ADR525AKS-REEL7 [ADI]

IC 1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.5 V, PDSO3, SC-70, 3 PIN, Voltage Reference;
ADR525AKS-REEL7
型号: ADR525AKS-REEL7
厂家: ADI    ADI
描述:

IC 1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.5 V, PDSO3, SC-70, 3 PIN, Voltage Reference

光电二极管 输出元件
文件: 总12页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Precision Shunt Mode  
Voltage References  
ADR525/ADR530/ADR550  
FEATURES  
PIN CONFIGURATION  
Ultracompact SC70 and SOT-23-3 packages  
Temperature coefficient: 40 ppm/°C (maximum)  
2× the temperature coefficient improvement over the  
LM4040  
Pin compatible with the LM4040/LM4050  
Initial accuracy: 0.2ꢀ  
ADR525/  
ADR530/  
ADR550  
V+  
1
3
TRIM  
V–  
2
Figure 1. 3-Lead SC70 (KS) and 3-Lead SOT-23-3 (RT)  
Low output voltage noise: 18 μV p-p @ 2.5 V output  
No external capacitor required  
Operating current range: 50 μA to 15 mA  
Industrial temperature range: −40°C to +85°C  
GENERAL DESCRIPTION  
Designed for space-critical applications, the ADR525/ADR530/  
ADR550 are high precision shunt voltage references, housed in  
ultrasmall SC70 and SOT-23-3 packages. These references feature  
low temperature drift of 40 ppm/°C, an initial accuracy of better  
than 0.2%, and ultralow output noise of 18 μV p-p.  
APPLICATIONS  
Portable, battery-powered equipment  
Automotive  
Power supplies  
Available in output voltages of 2.5 V, 3.0 V, and 5.0 V, the  
advanced design of the ADR525/ADR530/ADR550 eliminates  
the need for compensation by an external capacitor, yet the  
references are stable with any capacitive load. The minimum  
operating current increases from a mere 50 μA to a maximum  
of 15 mA. This low operating current and ease of use make  
these references ideally suited for handheld, battery-powered  
applications.  
Data acquisition systems  
Instrumentation and process control  
Energy measurement  
Table 1. Selection Guide  
Temperature  
Coefficient  
(ppm/°C)  
Initial  
Accuracy (ꢀ)  
Part  
Voltage (V)  
ADR525A  
ADR525B  
ADR53±A  
ADR53±B  
ADR55±A  
ADR55±B  
2.5  
2.5  
3.±  
3.±  
5.±  
5.±  
±±.ꢀ  
±±.2  
±±.ꢀ  
±±.2  
±±.ꢀ  
±±.2  
7±  
ꢀ±  
7±  
ꢀ±  
7±  
ꢀ±  
A trim terminal is available on the ADR525/ADR530/ADR550  
to allow adjustment of the output voltage over a 0.5% range,  
without affecting the temperature coefficient of the device. This  
feature provides users with the flexibility to trim out small  
system errors.  
For better initial accuracy and wider temperature range, see the  
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 family at  
www.analog.com.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2010 Analog Devices, Inc. All rights reserved.  
 
ADR525/ADR530/ADR550  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................5  
ESD Caution...................................................................................5  
Parameter Definitions.......................................................................6  
Temperature Coefficient...............................................................6  
Thermal Hysteresis .......................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation .........................................................................9  
Applications ...................................................................................9  
Outline Dimensions....................................................................... 11  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR525 Electrical Characteristics............................................. 3  
ADR530 Electrical Characteristics............................................. 3  
ADR550 Electrical Characteristics............................................. 4  
Absolute Maximum Ratings............................................................ 5  
REVISION HISTORY  
8/10—Rev. E to Rev. F  
12/07—Rev. C to Rev. D  
Deleted ADR520 and ADR540.........................................Universal  
Changes to Table 1, Figure 1, and General Description  
Section................................................................................................ 1  
Deleted ADR520 Electrical Characteristics Section .................... 3  
Deleted Table 2; Renumbered Sequentially .................................. 3  
Deleted ADR540 Electrical Characteristics Section and  
Table 5 ................................................................................................ 4  
Changes to Figure 2 and Figure 7................................................... 7  
Deleted Figure 3; Renumbered Sequentially................................. 8  
Changes to Figure 9 and Figure 10................................................. 8  
Deleted Figure 8, Figure 9, and Figure 12 ..................................... 9  
Changes to Figure 20...................................................................... 10  
Changes to Figure 3 and Figure 5....................................................8  
Changes to Figure 15, Figure 16, and Figure 17 Captions ........ 10  
Changes to Figure 23...................................................................... 12  
Updated Outline Dimensions....................................................... 13  
8/07—Rev. B to Rev. C  
Changes to Figure 21...................................................................... 11  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide.......................................................... 14  
1/06—Rev. A to Rev. B  
Updated Formatting...........................................................Universal  
Changes to Features Section ............................................................1  
Changes to General Description Section .......................................1  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide.......................................................... 14  
6/08—Rev. D to Rev. E  
Changes to Table 3............................................................................ 3  
Changes to Table 4 and Table 5....................................................... 4  
Changes to Table 6............................................................................ 5  
Changes to Figure 4.......................................................................... 8  
Changes to Applications Section .................................................. 11  
12/03—Data Sheet Changed from Rev. 0 to Rev. A  
Updated Outline Dimensions....................................................... 13  
Change to Ordering Guide............................................................ 14  
11/03—Revision 0: Initial Version  
Rev. F | Page 2 of 12  
 
ADR525/ADR530/ADR550  
SPECIFICATIONS  
ADR525 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VOUT  
2.ꢀ9±  
2.ꢀ95  
2.5±±  
2.5±±  
2.51±  
2.5±5  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
±±.ꢀ4  
±±.24  
−ꢀ±°C < TA < +85°C  
−1±  
−5  
+1±  
+5  
mV  
mV  
25  
15  
7±  
ꢀ±  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = ±.1 mA to 15 mA  
−ꢀ±°C < TA < +85°C  
mV  
IIN = 1 mA to 15 mA, −ꢀ±°C < TA < +85°C  
IIN = ±.1 mA to 15 mA  
−ꢀ±°C < TA < +85°C  
2
±.2  
mV  
Ω
μA  
μV p-p  
μs  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
5±  
±.1 Hz to 1± Hz  
18  
2
ꢀ±  
∆VOUT_HYS  
IIN = 1 mA  
ppm  
1 Guaranteed by design, but not production tested.  
ADR530 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VOUT  
2.988  
2.99ꢀ  
3.±±±  
3.±±±  
3.±12  
3.±±6  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
±±.ꢀ4  
±±.24  
−ꢀ±°C < TA < +85°C  
−12  
−6  
+12  
+6  
mV  
mV  
25  
15  
7±  
ꢀ±  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = ±.1 mA to 15 mA  
−ꢀ±°C < TA < +85°C  
mV  
IIN = 1 mA to 15 mA, −ꢀ±°C < TA < +85°C  
IIN = ±.1 mA to 15 mA  
−ꢀ±°C < TA < +85°C  
2
±.2  
mV  
Ω
μA  
μV p-p  
μs  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
5±  
±.1 Hz to 1± Hz  
22  
2
ꢀ±  
∆VOUT_HYS  
IIN = 1 mA  
ppm  
1 Guaranteed by design, but not production tested.  
Rev. F | Page 3 of 12  
 
ADR525/ADR530/ADR550  
ADR550 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VOUT  
ꢀ.98±  
ꢀ.99±  
5.±±±  
5.±±±  
5.±2±  
5.±1±  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
±±.ꢀ4  
±±.24  
−ꢀ±°C < TA < +85°C  
−2±  
−1±  
+2±  
+1±  
mV  
mV  
25  
15  
7±  
ꢀ±  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = ±.1 mA to 15 mA  
−ꢀ±°C < TA < +85°C  
5
mV  
IIN = 1 mA to 15 mA, −ꢀ±°C < TA < +85°C  
IIN = ±.1 mA to 15 mA  
−ꢀ±°C < TA < +85°C  
2
±.2  
mV  
Ω
μA  
μV p-p  
μs  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
5±  
±.1 Hz to 1± Hz  
38  
2
ꢀ±  
∆VOUT_HYS  
IIN = 1 mA  
ppm  
1 Guaranteed by design, but not production tested.  
Rev. F | Page ꢀ of 12  
 
ADR525/ADR530/ADR550  
ABSOLUTE MAXIMUM RATINGS  
Ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
Table 5.  
Parameter  
Table 6.  
Package Type  
1
Rating  
θJA  
θJC  
Unit  
Reverse Current  
Forward Current  
25 mA  
2± mA  
3-Lead SC7± (KS)  
58±.5  
27±  
177.ꢀ  
°C/W  
3-Lead SOT-23-3 (RT)  
1±2  
°C/W  
Storage Temperature Range  
Industrial Temperature Range  
Junction Temperature Range  
−65°C to +15±°C  
−ꢀ±°C to +85°C  
−65°C to +15±°C  
1 θJA is specified for worst-case conditions, such as for devices soldered on  
circuit boards for surface-mount packages.  
Lead Temperature (Soldering, 6± sec) 3±±°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. F | Page 5 of 12  
 
ADR525/ADR530/ADR550  
PARAMETER DEFINITIONS  
TEMPERATURE COEFFICIENT  
THERMAL HYSTERESIS  
Temperature coefficient is defined as the change in output  
voltage with respect to operating temperature changes and is  
normalized by the output voltage at 25°C. This parameter is  
expressed in ppm/°C and is determined by the following  
equation:  
Thermal hysteresis is defined as the change in output voltage  
after the device is cycled through temperatures ranging from  
+25°C to −40°C, then to +85°C, and back to +25°C. The  
following equation expresses a typical value from a sample of  
parts put through such a cycle:  
VOUT (T2 ) VOUT (T1 )  
VOUT _ HYS = VOUT (25°C) VOUT _ END  
VOUT (25°C) VOUT _ END  
ppm  
°C  
TCVO  
=
×106  
(1)  
VOUT (25°C) ×(T2 T1 )  
(2)  
VOUT _ HYS[ppm] =  
×106  
VOUT (25°C)  
where:  
VOUT(T2) = VOUT at Temperature 2.  
VOUT(T1) = VOUT at Temperature 1.  
VOUT(25°C) = VOUT at 25°C.  
where:  
VOUT(25°C) = VOUT at 25°C.  
VOUT_END = VOUT at 25°C after a temperature cycle from +25°C to  
−40°C, then to +85°C, and back to +25°C.  
Rev. F | Page 6 of 12  
 
ADR525/ADR530/ADR550  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.5  
T
= 25°C  
A
ADR550  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 2V/DIV  
IN  
ADR530  
ADR525  
V
= 1V/DIV  
4µs/DIV  
OUT  
I
IN  
= 10mA  
0
25  
50  
75  
100  
TIME (µs)  
MINIMUM OPERATING CURRENT (µA)  
Figure 5. ADR525 Turn-On Response  
Figure 2. Reverse Characteristics and Minimum Operating Current  
8
V
= 2V/DIV  
IN  
6
4
T
= –40°C  
A
V
= 1V/DIV  
4µs/DIV  
OUT  
2
0
T
= +25°C  
A
I
= 100µA  
IN  
T
= +85°C  
A
–2  
0
3
6
9
12  
15  
TIME (µs)  
I
(mA)  
IN  
Figure 3. ADR525 Reverse Voltage vs. Operating Current  
Figure 6. ADR525 Turn-On Response  
8
7
6
5
4
3
2
1
0
V
= 2V/DIV  
IN  
V
= 2V/DIV  
OUT  
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
4µs/DIV  
I
= 10mA  
IN  
0
3
6
9
12  
15  
TIME (µs)  
I
(mA)  
IN  
Figure 4. ADR550 Reverse Voltage vs. Operating Current  
Figure 7. ADR550 Turn-On Response  
Rev. F | Page 7 of 12  
 
ADR525/ADR530/ADR550  
2.5030  
2.5025  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
V
= 2V/DIV  
IN  
V
= 2V/DIV  
OUT  
20µs/DIV  
I
= 100µA  
IN  
TIME (µs)  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 8. ADR550 Turn-On Response  
Figure 11. Data for Five Parts of ADR525 VOUT over Temperature  
3.0055  
3.0050  
3.0045  
3.0040  
3.0035  
3.0030  
3.0025  
3.0020  
3.0015  
3.0010  
3.0005  
3.0000  
I = 1mA/DIV  
I
= 1mA  
IN  
V
= 50mV/DIV  
OUT  
10µs/DIV  
–40  
–15  
10  
35  
60  
85  
TIME (µs)  
TEMPERATURE (°C)  
Figure 9. ADR525 Load Transient Response  
Figure 12. Data for Five Parts of ADR530 VOUT over Temperature  
5.008  
5.006  
5.004  
5.002  
5.000  
4.998  
4.996  
4.994  
4.992  
4.990  
4.988  
I = 1mA/DIV  
I
= 10mA  
IN  
V
= 50mV/DIV  
OUT  
10µs/DIV  
–40  
–15  
10  
35  
60  
85  
TIME (µs)  
TEMPERATURE (°C)  
Figure 10. ADR550 Load Transient Response  
Figure 13. Data for Five Parts of ADR550 VOUT over Temperature  
Rev. F | Page 8 of 12  
ADR525/ADR530/ADR550  
THEORY OF OPERATION  
V
S
The ADR525/ADR530/ADR550 use the band gap concept to  
produce a stable, low temperature coefficient voltage reference  
suitable for high accuracy data acquisition components and  
systems. The devices use the physical nature of a silicon transistor  
base-emitter voltage (VBE) in the forward-biased operating region.  
All such transistors have approximately a −2 mV/°C tempera-  
ture coefficient (TC), making them unsuitable for direct use as  
low temperature coefficient references. Extrapolation of the  
temperature characteristics of any one of these devices to  
absolute zero (with the collector current proportional to the  
absolute temperature), however, reveals that its VBE approaches  
approximately the silicon band gap voltage. Thus, if a voltage  
develops with an opposing temperature coefficient to sum the  
VBE, a zero temperature coefficient reference results. The  
ADR525/ADR530/ADR550 circuit shown in Figure 14 provides  
such a compensating voltage (V1) by driving two transistors at  
different current densities and amplifying the resultant VBE  
difference (ΔVBE, which has a positive temperature coefficient).  
The sum of VBE and V1 provides a stable voltage reference over  
temperature.  
I
+ I  
L
IN  
R
V
OUT  
I
L
I
IN  
ADR550  
Figure 15. Shunt Reference  
Given these conditions, RBIAS is determined by the supply  
voltage (VS), the load and operating currents (IL and IIN) of  
the ADR525/ADR530/ADR550, and the output voltage (VOUT  
of the ADR525/ADR530/ADR550.  
)
VS VOUT  
RBIAS  
=
(3)  
IL + IIN  
Precision Negative Voltage Reference  
The ADR525/ADR530/ADR550 are suitable for applications  
where a precise negative voltage is desired. Figure 16 shows the  
ADR525 configured to provide a negative output.  
V+  
+
ADR525  
–2.5V  
R
V1  
V
S
+
BE  
Figure 16. Negative Precision Reference Configuration  
V
Output Voltage Trim  
+
V
The trim terminal of the ADR525/ADR530/ADR550 can be  
used to adjust the output voltage over a range of 0.5%. This  
allows systems designers to trim small system errors by setting  
the reference to a voltage other than the preset output voltage.  
An external mechanical or electrical potentiometer can be used  
for this adjustment. Figure 17 illustrates how the output voltage  
can be trimmed using the AD5273, an Analog Devices, Inc.,  
10 kΩ potentiometer.  
BE  
V–  
Figure 14. Circuit Schematic  
APPLICATIONS  
The ADR525/ADR530/ADR550 are a series of precision shunt  
voltage references. They are designed to operate without an  
external capacitor between the positive and negative terminals.  
If a bypass capacitor is used to filter the supply, the references  
remain stable.  
V
S
R
All shunt voltage references require an external bias resistor (RBIAS  
between the supply voltage and the reference (see Figure 15).  
RBIAS sets the current that flows through the load (IL) and the  
)
V
OUT  
R1  
470k  
AD5273  
ADR530  
POTENTIOMETER  
reference (IIN). Because the load and the supply voltage can vary,  
10kΩ  
RBIAS needs to be chosen based on the following considerations:  
RBIAS must be small enough to supply the minimum IIN  
current to the ADR525/ADR530/ADR550, even when the  
supply voltage is at its minimum value and the load current  
is at its maximum value.  
RBIAS must be large enough so that IIN does not exceed  
15 mA when the supply voltage is at its maximum value  
and the load current is at its minimum value.  
Figure 17. Output Voltage Trim  
Rev. F | Page 9 of 12  
 
 
 
 
 
ADR525/ADR530/ADR550  
Stacking the ADR525/ADR530/ADR550 for  
User-Definable Outputs  
Adjustable Precision Voltage Source  
The ADR525/ADR530/ADR550, combined with a precision low  
input bias op amp, such as the AD8610, can be used to output a  
precise adjustable voltage. Figure 20 illustrates the implementation  
of this application using the ADR525/ADR530/ADR550. The  
output of the op amp, VOUT, is determined by the gain of the circuit,  
which is completely dependent on the resistors, R1 and R2.  
Multiple ADR525/ADR530/ADR550 parts can be stacked to  
allow the user to obtain a desired higher voltage. Figure 18 shows  
three ADR550s configured to give 15 V. The bias resistor, RBIAS, is  
chosen using Equation 3; note that the same bias current flows  
through all the shunt references in series. Figure 19 shows three  
ADR550s stacked to give −15 V. RBIAS is calculated in the same  
manner as for Figure 18. Parts of different voltages can also be  
added together. For example, an ADR525 and an ADR550 can  
be added together to give an output of +7.5 V or −7.5 V, as  
desired. Note, however, that the initial accuracy error is now the  
sum of the errors of all the stacked parts, as are the temperature  
coefficients and output voltage change vs. input current.  
V
OUT = VREF (1 + R2/R1)  
An additional capacitor, C1, in parallel with R2, can be added to  
filter out high frequency noise. The value of C1 is dependent on  
the value of R2.  
V
S
R
+V  
DD  
V
REF  
R
AD8610  
R2  
V
= V  
(1+R2/R1)  
OUT  
REF  
+15V  
ADR550  
ADR550  
ADR550  
ADR5xx  
C1  
R1  
(OPTIONAL)  
GND  
GND  
Figure 18. +15 V Output with Stacked ADR550s  
Figure 20. Adjustable Voltage Source  
ADR550  
GND  
ADR550  
ADR550  
–15V  
R
–V  
DD  
Figure 19. −15 V Output with Stacked ADR550s  
Rev. F | Page 1± of 12  
 
 
 
ADR525/ADR530/ADR550  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
1.35  
1.25  
1.15  
2.40  
2.10  
1.80  
3
1
2
0.65 BSC  
0.40  
0.10  
1.00  
0.80  
1.10  
0.80  
0.30  
0.20  
0.10  
0.26  
0.10  
0.40  
0.25  
SEATING  
PLANE  
0.10 MAX  
COPLANARITY  
0.10  
ALL DIMENSIONS COMPLIANT WITH EIAJ SC70  
Figure 21. 3-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-3)  
Dimensions shown in millimeters  
3.04  
2.90  
2.80  
1.40  
1.30  
1.20  
3
2.64  
2.10  
1
2
0.60  
0.45  
1.03  
0.89  
2.05  
1.78  
1.02  
0.54  
REF  
0.95  
0.88  
GAUGE  
PLANE  
1.12  
0.89  
0.100  
0.013  
0.180  
0.085  
0.51  
0.37  
SEATING  
PLANE  
0.25  
0.60 MAX  
0.30 MIN  
COMPLIANT TO JEDEC STANDARDS TO-236-AB  
Figure 22. 3-Lead Small Outline Transistor Package [SOT-23-3]  
(RT-3)  
Dimensions shown in millimeters  
Rev. F | Page 11 of 12  
 
ADR525/ADR530/ADR550  
ORDERING GUIDE  
Initial  
Tempco  
Output  
Voltage (V) (mV)  
Accuracy Industrial Package  
Package  
Option  
Ordering Temperature  
Model1  
(ppm/°C)  
Description  
Branding Qty  
Range  
ADR525ART-REEL7  
ADR525ARTZ-R2  
2.5  
2.5  
2.5  
2.5  
2.5  
3.±  
3.±  
3.±  
5.±  
5.±  
1±  
1±  
1±  
5
7±  
7±  
7±  
ꢀ±  
ꢀ±  
7±  
ꢀ±  
ꢀ±  
7±  
ꢀ±  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SC7±  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SC7±  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
3-Lead SOT-23-3  
RT-3  
RT-3  
RT-3  
KS-3  
RT-3  
RT-3  
KS-3  
RT-3  
RT-3  
RT-3  
RRA  
R1W  
R1W  
R1N  
R1N  
R1X  
R1Y  
R1Y  
R1Q  
R1P  
3,±±±  
25±  
−ꢀ±°C to +85°C  
−ꢀ±°C to +85°C  
−ꢀ±°C to +85°C  
−ꢀ±°C to +85°C  
−ꢀ±°C to +85°C  
−ꢀ±°C to +85°C  
−ꢀ±°C to +85°C  
−ꢀ±°C to +85°C  
−ꢀ±°C to +85°C  
−ꢀ±°C to +85°C  
ADR525ARTZ-REEL7  
ADR525BKSZ-REEL7  
ADR525BRTZ-REEL7  
ADR53±ARTZ-REEL7  
ADR53±BKSZ-REEL7  
ADR53±BRTZ-REEL7  
ADR55±ARTZ-REEL7  
ADR55±BRTZ-REEL7  
3,±±±  
3,±±±  
3,±±±  
3,±±±  
3,±±±  
3,±±±  
3,±±±  
3,±±±  
5
12  
6
6
2±  
1±  
1 Z = RoHS Compliant Part.  
©2003–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04501-0-8/10(F)  
Rev. F | Page 12 of 12  
 
 

相关型号:

ADR525ART-R2

High Precision Shunt Mode Voltage References
ADI

ADR525ART-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525ARTZ-R2

High Precision Shunt Mode Voltage References
ADI

ADR525ARTZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525B

High Precision Shunt Mode Voltage References
ADI

ADR525BKS-R2

High Precision Shunt Mode Voltage References
ADI

ADR525BKS-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525BKSZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525BRT-R2

High Precision Shunt Mode Voltage References
ADI

ADR525BRT-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525BRTZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525_15

High Precision Shunt Mode Voltage References
ADI