ADRF5045BCCZN-R7 [ADI]

9 kHz to 30 GHz, Silicon, SP4T Switch;
ADRF5045BCCZN-R7
型号: ADRF5045BCCZN-R7
厂家: ADI    ADI
描述:

9 kHz to 30 GHz, Silicon, SP4T Switch

文件: 总14页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
9 kHz to 30 GHz,  
Silicon, SP4T Switch  
Data Sheet  
ADRF5045  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Ultrawideband frequency range: 9 kHz to 30 GHz  
Nonreflective 50 Ω design  
Low insertion loss: 2.4 dB at 20 GHz to 30 GHz  
High isolation: 45 dB at 20 GHz to 30 GHz  
High input linearity  
P1dB: 28 dBm typical  
IP3: 50 dBm typical  
High power handling  
24 dBm through path  
24  
23  
22  
21  
20  
19  
ADRF5045  
GND  
GND  
RFC  
GND  
GND  
GND  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
GND  
VDD  
50Ω  
50Ω  
V1  
V2  
24 dBm terminated path  
ESD rating: 1500 V HBM  
No low frequency spurious  
VSS  
50Ω 50Ω  
GND  
0.1 dB settling time (50% VCTL to 0.1 dB final RF output): 6 µs  
24-terminal LGA package  
7
8
9
10  
11  
12  
APPLICATIONS  
Figure 1.  
Test instrumentation  
Microwave radios and very small aperture terminals (VSATs)  
Military radios, radars, and electronic counter measures (ECMs)  
Broadband telecommunications systems  
GENERAL DESCRIPTION  
The ADRF5045 is a general-purpose, single-pole, four-throw  
(SP4T) switch manufactured using a silicon process. It comes  
in a 24-terminal land grid array (LGA) package and provides  
high isolation and low insertion loss from 9 kHz to 30 GHz.  
This broadband switch requires dual supply voltages, +3.3 V and  
−3.3 V, and provides complementary metal-oxide semiconductor  
(CMOS)/low voltage transistor-transistor logic (LVTTL) logic-  
compatible control.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADRF5045  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Typical Performance Characteristics .............................................7  
Insertion Loss, Return Loss, and Isolation ................................7  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Absolute Maximum Ratings ........................................................... 5  
Thermal Resistance...................................................................... 5  
Power Derating Curves ............................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions ............................ 6  
Interface Schematics .................................................................... 6  
Input 0.1 dB, 1 dB Power Compression, and Third-Order  
Intercept .........................................................................................9  
Theory of Operation ...................................................................... 10  
Applications Information ............................................................. 11  
Evaluation Board........................................................................ 11  
Probe Matrix Board ................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
3/2020—Rev. 0 to Rev. A  
Changes to Digital Control Inputs Parameter, Table 2 .............. 5  
Added Endnote 1, Table 2; Renumbered Sequentially ............... 5  
Changes to Theory of Operation Section.................................... 10  
12/2017—Revision 0: Initial Version  
Rev. A | Page 2 of 14  
 
Data Sheet  
ADRF5045  
SPECIFICATIONS  
VDD = 3.3 V, VSS = −3.3 V, V1 = 0 V or 3.3 V, V2 = 0 V or 3.3 V, and TCASE = 25°C, 50 Ω system, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ Max  
Unit  
FREQUENCY RANGE  
0.009  
30,000 MHz  
INSERTION LOSS  
Between RFC and RF1 to RF4 (On) (Worst Case)  
9 kHz to 10 GHz  
10 GHz to 20 GHz  
20 GHz to 30 GHz  
1.5  
1.7  
2.4  
dB  
dB  
dB  
ISOLATION  
Between RFC and RF1 to RF4 (Off) (Worst Case)  
9 kHz to 10 GHz  
10 GHz to 20 GHz  
20 GHz to 30 GHz  
58  
53  
45  
dB  
dB  
dB  
RETURN LOSS  
RFC and RF1 to RF4 (On)  
9 kHz to 10 GHz  
10 GHz to 20 GHz  
20 GHz to 30 GHz  
9 kHz to 10 GHz  
10 GHz to 20 GHz  
20 GHz to 30 GHz  
16  
25  
17  
21  
17  
11  
dB  
dB  
dB  
dB  
dB  
dB  
RF1 to RF4 (Off)  
SWITCHING TIME  
Rise and Fall  
On and Off  
Settling  
tRISE, tFALL 10% to 90% of radio frequency (RF) output  
2
4
µs  
µs  
tON, tOFF  
50% VCTL to 90% of RF output  
0.1 dB  
0.05 dB  
50% VCTL to 0.1 dB of final RF output  
50% VCTL to 0.05 dB of final RF output  
6
7
µs  
µs  
INPUT LINEARITY  
Power Compression  
0.1 dB  
P0.1dB  
P1dB  
IP3  
26  
28  
50  
dBm  
dBm  
dBm  
1 dB  
Third-Order Intercept  
Two-tone input power = 14 dBm each  
tone, Δf = 1 MHz  
SUPPLY CURRENT  
Positive  
VDD, VSS pins  
Typical at VCTL = 0 V or 3.3 V,  
maximum at VCTL = 0.8 V or 1.4 V  
Typical at VCTL = 0 V or 3.3 V,  
IDD  
ISS  
3
20  
µA  
µA  
Negative  
110 130  
maximum at VCTL = 0.8 V or 1.4 V  
DIGITAL CONTROL INPUTS  
V1, V2 pins  
Voltage  
Low  
High  
VINL  
VINH  
0
1.2  
0.8  
3.3  
V
V
Current  
Low and High  
IINL, IINH  
<1  
µA  
RECOMMENDED OPERATING CONDITONS  
Supply Voltage  
Positive  
Negative  
Digital Control Voltage  
VDD  
VSS  
VCTL  
3.15  
−3.45  
0
3.45  
−3.15  
VDD  
V
V
V
Rev. A | Page 3 of 14  
 
 
ADRF5045  
Data Sheet  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ Max  
Unit  
RFx Input Power  
Through Path  
PIN  
TCASE = 85°C  
RF signal is applied to RFC or through  
connected RF1/RF2  
RF signal is applied to terminated  
RF1/RF2  
RF signal is present at RFC while  
switching between RF1 and RF2  
24  
dBm  
dBm  
dBm  
°C  
Terminated Path  
Hot Switching  
24  
21  
Case Temperature  
TCASE  
−40  
+85  
Rev. A | Page 4 of 14  
Data Sheet  
ADRF5045  
ABSOLUTE MAXIMUM RATINGS  
For recommended operating conditions, see Table 1.  
POWER DERATING CURVES  
4
Table 2.  
2
0
Parameter  
Rating  
Supply Voltage  
Positive  
Negative  
Digital Control Inputs1  
−0.3 V to +3.6 V  
−3.6 V to +0.3 V  
−0.3 V to VDD + 0.3 V  
or 3.3 mA, whichever  
occurs first  
–2  
–4  
–6  
–8  
RFx Input Power2 (f = 500 kHz to 30 GHz,  
TCASE = 85°C)  
–10  
–12  
–14  
Through Path  
Terminated Path  
Hot Switching  
Temperature  
25 dBm  
25 dBm  
22 dBm  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
100G  
FREQUENCY (Hz)  
Junction, TJ  
Storage Range  
Reflow (Moisture Sensitivity Level 3  
(MSL3) Rating)  
135°C  
−65°C to +150°C  
260°C  
Figure 2. Power Derating for Through Path and Hot Switching vs. Frequency,  
TCASE = 85°C  
4
2
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
RFC, RF1 to RF4 Pins  
0
–2  
1500 V  
2000 V  
Other Pins  
–4  
1 Overvoltages at digital control inputs are clamped by internal diodes.  
Current must be limited to the maximum rating given.  
–6  
2 For power derating less than 500 kHz, see Figure 2 and Figure 3.  
–8  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
–10  
–12  
–14  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
100G  
FREQUENCY (Hz)  
Figure 3. Power Derating for Terminated Path vs. Frequency, TCASE = 85°C  
ESD CAUTION  
Only one absolute maximum rating can be applied at any one time.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
θJC is the junction to case bottom (channel to package bottom)  
thermal resistance.  
Table 3. Thermal Resistance  
Package Type  
θJC  
Unit  
CC-24-4  
Through Path  
Terminated Path  
400  
160  
°C/W  
°C/W  
Rev. A | Page 5 of 14  
 
 
 
 
 
 
ADRF5045  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
24 23 22 21 20 19  
GND  
GND  
RFC  
GND  
GND  
GND  
18 GND  
VDD  
1
2
3
4
5
6
17  
ADRF5045  
16 V1  
15 V2  
TOP VIEW  
(Not to Scale)  
VSS  
14  
13 GND  
7
8
9
10 11 12  
NOTES  
1. THE EXPOSED PAD MUST BE  
CONNECTED TO THE RF/DC GROUND  
OF THE PCB.  
Figure 4. Pin Configuration (Top View)  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1, 2, 4 to 7, 9, 10, 12, GND  
13, 18, 19, 21, 22, 24  
Ground. These pins must be connected to the RF/dc ground of the PCB.  
3
RFC  
RF4  
RF3  
RF Common Port. This pin is dc-coupled and matched to 50 Ω. A dc blocking capacitor is required if the RF  
line potential is not equal to 0 V dc. See Figure 5 for the interface schematic.  
RF4 Port. This pin is dc-coupled and matched to 50 Ω. A dc blocking capacitor is required if the RF line  
potential is not equal to 0 V dc. See Figure 5 for the interface schematic.  
RF3 Port. This pin is dc-coupled and matched to 50 Ω. A dc blocking capacitor is required if the RF line  
potential is not equal to 0 V dc. See Figure 5 for the interface schematic.  
8
11  
14  
15  
16  
17  
20  
VSS  
V2  
V1  
VDD  
RF2  
Negative Supply Voltage.  
Control Input 2. See Table 5 for the control voltage truth table.  
Control Input 1. See Table 5 for the control voltage truth table.  
Positive Supply Voltage.  
RF2 Port. This pin is dc-coupled and matched to 50 Ω. A dc blocking capacitor is required if the RF line  
potential is not equal to 0 V dc. See Figure 5 for the interface schematic.  
23  
RF1  
RF1 Port. This pin is dc-coupled and matched to 50 Ω. A dc blocking capacitor is required if the RF line  
potential is not equal to 0 V dc. See Figure 5 for the interface schematic.  
EPAD  
Exposed Pad. The exposed pad must be connected to the RF/dc ground of the PCB.  
INTERFACE SCHEMATICS  
RFC,  
RF1,  
RF2,  
RF3,  
RF4  
V1, V2  
Figure 5. RFx Pins (RFC and RF1 to RF4) Interface Schematic  
Figure 6. Digital Pins (V1 and V2) Interface Schematic  
Rev. A | Page 6 of 14  
 
 
 
Data Sheet  
ADRF5045  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSERTION LOSS, RETURN LOSS, AND ISOLATION  
Insertion loss and return loss measured on the probe matrix board using ground signal ground (GSG) probes close to the RFx pins;  
isolation measured on the evaluation board because signal coupling between the probes limits the isolation performance of the  
ADRF5045 on the probe matrix board.  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
RF1  
RF2  
RF3  
RF4  
+85°C  
+25°C  
–40°C  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Insertion Loss vs. Frequency for RF1, RF2, RF3, and RF4  
Figure 10. Insertion Loss vs. Frequency over Various Temperatures  
Between RFC and RF1  
0
–5  
0
ON  
OFF  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Return Loss vs. Frequency for RFC  
Figure 11. Return Loss vs. Frequency for RF1, RF2, RF3, and RF4  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
RFC TO RF2  
RFC TO RF3  
RFC TO RF4  
RFC TO RF1  
RFC TO RF3  
RFC TO RF4  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Isolation vs. Frequency, RFC to RF1 On  
Figure 12. Isolation vs. Frequency, RFC to RF2 On  
Rev. A | Page 7 of 14  
 
 
ADRF5045  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RFC TO RF1  
RFC TO RF2  
RFC TO RF4  
RFC TO RF1  
RFC TO RF2  
RFC TO RF3  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. Isolation vs. Frequency, RFC to RF3 On  
Figure 15. Isolation vs. Frequency, RFC to RF4 On  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RF1 TO RF2  
RF1 TO RF3  
RF1 TO RF4  
RF2 TO RF3  
RF2 TO RF4  
RF3 TO RF4  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (GHz)  
Figure 14. Channel to Channel Isolation vs. Frequency, RFC to RF1 On  
Rev. A | Page 8 of 14  
Data Sheet  
ADRF5045  
INPUT 0.1 dB, 1 dB POWER COMPRESSION, AND THIRD-ORDER INTERCEPT  
All large signal performance parameters were measured on the evaluation board.  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
5
10  
15  
20  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 16. Input 0.1 dB Power Compression (P0.1dB) vs. Frequency over  
Various Temperatures  
Figure 19. Input 0.1 dB Power Compression (P0.1dB) vs. Frequency over  
Various Temperatures (Low Frequency Detail)  
32  
30  
28  
26  
24  
22  
20  
18  
16  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
14  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
12  
10  
12  
10  
0
5
10  
15  
20  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 17. Input 1 dB Power Compression (P1dB) vs. Frequency over Various  
Temperatures  
Figure 20. Input 1 dB Power Compression (P1dB) vs. Frequency over Various  
Temperatures (Low Frequency Detail)  
60  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
25  
20  
25  
20  
0
5
10  
15  
20  
25  
30  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 18. Input IP3 vs. Frequency over Various Temperatures  
Figure 21. Input IP3 vs. Frequency over Various Temperatures  
(Low Frequency Detail)  
Rev. A | Page 9 of 14  
 
ADRF5045  
Data Sheet  
THEORY OF OPERATION  
The ADRF5045 requires a positive supply voltage applied to the  
VDD pin and a negative supply voltage applied to the VSS pin.  
Bypassing capacitors are recommended on the supply lines to  
minimize RF coupling.  
The ideal power-up sequence for the ADRF5045 is as follows:  
1. Connect GND.  
2. Power up VDD and VSS. Powering up VSS after VDD  
avoids current transients on VDD during ramp-up.  
3. Apply the digital control inputs, V1 and V2. Applying  
the digital control inputs before the VDD supply may  
inadvertently forward bias and damage the internal ESD  
protection structures. In such a case, use a series 1 kΩ  
resistor to limit the current flowing in to the control pin.  
If the control pins are not driven to a valid logic state (for  
example, if the controller output is in a high impedance  
state) after VDD is powered up, it is recommended to use  
pull-up and pull-down resistors.  
4. Apply an RF input signal. The design is bidirectional. The  
RF input signal can be applied to the RFC port, while the  
RF throw ports are outputs, or vice versa. The RF ports are  
dc-coupled to 0 V, and no dc blocking is required at the RF  
ports when the RF line potential is equal to 0 V.  
The ADRF5045 incorporates a driver to perform logic functions  
internally and to provide the user with the advantage of a  
simplified control interface. The driver features two digital  
control input pins (V1 and V2) that control the state of the RF  
paths. Depending on the logic level applied to the V1 and V2  
pins, one RF path is in an insertion loss state, while the other  
three paths are in an isolation state (see Table 5). The insertion  
loss path conducts the RF signal equally well in both directions  
between the RF throw port and the RF common port, and the  
isolation paths provides high loss between the RF throw ports  
terminated to internal 50 Ω resistors and the insertion loss  
path.  
The ideal power-down sequence is the reverse order of the  
power-up sequence.  
Table 5. Control Voltage Truth Table  
Digital Control Input  
RF Paths  
V1  
V2  
RF1 to RFC  
RF2 to RFC  
RF3 to RFC  
RF4 to RFC  
Low  
High  
Low  
High  
Low  
Low  
High  
High  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Rev. A | Page 10 of 14  
 
 
Data Sheet  
ADRF5045  
APPLICATIONS INFORMATION  
through vias as possible are arranged around transmission lines  
and under the exposed pad of the package.  
EVALUATION BOARD  
Figure 22 shows the top view of the ADRF5045-EVALZ, and  
Figure 23 shows the cross sectional view of the ADRF5045-  
EVALZ.  
Figure 24 shows the actual ADRF5045-EVALZ with  
component placement. Two power supply ports are connected  
to the VDD and VSS test points (TP1 and TP4), control voltages  
are connected to the V1 and V2 test points (TP2 and TP3), and  
the ground reference is connected to the GND test point (TP5).  
Figure 22. Evaluation Board Layout, Top View  
W = 14mil G = 5mil  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
T = 0.7mil  
H = 8mil  
RO4003  
0.5oz Cu (0.7mil)  
Figure 24. Evaluation Board Component Placement  
On the control traces (V1 and V2), a 0 Ω resistor connects the  
test points to the pins on the ADRF5045. On the supply traces  
(VDD and VSS), a 100 pF bypass capacitor filters high frequency  
noise. Additionally, unpopulated components positions are  
available for applying extra bypass capacitors.  
0.5oz Cu (0.7mil)  
0.5 oz Cu (0.7mil)  
The RF input and output ports (RFC, RF1, RF2, RF3, and RF4)  
are connected through 50 Ω transmission lines to the 2.4 mm  
RF launchers (J1 to J5). These high frequency RF launchers are  
by contact and not soldered onto the board. A thru calibration  
line connects the unpopulated J6 and J7 launchers; this  
transmission line is used to estimate the loss of the PCB  
over the environmental conditions being evaluated.  
Figure 23. Evaluation Board (Cross Sectional View)  
The ADRF5045-EVALZ is a 4-layer evaluation board. Each  
copper layer is 0.7 mil (0.5 oz) and separated by dielectric  
materials. All RF and dc traces are routed on the top copper  
layer, and the inner and bottom layers are grounded planes that  
provide a solid ground for the RF transmission lines. The top  
dielectric material is 8 mil Rogers RO4003, offering optimal  
high frequency performance. The middle and bottom dielectric  
materials provide mechanical strength. The overall board  
thickness is 62 mil, which allows 2.4 mm RF launchers to be  
connected at the board edges.  
The schematic of the ADRF5045-EVALZ is shown in Figure 25.  
The RF transmission lines were designed using a coplanar  
waveguide (CPWG) model, with a trace width of 14 mil and a  
ground clearance of 5 mil, to have a characteristic impedance of  
50 Ω. For optimal RF and thermal grounding, as many plated  
Rev. A | Page 11 of 14  
 
 
 
 
 
ADRF5045  
Data Sheet  
RF2  
RF1  
1
J1  
2 3 4 5  
AGND  
1
J2  
2 3 4 5  
AGND  
VDD  
TP1  
C1  
C4  
C5  
100pF  
0.1µF  
DNI  
10µF  
DNI  
TP5  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
AGND  
AGND  
AGND  
R1  
GND  
GND  
RFC  
GND  
GND  
GND  
GND  
VDD  
AGND  
1
RFC  
U1  
ADRF5045  
V1  
V2  
J3  
V1  
V2  
TP2  
TP3  
0Ω  
R2  
2 3 4 5  
AGND  
VSS  
0Ω  
C7  
C8  
GND  
0.1µF  
DNI  
0.1µF  
DNI  
AGND  
AGND  
VSS  
AGND  
TP4  
C2  
C3  
C6  
100pF  
0.1µF  
DNI  
10µF  
DNI  
AGND  
AGND  
AGND  
1
RF4  
RF3  
J4  
2 3 4 5  
AGND  
1
J5  
2 3 4 5  
AGND  
1
1
THRU_CAL  
J6  
J7  
2 3 4 5 DNI  
AGND  
DNI  
5 4 3 2  
AGND  
Figure 25. ADRF5045-EVALZ Evaluation Board Schematic  
Table 6. Evaluation Board Components  
Component  
Default Value  
Description  
C1, C2  
100 pF  
Capacitors, C0402 package  
C5, C6  
10 µF  
0.1 µF  
Not applicable  
0 Ω  
Capacitors, C3216 package, do not install (DNI)  
Capacitors, C0402 package, DNI  
2.4 mm end launch connector (Southwest Microwave: 1492-04A-5)  
Resistors, 0402 package  
C3, C4, C7, C8  
J1 to J7  
R1, R2  
TP1 to TP5  
U1  
PCB  
Not applicable  
ADRF5045  
08-042615-01  
Through-hole mount test point  
ADRF5045 digital attenuator, Analog Devices, Inc.  
Evaluation PCB, Analog Devices  
Rev. A | Page 12 of 14  
 
Data Sheet  
ADRF5045  
PROBE MATRIX BOARD  
The probe matrix board is a 4-layer board that uses a 12 mil  
Rogers RO4003 as the top dielectric material. The external  
copper layer is 0.7 mil and the internal copper layers are  
1.4 mil. The RF transmission lines were designed using  
a CPWG model, with a 16 mil width and a ground spacing of  
6 mil, to have a characteristic impedance of 50 Ω.  
Figure 26 shows the cross sectional view of the probe matrix  
board and Figure 27 shows the top view of the probe matrix  
board. Measurements were made using 535 µm GSG probes at  
close proximity to the RFx pins. Unlike the ADRF5045-EVALZ,  
probing reduces reflections caused by mismatch arising from  
connectors, cables, and board layout, resulting in a more  
accurate measurement of the performance of the ADRF5045.  
W = 16mil G = 6mil  
Figure 27. Probe Board Layout (Top View)  
RF traces for a through reflect line (TRL) calibration are  
designed on the board itself. A nonzero line length compensates  
for board loss at calibration. The actual board duplicates the  
same layout in matrix form to assemble multiple devices at  
once. Insertion loss and input and output return losses were  
measured on this probe matrix board. Isolation performance  
measured on the probe matrix board is limited due to signal  
coupling between the RF probes that are in close proximity.  
Therefore, RF port to port isolation was measured on the  
ADRF5045-EVALZ.  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
T = 0.7mil  
H = 12mil  
RO4003  
1oz Cu (1.4mil)  
FR4  
1oz Cu (1.4mil)  
FR4  
0.5 oz Cu (0.7mil)  
Figure 26. Probe Matrix Board (Cross Sectional View)  
Rev. A | Page 13 of 14  
 
 
 
ADRF5045  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00  
3.90  
0.30  
0.25  
0.20  
0.35  
0.30  
0.25  
PIN A1  
PIN 1  
CORNER AREA  
INDICATOR  
0.30 × 0.45°  
24  
19  
1
18  
2.40 BSC  
SQ  
2.50 REF  
SQ  
13  
6
0.50  
BSC  
12  
7
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.125  
BSC  
0.53 REF  
0.96  
MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.37  
0.33  
0.28  
SECTION OF THIS DATA SHEET.  
Figure 28. 24-Terminal Land Grid Array [LGA]  
(CC-24-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADRF5045BCCZN  
ADRF5045BCCZN-R7  
ADRF5045-EVALZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
24-Terminal Land Grid Array [LGA]  
24-Terminal Land Grid Array [LGA]  
Evaluation Board  
CC-24-4  
CC-24-4  
1 Z = RoHS Compliant Part.  
©2017–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16314-3/20(A)  
Rev. A | Page 14 of 14  
 
 

相关型号:

ADRF5046

Silicon SP4T Switch, Reflective, 100 MHz to 44 GHz
ADI

ADRF5046-EVALZ

Silicon SP4T Switch, Reflective, 100 MHz to 44 GHz
ADI

ADRF5046BCCZN

Silicon SP4T Switch, Reflective, 100 MHz to 44 GHz
ADI

ADRF5046BCCZN-R7

Silicon SP4T Switch, Reflective, 100 MHz to 44 GHz
ADI

ADRF5047

Silicon SP4T Switch, Reflective, 9 kHz to 44 GHz
ADI

ADRF5047-EVALZ

Silicon SP4T Switch, Reflective, 9 kHz to 44 GHz
ADI

ADRF5047BCCZN

Silicon SP4T Switch, Reflective, 9 kHz to 44 GHz
ADI

ADRF5047BCCZN-R7

Silicon SP4T Switch, Reflective, 9 kHz to 44 GHz
ADI

ADRF5130

Low insertion loss
ADI

ADRF5130-EVALZ

Low insertion loss
ADI

ADRF5130BCPZ

Low insertion loss
ADI

ADRF5130BCPZ-R7

Low insertion loss
ADI