/DIV  
IN  
TIME = 100µs/DIV  
TIME = 4µs/DIV  
Figure 17. ADR431 Turn-On Response  
Figure 20. ADR431 Line Transient Response—No Capacitors  
Rev. B | Page ±2 of 24  
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
LINE  
INTERRUPTION  
BYPASS CAPACITOR = 0.1µF  
500mV/DIV  
V
IN  
V
= 50mV/DIV  
OUT  
2µV/DIV  
TIME = 1s/DIV  
TIME = 100µs/DIV  
Figure 21. ADR431 Line Transient Response—0.1 µF Bypass Capacitor  
Figure 24. ADR435 0.1 Hz to 10.0 Hz Voltage Noise  
1µV/DIV  
50µV/DIV  
TIME = 1s/DIV  
TIME = 1s/DIV  
Figure 22. ADR431 0.1 Hz to 10.0 Hz Voltage Noise  
Figure 25. ADR435 10 Hz to 10 kHz Voltage Noise  
14  
12  
10  
8
6
50µV/DIV  
4
TIME = 1s/DIV  
2
0
–120 –90 –70 –50 –30 –10 10  
30  
50  
70  
90 120  
DEVIATION (PPM)  
Figure 23. ADR431 10 Hz to 10 kHz Voltage Noise  
Figure 26. ADR431 Typical Hysteresis  
Rev. B | Page ±3 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10  
–10  
–30  
–50  
–70  
ADR435  
–90  
ADR433  
–110  
–130  
–150  
ADR430  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 27. Output Impedance vs. Frequency  
Figure 28. Ripple Rejection Ratio  
Rev. B | Page ±4 of 24  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
THEORY OF OPERATION  
The ADR43x series of references uses a new reference generation  
technique known as XFET (eXtra implanted junction FET).  
This technique yields a reference with low supply current, good  
thermal hysteresis, and exceptionally low noise. The core of the  
XFET reference consists of two junction field-effect transistors  
(JFETs), one of which has an extra channel implant to raise its  
pinch-off voltage. By running the two JFETs at the same drain  
current, the difference in pinch-off voltage can be amplified and  
used to form a highly stable voltage reference.  
The ADR43x family of references is guaranteed to deliver load  
currents to 10 mA with an input voltage that ranges from 4.5 V  
to 18 V. When these devices are used in applications at higher  
currents, users should use the following equation to account for  
the temperature effects due to the power dissipation increases.  
TJ =PD × θJA + TA  
(2)  
where:  
TJ and TA are the junction and ambient temperatures,  
respectively.  
PD is the device power dissipation.  
The intrinsic reference voltage is around 0.5 V with a negative  
temperature coefficient of about –120 ppm/°C. This slope is  
essentially constant to the dielectric constant of silicon and can  
be closely compensated by adding a correction term generated  
in the same fashion as the proportional-to-temperature (PTAT)  
term used to compensate band gap references. The big advantage  
of an XFET reference is that the correction term is some 30 times  
lower (therefore, requiring less correction) than for a band gap  
reference, resulting in much lower noise, because most of the  
noise of a band gap reference comes from the temperature  
compensation circuitry.  
θJA is the device package thermal resistance.  
BASIC VOLTAGE REFERENCE CONNECTIONS  
Voltage references, in general, require a bypass capacitor  
connected from VOUT to GND. The circuit in Figure 30  
illustrates the basic configuration for the ADR43x family of  
references. Other than a 0.1 µF capacitor at the output to help  
improve noise suppression, a large output capacitor at the  
output is not required for circuit stability.  
Figure 29 shows the basic topology of the ADR43x series. The  
temperature correction term is provided by a current source  
with a value designed to be proportional to absolute temperature.  
The general equation is  
1
TP  
TP  
8
7
6
V
IN  
NIC  
2
3
4
ADR43x  
TOP VIEW  
(Not to Scale)  
+
OUTPUT  
10µF  
NIC  
0.1µF  
0.1µF  
5
TRIM  
VOUT = G ×  
(
ΔVP R1 × IPTAT  
)
(1)  
NIC = NO INTERNAL CONNECTION  
TP = TEST PIN (DO NOT CONNECT)  
where:  
G is the gain of the reciprocal of the divider ratio.  
VP is the difference in pinch-off voltage between the two JFETs.  
PTAT is the positive temperature coefficient correction current.  
Figure 30. Basic Voltage Reference Configuration  
NOISE PERFORMANCE  
I
The noise generated by the ADR43x family of references is  
typically less than 3.75 µV p-p over the 0.1 Hz to 10.0 Hz band  
for ADR430, ADR431, and ADR433. Figure 22 shows the 0.1  
Hz to 10 Hz noise of the ADR431, which is only 3.5 µV p-p. The  
noise measurement is made with a band-pass filter made of a  
2-pole high-pass filter with a corner frequency at 0.1 Hz and a  
2-pole low-pass filter with a corner frequency at 10.0 Hz.  
ADR43x devices are created by on-chip adjustment of R2 and  
R3 to achieve 2.048 V or 2.500 V, respectively, at the reference  
output.  
V
IN  
I
I
1
1
ADR43x  
I
PTAT  
TURN-ON TIME  
V
OUT  
R2  
Upon application of power (cold start), the time required for  
the output voltage to reach its final value within a specified  
error band is defined as the turn-on settling time. Two compo-  
nents normally associated with this are the time for the active  
circuits to settle and the time for the thermal gradients on the  
chip to stabilize. Figure 17 and Figure 18 show the turn-on  
settling time for the ADR431.  
*
V  
P
R3  
R1  
*EXTRA CHANNEL IMPLANT  
= G(V – R1  
V
OUT  
×
I
)
PTAT  
P
GND  
Figure 29. Simplified Schematic Device  
Power Dissipation Considerations  
Rev. B | Page ±5 of 24  
 
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
APPLICATIONS  
OUTPUT ADJUSTMENT  
SOURCE FIBER  
GIMBAL + SENSOR  
DESTINATION  
FIBER  
The ADR43x trim terminal can be used to adjust the output  
LASER BEAM  
voltage over a 0.5% range. This feature allows the system  
designer to trim system errors out by setting the reference to a  
voltage other than the nominal. This is also helpful if the part is  
used in a system at temperature to trim out any error. Adjustment  
of the output has negligible effect on the temperature perform-  
ance of the device. To avoid degrading temperature coefficients,  
both the trimming potentiometer and the two resistors need to  
be low temperature coefficient types, preferably <100 ppm/°C.  
ACTIVATOR  
LEFT  
ACTIVATOR  
RIGHT  
MEMS MIRROR  
PREAMP  
AMPL  
AMPL  
DAC  
ADR431  
ADR431  
ADR431  
CONTROL  
ELECTRONICS  
DAC  
ADC  
INPUT  
DSP  
V
IN  
GND  
OUTPUT  
= ±0.5%  
V
O
V
O
Figure 32. All-Optical Router Network  
ADR43x  
R1  
470kΩ  
R
10kΩ  
P
NEGATIVE PRECISION REFERENCE WITHOUT  
PRECISION RESISTORS  
TRIM  
GND  
10kΩ (ADR420)  
15kΩ (ADR421)  
R2  
In many current-output CMOS DAC applications where the  
output signal voltage must be of the same polarity as the  
reference voltage, it is often required to reconfigure a current-  
switching DAC into a voltage-switching DAC through the use  
of a 1.25 V reference, an op amp, and a pair of resistors. Using a  
current-switching DAC directly requires an additional opera-  
tional amplifier at the output to re-invert the signal. A negative  
voltage reference is then desirable from the standpoint that an  
additional operational amplifier is not required for either  
re-inversion (current-switching mode) or amplification  
(voltage-switching mode) of the DAC output voltage. In  
general, any positive voltage reference can be converted into a  
negative voltage reference through the use of an operational  
amplifier and a pair of matched resistors in an inverting  
configuration. The disadvantage to this approach is that the  
largest single source of error in the circuit is the relative  
matching of the resistors used.  
Figure 31. Output Trim Adjustment  
REFERENCE FOR CONVERTERS IN OPTICAL  
NETWORK CONTROL CIRCUITS  
In the upcoming high capacity, all-optical router network,  
Figure 32 employs arrays of micromirrors to direct and route  
optical signals from fiber to fiber without first converting them  
to electrical form, which reduces the communication speed.  
The tiny micromechanical mirrors are positioned so that each is  
illuminated by a single wavelength that carries unique informa-  
tion and can be passed to any desired input and output fiber.  
The mirrors are tilted by the dual-axis actuators controlled by  
precision ADCs and DACs within the system. Due to the  
microscopic movement of the mirrors, not only is the precision  
of the converters important, but the noise associated with these  
controlling converters is also extremely critical, because total  
noise within the system can be multiplied by the number of  
