ADR441 [ADI]

2.048 V High Precision, LDO XFET® References for High Performance Sigma-Delta and PulSAR® Converters; 2.048 V ,精度高, LDO XFET &章;高性能的Σ-Δ和PulSAR系列&章参考;转换器
ADR441
型号: ADR441
厂家: ADI    ADI
描述:

2.048 V High Precision, LDO XFET® References for High Performance Sigma-Delta and PulSAR® Converters
2.048 V ,精度高, LDO XFET &章;高性能的Σ-Δ和PulSAR系列&章参考;转换器

转换器
文件: 总20页 (文件大小:532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise, LDO XFET® Voltage  
References with Current Sink and Source  
ADR440/ADR441/ADR443/ADR444/ADR445  
FEATURES  
PIN CONFIGURATIONS  
Ultralow noise (0.1 Hz to 10 Hz)  
ADR440: 1 μV p-p  
ADR441: 1.2 μV p-p  
TP  
1
2
3
4
8
7
6
5
TP  
ADR44x  
V
NC  
IN  
TOP VIEW  
NC  
V
OUT  
(Not to Scale)  
GND  
TRIM  
ADR443: 1.4 μV p-p  
ADR444: 1.8 μV p-p  
NC = NO CONNECT  
ADR445: 2.25 μV p-p  
Figure 1. 8-Lead SOIC (R)  
Superb temperature coefficient:  
3 ppm/°C (B Grade)  
10 ppm/°C (A Grade)  
Low dropout operation: 500 mV  
Input range: (VOUT + 500 mV) to 18 V  
High output current: +10 mA/−5 mA  
Wide temperature range: −40°C to +125°C  
TP  
1
2
3
4
8
7
6
5
TP  
NC  
V
ADR44x  
V
IN  
NC  
TOP VIEW  
(Not to Scale)  
OUT  
GND  
TRIM  
NC = NO CONNECT  
Figure 2. 8-Lead MSOP (RM)  
APPLICATIONS  
Precision data acquisition systems  
High resolution data converters  
Battery-powered instrumentations  
Portable medical instruments  
Industrial process control systems  
Precision instruments  
Optical control circuits  
GENERAL DESCRIPTION  
Offered in two electrical grades, the ADR44x family is avail-  
able in the 8-lead SOIC and MSOP packages. All versions  
are specified over the extended industrial temperature range  
(−40oC to +125oC).  
The ADR44x series is a family of XFET® voltage references  
featuring ultralow noise, high accuracy, and low temperature  
drift performance. Using ADIs patented temperature drift  
curvature correction and XFET (eXtra implanted junction FET)  
technology, the ADR44x family’s voltage change vs. temperature  
nonlinearity is greatly minimized.  
Table 1. Selection Guide  
Temperature  
VOUT (V) Accuracy (mV) Coefficient (ppm/°C)  
Model  
ADR440B 2.048  
ADR440A 2.048  
ADR44±B 2.500  
ADR44±A 2.500  
ADR443B 3.000  
ADR443A 3.000  
ADR444B 4.096  
ADR444A 4.096  
ADR445B 5.000  
ADR445A 5.000  
±±  
±3  
±±  
±3  
±±.2  
±4  
±±.6  
±5  
±2  
±6  
3
±0  
3
±0  
3
±0  
3
±0  
3
±0  
The XFET references offer better noise performance than  
buried-Zener references, and XFET references operate off  
low supply headroom (0.5 V). This combination of features  
makes the ADR44x family ideally suited for precision signal  
conversion applications in high-end data acquisition systems,  
optical networks, and medical requirements.  
The ADR44x family has the capability to source up to 10 mA  
and sink up to 5 mA of output current. It also comes with a  
TRIM terminal to adjust the output voltage over a 0.5% range  
without compromising any performance.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 14  
Power Dissipation Considerations........................................... 14  
Basic Voltage Reference Connections ..................................... 14  
Noise Performance..................................................................... 14  
Turn-On Time ............................................................................ 14  
Applications..................................................................................... 15  
Output Adjustment .................................................................... 15  
Bipolar Outputs .......................................................................... 15  
Negative Reference..................................................................... 15  
Programmable Voltage Source ................................................. 16  
Programmable Current Source ................................................ 16  
High Voltage Floating Current Source.................................... 16  
Precision Output Regulator (Boosted Reference).................. 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR440—Electrical Characteristics.......................................... 3  
ADR441—Electrical Characteristics.......................................... 4  
ADR443—Electrical Characteristics.......................................... 5  
ADR444—Electrical Characteristics.......................................... 6  
ADR445—Electrical Characteristics.......................................... 7  
Absolute Maximum Ratings............................................................ 8  
Package Type................................................................................. 8  
ESD Caution.................................................................................. 8  
Typical Performance Characteristics ............................................. 9  
REVISION HISTORY  
10/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
SPECIFICATIONS  
ADR440—ELECTRICAL CHARACTERISTICS  
VIN = 3 V to 18 V; TA = 25°C; CIN, CBYPASS = 0.1 μF, unless otherwise noted.  
Table 2.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
2.045  
2.047  
2.048  
2.048  
2.05±  
2.049  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
VOERR  
3
0.±5  
±
mV  
%
mV  
%
B Grade  
0.05  
TEMPERATURE DRIFT  
A Grade SOIC-8  
MSOP-8  
B Grade SOIC-8  
LINE REGULATION  
LOAD REGULATION  
TC VO  
TC VO  
TC VO  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
2
2
±
±0  
±0  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/V  
ΔVO/ΔVIN  
VIN = 3 V to ±8 V, −40°C < TA < +±25°C  
ILOAD = 0 mA to ±0 mA, VIN = 3.5 V  
−40°C < TA < +±25°C  
ILOAD = 0 mA to −5 mA, VIN = 3.5 V  
−40°C < TA < +±25°C  
−20  
−50  
−50  
+±0  
+20  
ΔVO/ΔILOAD  
+50  
ppm/mA  
ΔVO/ΔILOAD  
IIN  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
No Load, −40°C < TA < +±25°C  
0.± Hz to ±0 Hz  
3
VOLTAGE NOISE  
eN p-p  
eN  
±
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY±  
± kHz  
60  
±0  
50  
70  
−75  
27  
tR  
VO  
±,000 Hours  
fIN = ±0 kHz  
ppm  
ppm  
dB  
OUTPUT VOLTAGE HYSTERISIS  
RIPPLE REJECTION RATION  
SHORT CIRCUIT TO GND  
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
VO_HYS  
RRR  
ISC  
mA  
VIN  
3
±8  
V
VIN − VO  
500  
mV  
± The long-term stability specification is noncumulative. This drift in the subsequent ±,000-hour period is significantly lower than in the first ±,000-hour period.  
Rev. 0 | Page 3 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ADR441—ELECTRICAL CHARACTERISTICS  
VIN = 3 V to 18 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
2.497  
2.499  
2.5  
2.5  
2.503  
2.50±  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
VOERR  
3
0.±2  
±
mV  
%
mV  
%
B Grade  
0.04  
TEMPERATURE DRIFT  
A Grade SOIC-8  
MSOP-8  
B Grade SOIC-8  
LINE REGULATION  
TC VO  
TC VO  
TC VO  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
2
2
±
±0  
±0  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/V  
ΔVO/ΔVIN  
VIN = 3 V to ±8 V,  
±0  
20  
−40°C < TA < +±25°C  
LOAD REGULATION  
ΔVO/ΔILOAD  
ΔVO/ΔILOAD  
ILOAD = 0 mA to ±0 mA, VIN = 4 V  
−40°C < TA < +±25°C  
ILOAD = 0 mA to −5 mA, VIN = 4 V  
−40°C < TA < +±25°C  
No Load, −40°C < TA < +±25°C  
0.± Hz to ±0 Hz  
−50  
−50  
+50  
ppm/mA  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
IIN  
3
VOLTAGE NOISE  
eN p-p  
eN  
±.2  
48  
±0  
50  
70  
−75  
27  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY±  
OUTPUT VOLTAGE HYSTERISIS  
RIPPLE REJECTION RATION  
SHORT CIRCUIT TO GND  
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
± kHz  
tR  
VO  
±,000 Hours  
fIN = ±0 kHz  
ppm  
ppm  
dB  
VO_HYS  
RRR  
ISC  
mA  
VIN  
3
±8  
V
VIN − VO  
500  
mV  
± The long-term stability specification is noncumulative. This drift in subsequent ±,000-hour period is significantly lower than in the first ±,000-hour period.  
Rev. 0 | Page 4 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ADR443—ELECTRICAL CHARACTERISTICS  
VIN = 3.5 V to 18 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
VO  
VO  
2.996  
2.9988  
3.0  
3.0  
3.004  
3.00±2  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
VOERR  
4
mV  
%
mV  
%
0.±3  
±.2  
0.04  
B Grade  
TEMPERATURE DRIFT  
A Grade SOIC-8  
MSOP-8  
B Grade SOIC-8  
LINE REGULATION  
LOAD REGULATION  
TC VO  
TC VO  
TC VO  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
2
2
±
±0  
±0  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/V  
ΔVO/ΔVIN  
ΔVO/ΔILOAD  
VIN = 3.5 V to ±8 V, −40°C < TA < +±25°C  
ILOAD = 0 mA to ±0 mA, VIN = 5 V  
−40°C < TA < +±25°C  
ILOAD = 0 mA to −5 mA, VIN = 5 V  
−40°C < TA < +±25°C  
±0  
20  
−50  
−50  
+50  
ppm/mA  
ΔVO/ΔILOAD  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
VOLTAGE NOISE  
IIN  
No Load, −40°C < TA < +±25°C  
0.± Hz to ±0 Hz  
3
eN p-p  
±.4  
μV p-p  
VOLTAGE NOISE DENSITY  
eN  
± kHz  
64  
±0  
50  
70  
−75  
27  
nV/√Hz  
μs  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY±  
tR  
VO  
±,000 Hours  
fIN = ±0 kHz  
ppm  
ppm  
dB  
OUTPUT VOLTAGE HYSTERISIS  
RIPPLE REJECTION RATION  
SHORT CIRCUIT TO GND  
VO_HYS  
RRR  
ISC  
mA  
V
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
VIN  
3.5  
±8  
VIN − VO  
500  
mV  
± The long-term stability specification is noncumulative. This drift in the subsequent ±,000-hour period is significantly lower than in the first ±,000-hour period.  
Rev. 0 | Page 5 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ADR444—ELECTRICAL CHARACTERISTICS  
VIN = 4.6 V to 18 V, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
4.09±  
4.096 4.±0±  
V
V
B Grade  
4.0944 4.096 4.0976  
INITIAL ACCURACY  
A Grade  
VOERR  
VOERR  
5
mV  
%
mV  
%
0.±3  
±.6  
0.04  
B Grade  
TEMPERATURE DRIFT  
A Grade SOIC-8  
MSOP-8  
B Grade SOIC-8  
LINE REGULATION  
LOAD REGULATION  
TC VO  
TC VO  
TC VO  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25vC  
2
2
±
±0  
±0  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/V  
ΔVO/ΔVIN  
ΔVO/ΔILOAD  
VIN = 4.6 V to ±8 V, −40°C < TA < +±25°C  
ILOAD = 0 mA to ±0 mA, VIN = 5.5 V  
−40°C < TA < +±25°C  
ILOAD = 0 mA to −5 mA, VIN = 5.5 V  
−40°C < TA < +±25°C  
±0  
20  
−50  
−50  
+50  
ppm/mA  
ΔVO/ΔILOAD  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
IIN  
No Load, −40°C < TA < +±25°C  
0.± Hz to ±0 Hz  
3
VOLTAGE NOISE  
eN p-p  
eN  
±.8  
64  
±0  
50  
70  
−75  
27  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY±  
± kHz  
tR  
VO  
±,000 Hours  
fIN = ±0 kHz  
ppm  
ppm  
dB  
OUTPUT VOLTAGE HYSTERISIS  
RIPPLE REJECTION RATION  
SHORT CIRCUIT TO GND  
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
VO_HYS  
RRR  
ISC  
mA  
VIN  
4.6  
±8  
V
VIN − VO  
500  
mV  
± The long-term stability specification is noncumulative. This drift in the subsequent ±,000-hour period is significantly lower than in the first ±,000-hour period.  
Rev. 0 | Page 6 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ADR445—ELECTRICAL CHARACTERISTICS  
VIN = 5.5 V to 18 V, TA = 25°C unless otherwise noted.  
Table 6.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
VO  
4.994  
4.998  
5.000  
5.000  
5.006  
5.002  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
VOERR  
6
0.±2  
2
mV  
%
mV  
%
B Grade  
0.04  
TEMPERATURE DRIFT  
A Grade SOIC-8  
MSOP-8  
B Grade SOIC-8  
LINE REGULATION  
LOAD REGULATION  
TC VO  
TC VO  
TC VO  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
−40°C < TA < +±25°C  
2
2
±
±0  
±0  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/V  
ΔVO/ΔVIN  
ΔVO/ΔILOAD  
VIN = 5.5 V to ±8 V, −40°C < TA < +±25°C  
ILOAD = 0 mA to ±0 mA, VIN = 6.5 V  
−40°C < TA < +±25°C  
ILOAD = 0 mA to −5 mA, VIN = 6.5 V  
−40°C < TA < +±25°C  
±0  
20  
−50  
−50  
+50  
ppm/mA  
ΔVO/ΔILOAD  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
IIN  
No Load, −40°C < TA < +±25°C  
0.± Hz to ±0 Hz  
3
VOLTAGE NOISE  
eN p-p  
eN  
2.25  
64  
±0  
50  
70  
–75  
27  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY±  
± kHz  
tR  
VO  
±,000 Hours  
