ADR512WARTZ-R7 [ADI]

1.2 V Precision Low Noise Shunt Voltage Reference;
ADR512WARTZ-R7
型号: ADR512WARTZ-R7
厂家: ADI    ADI
描述:

1.2 V Precision Low Noise Shunt Voltage Reference

光电二极管
文件: 总12页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.2 V Precision Low Noise  
Shunt Voltage Reference  
ADR512W  
FEATURES  
PIN CONFIGURATION  
Precision 1.200 V voltage reference  
Ultracompact 3-lead SOT-23 package  
No external capacitor required  
ADR512W  
V+  
1
3
TRIM/NC  
Low output noise: 4 µV p-p (0.1 Hz to 10 Hz)  
Initial accuracy: 0.67% maximum  
Temperature coefficient: 60 ppm/°C maximum  
Operating current range: 100 µA to 10 mA  
Output impedance: 0.3 Ω maximum  
Temperature range: −40°C to +85°C  
Qualified for automotive applications  
TOP VIEW  
(Not to Scale)  
V–  
2
NC = NO CONNECT. DO NOT  
CONNECT TO THIS PIN.  
Figure 1. 3-Lead SOT-23  
APPLICATIONS  
Automotive systems  
Precision data acquisition systems  
Microcontroller reference voltage  
GENERAL DESCRIPTION  
Designed for space critical applications, the ADR512W is a low  
voltage (1.200 V), precision shunt-mode voltage reference in the  
ultracompact SOT-23 package. The ADR512W features low  
temperature drift (60 ppm/°C), high accuracy ( 0.67%), and  
ultralow noise (4 µV p-p) performance.  
minimum operating current increases from a scant 100 µA to a  
maximum of 10 mA.  
A TRIM terminal is available on the ADR512W to provide  
adjustment of the output voltage over 0.5% without affecting  
the temperature coefficient of the device. This feature provides  
users with the flexibility to trim out any system errors.  
The ADR512Ws advanced design eliminates the need for an  
external capacitor, yet it is stable with any capacitive load. The  
V
S
I
+ I  
Q
R
L
BIAS  
I
L
V
= 1.2V  
OUT  
C
OUT  
AD512W  
I
Q
(OPTIONAL)  
V
– V  
OUT  
S
I
R
=
BIAS  
+ I  
L
Q
Figure 2. Typical Operating Circuit  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADR512W  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................5  
Terminology.......................................................................................7  
Applications Information .................................................................8  
Adjustable Precision Voltage Source ..........................................8  
Output Voltage Trim.....................................................................8  
Using the ADR512W with Precision Data Converters ............8  
Precise Negative Voltage Reference ............................................8  
Outline Dimensions....................................................................... 10  
Ordering Guide .......................................................................... 10  
Automotive Products................................................................. 10  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
REVISION HISTORY  
5/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
ADR512W  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
IIN = 100 µA to 10 mA at TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Output Voltage1  
Initial Accuracy  
Temperature Coefficient A Grade  
Output Voltage Change vs. IIN  
Dynamic Output Impedence  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time2  
Output Voltage Hysteresis  
Symbol  
VO  
VOERR  
TCVO  
ΔVR  
(ΔVR/ΔIR)  
IIN  
eN p-p  
tR  
Test Conditions/Comments  
Min  
Typ  
Max  
1.208  
+8.0  
60  
3
0.3  
Unit  
V
mV  
ppm/°C  
mV  
µA  
µV p-p  
µs  
1.192  
−8.0  
1.2  
−40°C < TA < +85°C  
IIN = 0.1 mA to 10 mA  
IIN = 1 mA 100 µA  
−40°C < TA < +85°C  
f = 0.1 Hz to 10 Hz  
100  
4
10  
50  
To within 0.1% of output  
VO_HYS  
ppm  
1 The forward diode voltage characteristic at −1 mA is typically 0.65 V.  
2 Measured without a load capacitor.  
Rev. 0 | Page 3 of 12  
 
 
 
 
ADR512W  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
25 mA  
20 mA  
Reverse Current  
Forward Current  
Table 3. Thermal Resistance  
Package Type1  
Storage Temperature Range  
RT Package  
Operating Temperature Range  
Junction Temperature Range  
RT Package  
2
θJA  
θJC  
Unit  
−65°C to +150°C  
−40°C to +85°C  
3-SOT-23 (RT)  
230  
146  
°C/W  
1Package power dissipation = (TJMAX − TA)/θJA.  
2θJA is specified for worst-case conditions; that is., θJA is specified for the device  
soldered.  
−65°C to +150°C  
300°C  
ESD CAUTION  
Lead Temperature Range (Soldering, 60 Sec)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 12  
 
 
 
 
 