converters employed. As a result, to maintain the stability of the  
control loop for this application, the ADR43x is necessary due  
to its exceptionally low noise.  
A negative reference can easily be generated by adding a  
precision op amp and configuring it as shown in Figure 33.  
VOUT is at virtual ground and, therefore, the negative reference  
can be taken directly from the output of the op amp. The op  
amp must be dual supply, have low offset and rail-to-rail  
capability, if negative supply voltage is close to the reference  
output.  
Rev. B | Page ±6 of 24  
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
+V  
DD  
V
IN  
R
LW  
V
OUT  
2
V
IN  
SENSE  
2
ADR43x  
R
LW  
V
IN  
A1  
V
OUT  
+
V
OUT  
6
FORCE  
V
OUT  
6
R
L
GND  
4
ADR43x  
A1 = OP191  
GND  
4
Figure 35. Advantage of Kelvin Connection  
A1  
V  
REF  
DUAL POLARITY REFERENCES  
V  
A1 = OP777, OP193  
DD  
Dual polarity references can easily be made with an op amp and  
a pair of resistors. In order not to defeat the accuracy obtained  
by ADR43x, it is imperative to match the resistance tolerance as  
well as the temperature coefficient of all the components.  
Figure 33. Negative Reference  
HIGH VOLTAGE FLOATING CURRENT SOURCE  
The circuit in Figure 34 can be used to generate a floating  
current source with minimal self-heating. This particular  
configuration can operate on high supply voltages determined  
by the breakdown voltage of the N-channel JFET.  
V
IN  
2
1
µF  
0.1µF  
V
V
OUT  
6
5
+5V  
IN  
R1  
10k  
R2  
10k  
ADR435  
U1  
+10V  
V+  
+V  
S
GND  
TRIM  
SST111  
VISHAY  
4
OP1177  
U2  
V–  
–5V  
V
IN  
R3  
5k  
ADR43x  
V
10V  
OUT  
2N3904  
OP90  
Figure 36. +5 V and −5 V References Using ADR435  
GND  
+2.5V  
R
L
2.1kΩ  
+10V  
2
–V  
S
V
V
IN  
6
5
OUT  
Figure 34. High Voltage Floating Current Source  
R1  
5.6kΩ  
ADR435  
U1  
KELVIN CONNECTIONS  
TRIM  
GND  
4
In many portable instrumentation applications where PC board  
cost and area go hand-in-hand, circuit interconnects are very  
often of dimensionally minimum width. These narrow lines can  
cause large voltage drops if the voltage reference is required to  
provide load currents to various functions. In fact, a circuits  
interconnects can exhibit a typical line resistance of 0.45 mΩ/  
square (1 oz. Cu, for example). Force and sense connections,  
also referred to as Kelvin connections, offer a convenient  
method of eliminating the effects of voltage drops in circuit  
wires. Load currents flowing through wiring resistance produce  
an error (VERROR = R × IL) at the load. However, the Kelvin  
connection of Figure 35 overcomes the problem by including  
the wiring resistance within the forcing loop of the op amp.  
Because the op amp senses the load voltage, the op amp loop  
control forces the output to compensate for the wiring error and  
to produce the correct voltage at the load.  
R2  
5.6kΩ  
V+  
OP1177  
U2  
V–  
–2.5V  
–10V  
Figure 37. +2.5 V and −2.5 V References Using ADR435  
Rev. B | Page ±7 of 24  
 
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
PROGRAMMABLE CURRENT SOURCE  
PROGRAMMABLE DAC REFERENCE VOLTAGE  
Together with a digital potentiometer and a Howland current  
pump, ADR435 forms the reference source for a programmable  
current as  
With a multichannel DAC such as a quad 12-bit voltage output  
DAC AD7398, one of its internal DACs and an ADR43x voltage  
reference can be used as a common programmable VREFX for the  
rest of the DACs. The circuit configuration is shown in Figure 39.  
R2 +R2  
A
B
R1  
R2B  
IL =  
×VW  
(3)  
R2  
± 0.1%  
V
REFA  
R1 ± 0.1%  
V
OUTA  
V
REF  
DAC A  
and  
V
IN  
ADR436  
D
V
REFB  
V
V
OUTB  
OUTC  
VW  
=
×VREF  
(4)  
V
= V  
(D )  
2N  
OB  
REFX B  
DAC B  
where:  
D is the decimal equivalent of the input code.  
N is the number of bits.  
V
REFC  
V
V
= V  
(D  
(D  
)
OC  
REFX  
REFX  
C
DAC C  
In addition, R1 and R2 must be equal to R1 and R2A + R2B,  
respectively. R2B in theory can be made as small as needed to  
achieve the necessary current within the A2 output current  
driving capability. In this example, OP2177 can deliver a maxi-  
mum of 10 mA. Because the current pump employs both positive  
and negative feedback, capacitors C1 and C2 are needed to  
ensure that the negative feedback prevails and, therefore, avoids  
oscillation. This circuit also allows bidirectional current flow if  
the inputs VA and VB of the digital potentiometer are supplied  
with the dual polarity references, as shown previously.  
V
REFD  
V
OUTD  
= V  
)
D
OD  
DAC D  
AD7398  
Figure 39. Programmable DAC Reference  
The relationship of VREFX to VREF depends on the digital code  
and the ratio of R1 and R2, and is given by  
C1  
10pF  
R2  
R1  
VREF × 1+  
VREFX  
=
(5)  
R1'  
50kΩ  
R2'  
1kΩ  
V
DD  
2
D
R2  
R1  
1+  
×
2N  
V
DD  
V
IN  
TRIM  
5
6
AD5232  
U2  
DIGITAL  
where:  
V+  
ADR435  
D is the decimal equivalent of input code.  
N is the number of bits.  
U1  
C2  
10pF  
POTENTIOMETER  
OP2177  
A2  
V–  
V
DD  
V
OUT  
GND  
4
A
R2  
10Ω  
B
V
V
REF is the applied external reference.  
REFX is the reference voltage for DAC A to DAC D.  
U2  
V+  
R1  
50kΩ  
V
SS  
W
B
OP2177  
A1  
R2  
A
V–  
1kΩ  
+
VL  
Table 10. VREFX vs. R1 and R2  
LOAD  
GND  
V
SS  
R1, R2  
Digital Code  
VREF  
IL  
R± = R2  
R± = R2  
R± = R2  
R± = 3R2  
R± = 3R2  
R± = 3R2  
0000 0000 0000  
±000 0000 0000  
±±±± ±±±± ±±±±  
0000 0000 0000  
±000 0000 0000  
±±±± ±±±± ±±±±  
2 VREF  
±.3 VREF  
VREF  
4 VREF  
±.6 VREF  
VREF  
Figure 38. Programmable Current Source  
Rev. B | Page ±8 of 24  
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
PRECISION VOLTAGE REFERENCE FOR  
DATA CONVERTERS  
PRECISION BOOSTED OUTPUT REGULATOR  
A precision voltage output with boosted current capability can  
be realized with the circuit shown in Figure 41. In this circuit,  
U2 forces VO to be equal to VREF by regulating the turn on of  
N1. Therefore, the load current is furnished by VIN. In this  
configuration, a 50 mA load is achievable at VIN of 5 V.  
Moderate heat is generated on the MOSFET, and higher current  
can be achieved with a replacement of the larger device. In  
addition, for a heavy capacitive load with step input, a buffer  
may be added at the output to enhance the transient response.  
The ADR43x family has a number of features that make it ideal  
for use with ADCs and DACs. The exceptional low noise, tight  
temperature coefficient, and high accuracy characteristics make  
the ADR43x ideal for low noise applications such as cellular  
base station applications.  
Another example of ADC for which the ADR431 is well suited  
is the AD7701. Figure 40 shows the ADR431 used as the  
precision reference for this converter. The AD7701 is a 16-bit  
ADC with on-chip digital filtering intended for the  
measurement of wide dynamic range and low frequency signals  
such as those representing chemical, physical, or biological  
processes. It contains a charge-balancing (Σ-∆) ADC, a  
calibration microcontroller with on-chip static RAM, a clock  
oscillator, and a serial communications port.  
N1  
V
IN  
V
O
R
25Ω  
L
5V  
2
U1  
2N7002  
U2  
V
IN  
6
5
V
+
OUT  
V+  
TRIM  
AD8601  
+5V  
ANALOG  
GND  
4
V–  
SUPPLY  
0.1µF  
10µF  
AD7701  
ADR431  
AV  
V
DV  
DD  
DD  
0.1µF  
SLEEP  
MODE  
V
IN  
Figure 41. Precision Boosted Output Regulator  
V
OUT  
REF  
DATA READY  
DRDV  
CS  
0.1µF  
ADR431  
READ (TRANSMIT)  
SERIAL CLOCK  
SERIAL CLOCK  
GND  
SCLK  
SDATA  
CLKIN  
RANGES  
SELECT  
BP/UP  
CAL  
CLKOUT  
SC1  
CALIBRATE  
ANALOG  
INPUT  
A
IN  
SC2  
ANALOG  
GROUND  
AGND  
DGND  
0.1µF  
0.1µF  
DV  
SS  
AV  
SS  
–5V  
ANALOG  
SUPPLY  
10µF  
0.1µF  
Figure 40. Voltage Reference for 16-Bit ADC AD7701  
Rev. B | Page ±9 of 24  
 
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
OUTLINE DIMENSIONS  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 42. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 43. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. B | Page 20 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ORDERING GUIDE  
Initial  
Accuracy  
Temperature  
Coefficient  
Package  
Output  
Package  
Description  
Parts  
per Reel  
Temperature  
Branding Range  
Model  
Voltage (VO)  
mV (%)  
(ppm/°C)  
ADR430AR  
ADR430AR-REEL7  
ADR430ARM  
ADR430ARM-REEL7 2.048  
ADR430BR  
ADR430BR-REEL7  
ADR43±AR  
ADR43±AR-REEL7  
ADR43±ARM  
ADR43±ARM-REEL7 2.500  
ADR43±BR  
ADR43±BR-REEL7  
ADR433AR  
ADR433AR-REEL7  
ADR433ARM  
ADR433ARM-REEL7 3.000  
ADR433BR  
ADR433BR-REEL7  
ADR434AR  
ADR434AR-REEL7  
ADR434ARM  
ADR434ARM-REEL7 4.096  
ADR434BR  
ADR434BR-REEL7  
ADR435AR  
ADR435AR-REEL7  
ADR435ARM  
ADR435ARM-REEL7 5.000  
ADR435BR  
ADR435BR-REEL7  
ADR439AR  
ADR439AR-REEL7  
ADR439ARM  
ADR439ARM-REEL7 4.500  
ADR439BR  
2.048  
2.048  
2.048  
3
3
3
3
±
±
0.±5  
0.±5  
0.±5  
0.±5  
0.05  
0.05  
0.±2  
0.±2  
0.±2  
0.±2  
0.04  
0.04  
0.±2  
0.±2  
0.±2  
0.±2  
0.05  
0.05  
0.±3  
0.±3  
0.±3  
0.±3  
0.04  
0.04  
0.±2  
0.±2  
0.±2  
0.±2  
0.04  
0.04  
0.±2  
0.±2  
0.±2  
0.±2  
0.04  
0.04  
±0  
±0  
±0  
±0  
3
8-lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
N/A  
3,000  
N/A  
±,000  
N/A  
3,000  
N/A  
3,000  
N/A  
±,000  
N/A  
3,000  
N/A  
3,000  
N/A  
±,000  
N/A  
3,000  
N/A  
3,000  
N/A  
±,000  
N/A  
3,000  
N/A  
3,000  
N/A  
±,000  
N/A  
3,000  
N/A  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
–40°C to +±25°C  
RHA  
RHA  
2.048  
2.048  
2.500  
2.500  
2.500  
3
3
3
3
3
±
±
±0  
±0  
±0  
±0  
3
RJA  
RJA  
2.500  
2.500  
3.000  
3.000  
3.000  
3
4
4
4
4
±.5  
±.5  
5
5
5
±0  
±0  
±0  
±0  
3
RKA  
RKA  
3.000  
3.000  
4.096  
4.096  
4.096  
3
±0  
±0  
±0  
±0  
3
RLA  
RLA  
5
4.096  
4.096  
5.000  
5.000  
5.000  
±.5  
±.5  
6
6
6
6
2
2
3
±0  
±0  
±0  
±0  
3
RMA  
RMA  
5.000  
5.000  
4.500  
4.500  
4.500  
3
5.4  
5.4  
5.4  
5.4  
2
±0  
±0  
±0  
±0  
3
3,000  
N/A  
±,000  
N/A  
RNA  
RNA  
4.500  
4.500  
ADR439BR-REEL7  
2
3
3,000  
Rev. B | Page 2± of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
NOTES  
Rev. B | Page 22 of 24  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
NOTES  
Rev. B | Page 23 of 24  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04500–0–9/04(B)  
Rev. B | Page 24 of 24  

相关型号:

ADR439AR

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439AR

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.5 V, PDSO8, MS-012AA, SOIC-8
ROCHESTER

ADR439AR-REEL7

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439ARM

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439ARM-REEL7

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439ARMZ

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439ARMZ

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.5 V, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

ADR439ARMZ-REEL7

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439ARZ

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439ARZ-REEL7

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439B

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439BR

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI