ADRF5047 [ADI]

Silicon SP4T Switch, Reflective, 9 kHz to 44 GHz;
ADRF5047
型号: ADRF5047
厂家: ADI    ADI
描述:

Silicon SP4T Switch, Reflective, 9 kHz to 44 GHz

文件: 总15页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Silicon SP4T Switch,  
Reflective, 9 kHz to 44 GHz  
ADRF5047  
Data Sheet  
FEATURES  
Ultrawideband frequency range: 9 kHz to 44 GHz  
Reflective design  
FUNCTIONAL BLOCK DIAGRAM  
ADRF5047  
Low insertion loss  
20  
19  
18  
17  
16  
1.5 dB to 18 GHz  
2.4 dB to 40 GHz  
2.7 dB to 44 GHz  
High isolation  
47 dB to 18 GHz  
33 dB to 40 GHz  
1
2
3
4
5
15  
14  
13  
12  
11  
RF2  
GND  
GND  
GND  
RF3  
V1  
GND  
RFC  
GND  
VSS  
DRIVER  
31 dB to 44 GHz  
6
7
8
9
10  
High input linearity  
P0.1dB: 26.5 dBm typical  
IP3: 50 dBm typical  
Figure 1.  
High RF input power handling  
Through path: 26 dBm  
Hot switching: 26 dBm  
No low frequency spurious  
0.1 dB RF settling time: 5.2 µs  
20-terminal, 3 mm × 3 mm, RoHS-compliant, LGA package  
Pin compatible with ADRF5046, fast switching version  
APPLICATIONS  
Industrial scanner  
Test instrumentation  
Cellular infrastructure—mmWave 5G  
Military radios, radars, and electronic counter measures (ECMs)  
Microwave radios and very small aperture terminals (VSATs)  
GENERAL DESCRIPTION  
The ADRF5047 is a reflective, single-pole, four-throw (SP4T)  
switch manufactured in the silicon process.  
The ADRF5047 is pin-compatible with the ADRF5046 fast  
switching version, which operates from 100 MHz to 44 GHz.  
The ADRF5047 operates from 9 kHz to 44 GHz with an insertion  
loss of lower than 2.7 dB and an isolation of higher than 31 dB.  
The device has a radio frequency (RF) input power handling  
capability of 26.5 dBm for both through path and hot switching.  
The ADRF5047 comes in a 20-terminal, 3 mm × 3 mm, RoHS-  
compliant, land grid array (LGA) package and operates from  
−40°C to +105°C.  
The ADRF5047 draws a low current of 3 µA on the positive  
supply of +3.3 V, and −110 µA on the negative supply of −3.3 V.  
The device provides complementary metal-oxide semiconductor  
(CMOS)-/low voltage transistor-transistor logic (LVTTL)-  
compatible controls.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed byAnalog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarksandregisteredtrademarksare the property oftheir respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADRF5047  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Interface Schematics .....................................................................6  
Typical Performance Characteristics..............................................7  
Insertion Loss, Return Loss, and Isolation ................................7  
Input 0.1 dB Power Compression and Third-Order Intercept.....9  
Theory of Operation ...................................................................... 10  
Applications Information...............................................................11  
Evaluation Board.........................................................................11  
Probe Matrix Board ................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Power Derating Curves................................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
REVISION HISTORY  
11/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 15  
 
Data Sheet  
ADRF5047  
SPECIFICATIONS  
Positive supply voltage (VDD) = +3.3 V, negative supply voltage (VSS) = −3.3 V, digital control input voltage (VCTL) = 0 V or +3.3 V, and case  
temperature (TCASE) = 25°C on a 50 Ω system, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
INSERTION LOSS  
f
0.009  
44,000 MHz  
Between RFC and RF1 to RF4 (On)  
9 kHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
40 GHz to 44 GHz  
1.5  
1.6  
2.2  
2.4  
2.7  
dB  
dB  
dB  
dB  
dB  
ISOLATION  
Between RFC and RF1 to RF4 (Off)  
9 kHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
40 GHz to 44 GHz  
47  
41  
35  
33  
31  
dB  
dB  
dB  
dB  
dB  
RETURN LOSS  
RFC and RF1 to RF4 (On)  
9 kHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
40 GHz to 44 GHz  
15  
16  
15  
15  
14  
dB  
dB  
dB  
dB  
dB  
SWITCHING CHARACTERISTICS  
Rise Time and Fall Time  
On Time and Off Time  
RF Settling Time  
tRISE, tFALL  
tON, tOFF  
10% to 90% of RF output  
50% VCTL to 90% of RF output  
1.4  
3.4  
µs  
µs  
0.1 dB  
0.05 dB  
50% VCTL to 0.1 dB of final RF output  
50% VCTL to 0.05 dB of final RF output  
5.2  
7.2  
µs  
µs  
INPUT LINEARITY1  
0.1 dB Power Compression  
Third-Order Intercept  
P0.1dB  
IP3  
f = 200 kHz to 40 GHz  
Two-tone input power = 14 dBm each tone,  
f = 200 kHz to 40 GHz, Δf = 1 MHz  
26.5  
50  
dBm  
dBm  
Second-Order Intercept  
IP2  
Two-tone input power = 14 dBm each tone,  
f = 10 GHz, Δf = 1 MHz  
100  
2
dBm  
VIDEO FEEDTHROUGH2  
mV p-p  
SUPPLY CURRENT  
Positive  
Negative  
VDD, VSS pins  
V1, V2 pins  
IDD  
ISS  
3
µA  
µA  
−110  
DIGITAL CONTROL INPUTS  
Voltage  
Low  
High  
VINL  
VINH  
0
1.2  
0.8  
3.3  
V
V
Current  
Low  
High  
IINL  
IINH  
<1  
35  
µA  
µA  
Rev. 0 | Page 3 of 15  
 
 
ADRF5047  
Data Sheet  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RECOMMENDED OPERATING CONDITONS  
Supply Voltage  
Positive  
Negative  
Digital Control Inputs Voltage  
RFx Input Power3  
Through Path  
VDD  
VSS  
VCTL  
3.15  
−3.45  
0
3.45  
−3.15  
VDD  
V
V
V
PIN  
f = 200 kHz to 40 GHz, TCASE = 85°C4  
RF signal is applied to RFC or through  
connected RF throw port  
RF signal is present at RFC while switching  
between RF throw port  
26  
dBm  
dBm  
°C  
Hot Switching  
26  
Case Temperature  
TCASE  
−40  
+105  
1 For input linearity performance over frequency, see Figure 19 to Figure 22.  
2 Video feedthrough is the spurious dc transient measured at the RF ports in a 50 Ω test setup, without an RF signal present while switching the control voltage.  
3 For power derating over frequency, see Figure 2 and Figure 3.  
4 For 105°C operation, the power handling degrades from the TCASE = 85°C specification by 3 dB.  
Rev. 0 | Page 4 of 15  
 
 
Data Sheet  
ADRF5047  
ABSOLUTE MAXIMUM RATINGS  
For recommended operating conditions, see Table 1.  
POWER DERATING CURVES  
2
Table 2.  
Parameter  
Supply Voltage  
Positive  
Negative  
0
–2  
Rating  
−0.3 V to +3.6 V  
−3.6 V to +0.3 V  
−0.3 V to VDD + 0.3 V  
–4  
–6  
Digital Control Inputs Voltage  
RFx Input Power (f1 = 5 MHz to 40 GHz,  
–8  
TCASE = 85°C2)  
–10  
–12  
–14  
Through Path  
Hot Switching  
Temperature  
26.5 dBm  
26.5 dBm  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
100G  
Junction, TJ  
Storage  
135°C  
−65°C to +150°C  
FREQUENCY (Hz)  
Figure 2. Power Derating vs. Frequency, Low Frequency Detail, TCASE = 85°C  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
RFx Pins  
2
2000 V  
2000 V  
0
–2  
Supply and Digital Control Pins  
1 For power derating over frequency, see Figure 2 and Figure 3.  
2 For 105°C operation, the power handling degrades from the TCASE = 85°C  
specification by 3 dB.  
–4  
–6  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
–8  
–10  
–12  
–14  
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
FREQUENCY (GHz)  
Only one absolute maximum rating can be applied at any one time.  
Figure 3. Power Derating vs. Frequency, High Frequency Detail, TCASE = 85°C  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
ESD CAUTION  
θ
JC is the junction to case bottom (channel to package bottom)  
thermal resistance.  
Table 3. Thermal Resistance  
Package Type  
θJC  
Unit  
CC-20-6, Through Path  
240  
°C/W  
Rev. 0 | Page 5 of 15  
 
 
 
 
 
 
 
ADRF5047  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
20  
19  
18  
17  
16  
1
2
3
4
5
15  
14  
13  
12  
11  
RF2  
GND  
GND  
GND  
RF3  
V1  
GND  
RFC  
GND  
ADRF5047  
TOP VIEW  
(Not to Scale)  
VSS  
6
7
8
9
10  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED  
TO RF AND DC GROUND OF THE PCB.  
Figure 4. Pin Configuration (Top View)  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
V1  
Control Input 1. See Table 5 for the control voltage truth table, and see Figure 6 for the interface  
schematic.  
2, 4, 7, 9, 10, 12 to 14, 16, 17, 19  
3
GND  
RFC  
Ground. These pins must be connected to the RF and dc ground of the PCB.  
RF Common Port. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking  
capacitor is required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface  
schematic.  
5
6
8
VSS  
VDD  
RF4  
Negative Supply Voltage.  
Positive Supply Voltage.  
RF Throw Port 4. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor  
is required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.  
11  
15  
18  
20  
RF3  
RF2  
RF1  
V2  
RF Throw Port 3. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor  
is required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.  
RF Throw Port 2. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor  
is required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.  
RF Throw Port 1. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor  
is required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.  
Control Input 2. See Table 5 for the control voltage truth table, and see Figure 6 for the interface  
schematic.  
EPAD  
Exposed Pad. The exposed pad must be connected to the RF and dc ground of the PCB.  
INTERFACE SCHEMATICS  
RFC,  
RF1,  
RF2,  
RF3,  
RF4  
V1, V2  
Figure 6. Control Pins (V1 and V2) Interface Schematic  
Figure 5. RF Pins (RFC and RF1 to RF4) Interface Schematic  
Rev. 0 | Page 6 of 15  
 
 
 
 
Data Sheet  
ADRF5047  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSERTION LOSS, RETURN LOSS, AND ISOLATION  
VDD = 3.3 V, VSS = −3.3 V, VCTL = 0 V or 3.3 V, and TCASE = 25°C on a 50 Ω system, unless otherwise noted. Measured on the probe matrix board.  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= 40°C  
RF1  
RF2  
RF3  
RF4  
CASE  
CASE  
CASE  
CASE  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Insertion Loss vs. Frequency for RF1, RF2, RF3, and RF4  
Figure 10. Insertion Loss vs. Frequency over Temperature,  
RFC and RF1 On  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
RF1  
RF2  
RF3  
RF4  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. RFC Return Loss vs. Frequency, RFC to RF1 On  
Figure 11. Return Loss vs. Frequency, RF1, RF2, RF3, RF4 On  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RF2  
RF1  
RF3  
RF4  
RF3  
RF4  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Isolation vs. Frequency, RFC to RF1 On  
Figure 12. Isolation vs. Frequency, RFC to RF2 On  
Rev. 0 | Page 7 of 15  
 
 
ADRF5047  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RF1  
RF2  
RF3  
RF1  
RF2  
RF4  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. Isolation vs. Frequency, RFC to RF3 On  
Figure 16. Isolation vs. Frequency, RFC to RF4 On  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RF1 TO RF2  
RF1 TO RF2  
RF1 TO RF3  
RF1 TO RF4  
RF2 TO RF3  
RF2 TO RF4  
RF3 TO RF4  
RF1 TO RF3  
RF1 TO RF4  
RF2 TO RF3  
RF2 TO RF4  
RF3 TO RF4  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. Channel to Channel Isolation vs. Frequency, RFC to RF1 On  
Figure 17. Channel to Channel Isolation vs. Frequency, RFC to RF2 On  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–70  
RF1 TO RF2  
RF1 TO RF3  
RF1 TO RF2  
RF1 TO RF3  
RF1 TO RF4  
RF2 TO RF3  
RF2 TO RF4  
RF3 TO RF4  
RF1 TO RF4  
RF2 TO RF3  
RF2 TO RF4  
RF3 TO RF4  
–80  
–90  
–80  
–90  
–100  
–100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Channel to Channel Isolation vs. Frequency, RFC to RF3 On  
Figure 18. Channel to Channel Isolation vs. Frequency, RFC to RF4 On  
Rev. 0 | Page 8 of 15  
Data Sheet  
ADRF5047  
INPUT 0.1 dB POWER COMPRESSION AND THIRD-ORDER INTERCEPT  
VDD = 3.3 V, VSS = −3.3 V, VCTL = 0 V or 3.3 V, and TCASE = 25°C on a 50 Ω system, unless otherwise noted. Measured on the evaluation  
board.  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
P0.1dB  
P1dB  
P0.1dB  
P1dB  
10k  
100k  
1M  
10M  
100M  
1G  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (Hz)  
FREQUENCY (GHz)  
Figure 19. Input Power Compression vs. Frequency  
Figure 21. Input Power Compression vs. Frequency  
(Low Frequency Detail)  
60  
60  
55  
50  
45  
40  
35  
30  
25  
20  
55  
50  
45  
40  
35  
30  
25  
20  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= 40°C  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
0
5
10  
15  
20  
25  
30  
35  
40  
10k  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 20. Input IP3 vs. Frequency over Various Temperatures  
Figure 22. Input IP3 vs. Frequency over Various Temperatures  
(Low Frequency Detail)  
Rev. 0 | Page 9 of 15  
 
 
 
ADRF5047  
Data Sheet  
THEORY OF OPERATION  
The ADRF5047 requires a positive supply voltage applied to the  
VDD pin and a negative supply voltage applied to the VSS pin.  
Bypassing capacitors are recommended on the supply lines to  
minimize RF coupling.  
The ideal power-up sequence is as follows:  
1. Connect GND.  
2. Power up VDD and VSS. Power up VSS after VDD to avoid  
current transients on VDD during ramp up.  
All of the RF ports (RFC, RF1 to RF4) are dc-coupled to 0 V,  
and no dc blocking is required at the RF ports when the RF line  
potential is equal to 0 V. The RF ports are internally matched to  
50 Ω. Therefore, external matching networks are not required.  
3. Apply digital control inputs, V1 and V2. Applying these  
digital control inputs before applying the VDD supply  
inadvertently forwards bias and damages the internal ESD  
protection structures. To avoid this damage, use a series  
1 kΩ resistor to limit the current flowing into the control  
pin. Use pull-up or pull-down resistors if the controller  
output is in a high impedance state after VDD is powered  
up and the control pins are not driven to a valid logic state.  
4. Apply an RF input signal to either the RFC port or the RF  
throw port.  
The ADRF5047 integrates a driver to perform logic functions  
internally and to provide the user with the advantage of a  
simplified CMOS/LVTTL-compatible control interface. The  
driver features two digital control input pins (V1 and V2) that  
control the state of the RF paths. The logic level applied to the  
V1 and V2 pins determines which RF port is in the insertion  
loss state, while the other three paths are in the isolation state  
(see Table 5).  
The ideal power-down sequence is the reverse order of the  
power-up sequence.  
The insertion loss path conducts the RF signal between the  
selected RF throw port and the RF common port. The switch  
design is bidirectional with equal power handling capabilities.  
The RF input signal can be applied to the RFC port or the  
selected RF throw port. The isolation paths provide high loss  
between the insertion loss path and the unselected RF throw  
ports that are reflective.  
Table 5. Control Voltage Truth Table  
Digital Control Inputs  
RF Paths  
V1  
V2  
RF1 to RFC  
RF2 to RFC  
RF3 to RFC  
RF4 to RFC  
Low  
High  
Low  
High  
Low  
Low  
High  
High  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Rev. 0 | Page 10 of 15  
 
 
Data Sheet  
ADRF5047  
APPLICATIONS INFORMATION  
EVALUATION BOARD  
The ADRF5047-EVALZ is a 4-layer evaluation board. The outer  
copper (Cu) layers are 0.5 oz (0.7 mil) plated to 1.5 oz (2.2 mil)  
and are separated by dielectric materials. Figure 23 shows the  
evaluation board cross sectional view.  
G = 7mil  
W = 14mil  
1.5oz Cu (2.2mil)  
1.5oz Cu (2.2mil)  
1.5oz Cu (2.2mil)  
T = 2.2mil  
H = 8mil  
RO4003  
Figure 25. RF Transmission Lines  
0.5oz Cu (0.7mil)  
Two power supply ports are connected to the VDD and VSS  
test points, control voltages are connected to the V1 and V2  
test points, and the ground reference is connected to the GND  
test point.  
On the supply traces, a 100 pF bypass capacitor is used to filter  
the high frequency noise. Additionally, unpopulated components  
positions are available for applying extra bypass capacitors.  
0.5oz Cu (0.7mil)  
1.5oz Cu (2.2mil)  
On the control traces, there are provisions for the resistor capacitor  
(RC) filter to eliminate dc-coupled noise, if needed, by the  
application. The resistor can also improve the isolation between  
the RF and the control signal.  
Figure 23. Evaluation Board Cross Sectional View  
All RF and dc traces are routed on the top copper layer, whereas  
the inner and bottom layers are grounded planes that provide a  
solid ground for the RF transmission lines. The top dielectric  
material is 8 mil Rogers RO4003, offering optimal high frequency  
performance. The middle and bottom dielectric materials provide  
mechanical strength. The overall board thickness is 62 mil, which  
allows 2.4 mm RF launchers to be connected at the board edges.  
Figure 24 shows the top view of the evaluation board.  
The RF input and output ports (RFC, RF1 to RF4) are connected  
through 50 ꢀ transmission lines to the 2.4 mm RF launchers.  
These high frequency RF launchers are by contact and not  
soldered onto the board.  
A thru calibration line (THRU CAL) connects the unpopulated  
RF launchers. This transmission line is used to calibrate out the  
board loss effects from the ADRF5047-EVALZ evaluation board  
measurements to determine the device performance at the pins  
of the IC. Figure 26 shows the typical board loss at room  
temperature, the embedded insertion loss, and the de-embedded  
insertion loss for the ADRF5047.  
0
–1  
–2  
–3  
–4  
–5  
Figure 24. Evaluation Board Layout, Top View  
The RF transmission lines were designed using a coplanar  
waveguide (CPWG) model, with a trace width of 14 mil and  
ground clearance of 7 mil to have a characteristic impedance of  
50 Ω. The RF transmission lines are extended by 8 mil from  
package edge to the tapered line used for RF pin transition as  
shown in Figure 25. For optimal RF and thermal grounding, as  
many plated through vias as possible are arranged around  
transmission lines and under the exposed pad of the package.  
–6  
THRU LOSS  
–7  
EMBEDDED INSERTION LOSS  
DEEMBEDDED INSERTION LOSS  
–8  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
Figure 26. Insertion Loss vs. Frequency  
Figure 27 and Figure 28 shows the ADRF5047-EVALZ assembly  
drawing with component placement and the schematic,  
respectively.  
Rev. 0 | Page 11 of 15  
 
 
 
 
 
 
ADRF5047  
Data Sheet  
Figure 27. Evaluation Board Assembly Drawing  
Rev. 0 | Page 12 of 15  
 
Data Sheet  
ADRF5047  
V
V
SS  
C1  
C3  
DNI  
10nF  
AGND  
AGND  
DD  
C2  
10nF  
C4  
DNI  
AGND  
AGND  
R1  
V1  
0Ω  
C7  
DNI  
C8  
DNI  
AGND  
AGND  
R2  
V2  
0Ω  
C5  
DNI  
C6  
DNI  
AGND  
AGND  
AGND  
GND  
1
RF2  
1
RF1  
2 3 4 5  
AGND  
2 3 4 5  
AGND  
U1  
V1  
RF2  
1
1
THRU1_CAL  
GND  
GND  
GND  
RF3  
GND  
RFC  
GND  
THRU1  
THRU2  
1
RFC  
ADRF5047  
2 3 4 5  
AGND  
5 4 3 2  
AGND  
2 3 4 5  
AGND  
VSS  
AGND  
1
RF4  
RF3  
2 3 4 5  
AGND  
1
2 3 4 5  
AGND  
Figure 28. Evaluation Board Schematic  
Table 6. Evaluation Board Components  
Component  
Default Value  
Description  
C1, C2  
10 nF  
Capacitors, C0402 package  
C3, C4, C5, C7  
C6, C8  
RFC, RF1 to RF4  
THRU1, THRU2  
R1, R2  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0 Ω  
Capacitors, C0402 package, do not install (DNI)  
Capacitors, C0402 package, DNI  
2.4 mm end launch connectors (Southwest Microwave 1492-04A-5)  
2.4 mm end launch connectors, DNI  
Resistors, 0402 package  
VDD, VSS, V1, V2, GND  
U1  
Not applicable  
ADRF5047  
Through-hole mount test points  
SP4T switch, Analog Devices, Inc.  
PCB  
08-044567D  
Evaluation PCB, Analog Devices  
Rev. 0 | Page 13 of 15  
 
ADRF5047  
Data Sheet  
PROBE MATRIX BOARD  
The probe matrix board uses same stackup as the evaluation  
board but a different layout designed to take measurements  
using ground, signal, ground (GSG) probes at close proximity  
to the RFx pins. Probing eliminates the mismatch reflections  
caused by connectors, cables, and board layout. Therefore, the  
probe matrix board provides more accurate measurement of the  
device performance than the evaluation board. Figure 29 shows  
the top view of the probe matrix board layout.  
The probe matrix board includes a through reflect line (TRL)  
calibration kit allowing board loss de-embedding. The actual  
board duplicates the same layout in matrix form to assemble  
multiple devices at one time. All s parameters were measured on  
this board.  
Figure 29. Probe Matrix Board Layout (Top View)  
Rev. 0 | Page 14 of 15  
 
 
Data Sheet  
ADRF5047  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.250  
0.200  
0.150  
CHAMFERED  
0.325  
0.275  
0.225  
PIN 1 (0.25 × 45°)  
PIN 1  
CORNER AREA  
0.125  
16  
20  
REF  
1
15  
1.60  
1.50 SQ  
1.40  
1.60 REF  
SQ  
EXPOSED  
PAD  
11  
5
0.40  
BSC  
6
10  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.530 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.960 MAX  
0.333  
0.330  
0.300  
SECTION OF THIS DATA SHEET  
Figure 30. 20-Terminal Land Grid Array [LGA]  
(CC-20-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADRF5047BCCZN  
ADRF5047BCCZN-R7  
ADRF5047-EVALZ  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
CC-20-6  
CC-20-6  
Marking Code  
047  
047  
20-Terminal Land Grid Array [LGA]  
20-Terminal Land Grid Array [LGA]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16765-0-11/19(0)  
Rev. 0 | Page 15 of 15  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY