ADRF5021-EVALZ [ADI]

Silicon SPDT Switch;
ADRF5021-EVALZ
型号: ADRF5021-EVALZ
厂家: ADI    ADI
描述:

Silicon SPDT Switch

光电二极管
文件: 总12页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
9 kHz to 30 GHz,  
Silicon SPDT Switch  
ADRF5021  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
RF2  
Ultrawideband frequency range: 9 kHz to 30 GHz  
Nonreflective 50 Ω design  
ADRF5021  
VSS  
Low insertion loss: 2.0 dB to 30 GHz  
High isolation: 60 dB to 30 GHz  
EN  
50Ω  
RFC  
High input linearity  
CTRL  
1 dB power compression (P1dB): 28 dBm typical  
Third-order intercept (IP3): 52 dBm typical  
High power handling  
50Ω  
VDD  
RF1  
24 dBm through path  
24 dBm terminated path  
Figure 1.  
ESD sensitivity: Class 1, 1 kV human body model (HBM)  
20-terminal, 3 mm × 3 mm land grid array package  
No low frequency spurious  
Radio frequency (RF) settling time (to 0.1 dB of final RF  
output): 6.2 µs  
APPLICATIONS  
Test instrumentation  
Microwave radios and very small aperture terminals (VSATs)  
Military radios, radars, electronic counter measures (ECMs)  
Broadband telecommunications systems  
GENERAL DESCRIPTION  
The ADRF5021 is a general-purpose single-pole, double-throw  
(SPDT) switch manufactured using a silicon process. It comes  
in a 3 mm × 3 mm, 20-terminal land grid array (LGA) package  
and provides high isolation and low insertion loss from 9 kHz  
to 30 GHz.  
This broadband switch requires dual supply voltages, +3.3 V  
and −2.5 V, and provides CMOS/LVTTL logic-compatible  
control.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2016–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADRF5021  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Interface Schematics .....................................................................6  
Typical Performance Characterics ..................................................7  
Insertion Loss, Return Loss, and Isolation ................................7  
Input Power Compression and Third-Order Intercept (IP3)..8  
Theory of Operation .........................................................................9  
Applications Information .............................................................. 10  
Evaluation Board ........................................................................ 10  
Probe Matrix Board ................................................................... 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Power Derating Curves................................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
REVISION HISTORY  
2/2017—Rev. 0 to Rev. A  
Changed VEN = 3.3 V to 5 V to VEN = 0 V or 3.3 V to 5 V .......... 3  
7/2016—Revision 0: Initial Version  
Rev. A | Page 2 of 12  
 
Data Sheet  
ADRF5021  
SPECIFICATIONS  
VDD = 3.3 V to 5 V, VSS = −2.5 V, VCTRL = 0 V or 3.3 V to 5 V, VEN = 0 V or 3.3 V to 5 V, TCASE = 25°C, 50 Ω system, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
30,000  
Unit  
FREQUENCY RANGE  
INSERTION LOSS  
0.009  
MHz  
Between RFC and RF1/RF2  
9 kHz to 10 GHz  
10 GHz to 20 GHz  
20 GHz to 30 GHz  
1.1  
1.4  
2.0  
dB  
dB  
dB  
ISOLATION  
Between RFC and RF1/RF2  
9 kHz to 10 GHz  
10 GHz to 20 GHz  
20 GHz to 30 GHz  
9 kHz to 10 GHz  
10 GHz to 20 GHz  
20 GHz to 30 GHz  
65  
60  
60  
70  
65  
60  
dB  
dB  
dB  
dB  
dB  
dB  
Between RF1 and RF2  
RETURN LOSS  
RFC and RF1/RF2 (On)  
9 kHz to 10 GHz  
10 GHz to 20 GHz  
20 GHz to- 30 GHz  
9 kHz to 10 GHz  
10 GHz to 20 GHz  
20 GHz to 30 GHz  
23  
17  
13  
30  
18  
8
dB  
dB  
dB  
dB  
dB  
dB  
RF1/RF2 (Off)  
SWITCHING  
Rise and Fall Time  
On and Off Time  
RF Settling Time  
0.1 dB  
tRISE, tFALL  
tON, tOFF  
10% to 90% of RF output  
50% VCTL to 90% of RF output  
1.0  
1.1  
µs  
µs  
50% VCTL to 0.1 dB of final RF output  
50% VCTL to 0.05 dB of final RF output  
1 MHz to 30 GHz  
6.2  
10  
µs  
µs  
0.05 dB  
INPUT LINEARITY1  
Power Compression  
0.1 dB  
P0.1dB  
P1dB  
IP3  
27  
28  
52  
dBm  
dBm  
dBm  
1 dB  
Third-Order Intercept  
Two-tone input power = 14 dBm each tone,  
Δf = 1 MHz  
SUPPLY CURRENT  
Positive  
VDD, VSS pins  
VDD = 3.3 V  
VDD = 5 V  
VSS = −2.5 V  
CTRL, EN pins  
IDD  
ISS  
80  
100  
<1  
300  
600  
10  
µA  
µA  
µA  
Negative  
DIGITAL CONTROL INPUTS  
Voltage  
Low  
VINL  
VINH  
VDD = 3.3 V  
VDD = 5 V  
VDD = 3.3 V  
VDD = 5 V  
0
0.8  
0.9  
3.3  
5.0  
V
V
V
V
High  
1.2  
1.7  
Current  
Low and High  
IINL, IINH  
<1  
µA  
Rev. A | Page 3 of 12  
 
 
ADRF5021  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
RECOMMENDED OPERATING CONDITONS  
Supply Voltage  
Positive  
Negative  
Digital Control Voltage  
RF Input Power2  
Through Path  
VDD  
VSS  
VCTL  
PIN  
3.0  
−2.75  
0
5.4  
−2.25  
VDD  
V
V
V
f = 1 MHz to 30 GHz, TCASE = 85°C  
RF signal is applied to RFC or through  
connected RF1/RF2  
24  
dBm  
Terminated Path  
Hot Switching  
RF signal is applied to terminated RF1/RF2  
RF signal is present at RFC while switching  
between RF1 and RF2  
24  
18  
dBm  
dBm  
Case Temperature  
TCASE  
−40  
+85  
°C  
1 For input linearity performance at frequencies less than 1 MHz, see Figure 15 to Figure 17.  
2 For power derating at frequencies less than 1 MHz, see Figure 2 to Figure 4.  
Rev. A | Page 4 of 12  
Data Sheet  
ADRF5021  
ABSOLUTE MAXIMUM RATINGS  
4
2
For recommended operating conditions, see Table 1.  
T
= 85°C  
CASE  
Table 2.  
Parameter  
0
Rating  
–2  
Supply Voltage  
Positive  
−0.3 V to +5.5 V  
–4  
Negative  
−2.75 V to +0.3 V  
−0.3 V to VDD + 0.3 V  
–6  
Digital Control Input Voltage  
RF Input Power1 (f = 1 MHz to 30 GHz,  
–8  
T
CASE = 85°C)  
–10  
–12  
–14  
Through Path  
Terminated Path  
Hot Switching  
27 dBm  
25 dBm  
21 dBm  
10k  
100k  
1M  
10M  
100M  
1G  
10G 30G  
Temperature  
FREQUENCY (Hz)  
Junction (TJ)  
135°C  
Figure 3. Power Derating for Terminated Path vs. Frequency, TCASE = 85°C  
Storage  
−65°C to +150°C  
260°C  
4
T
= 85°C  
CASE  
Reflow (MSL3 Rating)  
Junction to Case Thermal Resistance, θJC  
Through Path  
Terminated Path  
ESD Sensitivity  
HBM  
2
0
420°C/W  
160°C/W  
–2  
–4  
1 kV (Class 1)  
–6  
1 For power derating at frequencies less than 1 MHz, see Figure 2 to Figure 4.  
–8  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
–10  
–12  
–14  
10k  
100k  
1M  
10M  
100M  
1G  
10G 30G  
FREQUENCY (Hz)  
Figure 4. Power Derating for Hot Switching vs. Frequency, TCASE = 85°C  
ESD CAUTION  
Only one absolute maximum rating can be applied at any one time.  
POWER DERATING CURVES  
4
T
= 85°C  
CASE  
2
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
10k  
100k  
1M  
10M  
100M  
1G  
10G 30G  
FREQUENCY (Hz)  
Figure 2. Power Derating for Through Path vs. Frequency, TCASE = 85°C  
Rev. A | Page 5 of 12  
 
 
 
 
 
ADRF5021  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
20  
19  
18  
17  
16  
1
2
3
4
5
15  
14  
13  
12  
11  
VSS  
EN  
GND  
GND  
RFC  
GND  
GND  
ADRF5021  
GND  
CTRL  
VDD  
TOP VIEW  
(Not to Scale)  
6
7
8
9
10  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED  
TO THE RF/DC GROUND OF THE PRINTED  
CIRCUIT BOARD (PCB).  
Figure 5. Pin Configuration (Top View)  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 2, 4 to 7, 9, 10,  
13, 16, 17, 19, 20  
GND  
Ground. These pins must be connected to the RF/dc ground of the printed circuit board (PCB).  
3
RFC  
RF1  
RF Common Port. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is  
necessary when the RF line potential is equal to 0 V dc. See Figure 6 for the interface schematic.  
RF1 Port. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is necessary  
when the RF line potential is equal to 0 V dc. See Figure 6 for the interface schematic.  
8
11  
12  
14  
15  
18  
VDD  
CTRL  
EN  
VSS  
RF2  
Positive Supply Voltage.  
Control Input. See Figure 7 for the interface schematic.  
Enable Input. See Figure 7 for the interface schematic.  
Negative Supply Voltage.  
RF2 Port. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is necessary  
when the RF line potential is equal to 0 V dc. See Figure 6 for the interface schematic.  
EPAD  
Exposed Pad. The exposed pad must be connected to the RF/dc ground of the PCB.  
INTERFACE SCHEMATICS  
VDD  
VDD  
RFC,  
RF1,  
RF2  
CTRL, EN  
Figure 6. RFC, RF1, and RF2 Pins Interface Schematic  
Figure 7. Digital Pins (CTRL and EN) Interface Schematic  
Rev. A | Page 6 of 12  
 
 
 
 
Data Sheet  
ADRF5021  
TYPICAL PERFORMANCE CHARACTERICS  
INSERTION LOSS, RETURN LOSS, AND ISOLATION  
Insertion loss and return loss measured on the probe matrix board using the ground, signal, ground (GSG) probes close to the RF pins;  
isolation measured on an evaluation board because signal coupling between the probes limits the isolation performance of the ADRF5021  
on the probe matrix board (see the Applications Information section for details of evaluation and probe matrix boards).  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
RFC  
RF1 ON  
RF2 OFF  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Insertion Loss Between RFC and RF1/RF2 vs. Frequency over  
Temperature  
Figure 10. Return Loss vs. Frequency (RFC, RF1 On, and RF2 Off)  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Isolation Between RFC and RF1/RF2 vs. Frequency over  
Temperature  
Figure 11. Isolation Between RF1 and RF2 vs. Frequency over  
Temperature  
Rev. A | Page 7 of 12  
 
 
ADRF5021  
Data Sheet  
INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT (IP3)  
All large signal performance parameters were measured on the evaluation board.  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
T
T
T
= +85°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
= +25°C  
CASE  
= –40°C  
CASE  
0
5
10  
15  
20  
25  
30  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 12. Input 0.1 dB Power Compression (P0.1dB) vs. Frequency over  
Temperature  
Figure 15. Input 0.1 dB Power Compression (P0.1dB) vs. Frequency over  
Temperature (Low Frequency Detail)  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
12  
10  
12  
10  
0
5
10  
15  
20  
25  
30  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 13. Input 1 dB Power Compression (P1dB) vs. Frequency over  
Temperature  
Figure 16. Input 1 dB Power Compression (P1dB) vs. Frequency over  
Temperature (Low Frequency Detail)  
60  
60  
55  
50  
45  
40  
35  
30  
T
T
T
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
55  
50  
45  
40  
35  
30  
25  
20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
25  
20  
10k  
100k  
1M  
10M  
100M  
1G  
0
5
10  
15  
20  
25  
30  
FREQUENCY (Hz)  
FREQUENCY (GHz)  
Figure 14. Input IP3 vs. Frequency over Temperature  
Figure 17. Input IP3 vs. Frequency over Temperature (Low Frequency Detail)  
Rev. A | Page 8 of 12  
 
 
 
Data Sheet  
ADRF5021  
THEORY OF OPERATION  
The ADRF5021 requires a positive supply voltage applied to the  
VDD pin and a negative supply voltage applied to the VSS pin.  
Bypassing capacitors are recommended on the supply lines to  
minimize RF coupling.  
conducts the RF signal equally well in both directions between  
its throw port (for example, RF1) and common port (RFC). The  
isolation path (for example, RF2 to RFC) provides high loss  
between the insertion loss path and its throw port (for example,  
RF2) terminated to an internal 50 Ω resistor.  
The ADRF5021 is internally matched to 50 Ω at the RF common  
port (RFC) and the RF throw ports (RF1 and RF2); therefore,  
no external matching components are required. All of the RF  
ports are dc-coupled to 0 V, and no dc blocking is required at the  
RF ports when the RF line potential is equal to 0 V. The design  
is bidirectional; the RF input signal can be applied to the RFC  
port while the RF throw port (RF1 or RF2) is output or vice versa.  
When the EN pin is logic high, both the RF1 to RFC path and  
the RF2 to RFC path are in an isolation state regardless of the  
logic state of CTRL. RF1 and RF2 ports are terminated to  
internal 50 Ω resistors, and RFC becomes open reflective.  
The ideal power-up sequence is as follows:  
1. Power up GND.  
2. Power up VDD and VSS. The relative order is not  
important.  
3. Power up the digital control inputs. The relative order of  
the logic control inputs is not important. However,  
powering the digital control inputs before the VDD supply  
can inadvertently forward bias and damage the internal  
ESD protection structures.  
The ADRF5021 incorporates a driver to perform logic functions  
internally and to provide the user with the advantage of a simplified  
control interface. The driver features two digital control input  
pins, CTRL and EN.  
When the EN pin is logic low, the RF1 to RFC path is in an  
insertion loss state, and the RF2 to RFC path is in an isolation  
state, or vice versa, depending on the logic level applied to the  
CTRL pin. The insertion loss path (for example, RF1 to RFC)  
4. Apply an RF input signal.  
Table 4. Control Voltage Truth Table  
Digital Control Input  
RF Paths  
EN  
CTRL  
Low  
High  
Low  
RF1 to RFC  
RF2 to RFC  
Low  
Low  
High  
High  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
High  
Rev. A | Page 9 of 12  
 
ADRF5021  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 20 shows the actual ADRF5021 evaluation board with  
component placement. Two power supply ports are connected  
to the VDD and VSS test points, TP5 and TP2, and the ground  
reference is connected to the GND test point, TP1. On each  
supply trace, a 100 pF bypass capacitor is used, and unpopulated  
components positions are available for applying extra bypass  
capacitors.  
EVALUATION BOARD  
Figure 18 and Figure 19 show the top and cross sectional views  
of the evaluation board, which uses 4-layer construction with a  
copper thickness of 0.5 oz (0.7 mil) and dielectric materials  
between each copper layer.  
EDGE PLATING 5 × 520mil  
R 32mil  
570mil  
40mil  
40mil  
1500mil  
Figure 18. Evaluation Board Layout (Top View)  
G = 5mil  
W = 14mil  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
T = 0.7mil  
H = 8mil  
RO4003  
0.5oz Cu (0.7mil)  
Figure 20. Populated Evaluation Board  
Two control ports are connected to the EN and CTRL test  
points, TP3 and TP4. On each control trace, a resistor position  
is available to improve the isolation between the RF and control  
signals. The RF ports are connected to the RFC, RF1, and RF2  
connectors (J1, J2, and J3) that are end launch 2.4 mm RF  
connectors. A through transmission line that connects  
unpopulated RF connectors (J7 and J8) is also available to  
measure the loss of the PCB. Figure 21 and Table 5 are the  
evaluation board schematic and bill of materials, respectively.  
FR4  
0.5oz Cu (0.7mil)  
FR4  
0.5oz Cu (0.7mil)  
Figure 19. Evaluation Board (Cross Sectional View)  
All RF and dc traces are routed on the top copper layer whereas  
the inner and bottom layers are grounded planes that provide  
a solid ground for the RF transmission lines. Top dielectric  
material is 8 mil Rogers RO4003, offering good high frequency  
performance. The middle and bottom dielectric materials are  
FR-4 type materials to achieve an overall board thickness of  
62 mil.  
The evaluation board shown in Figure 20 is available from  
Analog Devices, Inc., upon request.  
The RF transmission lines were designed using a coplanar  
waveguide (CPWG) model with a width of 14 mil and ground  
spacing of 5 mil to have a characteristic impedance of 50 Ω. For  
good RF and thermal grounding, as many plated through vias  
as possible are arranged around transmission lines and under  
the exposed pad of the package.  
Rev. A | Page 10 of 12  
 
 
 
 
 
Data Sheet  
ADRF5021  
THR_CAL  
RF2  
J7  
J8  
DEPOP  
DEPOP  
J3  
TP1  
TP2  
VSS  
C4  
100pF  
C3  
100nF  
DEPOP  
C6  
10µF  
DEPOP  
20  
19  
18  
17  
16  
VSS  
EN  
GND  
GND  
RFC  
GND  
GND  
1
2
3
4
15  
14  
13  
12  
11  
R1  
0Ω  
EN  
TP3  
RFC  
GND  
CTRL  
VDD  
U1  
J1  
R2  
0Ω  
CTRL  
VDD  
TP4  
TP5  
5
C5  
100pF  
C2  
100pF  
DEPOP  
C1  
6
7
8
9
10  
10µF  
DEPOP  
RF1  
J2  
Figure 21. Evaluation Board Schematic  
PROBE MATRIX BOARD  
Table 5. Bill of Materials, Evaluation Board Components  
Figure 22 and Figure 23 show the top and cross sectional views  
of the probe matrix board that measures the s-parameters of the  
ADRF5021 at close proximity to RF pins using the GSG probes.  
The actual board duplicates the same layout in matrix form to  
assemble multiple devices and uses RF traces for through,  
reflect, and line (TRL) calibration.  
Component Description  
J1, J2, J3  
J7, J8  
End launch connectors, 2.4 mm  
Unpopulated end launch connectors, 2.4 mm  
Through hole mount test points  
100 pF capacitors, 0402 package  
Unpopulated capacitors, 0402 package  
Unpopulated capacitors, 0603 package  
0 Ω resistors, 0402 package  
TP1 to TP5  
C4, C5  
C2, C3  
C1, C6  
R1, R2  
U1  
ADRF5021 SPDT switch  
PCB  
600-01583-00-1 evaluation PCB  
220mil  
340mil  
Figure 22. Probe Board Layout (Top View)  
G = 5mil  
W = 14mil  
0.5oz Cu  
0.5oz Cu  
0.5oz Cu  
T = 0.7mil  
H = 8mil  
RO4003  
0.5oz Cu  
Figure 23. Probe Matrix Board (Cross Sectional View)  
Rev. A | Page 11 of 12  
 
 
 
 
 
ADRF5021  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
0.25  
0.20  
0.15  
0.30  
0.25  
0.20  
CHAMFERED  
PIN 1 (0.3 × 45°)  
PIN 1  
CORNER AREA  
16  
20  
0.70  
REF  
1
15  
1.70  
1.60 SQ  
1.50  
1.60 REF  
SQ  
EXPOSED  
PAD  
11  
5
0.40  
BSC  
10  
6
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.13  
REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.776  
0.726  
0.676  
0.530 REF  
SECTION OF THIS DATA SHEET.  
0.236  
0.196  
0.156  
Figure 24. 20-Terminal Land Grid Array [LGA]  
3 mm × 3 mm Body and 0.72 mm Package Height  
(CC-20-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
MSL Rating2  
Package Description  
Package Option  
Branding3  
021  
ADRF5021BCCZN  
−40°C to +85°C  
MSL3  
20-Terminal Land Grid Array [LGA]  
CC-20-3  
XXXX  
021  
XXXX  
ADRF5021BCCZN-R7  
−40°C to +85°C  
MSL3  
20-Terminal Land Grid Array [LGA]  
Evaluation Board  
CC-20-3  
ADRF5021-EVALZ  
1 Z = RoHS-Compliant Part.  
2 See the Absolute Maximum Ratings section.  
3 XXXX is the 4-digit lot number.  
©2016–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14580-0-2/17(A)  
Rev. A | Page 12 of 12  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY