ADR520ARTZ-REEL7 [ADI]

High Precision Shunt Mode Voltage References; 高精密并联模式电压基准
ADR520ARTZ-REEL7
型号: ADR520ARTZ-REEL7
厂家: ADI    ADI
描述:

High Precision Shunt Mode Voltage References
高精密并联模式电压基准

电源电路 参考电压源 光电二极管 输出元件
文件: 总16页 (文件大小:420K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Precision Shunt Mode  
Voltage References  
ADR520/ADR525/ADR530/ADR540/ADR550  
FEATURES  
PIN CONFIGURATION  
Ultracompact SC70 and SOT-23-3 packages  
Temperature coefficient: 40 ppm/°C (maximum)  
2× the temperature coefficient improvement over the  
LM4040  
Pin compatible with the LM4040/LM4050  
Initial accuracy: 0.2ꢀ  
ADR520/  
ADR525/  
ADR530/  
V+  
1
3
TRIM  
ADR540/  
ADR550  
V–  
2
Figure 1. 3-Lead SC70 (KS) and 3-Lead SOT-23-3 (RT)  
Low output voltage noise: 14 μV p-p @ 2.5 V output  
No external capacitor required  
Operating current range: 50 μA to 15 mA  
Industrial temperature range: −40°C to +85°C  
GENERAL DESCRIPTION  
Designed for space-critical applications, the ADR520/ADR525/  
ADR530/ADR540/ADR550 are high precision shunt voltage  
references, housed in ultrasmall SC70 and SOT-23-3 packages.  
These references feature low temperature drift of 40 ppm/°C,  
an initial accuracy of better than 0.2ꢀ, and ultralow output  
noise of 14 μV p-p.  
APPLICATIONS  
Portable, battery-powered equipment  
Automotive  
Power supplies  
Available in output voltages of 2.048 V, 2.5 V, 3.0 V, 4.096 V,  
and 5.0 V, the advanced design of the ADR520/ADR525/  
ADR530/ADR540/ADR550 eliminates the need for compensa-  
tion by an external capacitor, yet the references are stable with  
any capacitive load. The minimum operating current increases  
from a mere 50 μA to a maximum of 15 mA. This low operating  
current and ease of use make these references ideally suited for  
handheld, battery-powered applications.  
Data acquisition systems  
Instrumentation and process control  
Energy measurement  
Table 1. Selection Guide  
Temperature  
Coefficient  
(ppm/°C)  
Initial  
Accuracy (ꢀ)  
Part  
Voltage (V)  
2.048  
2.048  
2.5  
2.5  
3.0  
ADR520A  
ADR520B  
ADR525A  
ADR525B  
ADR530A  
ADR530B  
ADR540A  
ADR540B  
ADR550A  
ADR550B  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
70  
40  
70  
40  
70  
40  
70  
40  
70  
40  
A trim terminal is available on the ADR520/ADR525/ADR530/  
ADR540/ADR550 to allow adjustment of the output voltage  
over a 0.5ꢀ range, without affecting the temperature coefficient  
of the device. This feature provides users with the flexibility to  
trim out any system errors.  
3.0  
4.096  
4.096  
5.0  
5.0  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2008 Analog Devices, Inc. All rights reserved.  
 
ADR520/ADR525/ADR530/ADR540/ADR550  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................6  
Thermal Resistance.......................................................................6  
ESD Caution...................................................................................6  
Parameter Definitions.......................................................................7  
Temperature Coefficient...............................................................7  
Thermal Hysteresis .......................................................................7  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 11  
Applications ................................................................................ 11  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR520 Electrical Characteristics............................................. 3  
ADR525 Electrical Characteristics............................................. 3  
ADR530 Electrical Characteristics............................................. 4  
ADR540 Electrical Characteristics............................................. 4  
ADR550 Electrical Characteristics............................................. 5  
REVISION HISTORY  
1/06—Rev. A to Rev. B  
6/08—Rev. D to Rev. E  
Updated Formatting...........................................................Universal  
Changes to Features Section ............................................................1  
Changes to General Description Section .......................................1  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide.......................................................... 14  
Changes to Table 3............................................................................ 3  
Changes to Table 4 and Table 5....................................................... 4  
Changes to Table 6............................................................................ 5  
Changes to Figure 4.......................................................................... 8  
Changes to Applications Section.................................................. 11  
12/03—Data Sheet Changed from Rev. 0 to Rev. A  
12/07—Rev. C to Rev. D  
Updated Outline Dimensions....................................................... 13  
Change to Ordering Guide............................................................ 14  
Changes to Figure 3 and Figure 5................................................... 8  
Changes to Figure 15, Figure 16, and Figure 17 Captions ........ 10  
Changes to Figure 23...................................................................... 12  
Updated Outline Dimensions....................................................... 13  
11/03—Revision 0: Initial Version  
8/07—Rev. B to Rev. C  
Changes to Figure 21...................................................................... 11  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 14  
Rev. E | Page 2 of 16  
 
 
 
ADR520/ADR525/ADR530/ADR540/ADR550  
SPECIFICATIONS  
ADR520 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VOUT  
2.040  
2.044  
2.048  
2.048  
2.056  
2.052  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
−40°C < TA < +85°C  
−8  
−4  
+8  
+4  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
0.1 Hz to 10 Hz  
4
mV  
2
0.27  
mV  
Ω
μA  
μV p-p  
μs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
14  
2
40  
∆VOUT_HYS  
IIN = 1 mA  
1 Guaranteed by design; not production tested.  
ADR525 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VOUT  
2.490  
2.495  
2.500  
2.500  
2.510  
2.505  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
−40°C < TA < +85°C  
−10  
−5  
+10  
+5  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
0.1 Hz to 10 Hz  
4
mV  
2
0.2  
mV  
Ω
μA  
μV p-p  
μs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
18  
2
40  
∆VOUT_HYS  
IIN = 1 mA  
1 Guaranteed by design; not production tested.  
Rev. E | Page 3 of 16  
 
 
 
 
 
ADR520/ADR525/ADR530/ADR540/ADR550  
ADR530 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VOUT  
2.988  
2.994  
3.000  
3.000  
3.012  
3.006  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
−40°C < TA < +85°C  
−12  
−6  
+12  
+6  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
0.1 Hz to 10 Hz  
4
mV  
2
0.2  
mV  
Ω
μA  
μV p-p  
μs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
22  
2
40  
∆VOUT_HYS  
IIN = 1 mA  
1 Guaranteed by design; not production tested.  
ADR540 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VOUT  
4.080  
4.088  
4.096  
4.096  
4.112  
4.104  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
−40°C < TA < +85°C  
−16  
−8  
+16  
+8  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
0.1 Hz to 10 Hz  
5
mV  
2
0.2  
mV  
Ω
μA  
μV p-p  
μs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
30  
2
40  
∆VOUT_HYS  
IIN = 1 mA  
1 Guaranteed by design; not production tested.  
Rev. E | Page 4 of 16  
 
 
 
 
ADR520/ADR525/ADR530/ADR540/ADR550  
ADR550 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VOUT  
4.980  
4.990  
5.000  
5.000  
5.020  
5.010  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
−40°C < TA < +85°C  
−20  
−10  
+20  
+10  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 1 mA to 15 mA  
−40°C < TA < +85°C  
IIN = 0.1 mA to 15 mA  
−40°C < TA < +85°C  
0.1 Hz to 10 Hz  
5
mV  
2
0.2  
mV  
Ω
μA  
μV p-p  
μs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
38  
2
40  
∆VOUT_HYS  
IIN = 1 mA  
1 Guaranteed by design; not production tested.  
Rev. E | Page 5 of 16  
 
 
ADR520/ADR525/ADR530/ADR540/ADR550  
ABSOLUTE MAXIMUM RATINGS  
Ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
Table 7.  
Parameter  
Table 8.  
Package Type  
1
Rating  
θJA  
θJC  
Unit  
Reverse Current  
25 mA  
3-Lead SC70 (KS)  
580.5  
177.4  
°C/W  
Forward Current  
20 mA  
3-Lead SOT-23-3 (RT)  
270  
102  
°C/W  
Storage Temperature Range  
Industrial Temperature Range  
Junction Temperature Range  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
1 θJA is specified for worst-case conditions, such as for devices soldered on  
circuit boards for surface-mount packages.  
Lead Temperature (Soldering, 60 sec) 300°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. E | Page 6 of 16  
 
 
ADR520/ADR525/ADR530/ADR540/ADR550  
PARAMETER DEFINITIONS  
TEMPERATURE COEFFICIENT  
THERMAL HYSTERESIS  
Temperature coefficient is defined as the change in output  
voltage with respect to operating temperature changes and is  
normalized by the output voltage at 25°C. This parameter is  
expressed in ppm/°C and is determined by the following  
equation:  
Thermal hysteresis is defined as the change in output voltage  
after the device is cycled through temperatures ranging from  
+25°C to −40°C, then to +85°C, and back to +25°C. The  
following equation expresses a typical value from a sample of  
parts put through such a cycle:  
VOUT (T2 ) VOUT (T1 )  
VOUT _ HYS = VOUT (25°C) VOUT _ END  
ppm  
°C  
TCVO  
=
×106  
(1)  
VOUT (25°C) ×(T2 T1 )  
VOUT (25°C) VOUT _ END  
VOUT (25°C)  
(2)  
VOUT _ HYS[ppm] =  
×106  
where:  
VOUT(T2) = VOUT at Temperature 2.  
VOUT(T1) = VOUT at Temperature 1.  
VOUT(25°C) = VOUT at 25°C.  
where:  
VOUT(25°C) = VOUT at 25°C.  
VOUT_END = VOUT at 25°C after a temperature cycle from +25°C to  
−40°C, then to +85°C, and back to +25°C.  
Rev. E | Page 7 of 16  
 
ADR520/ADR525/ADR530/ADR540/ADR550  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.5  
8
7
6
5
4
3
2
1
0
ADR550  
5.0  
4.5  
ADR540  
4.0  
3.5  
ADR530  
ADR525  
ADR520  
3.0  
2.5  
2.0  
T
= +85°C  
A
T
= +25°C  
A
1.5  
T
= 25°C  
A
T
= –40°C  
A
1.0  
0.5  
0
0
25  
50  
75  
100  
0
3
6
9
12  
15  
MINIMUM OPERATING CURRENT (µA)  
I
(mA)  
IN  
Figure 2. Reverse Characteristics and Minimum Operating Current  
Figure 5. ADR550 Reverse Voltage vs. Operating Current  
8
7
V
= 2V/DIV  
IN  
T
= +25°C  
A
6
5
4
3
2
1
0
T
= +85°C  
A
V
= 1V/DIV  
4µs/DIV  
T
= –40°C  
OUT  
A
I
IN  
= 10mA  
0
3
6
9
12  
15  
TIME (µs)  
I
(mA)  
IN  
Figure 6. ADR525 Turn-On Response  
Figure 3. ADR520 Reverse Voltage vs. Operating Current  
8
6
V
= 2V/DIV  
IN  
4
T
= –40°C  
A
V
= 1V/DIV  
4µs/DIV  
OUT  
2
T
= +25°C  
A
0
I
= 100µA  
IN  
T
= +85°C  
A
–2  
0
3
6
9
12  
15  
TIME (µs)  
I
(mA)  
IN  
Figure 7. ADR525 Turn-On Response  
Figure 4. ADR525 Reverse Voltage vs. Operating Current  
Rev. E | Page 8 of 16  
 
ADR520/ADR525/ADR530/ADR540/ADR550  
V
= 2V/DIV  
IN  
V
= 2V/DIV  
IN  
V
= 1V/DIV  
4µs/DIV  
OUT  
V
= 2V/DIV  
OUT  
20µs/DIV  
I
= 10mA  
IN  
I
= 100µA  
IN  
TIME (µs)  
TIME (µs)  
Figure 8. ADR520 Turn-On Response  
Figure 11. ADR550 Turn-On Response  
PEAK-TO-PEAK  
13.5µV  
V
= 2V/DIV  
IN  
RMS  
2.14µV  
V
= 1V/DIV  
10µs/DIV  
OUT  
5µs/DIV  
I
IN  
= 100µA  
TIME (µs)  
TIME (µs)  
Figure 9. ADR520 Turn-On Response  
Figure 12. ADR520 Voltage Noise 0.1 Hz to 10 Hz  
V GEN = 2V/DIV  
V
= 2V/DIV  
IN  
I
= 1mA  
IN  
V
= 2V/DIV  
V
= 50mV/DIV  
OUT  
OUT  
4µs/DIV  
10µs/DIV  
I
IN  
= 10mA  
TIME (µs)  
TIME (µs)  
Figure 10. ADR550 Turn-On Response  
Figure 13. ADR525 Load Transient Response  
Rev. E | Page 9 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
3.0055  
3.0050  
3.0045  
3.0040  
3.0035  
3.0030  
3.0025  
3.0020  
3.0015  
3.0010  
3.0005  
3.0000  
V GEN = 2V/DIV  
I
= 10mA  
IN  
V
= 50mV/DIV  
OUT  
10µs/DIV  
–40  
–15  
10  
35  
60  
85  
TIME (µs)  
TEMPERATURE (°C)  
Figure 14. ADR550 Load Transient Response  
Figure 16. Data for Five Parts of ADR530 VOUT over Temperature  
2.5030  
2.5025  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
5.008  
5.006  
5.004  
5.002  
5.000  
4.998  
4.996  
4.994  
4.992  
4.990  
4.988  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Data for Five Parts of ADR525 VOUT over Temperature  
Figure 17. Data for Five Parts of ADR550 VOUT over Temperature  
Rev. E | Page 10 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
THEORY OF OPERATION  
V
S
The ADR520/ADR525/ADR530/ADR540/ADR550 use the  
band gap concept to produce a stable, low temperature coefficient  
voltage reference suitable for high accuracy data acquisition  
components and systems. The devices use the physical nature of a  
silicon transistor base-emitter voltage (VBE) in the forward-biased  
operating region. All such transistors have approximately a  
−2 mV/°C temperature coefficient (TC), making them unsuitable  
for direct use as low temperature coefficient references. Extra-  
polation of the temperature characteristics of any one of these  
devices to absolute zero (with the collector current proportional  
to the absolute temperature), however, reveals that its VBE  
approaches approximately the silicon band gap voltage. Thus,  
if a voltage develops with an opposing temperature coefficient  
to sum the VBE, a zero temperature coefficient reference results.  
The ADR520/ADR525/ADR530/ADR540/ADR550 circuit  
shown in Figure 18 provides such a compensating voltage (V1)  
by driving two transistors at different current densities and  
amplifying the resultant VBE difference (ΔVBE, which has a  
positive temperature coefficient). The sum of VBE and V1  
provides a stable voltage reference over temperature.  
I
+ I  
L
IN  
R
V
OUT  
I
L
I
IN  
ADR550  
Figure 19. Shunt Reference  
Given these conditions, RBIAS is determined by the supply  
voltage (VS), the load and operating currents (IL and IIN) of  
the ADR520/ADR525/ADR530/ADR540/ADR550, and the  
output voltage (VOUT) of the ADR520/ADR525/ADR530/  
ADR540/ADR550.  
VS VOUT  
RBIAS  
=
(3)  
IL + IIN  
Precision Negative Voltage Reference  
The ADR520/ADR525/ADR530/ADR540/ADR550 are suit-  
able for applications where a precise negative voltage is desired.  
Figure 20 shows the ADR525 configured to provide a negative  
output.  
V+  
+
ADR525  
V1  
–2.5V  
R
+
BE  
V
S
Δ
V
Figure 20. Negative Precision Reference Configuration  
+
V
BE  
Output Voltage Trim  
V–  
The trim terminal of the ADR520/ADR525/ADR530/ADR540/  
ADR550 can be used to adjust the output voltage over a range  
of 0.5ꢀ. This allows systems designers to trim system errors  
by setting the reference to a voltage other than the preset output  
voltage. An external mechanical or electrical potentiometer can  
be used for this adjustment. Figure 21 illustrates how the output  
voltage can be trimmed using the AD5273, an Analog Devices,  
Inc., 10 kΩ potentiometer.  
Figure 18. Circuit Schematic  
APPLICATIONS  
The ADR520/ADR525/ADR530/ADR540/ADR550 are a  
series of precision shunt voltage references. They are designed  
to operate without an external capacitor between the positive  
and negative terminals. If a bypass capacitor is used to filter the  
supply, the references remain stable.  
V
S
All shunt voltage references require an external bias resistor (RBIAS  
between the supply voltage and the reference (see Figure 19).  
RBIAS sets the current that flows through the load (IL) and the  
reference (IIN). Because the load and the supply voltage can vary,  
RBIAS needs to be chosen based on the following considerations:  
)
R
V
OUT  
R1  
470k  
AD5273  
ADR530  
POTENTIOMETER  
10kΩ  
RBIAS must be small enough to supply the minimum IIN  
current to the ADR520/ADR525/ADR530/ADR540/  
ADR550, even when the supply voltage is at its minimum  
value and the load current is at its maximum value.  
Figure 21. Output Voltage Trim  
RBIAS must be large enough so that IIN does not exceed  
15 mA when the supply voltage is at its maximum value  
and the load current is at its minimum value.  
Rev. E | Page 11 of 16  
 
 
 
 
 
ADR520/ADR525/ADR530/ADR540/ADR550  
Stacking the ADR520/ADR525/ADR530/ADR540/ADR550  
for User-Definable Outputs  
Adjustable Precision Voltage Source  
The ADR520/ADR525/ADR530/ADR540/ADR550, combined  
with a precision low input bias op amp, such as the AD8610,  
can be used to output a precise adjustable voltage. Figure 24  
illustrates the implementation of this application using the  
ADR520/ADR525/ADR530/ADR540/ADR550. The output  
of the op amp, VOUT, is determined by the gain of the circuit,  
which is completely dependent on the resistors, R1 and R2.  
Multiple ADR520/ADR525/ADR530/ADR540/ADR550 parts  
can be stacked to allow the user to obtain a desired higher voltage.  
Figure 22 shows three ADR550s configured to give 15 V. The bias  
resistor, RBIAS, is chosen using Equation 3; note that the same  
bias current flows through all the shunt references in series.  
Figure 23 shows three ADR550s stacked to give −15 V. RBIAS  
is calculated in the same manner as before. Parts of different  
voltages can also be added together. For example, an ADR525  
and an ADR550 can be added together to give an output of  
+7.5 V or −7.5 V, as desired. Note, however, that the initial  
accuracy error is now the sum of the errors of all the stacked  
parts, as are the temperature coefficients and output voltage  
change vs. input current.  
VOUT = VREF (1 + R2/R1)  
An additional capacitor, C1, in parallel with R2, can be added to  
filter out high frequency noise. The value of C1 is dependent on  
the value of R2.  
V
S
R
+V  
DD  
V
REF  
R
AD8610  
R2  
V
= V (1+R2/R1)  
REF  
OUT  
+15V  
ADR550  
ADR550  
ADR550  
ADR5xx  
R1  
C1  
GND  
(OPTIONAL)  
GND  
Figure 22. +15 V Output with Stacked ADR550s  
Figure 24. Adjustable Voltage Source  
ADR550  
GND  
ADR550  
ADR550  
–15V  
R
–V  
DD  
Figure 23. −15 V Output with Stacked ADR550s  
Rev. E | Page 12 of 16  
 
 
 
ADR520/ADR525/ADR530/ADR540/ADR550  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
1.35  
1.25  
1.15  
2.40  
2.10  
1.80  
3
1
2
PIN 1  
0.65 BSC  
0.40  
0.10  
1.00  
0.80  
1.10  
0.80  
0.30  
0.20  
0.10  
0.26  
0.10  
0.40  
0.25  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
ALL DIMENSIONS COMPLIANT WITH EIAJ SC70  
Figure 25. 3-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-3)  
Dimensions shown in millimeters  
3.04  
2.80  
1.40  
1.20  
3
2.64  
2.10  
1
2
0.60  
0.45  
1.03  
0.89  
2.05  
1.78  
1.12  
0.89  
0.100  
0.013  
0.180  
0.085  
0.51  
0.37  
SEATING  
PLANE  
0.55  
REF  
COMPLIANT TO JEDEC STANDARDS TO-236-AB  
Figure 26. 3-Lead Small Outline Transistor Package [SOT-23-3]  
(RT-3)  
Dimensions shown in millimeters  
Rev. E | Page 13 of 16  
 
ADR520/ADR525/ADR530/ADR540/ADR550  
ORDERING GUIDE  
Initial  
Tempco  
Number  
Output  
Voltage (V) (mV)  
Accuracy Industrial Package  
Package  
Option  
of Parts Temperature  
Branding per Reel Range  
Model  
(ppm/°C)  
70  
70  
70  
40  
40  
40  
40  
40  
40  
70  
70  
70  
70  
40  
40  
40  
40  
40  
40  
70  
70  
70  
40  
40  
40  
40  
40  
40  
70  
70  
70  
40  
40  
40  
40  
40  
40  
70  
70  
70  
40  
40  
40  
40  
40  
40  
Description  
ADR520ART-R2  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.5  
8
8
8
4
4
4
4
4
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SC70  
3-Lead SC70  
3-Lead SC70  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SC70  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
RQA  
RQA  
R1S  
RQB  
RQB  
R1T  
RQB  
RQB  
R1T  
RRA  
RRA  
R1W  
R1W  
RRB  
RRB  
R1N  
RRB  
RRB  
R1N  
RSA  
RSA  
R1X  
RSB  
RSB  
R1Y  
RSB  
RSB  
R1Y  
RTA  
RTA  
R1U  
RTB  
RTB  
R1V  
RTB  
RTB  
R1V  
RVA  
RVA  
R1Q  
RVB  
RVB  
R1P  
RVB  
RVB  
R1P  
250  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
ADR520ART-REEL7  
ADR520ARTZ-REEL71  
ADR520BKS-R2  
ADR520BKS-REEL7  
ADR520BKSZ-REEL71  
ADR520BRT-R2  
ADR520BRT-REEL7  
ADR520BRTZ-REEL71  
ADR525ART-R2  
ADR525ART-REEL7  
ADR525ARTZ-R21  
ADR525ARTZ-REEL71  
ADR525BKS-R2  
ADR525BKS-REEL7  
ADR525BKSZ-REEL71  
ADR525BRT-R2  
ADR525BRT-REEL7  
ADR525BRTZ-REEL71  
ADR530ART-R2  
ADR530ART-REEL7  
ADR530ARTZ-REEL71  
ADR530BKS-R2  
ADR530BKS-REEL7  
ADR530BKSZ-REEL71  
ADR530BRT-R2  
ADR530BRT-REEL7  
ADR530BRTZ-REEL71  
ADR540ART-R2  
ADR540ART-REEL7  
ADR540ARTZ-REEL71  
ADR540BKS-R2  
ADR540BKS-REEL7  
ADR540BKSZ-REEL71  
ADR540BRT-R2  
ADR540BRT-REEL7  
ADR540BRTZ-REEL71  
ADR550ART-R2  
ADR550ART-REEL7  
ADR550ARTZ-REEL71  
ADR550BKS-R2  
ADR550BKS-REEL7  
ADR550BKSZ-REEL71  
ADR550BRT-R2  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
4
10  
10  
10  
10  
5
2.5  
2.5  
2.5  
2.5  
2.5  
5
3-Lead SC70  
3-Lead SC70  
2.5  
5
2.5  
5
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SC70  
2.5  
5
2.5  
5
3.0  
3.0  
3.0  
3.0  
12  
12  
12  
6
3.0  
6
3-Lead SC70  
3-Lead SC70  
3.0  
6
3.0  
6
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SC70  
3.0  
6
3.0  
6
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
16  
16  
16  
8
8
8
8
8
8
3-Lead SC70  
3-Lead SC70  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3 Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SC70  
3-Lead SC70  
3-Lead SC70  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
20  
20  
20  
10  
10  
10  
10  
10  
10  
ADR550BRT-REEL7  
ADR550BRTZ-REEL71  
1 Z = RoHS Compliant Part.  
Rev. E | Page 14 of 16  
 
 
 
 
 
ADR520/ADR525/ADR530/ADR540/ADR550  
NOTES  
Rev. E | Page 15 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
NOTES  
©2003–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04501-0-6/08(E)  
Rev. E | Page 16 of 16  

相关型号:

ADR520B

High Precision Shunt Mode Voltage References
ADI

ADR520BKS-R2

High Precision Shunt Mode Voltage References
ADI

ADR520BKS-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR520BKSZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR520BRT-R2

High Precision Shunt Mode Voltage References
ADI

ADR520BRT-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR520BRTZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR520_15

High Precision Shunt Mode Voltage References
ADI

ADR525

High Precision Shunt Mode Voltage References
ADI

ADR525A

High Precision Shunt Mode Voltage References
ADI

ADR525AKS-REEL7

IC 1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.5 V, PDSO3, SC-70, 3 PIN, Voltage Reference
ADI

ADR525ART-R2

High Precision Shunt Mode Voltage References
ADI