fIN = ±0 kHz  
ppm  
ppm  
dB  
OUTPUT VOLTAGE HYSTERISIS  
RIPPLE REJECTION RATION  
SHORT CIRCUIT TO GND  
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
VO_HYS  
RRR  
ISC  
mA  
VIN  
5.5  
±8  
V
VIN − VO  
500  
mV  
± The long-term stability specification is noncumulative. This drift in the subsequent ±,000-hour period is significantly lower than in the first ±,000-hour period.  
Rev. 0 | Page 7 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ABSOLUTE MAXIMUM RATINGS  
At 25°C, unless otherwise noted.  
Table 7.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
20 V  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
R, RM Packages  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature Range (Soldering, 60 sec)  
Indefinite  
−65°C to +±25°C  
−40°C to +±25°C  
−65°C to +±50°C  
300°C  
PACKAGE TYPE  
Table 8.  
Package Type  
1
θJA  
θJC  
Unit  
°C/W  
°C/W  
8-Lead SOIC (R)  
8-Lead MSOP (RM)  
±30  
±90  
43  
± θJA is specified for worst-case conditions (device soldered in circuit board for  
surface mount packages). Contact sales for the latest information of release  
dates.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 8 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 7V, TA = 25oC; CIN, CBYPASS = 0.1 μF; unless otherwise noted.  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
4.0  
3.5  
+125°C  
+25°C  
3.0  
–40°C  
2.5  
2.4995  
2.4990  
2.0  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
4
6
8
10  
12  
14  
16  
18  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 6. ADR441 Supply Current vs. Input Voltage  
Figure 3. ADR441 VOUT vs. Temperature  
3.0020  
4.0  
3.5  
3.0  
3.0015  
3.0010  
3.0005  
3.0000  
2.9995  
2.9990  
2.5  
2.0  
2.9985  
2.9980  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. ADR444 VOUT vs. Temperature  
Figure 7. ADR441 Supply Current vs. Temperature  
4.0980  
3.5  
3.4  
3.3  
3.2  
4.0975  
4.0970  
4.0965  
4.0960  
4.0955  
4.0950  
3.1  
3.0  
+125°C  
2.9  
2.8  
+25°C  
–40°C  
2.7  
4.0945  
4.0940  
2.6  
2.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
5.3  
7.3  
9.3  
11.3  
13.3  
15.3  
17.3  
19.3  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 5. ADR445 VOUT vs. Temperature  
Figure 8. ADR445 Supply Current vs. Input Voltage  
Rev. 0 | Page 9 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
3.25  
7
6
5
4
3.15  
3.05  
3
2
2.95  
2.85  
2.75  
1
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. ADR445 Quiescent Current vs. Temperature  
Figure 12. ADR445 Line Regulation vs. Temperature  
10  
8
50  
40  
30  
20  
10  
0mA TO +10mA LOAD  
0mA TO –5mA LOAD  
6
0
4
–10  
–20  
–30  
–40  
–50  
2
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. ADR441 Line Regulation vs. Temperature  
Figure 13. ADR445 Load Regulation vs. Temperature  
60  
0.7  
0.6  
0.5  
0.4  
55  
50  
45  
V
= 18V  
IN  
+125°C  
IL = 0mA TO 10 mA  
V
= 6V  
IN  
+25°C  
0.3  
0.2  
–40°C  
40  
35  
30  
0.1  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–10  
–5  
0
5
10  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 14. ADR441 Minimum Input/Output  
Differential Voltage vs. Load Current  
Figure 11. ADR441 Load Regulation vs. Temperature  
Rev. 0 | Page ±0 of 20  
ADR440/ADR441/ADR443/ADR444/ADR445  
0.5  
C
, C  
= 0.1μF  
OUT  
IN  
NO LOAD  
0.4  
0.3  
0.2  
V
= 5V/DIV  
IN  
0.1  
0
V
= 1V/DIV  
OUT  
TIME = 10μs/DIV  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 15. ADR441 Minimum Headroom vs. Temperature  
Figure 18. ADR441 Turn-On Response  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
C
, C  
= 0.1μF  
OUT  
IN  
+125°C  
V
= 5V/DIV  
IN  
+25°C  
0.4  
0.3  
0.2  
–40°C  
0.1  
0
V
= 1V/DIV  
OUT  
–5  
0
5
10  
TIME = 200μs/DIV  
LOAD CURRENT (mA)  
Figure 19. ADR441 Turn-Off Response  
Figure 16. ADR445 Minimum Input/Output  
Differential Voltage vs. Load Current  
C
C
= 0.1μF  
IN  
0.5  
= 10μF  
OUT  
NO LOAD  
0.4  
0.3  
0.2  
V
= 5V/DIV  
IN  
V
= 1V/DIV  
0.1  
0
OUT  
TIME = 200μs/DIV  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 17. ADR445 Minimum Headroom vs. Temperature  
Figure 20. ADR441 Turn-On Response  
Rev. 0 | Page ±± of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
C
C
= 0.1μF  
OUT  
IN  
= 10μF  
2V/DIV  
4V  
1μV/DIV  
CH1 p-p  
1.18μV  
2mV/DIV  
100μs/DIV  
TIME = 1s/DIV  
Figure 21. ADR441 Line Transient Response  
Figure 24. ADR441 0.1 Hz to 10.0 Hz Voltage Noise  
C
, C  
= 0.1μF  
OUT  
IN  
LOAD OFF  
LOAD ON  
50μV/DIV  
CH1 p-p  
1
49μV  
5mV/DIV  
200μs/DIV  
TIME = 1s/DIV  
Figure 22. ADR441 Load Transient Response  
Figure 25. ADR441 10 Hz to 10 kHz Voltage Noise  
C
C
= 0.1μF  
IN  
= 10μF  
OUT  
LOAD ON  
LOAD OFF  
1μV/DIV  
CH1 p-p  
2.24μV  
5mV/DIV  
200μs/DIV  
TIME = 1s/DIV  
Figure 26. ADR445 0.1 Hz to 10.0 Hz Voltage Noise  
Figure 23. ADR441 Load Transient Response  
Rev. 0 | Page ±2 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
10  
9
8
7
ADR445  
6
5
50μV/DIV  
ADR443  
CH1 p-p  
4
66μV  
3
2
ADR441  
1
0
10  
100  
1k  
10k  
100k  
TIME = 1s/DIV  
FREQUENCY (Hz)  
Figure 29. Output Impedance vs. Frequency  
Figure 27. ADR445 10 Hz to 10 kHz Voltage Noise  
16  
14  
12  
10  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
6
4
2
0
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
DEVIATION (PPM)  
Figure 30. Ripple Rejection vs. Frequency  
Figure 28. ADR441 Typical Hysteresis  
Rev. 0 | Page ±3 of 20  
ADR440/ADR441/ADR443/ADR444/ADR445  
THEORY OF OPERATION  
The ADR44x series of references uses a new reference generation  
technique known as XFET (eXtra implanted junction FET).  
This technique yields a reference with low dropout, good  
thermal hysteresis, and exceptionally low noise. The core of the  
XFET reference consists of two junction field-effect transistors  
(JFETs), one of which has an extra channel implant to raise its  
pinch-off voltage. By running the two JFETs at the same drain  
current, the difference in pinch-off voltage can be amplified  
and used to form a highly stable voltage reference.  
POWER DISSIPATION CONSIDERATIONS  
The ADR44x family of references is guaranteed to deliver load  
currents to 10 mA with an input voltage that ranges from 2.6 V  
to 18 V. When these devices are used in applications at higher  
currents, users should use the following equation to account for  
the temperature effects due to the power dissipation increases.  
TJ =PD × θJA + TA  
(2)  
where:  
TJ and TA are the junction and ambient temperatures.  
PD is the device power dissipation.  
θJA is the device package thermal resistance.  
The intrinsic reference voltage is around 0.5 V with a negative  
temperature coefficient of about –120 ppm/°C. This slope is  
essentially constant to the dielectric constant of silicon and can  
be closely compensated for by adding a correction term generated  
in the same fashion as the proportional-to-temperature (PTAT)  
term used to compensate band gap references. The advantage  
of an XFET reference is the correction term is approximately  
20 times lower and requires less correction than a band gap  
reference. This results in much lower noise, because most of  
the noise of a band gap reference results from the temperature  
compensation circuitry.  
BASIC VOLTAGE REFERENCE CONNECTIONS  
The ADR44x family requires a 0.1 μF capacitor on the input  
and output for stability. While not required for operation,  
a 10 μF capacitor at the input can help with line voltage  
transient performance.  
1
TP  
TP  
8
7
6
V
IN  
NIC  
2
3
4
ADR44x  
TOP VIEW  
(Not to Scale)  
+
OUTPUT  
Figure 31 shows the basic topology of the ADR44x series. The  
temperature correction term is provided by a current source  
with a value designed to be proportional to absolute temperature.  
The general equation is  
10μF  
NIC  
0.1μF  
0.1μF  
5
TRIM  
NOTES  
1. NIC = NO INTERNAL CONNECTION  
2. TP = TEST PIN (DO NOT CONNECT)  
VOUT = G ×  
(
ΔVP R1 × IPTAT  
)
(1)  
Figure 32. Basic Voltage Reference Configuration  
where:  
NOISE PERFORMANCE  
G is the gain of the reciprocal of the divider ratio.  
The noise generated by the ADR44x family of references is  
typically less than 1.4 μV p-p over the 0.1 Hz to 10.0 Hz band  
VP is the difference in pinch-off voltage between the two JFETs.  
IPTAT is the positive temperature coefficient correction current.  
for ADR440, ADR441, and ADR443. Figure 24 shows the 0.1 Hz  
to 10 Hz noise of the ADR441, which is only 1.2 μV p-p. The  
noise measurement is made with a band-pass filter made of a 2-  
pole high-pass filter with a corner frequency at 0.1 Hz and a 2-  
pole low-pass filter with a corner frequency at 10.0 Hz.  
ADR44x devices are created by on-chip adjustment of R2 and  
R3 to achieve the different voltage option at the reference  
output.  
V
IN  
I
I
1
1
ADR44x  
I
TURN-ON TIME  
PTAT  
Upon application of power (cold start), the time required for  
the output voltage to reach its final value within a specified  
error band is defined as the turn-on settling time. Two compo-  
nents normally associated with this are the time for the active  
circuits to settle, and the time for the thermal gradients on the  
chip to stabilize. Figure 18 and Figure 19 show the turn-on and  
turn-off settling times for the ADR441.  
V
OUT  
R2  
1
ΔV  
P
R3  
R1  
1
EXTRA CHANNEL IMPLANT  
= G(ΔV R1 × I  
V
)
PTAT  
OUT  
P
GND  
Figure 31. Simplified Schematic Device  
Rev. 0 | Page ±4 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
+V  
DD  
APPLICATIONS  
OUTPUT ADJUSTMENT  
2
V
IN  
The ADR44x family features a TRIM pin that allows the user to  
adjust the output voltage of the part over a limited range. This  
allows both errors from the reference and overall system errors  
to be trimmed out by connecting a potentiometer between the  
output and ground, with the wiper connected to the TRIM pin.  
Figure 33 shows the optimal trim configuration. R1 allows fine  
adjustment of the output and is not always required. RP should  
be sufficiently large so that the maximum output current from  
the ADR44x is not exceeded.  
ADR445  
0.1μF  
V
OUT  
6
+5V  
–5V  
R1  
10kΩ  
R2  
0.1μF  
GND  
10kΩ  
4
+10V  
R3  
5kΩ  
–10V  
Figure 34. ADR 44x Bipolar Outputs  
0.1μF  
NEGATIVE REFERENCE  
2
V
IN  
V
Figure 35 shows how to connect the ADR44x and a standard  
op amp, such as the OP1177, to provide negative voltage.  
This configuration provides two main advantages: First, it  
only requires two devices; therefore, it does not require  
excessive board space. Second, and more importantly, it does  
not require any external resistors. This means the performance  
of this circuit does not rely on choosing low TC resistors to  
ensure accuracy.  
V
= ±0.5%  
O
6
5
OUT  
0.1μF  
ADR44x  
R
TRIM  
GND  
4
P
R1  
R2  
Figure 33. ADR44x Trim Function  
+V  
DD  
Using the trim function had a negligible effect on the  
temperature performance of the ADR44x family. However, all  
resistors used need to be low temperature coefficient resistors,  
or errors can occur.  
2
V
IN  
6
V
OUT  
BIPOLAR OUTPUTS  
ADR44x  
By connecting the output of the ADR44x to the inverting  
terminal of an op amp, it is possible to obtain both positive  
and negative reference voltages. Care must be taken when  
choosing Resistor R1 and Resistor R2 (see Figure 34). They  
must be matched as closely as possible to ensure minimal  
differences between the negative and positive outputs. In  
addition, care must be taken to ensure performance over  
temperature. Use low temperature coefficient resistors if the  
circuit is to be used over temperature; otherwise, differences will  
exist between the two outputs.  
GND  
4
–V  
REF  
–V  
DD  
Figure 35. Negative Reference  
VOUT is at virtual ground, and the negative reference is taken  
directly from the output of the op amp. If the negative supply  
voltage is close to the reference output, the op amp must be  
dual supply and have low offset and rail-to-rail capability.  
Rev. 0 | Page ±5 of 20  
 
 
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
PROGRAMMABLE VOLTAGE SOURCE  
PROGRAMMABLE CURRENT SOURCE  
To obtain different voltages than those offered by the ADR44x,  
some extra components are needed. In Figure 36,  
It is possible to build a programmable current source using a  
similar setup as the programmable voltage source, as shown in  
Figure 37. The constant voltage on the gate of the transistor sets  
the current through the load. Varying the voltage on the gate  
changes the current. This circuit does not require a dual digital  
potentiometer.  
two potentiometers are used to set the desired voltage, while the  
buffering amplifier provides current drive. The potentiometer  
connected between VOUT and ground, with its wiper connected  
to the noninverting input of the op amp, takes care of coarse  
trim. The second potentiometer, with its wiper connected to  
the trim terminal of the ADR44x, is used for fine adjustment.  
Resolution depends on the end-to-end resistance value and the  
resolution of the selected potentiometer.  
V
CC  
2
0.1μF  
V
IN  
R
SENSE  
V
OUT  
6
+V  
DD  
GND  
4
0.1μF  
2
AD5259  
V
IN  
ADJ V  
REF  
ADR445  
LOAD  
V
OUT  
6
R1  
R2  
GND  
Figure 37. Programmable Current Source  
10kΩ 10kΩ  
4
HIGH VOLTAGE FLOATING CURRENT SOURCE  
Figure 36. Programmable Voltage Source  
Use the circuit in Figure 38 to generate a floating current source  
with minimal self-heating. This particular configuration can  
operate on high supply voltages determined by the breakdown  
voltage of the N-channel JFET.  
For a completely programmable solution, replace the two  
potentiometers in Figure 36 with one of ADIs dual digital  
potentiometers, which offer either SPI® or I2C interfaces. These  
interfaces set the position of the wiper on both potentiometers  
and allow the output voltage to be set. Table 9 lists compatible  
ADI digital potentiometers.  
+V  
S
SST111  
VISHAY  
Table 9. Digital Potentiometer Parts  
2
Part No.  
AD525±  
AD5207  
AD5242  
AD5262  
AD5282  
AD5252  
AD5232  
AD5235  
No. Chan No. Pos  
ITF R (kΩ)  
I2C ±, ±0, 50, ±00 5.5  
SPI ±0, 50, ±00  
I2C ±0, ±00, ±M  
SPI 20, 50, 200  
I2C 20, 50, ±00  
VDD±  
V
IN  
ADR44x  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
64.00  
V
OUT  
6
256.00  
256.00  
256.00  
256.00  
256.00  
256.00  
5.5  
5.5  
±5  
2N3904  
OP90  
GND  
4
±5  
I2C ±, ±0, 50, 200 5.5  
SPI ±0, 50, ±00  
–V  
S
5.5  
5.5  
5.5  
Figure 38. Floating Current Source  
±024.00 SPI 25, 250  
±024.00 SPI 25, 250  
ADN2850 2.00  
± Can also use a negative supply.  
By adding a negative supply to the op amp, it is possible for  
the user to also produce a negative programmable reference  
by connecting the reference output to the inverting terminal  
of the op amp. Choose feedback resistors to minimize errors  
over temperature.  
Rev. 0 | Page ±6 of 20  
 
 
 
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
PRECISION OUTPUT REGULATOR (BOOSTED  
REFERENCE)  
V
IN  
2
V
IN  
2N7002  
C
15V  
IN  
0.1μF  
ADR44x  
V
OUT  
6
V
O
R
C
L
1μF  
L
C
OUT  
0.1μF  
200Ω  
GND  
–V  
4
Figure 39. Boosted Output Reference  
Higher current drive capability without sacrificing accuracy  
can be obtained using the circuit in Figure 39. The op amp  
regulates the MOSFET turn-on, which forces VO to equal the  
VREF. Current is then drawn from VIN, which allows increased  
current drive capability. The circuit allows a 50 mA load; if  
higher current drive is required, use a larger MOSFET. For fast  
transient response, add a buffer at VO to aid with capacitive  
loading.  
Rev. 0 | Page ±7 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 40. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.00  
BSC  
8
1
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 41. 8-Lead Mini Small Outline Package [MSOP}  
(RM-8)  
Dimensions show in millimeters  
Rev. 0 | Page ±8 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ORDERING GUIDE  
Temperature  
Coefficient  
Package  
Output  
Voltage  
Initial  
Accuracy  
Package  
Description  
Temperature  
Range (°C)  
Ordering  
Quantity  
Model  
ADR440ARZ±  
ADR440ARZ-REEL7±  
ADR440ARMZ±  
ADR440ARMZ-REEL7±  
ADR440BRZ±  
ADR440BRZ-REEL7±  
ADR44±ARZ±  
ADR44±ARZ-REEL7±  
ADR44±ARMZ±  
ADR44±ARMZ-REEL7±  
ADR44±BRZ±  
ADR44±BRZ-REEL7±  
ADR443ARZ±  
ADR443ARZ-REEL7±  
ADR443ARMZ±  
ADR443ARMZ-REEL7±  
ADR443BRZ±  
ADR443BRZ-REEL7±  
ADR444ARZ±  
ADR444ARZ-REEL7±  
ADR444ARMZ±  
ADR444ARMZ-REEL7±  
ADR444BRZ±  
ADR444BRZ-REEL7±  
ADR445ARZ±  
ADR445ARZ-REEL7±  
ADR445ARMZ±  
Branding  
(VO) V  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
3.000  
3.000  
3.000  
3.000  
3.000  
3.000  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
5.000  
5.000  
5.000  
5.000  
5.000  
5.000  
(mV)  
3
3
3
3
(%)  
(ppm/°C)  
0.±5 ±0  
8-lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40°C to +±25°C  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
–40 to +±25  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
98  
±,000  
0.±5 ±0  
0.±5 ±0  
0.±5 ±0  
0.05  
0.05  
R0±  
R0±  
±
±
3
3
3
3
3
3
±
±
0.±2 ±0  
0.±2 ±0  
0.±2 ±0  
0.±2 ±0  
0.04  
0.04  
R02  
R02  
3
3
4
4
4
4
±.2  
±.2  
5
5
5
0.±2 ±0  
0.±2 ±0  
0.±2 ±0  
0.±2 ±0  
0.05 3F  
R03  
R03  
0.05  
3
0.±3 ±0  
0.±3 ±0  
0.±3 ±0  
0.±3 ±0  
0.04  
0.04  
R04  
R04  
5
±.6  
±.6  
6
6
6
6
2
2
3
3
0.±2 ±0  
0.±2 ±0  
0.±2 ±0  
0.±2 ±0  
0.04  
0.04  
R05  
R05  
ADR445ARMZ-REEL7±  
ADR445BRZ±  
ADR445BRZ-REEL7±  
3
3
± Z = Pb-free part.  
Rev. 0 | Page ±9 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05428-0-10/05(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADR441A

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441ARMZ

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441ARMZ-REEL7

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441ARZ

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441ARZ-REEL7

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441B

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441BRZ

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441BRZ-REEL7

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441TRZ-EP

Ultralow Noise, LDO XFET&reg; 2.5V Voltage Reference w/Current Sink and Source
ADI

ADR441TRZ-EP-R7

Ultralow Noise, LDO XFET&reg; 2.5V Voltage Reference w/Current Sink and Source
ADI

ADR441_15

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR443

2.048 V High Precision, LDO XFET® References for High Performance Sigma-Delta and PulSAR® Converters
ADI