ADR512W  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.204  
1.203  
1.202  
1.201  
1.200  
V
= 2V/DIV  
IN  
1.199  
1.198  
1.197  
1.196  
V
= 1V/DIV  
OUT  
TIME (400µs/DIV)  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 3. Typical VOUT vs. Temperature  
Figure 6. Turn-Off Time  
V
= 2V/DIV  
IN  
V
= 2V/DIV  
IN  
V
OUT  
= 1V/DIV  
V
= 1V/DIV  
OUT  
TIME (100µs/DIV)  
TIME (200µs/DIV)  
Figure 4. Turn-On Time  
Figure 7. Turn-Off Time with a 1 μF Input Capacitor  
ΔI = 100µA  
IN  
V
= 2V/DIV  
IN  
V
OUT  
= 1V/DIV  
V
= 20mV/DIV  
OUT  
TIME (100µs/DIV)  
TIME (2µs/DIV)  
Figure 5. Turn-On Time with a 1 μF Input Capacitor  
Figure 8. Output Response to a 100 μA Input Current Change  
Rev. 0 | Page 5 of 12  
 
ADR512W  
ΔI = 100µA  
IN  
2µV/DIV  
V
= 20mV/DIV  
OUT  
TIME (2µs/DIV)  
TIME (400ms/DIV)  
Figure 9. Output Response to a 100 μA Input Current Change with a  
1 μF Capacitor  
Figure 10. 0.1 Hz to 10 Hz Noise  
Rev. 0 | Page 6 of 12  
ADR512W  
TERMINOLOGY  
Temperature Coefficient  
Thermal Hysteresis  
Temperature coefficient is the change in output voltage with  
respect to operating temperature changes, normalized by the  
output voltage at 25°C. This parameter is expressed in ppm/°C  
and can be determined with the following equation:  
Thermal hysteresis is defined as the change in output voltage  
after the device is cycled through temperature from +25°C to  
−40°C to +85°C and back to +25°C. This is a typical value from  
a sample of parts put through such a cycle.  
VO  
(
T2  
)
VO  
(
T1  
)
ppm  
VO _ HYS =VO (25°C) VO _TC  
×106  
(1)  
TCVO  
=
°C  
VO  
(
25°C  
)
×
(
T2 T1  
)
(2)  
VO  
(
25°C  
)
VO _TC  
VO _ HYS  
[
ppm  
]
=
×106  
VO 25°C  
(
)
where:  
VO(25°C) = VO at 25°C.  
where:  
VO(25°C) = VO at 25°C.  
O_TC = VO at 25°C after temperature cycles from +25°C to  
−40°C to +85°C and back to +25°C.  
VO(T1) = VO at Temperature 1.  
VO(T2) = VO at Temperature 2.  
V
Rev. 0 | Page 7 of 12  
 
ADR512W  
APPLICATIONS INFORMATION  
The ADR512W is a 1.2 V precision shunt voltage reference. It is  
designed to operate without an external output capacitor  
between the positive and negative terminals for stability. An  
external capacitor can be used for additional filtering of the  
supply.  
OUTPUT VOLTAGE TRIM  
Using a mechanical or digital potentiometer, the output voltage  
of the ADR512W can be trimmed ±0.5%. The circuit in Figure 12  
illustrates how the output voltage can be trimmed using a 10 k  
potentiometer.  
Ω
As with all shunt voltage references, an external bias resistor  
(RBIAS) is required between the supply voltage and the  
ADR512W (see Figure 2). RBIAS sets the current that is required  
to pass through the load (IL) and the ADR512W (IQ). The load  
and the supply voltage can vary, thus RBIAS is chosen as follows:  
V
CC  
R
BIAS  
V
OUT  
POT  
50k  
ADR512W  
R1  
100kΩ  
RBIAS must be small enough to supply the minimum IQ  
current to the ADR512W even when the supply voltage is  
at its minimum and the load current is at its maximum  
value.  
Figure 12. Output Voltage Trim  
USING THE ADR512W WITH PRECISION DATA  
CONVERTERS  
RBIAS also must be large enough so that IQ does not exceed  
10 mA when the supply voltage is at its maximum and the  
load current is at its minimum.  
The compact ADR512W package and the devices low  
minimum operating current requirement make it ideal for use  
in battery powered portable instruments, such as the AD7533  
CMOS multiplying DAC, that use precision data converters.  
Given these conditions, RBIAS is determined by the supply  
voltage (VS), the load and operating current (IL and IQ) of the  
ADR512W, and the ADR512W’s output voltage.  
Figure 13 shows the ADR512W serving as an external reference  
to the AD7533, a CMOS multiplying DAC. Such a DAC  
requires a negative voltage input to provide a positive output  
range. In this application, the ADR512W supplies a −1.2 V  
reference to the REF input of the AD7533.  
R
BIAS = (VS − VOUT)/(IL + IQ)  
(3)  
ADJUSTABLE PRECISION VOLTAGE SOURCE  
The ADR512W, combined with a precision low input bias op  
amp such as the AD8610, can be used to output a precise  
adjustable voltage. Figure 11 illustrates the implementation of this  
application using the ADR512W.  
0
9
MSB  
LSB  
+
ADR512W  
V
DD  
1
AD7533  
15  
The output of the op amp, VOUT, is determined by the gain of the  
circuit, which is completely dependent on resistors R2 and R1.  
1
3
G
N
R2  
2
1
R2  
VOUT =1 +  
(4)  
–V  
R1  
DD  
+
V
= 0V TO 1.2V  
An additional capacitor in parallel with R2 can be added to  
filter out high frequency noise. The value of C2 is dependent on  
the value of R2.  
OUT  
Figure 13. The ADR512W as a Reference for a 10-Bit CMOS DAC (AD7533)  
V
CC  
PRECISE NEGATIVE VOLTAGE REFERENCE  
R
BIAS  
The ADR512W is suitable for use in applications where a  
precise negative voltage reference is desired, including the  
application detailed in Figure 13.  
1.2V  
AD8610  
R2  
V
= 1.2V  
OUT  
(1 + R2/R1)  
ADR512W  
Figure 14 shows the ADR512W configured to provide a −1.2 V  
output.  
R1  
C2 (OPTIONAL)  
Figure 11. Adjustable Precision Voltage Source  
Rev. 0 | Page 8 of 12  
 
 
 
 
 
 
 
 
ADR512W  
R1 in Figure 14 should be chosen so that 100 μA to 10 mA is  
provided to properly bias the ADR512W.  
+
ADR512W  
VDD  
–1.2V  
R1 =  
(5)  
I
R2  
The resistor, R1, should be chosen so that power dissipation is  
at a minimum. An ideal resistor value can be determined  
through manipulation of Equation 5.  
–V  
DD  
Figure 14. Precise −1.2 V Reference Configuration  
Because the ADR512W characteristics resemble those of a  
Zener diode, the cathode shown in Figure 14 is 1.2 V higher  
with respect to the anode (V+ with respect to V− on the  
ADR512W package). Because the cathode of the ADR512W is  
tied to ground, the anode must be −1.2 V.  
Rev. 0 | Page 9 of 12  
 
ADR512W  
OUTLINE DIMENSIONS  
3.04  
2.90  
2.80  
1.40  
1.30  
1.20  
3
2.64  
2.10  
1
2
0.60  
0.45  
1.03  
0.89  
2.05  
1.78  
1.02  
0.54  
REF  
0.95  
0.88  
GAUGE  
PLANE  
1.12  
0.89  
0.100  
0.013  
0.180  
0.085  
0.51  
0.37  
SEATING  
PLANE  
0.25  
0.60 MAX  
0.30 MIN  
COMPLIANT TO JEDEC STANDARDS TO-236-AB  
Figure 15. 3-Lead Small Outline Transistor Package [SOT-23-3]  
(RT-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Initial Accuracy  
Output  
Voltage  
(VO)  
Temperature  
Coefficient  
(ppm/°C)  
Number of  
Parts per  
Reel  
Package  
Description  
Package  
Option  
Temperature  
Range  
1,2  
Model  
ADR512WARTZ-R7  
(mV)  
(%)  
0.7  
Branding  
1.2  
8.0  
60  
3-Lead SOT-23-3  
RT-3  
R1R  
3,000  
−40°C to +85°C  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADR512W model is available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade product shown is available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for this model.  
Rev. 0 | Page 10 of 12  
 
 
 
 
 
 
ADR512W  
NOTES  
Rev. 0 | Page 11 of 12  
ADR512W  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09938-0-5/11(0)  
Rev. 0 | Page 12 of 12  

相关型号:

ADR520

High Precision Shunt Mode Voltage References
ADI

ADR520A

High Precision Shunt Mode Voltage References
ADI

ADR520AKS-REEL7

IC 1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.048 V, PDSO3, SC-70, 3 PIN, Voltage Reference
ADI

ADR520ART-R2

High Precision Shunt Mode Voltage References
ADI

ADR520ART-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR520ARTZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR520B

High Precision Shunt Mode Voltage References
ADI

ADR520BKS-R2

High Precision Shunt Mode Voltage References
ADI

ADR520BKS-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR520BKSZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR520BRT-R2

High Precision Shunt Mode Voltage References
ADI

ADR520BRT-REEL7

High Precision Shunt Mode Voltage References
ADI