ADRF6620-EVALZ [ADI]

700 MHz to 2700 MHz Rx Mixer with Integrated IF DGA, Fractional-N PLL, and VCO; 700 MHz至2700 MHz的接收混频器,集成IF DGA ,小数N分频PLL和VCO
ADRF6620-EVALZ
型号: ADRF6620-EVALZ
厂家: ADI    ADI
描述:

700 MHz to 2700 MHz Rx Mixer with Integrated IF DGA, Fractional-N PLL, and VCO
700 MHz至2700 MHz的接收混频器,集成IF DGA ,小数N分频PLL和VCO

文件: 总52页 (文件大小:3001K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
700 MHz to 2700 MHz Rx Mixer with Integrated  
IF DGA, Fractional-N PLL, and VCO  
Data Sheet  
ADRF6620  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Integrated fractional-N phase-locked loop (PLL)  
RF input frequency range: 700 MHz to 2700 MHz  
Internal local oscillator (LO) frequency range: 350 MHz to  
2850 MHz  
Input P1dB: 17 dBm  
IFOUT1–  
IFOUT1+  
IFOUT2–  
IFOUT2+  
RFIN0  
RFIN1  
RFIN2  
RFIN3  
Output IP3: 45 dBm  
LOIN+  
LOIN–  
Single-pole four-throw (SP4T) RF input switch  
Digital step attenuator (DSA) range: 0 dB to 15 dB  
Integrated RF tunable balun allowing single-ended 50 Ω input  
Multicore integrated voltage controlled oscillator (VCO)  
Digitally programmable variable gain amplifier (DGA)  
−3 dB bandwidth: >600 MHz  
Balanced 150 Ω IF output impedance  
Programmable via 3-wire serial port interface (SPI)  
Single 5 V supply  
÷8  
÷4  
÷2  
×1  
×2  
÷1, ÷2,  
÷4, ÷8  
CP  
PFD CHARGE  
REFIN  
PUMP  
+
VTUNE  
LOIN+  
LOIN–  
VTUNE  
CP  
FRAC  
÷2  
N = INT +  
LDO  
MOD  
SERIAL  
PORT  
2.5 V INTERFACE VCO  
MUXOUT  
LDO  
LDO  
3.3V  
LOCK_DET  
VPTAT  
APPLICATIONS  
Figure 1.  
Wireless receivers  
Digital predistortion (DPD) receivers  
GENERAL DESCRIPTION  
The ADRF6620 is a highly integrated active mixer and synthesizer  
that is ideally suited for wireless receiver subsystems. The feature  
rich device consists of a high linearity broadband active mixer;  
an integrated fractional-N PLL; low phase noise, multicore VCO;  
and IF DGA. In addition, the ADRF6620 integrates a 4:1 RF  
switch, an on-chip tunable RF balun, programmable RF attenuator,  
and low dropout (LDO) regulators. This highly integrated device  
fits within a small 7 mm × 7 mm footprint.  
The ADRF6620 offers two alternatives for generating the dif-  
ferential LO input signal: externally, via a high frequency, low  
phase noise LO signal, or internally, via the on-chip fractional-N  
PLL synthesizer. The integrated synthesizer enables continuous  
LO coverage from 350 MHz to 2850 MHz. The PLL reference  
input can support a wide frequency range because the divide and  
multiply blocks can be used to increase or decrease the reference  
frequency to the desired value before it is passed to the phase  
frequency detector (PFD).  
The high isolation 4:1 RF switch and on-chip tunable RF balun  
enable the ADRF6620 to support four single-ended 50 Ω  
terminated RF inputs. A programmable attenuator ensures  
optimal RF input drive to the high linearity mixer core. The  
integrated DSA has an attenuation range of 0 dB to 15 dB with  
a step size of 1 dB.  
The integrated high linearity DGA provides an additional gain  
range from 3 dB to 15 dB in steps of 0.5 dB for maximum flexibility  
in driving an analog-to-digital converter (ADC).  
The ADRF6620 is fabricated using an advanced silicon-germanium  
BiCMOS process. It is available in a 48-lead, RoHS-compliant,  
7 mm × 7 mm LFCSP package with an exposed pad. Performance  
is specified over the −40°C to +85°C temperature range.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADRF6620  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Serial Port Interface (SPI) ......................................................... 27  
Basic Connections...................................................................... 28  
RF Input Balun Insertion Loss Optimization......................... 30  
IP3 and Noise Figure Optimization......................................... 31  
Interstage Filtering Requirements............................................ 35  
IF DGA vs. Load......................................................................... 38  
ADC Interfacing......................................................................... 39  
Power Modes............................................................................... 40  
Layout .......................................................................................... 40  
Register Map ................................................................................... 41  
Register Address Descriptions...................................................... 42  
Register 0x00, Reset: 0x00000, Name: SOFT_RESET ........... 42  
Register 0x01, Reset: 0x8B7F, Name: Enables ........................ 42  
Register 0x02, Reset: 0x0058, Name: INT_DIV..................... 43  
Register 0x03, Reset: 0x0250, Name: FRAC_DIV ................. 43  
Register 0x04, Reset: 0x0600, Name: MOD_DIV.................. 43  
Register 0x20, Reset: 0x0C26, Name: CP_CTL...................... 44  
Register 0x21, Reset: 0x0003, Name: PFD_CTL.................... 45  
Register 0x22, Reset: 0x000A, Name: FLO_CTL ................... 46  
Register 0x23, Reset: 0x0000, Name: DGA_CTL................... 47  
Register 0x30, Reset: 0x00000, Name: BALUN_CTL............ 48  
Register 0x31, Reset: 0x08EF, Name: MIXER_CTL .............. 48  
Register 0x40, Reset: 0x0010, Name: PFD_CTL2.................. 49  
Register 0x42, Reset: 0x000E, Name: DITH_CTL1............... 50  
Register 0x43, Reset: 0x0001, Name: DITH_CTL2............... 50  
Outline Dimensions....................................................................... 51  
Ordering Guide .......................................................................... 51  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
RF Input to IF DGA Output System Specifications................. 3  
Synthesizer/PLL Specifications................................................... 4  
RF Input to Mixer Output Specifications.................................. 6  
IF DGA Specifications ................................................................. 7  
Digital Logic Specifications......................................................... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
RF Input to DGA Output System Performance ..................... 11  
Phase-Locked Loop (PLL)......................................................... 13  
RF Input to Mixer Output Performance ................................. 17  
IF DGA ........................................................................................ 20  
Spurious Performance................................................................ 22  
Theory of Operation ...................................................................... 24  
RF Input Switches....................................................................... 24  
Tunable Balun ............................................................................. 25  
RF Digital Step Attenuator (DSA)............................................ 25  
Active Mixer................................................................................ 25  
Digitally Programmable Variable Gain Amplifier (DGA).... 25  
LO Generation Block ................................................................. 26  
REVISION HISTORY  
7/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 52  
 
Data Sheet  
ADRF6620  
SPECIFICATIONS  
VCCx = 5 V, T A = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LO INPUT  
Internal LO Frequency Range  
External LO Frequency Range  
LO Input Level  
LO Input Impedance  
RF INPUT  
350  
350  
−6  
2850  
3200  
+6  
MHz  
MHz  
dBm  
Ω
LO_DIV_A = 00  
0
50  
Input Frequency  
700  
2700  
MHz  
dB  
Ω
Input Return Loss  
Input Impedance  
RF DIGITAL STEP ATTENUATOR  
Attenuation Range  
POWER SUPPLY  
12  
50  
Step size = 1 dB  
0
15  
dB  
V
4.75  
5.0  
5.25  
Power Consumption  
LO output buffer disabled  
External LO + IF DGA enabled  
Internal LO + IF DGA enabled  
Only IF DGA enabled  
1.3  
1.7  
0.6  
6
W
W
W
mA  
Power-Down Current  
RF INPUT TO IF DGA OUTPUT SYSTEM SPECIFICATIONS  
VCCx = 5 V, T A = 25°C, high-side LO injection, fIF = 200 MHz, internal LO frequency, IF DGA output load = 150 Ω, and 2 V p-p differential  
output with third-order low-pass filter, unless otherwise noted. For mixer settings for maximum linearity, see Table 16. All losses from  
input and output traces and baluns are de-embedded from results  
Table 2. RF Switch + Balun + RF Attenuator + Mixer + IF DGA  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE AT fRF = 900 MHz  
Voltage Conversion Gain  
Output P1dB  
Output IP3  
Output IP2  
fIF = 200 MHz  
12  
18  
43  
78  
16  
dB  
dBm  
dBm  
dBm  
dB  
1 V p-p each output tone, 1 MHz tone spacing  
1 V p-p each output tone, 1 MHz tone spacing  
Noise figure optimized  
Noise Figure  
DYNAMIC PERFORMANCE AT fRF = 1900 MHz  
Voltage Conversion Gain  
Output P1dB  
Output IP3  
Output IP2  
fIF = 200 MHz  
11  
18  
45  
75  
dB  
dBm  
dBm  
dBm  
dB  
1 V p-p each output tone, 1 MHz tone spacing  
1 V p-p each output tone, 1 MHz tone spacing  
Noise figure optimized  
Noise Figure  
18.5  
DYNAMIC PERFORMANCE AT fRF = 2100 MHz  
Voltage Conversion Gain  
Output P1dB  
Output IP3  
Output IP2  
fIF = 200 MHz  
dB  
10.5  
18  
45  
66  
19  
dBm  
dBm  
dBm  
dBm  
dB  
1 V p-p each output tone, 1 MHz tone spacing  
1 V p-p each output tone, 1 MHz tone spacing  
Noise figure optimized  
Noise Figure  
DYNAMIC PERFORMANCE AT fRF = 2700 MHz  
Voltage Conversion Gain  
Output P1dB  
Output IP3  
Output IP2  
fIF = 200 MHz  
9
dB  
18  
44  
74  
21  
dBm  
dBm  
dBm  
dB  
1 V p-p each output tone, 1 MHz tone spacing  
1 V p-p each output tone, 1 MHz tone spacing  
Noise figure optimized  
Noise Figure  
Rev. 0 | Page 3 of 52  
 
 
ADRF6620  
Data Sheet  
SYNTHESIZER/PLL SPECIFICATIONS  
VCCx = 5 V, T A = 25°C, fREF = 153.6 MHz, fREF power = 4 dBm, fPFD = 38.4 MHz, and loop filter bandwidth = 120 kHz, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PLL REFERENCE  
PLL Reference Frequency  
PLL Reference Level  
PFD FREQUENCY  
12  
−15  
24  
464  
+14  
58  
MHz  
dBm  
MHz  
For PLL lock condition  
+4  
INTERNAL VCO RANGE  
OPEN-LOOP VCO PHASE NOISE  
fVCO2 = 3.4 GHz  
2800  
5700 MHz  
VTUNE = 2 V, LO_DIV_A = 00  
1 kHz offset  
−39  
dBc/Hz  
10 kHz offset  
−81  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
MHz/V  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
MHz/V  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
MHz/V  
100 kHz offset  
800 kHz offset  
1 MHz offset  
6 MHz offset  
10 MHz offset  
40 MHz offset  
VCO sensitivity (KV)  
1 kHz offset  
−103  
−123  
−125  
−143  
−147  
−155  
88  
fVCO1 = 4.6 GHz  
−39  
−74  
10 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
6 MHz offset  
10 MHz offset  
40 MHz offset  
VCO sensitivity (KV)  
1 kHz offset  
−101  
−123  
−125  
−143  
−147  
−156  
89  
−39  
−69  
−99  
−121  
−124  
−142  
−146  
−155  
72  
fVCO0 = 5.5 GHz  
10 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
6 MHz offset  
10 MHz offset  
40 MHz offset  
VCO sensitivity (KV)  
Measured at LO output, LO_DIV_A = 01  
fREF = 153.6 MHz, fPFD = 38.4 MHz, 120 kHz loop filter  
fPFD × 1  
SYNTHESIZER SPECIFICATIONS  
fLO = 1.710 GHz, fVCO2 = 3.420 GHz  
fPFD Spurs  
−83  
dBc  
fPFD × 2  
−89  
dBc  
fPFD × 3  
−90  
dBc  
fPFD × 4  
−93  
dBc  
Closed-Loop Phase Noise  
1 kHz offset  
10 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
6 MHz offset  
10 MHz offset  
40 MHz offset  
10 kHz to 40 MHz integration bandwidth  
−97  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
° rms  
−110  
−107  
−128  
−132  
−144  
−152  
−158  
0.21  
Integrated Phase Noise  
Figure of Merit (FOM)1  
−222  
dBc/Hz  
Rev. 0 | Page 4 of 52  
 
 
Data Sheet  
ADRF6620  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
fLO = 2.305 GHz, fVCO1 = 4.610 GHz  
fPFD Spurs  
fPFD × 1  
−84  
dBc  
fPFD × 2  
−87  
dBc  
fPFD × 3  
−91  
dBc  
fPFD × 4  
−92  
dBc  
Closed-Loop Phase Noise  
1 kHz offset  
−93  
105  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
° rms  
10 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
6 MHz offset  
10 MHz offset  
40 MHz offset  
10 kHz to 40 MHz integration bandwidth  
−103  
−116  
−130  
−144  
−152  
−156  
0.3  
Integrated Phase Noise  
Figure of Merit1  
−222  
dBc/Hz  
fLO = 2.75 GHz, fVCO2 = 5.5 GHz  
fPFD Spurs  
fPFD × 1  
−82  
dBc  
fPFD × 2  
−88  
dBc  
fPFD × 3  
−93  
dBc  
fPFD × 4  
−96  
dBc  
Closed-Loop Phase Noise  
1 kHz offset  
−93  
−101  
−99  
−122  
−128  
−144  
−151  
−154  
0.38  
−222  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
° rms  
10 kHz offset  
100 kHz offset  
800 kHz offset  
1 MHz offset  
6 MHz offset  
10 MHz offset  
40 MHz offset  
10 kHz to 40 MHz integration bandwidth  
Integrated Phase Noise  
Figure of Merit1  
dBc/Hz  
1 Figure of merit (FOM) is computed as phase noise (dBc/Hz) – 10 log 10(fPFD) – 20 log 10(fLO/fPFD). The FOM was measured across the full LO range, with fREF = 160 MHz  
and fREF power = 4 dBm (500 V/µs slew rate) with a 40 MHz fPFD. The FOM was computed at 50 kHz offset.  
Rev. 0 | Page 5 of 52  
 
ADRF6620  
Data Sheet  
RF INPUT TO MIXER OUTPUT SPECIFICATIONS  
VCCx = 5 V, TA = 25°C, high-side LO injection, fIF = 200 MHz, external LO frequency, and RF attenuation = 0 dB, unless otherwise noted.  
Mixer settings configured for maximum linearity (see Table 16). All losses from input and output traces and baluns are de-embedded  
from results.  
Table 4. RF Switch + Balun + RF Attenuator + Mixer  
Parameter  
Test Conditions/Comments  
Min  
Typ  
−4  
Max  
Unit  
dB  
VOLTAGE GAIN  
Differential 255 Ω load  
MIXER OUTPUT IMPEDANCE  
255  
Ω
Differential (see Figure 87)  
DYNAMIC PERFORMANCE AT fRF= 900 MHz  
Voltage Conversion Gain  
Input P1dB  
Input IP3  
Input IP2  
−2  
17  
40  
65  
dB  
dBm  
dBm  
dBm  
dB  
−5 dBm each input tone, 1 MHz tone spacing  
−5 dBm each input tone, 1 MHz tone spacing  
Noise Figure  
15  
LO to RF Leakage  
RF to LO Leakage  
LO to IF Leakage  
RF to IF Leakage  
Isolation1  
−70  
−60  
−32  
−45  
−52  
dBm  
dBc  
dBm  
dBc  
dBc  
With respect to 0 dBm RF input power  
Isolation between RFIN0 and RFIN3  
DYNAMIC PERFORMANCE AT fRF =1900 MHz  
Voltage Conversion Gain  
Input P1dB  
Input IP3  
Input IP2  
−3  
17  
40  
62  
dB  
dBm  
dBm  
dBm  
dB  
−5 dBm each input tone, 1 MHz tone spacing  
−5 dBm each input tone, 1 MHz tone spacing  
Noise Figure  
17  
LO to RF Leakage  
RF to LO Leakage  
LO to IF Leakage  
RF to IF Leakage  
Isolation1  
−60  
−50  
−35  
−43  
−47  
dBm  
dBc  
dBm  
dBc  
dBc  
With respect to 0 dBm RF input power  
Isolation between RFIN0 and RFIN3  
DYNAMIC PERFORMANCE AT fRF = 2100 MHz  
Voltage Conversion Gain  
Input P1dB  
Input IP3  
Input IP2  
−3.5  
18  
40  
54.5  
18  
dB  
dBm  
dBm  
dBm  
dB  
−5 dBm each input tone, 1 MHz tone spacing  
−5 dBm each input tone, 1 MHz tone spacing  
Noise Figure  
LO to RF Leakage  
RF to LO Leakage  
LO to IF Leakage  
RF to IF Leakage  
Isolation1  
−60  
−40  
−35  
−40  
−45  
dBm  
dBc  
dBm  
dBc  
dBc  
With respect to 0 dBm RF input power  
Isolation between RFIN0 and RFIN3  
DYNAMIC PERFORMANCE AT fRF = 2700 MHz  
Voltage Conversion Gain  
Input P1dB  
Input IP3  
Input IP2  
−4.7  
19  
40  
56  
21  
dB  
dBm  
dBm  
dBm  
dB  
−5 dBm each input tone, 1 MHz tone spacing  
−5 dBm each input tone, 1 MHz tone spacing  
Noise Figure  
LO to RF Leakage  
RF to LO Leakage  
LO to IF Leakage  
RF to IF Leakage  
Isolation1  
−60  
−45  
−40  
−42  
−41  
dBm  
dBc  
dBm  
dBc  
dBc  
With respect to 0 dBm RF input power  
Isolation between RFIN0 and RFIN3  
1 Isolation between RF inputs. An input signal was applied to RFIN0 while RFIN1 to RFIN3 were terminated with 50 Ω. The IF signal amplitude was measured at the mixer  
output. The internal switch was then configured for RFIN3, and the feedthrough was measured as a delta from the fundamental.  
Rev. 0 | Page 6 of 52  
 
 
 
Data Sheet  
ADRF6620  
IF DGA SPECIFICATIONS  
VCCx = 5 V, T A = 25°C, RS = RL = 150 Ω differential, fIF = 200 MHz, 2 V p-p differential output,unless otherwise noted. All losses from  
input and output traces and baluns are de-embedded from results.  
Table 5.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
BANDWIDTH  
−1 dB Bandwidth  
−3 dB Bandwidth  
SLEW RATE  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
500  
700  
5.5  
MHz  
MHz  
V/ns  
INPUT STAGE  
Input P1dB  
At minimum gain  
50 MHz < fC < 200 MHz  
See Figure 88  
17  
dBm  
Ω
V
Input Impedance  
Common-Mode Input Voltage  
Common-Mode Rejection Ratio (CMRR)  
GAIN  
Power/Voltage Gain, Step Size = 0.5 dB  
Gain Flatness  
Gain Conformance Error  
Gain Temperature Sensitivity  
Gain Step Response  
OUTPUT STAGE  
150  
1.5  
50  
dB  
3
15  
dB  
dB  
dB  
dB/C  
ns  
0.2  
0.1  
0.008  
15  
Output P1dB  
18  
150  
dBm  
Ω
Output Impedance  
NOISE/HARMONIC PERFORMANCE at 200 MHz  
Output IP3  
Output IP2  
HD2  
1 V p-p each output tone, 1 MHz tone spacing  
1 V p-p each output tone, 1 MHz tone spacing  
VOUT = 2 V p-p  
45  
63  
87  
84  
10  
dBm  
dBm  
dBc  
dBc  
dB  
HD3  
Noise Figure  
VOUT = 2 V p-p  
Rev. 0 | Page 7 of 52  
 
 
ADRF6620  
Data Sheet  
DIGITAL LOGIC SPECIFICATIONS  
Table 6.  
Parameter  
Symbol Test Conditions/Comments  
Min Typ Max Unit  
SERIAL PORT INTERFACE TIMING  
Input Voltage High  
Input Voltage Low  
VIH  
VIL  
1.4  
V
V
0.70  
Output Voltage High  
Output Voltage Low  
Serial Clock Period  
VOH  
VOL  
tSCLK  
tDS  
tDH  
tS  
IOH = −100 µA  
IOL = +100 µA  
2.3  
0.2  
38  
8
V
V
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup Time Between Data and Rising Edge of SCLK  
Hold Time Between Data and Rising Edge of SCLK  
Setup Time Between Falling Edge of CS and SCLK  
Hold Time Between Rising Edge of CS and SCLK  
Minimum Period SCLK Can Be in Logic High State  
Minimum Period SCLK Can Be in Logic Low State  
Maximum Time Delay Between Falling Edge of SCLK and Output tACCESS  
Data Valid for a Read Operation  
Maximum Time Delay Between CS Deactivation and SDIO Bus  
Return to High Impedance  
8
10  
10  
10  
10  
tH  
tHIGH  
tLOW  
231  
5
tZ  
ns  
Timing Diagram  
tHIGH  
tH  
tDS  
tSCLK  
tS  
tDH  
tLOW  
tACCESS  
CS  
DON'T CARE  
tZ  
DON'T CARE  
DON'T CARE  
SCLK  
SDIO  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
D15  
D14  
D13  
D3  
D2  
D1  
D0  
DON'T CARE  
Figure 2. Serial Port Interface Timing  
Rev. 0 | Page 8 of 52  
 
 
 
Data Sheet  
ADRF6620  
ABSOLUTE MAXIMUM RATINGS  
Table 7.  
THERMAL RESISTANCE  
Table 8. Thermal Resistance  
Package Type  
Parameter  
Rating  
VCCx  
RFSW0, RFSW1  
RFIN0, RFIN1, RFIN2, RFIN3  
LOIN−, LOIN+  
−0.5 V to +5.5 V  
−0.3 V to +3.6 V  
20 dBm  
θJC  
Unit  
48-Lead LFCSP  
1.62  
°C/W  
16 dBm  
ESD CAUTION  
REFIN  
IFIN−, IFIN+  
CS, SCLK, SDIO  
−0.3 V to +3.6 V  
−1.2 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−40°C to +85°C  
−65°C to +150°C  
150°C  
VTUNE  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 9 of 52  
 
 
 
ADRF6620  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VCC1  
DECL1  
CP  
1
2
3
4
5
6
7
8
9
36 GND  
35 RFIN0  
34 GND  
33 GND  
32 RFIN1  
31 GND  
30 GND  
PIN 1  
INDICATOR  
GND  
GND  
REFIN  
DECL2  
IFOUT1+  
IFOUT1–  
ADRF6620  
TOP VIEW  
(Not to Scale)  
29  
RFIN2  
28 GND  
27 GND  
26 RFIN3  
25 GND  
IFOUT2+ 10  
IFOUT2– 11  
VCC2 12  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO A GROUND  
PLANE WITH LOW THERMAL IMPEDANCE.  
Figure 3. Pin Configuration  
Table 9. Pin Function Descriptions1  
Pin No.  
Mnemonic  
Description  
1, 12, 13, 14, 24  
VCC1, VCC2, VCC3,  
VCC4, VCC5  
5 V Power Supplies. Decouple all power supply pins to ground, using 100 pF and 0.1 µF  
capacitors. Place the decoupling capacitors near the pins.  
2, 7, 37, 46  
3
4, 5, 17, 20, 23, 25, 27,  
28, 30, 31, 33, 34, 36, 48  
DECL1, DECL2,  
DECL3, DECL4  
CP  
Decouple all DECLx pins to ground, using 100 pF, 0.1 µF, and 10 µF capacitors. Place the  
decoupling capacitors near the pins.  
Synthesizer Charge Pump Output. Connect this pin to the VTUNE pin through the loop filter.  
Ground.  
GND  
6
REFIN  
Synthesizer Reference Frequency Input.  
8 to 11  
IFOUT1+, IFOUT1−,  
IFOUT2+, IFOUT2−  
IF DGA Outputs. Connect the positive pins such that IFOUT1+ and IFOUT2+ are tied  
together. Similarly, connect the negative pins such that IFOUT1− and IFOUT2− are tied  
together. Refer to the Layout section for a recommended layout that minimizes parasitic  
capacitance and optimizes performance.  
15, 16  
18, 19  
21, 22  
IFIN−, IFIN+  
MXOUT+, MXOUT−  
LOOUT+, LOOUT−  
Differential IF DGA Inputs. AC couple the mixer outputs to the IF DGA inputs.  
Differential Mixer Outputs. AC couple the mixer outputs to the IF DGA inputs.  
Differential LO Outputs. The differential output impedance is 50 Ω.  
26, 29, 32, 35  
RFIN3, RFIN2,  
RFIN1, RFIN0  
RF Inputs. These single-ended RF inputs have a 50 Ω input impedance and must be  
ac-coupled.  
38, 39  
40  
RFSW0, RFSW1  
CS  
External Pin Control of RF Input Switches. For logic high, connect these pins to 2.5 V logic.  
SPI Chip Select, Active Low. 3.3 V tolerant logic levels.  
SPI Clock. 3.3 V tolerant logic levels.  
41  
SCLK  
42  
SDIO  
SPI Data Input or Output. 3.3 V tolerant logic levels.  
43  
MUXOUT  
Multiplexer Output. This output pin provides the PLL reference signal or the PLL lock  
detect signal.  
44, 45  
47  
LOIN−, LOIN+  
VTUNE  
Differential Local Oscillator Inputs. The differential input impedance is 50 Ω.  
VCO Tuning Voltage. Connect this pin to the CP pin through the loop filter.  
49  
EPAD  
Exposed Pad. The exposed pad must be connected to a ground plane with low thermal  
impedance.  
1 For more connection information about these pins, see Table 14.  
Rev. 0 | Page 10 of 52  
 
 
Data Sheet  
ADRF6620  
TYPICAL PERFORMANCE CHARACTERISTICS  
RF INPUT TO DGA OUTPUT SYSTEM PERFORMANCE  
VCCx = 5 V, T A = 25°C, RFDSA_SEL = 00 (0 dB), RFSW_SEL = 00 (RFIN0), BAL_CIN and BAL_COUT optimized for maximum gain;  
MIXER_BIAS, MIXER_RDAC, and MIXER_CDAC optimized for highest linearity, DGA at maximum gain; third-order low-pass filter  
between the mixer output and IF DGA input; high-side LO, internal LO frequency, IF frequency = 200 MHz, unless otherwise noted. All  
losses from input and output traces and baluns are de-embedded from results.  
15  
14  
13  
12  
11  
10  
9
15  
14  
13  
12  
11  
10  
9
RF FREQUENCY = 900MHz  
RF FREQUENCY = 1900MHz  
T
= –40°C  
A
RF FREQUENCY = 2100MHz  
RF FREQUENCY = 2700MHz  
T
= +25°C  
A
8
T
= +85°C  
A
7
6
5
8
4
7
3
2
6
1
5
600  
0
50  
1000  
1400  
1800  
2200  
2600  
3000  
100  
150  
200  
250  
300  
350  
400  
450  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 4. Gain vs. RF Frequency; IF Frequency = 200 MHz  
Figure 6. Gain vs. IF Frequency; LO Sweep with Fixed RF, IF Roll-Off  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
T
= +85°C  
A
T
= +25°C  
= –40°C  
A
T
A
6
6
4
4
RF FREQUENCY = 900MHz  
RF FREQUENCY = 1900MHz  
2
2
RF FREQUENCY = 2100MHz  
RF FREQUENCY = 2700MHz  
0
50  
0
600  
100  
150  
200  
250  
300  
350  
400  
450  
500  
1000  
1400  
1800  
2200  
2600  
3000  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 5. OP1dB vs. RF Frequency  
Figure 7. OP1dB vs. IF Frequency; LO Sweep with Fixed RF, IF Roll-Off  
Rev. 0 | Page 11 of 52  
 
 
ADRF6620  
Data Sheet  
95  
85  
75  
65  
55  
45  
35  
25  
15  
5
95  
85  
75  
65  
OIP2 (dBm)  
OIP2 (dBm  
)
T
= –40°C  
T
= +25°C  
A
A
55  
45  
35  
25  
15  
5
T
= +85°C  
A
OIP3 (dBm)  
OIP3 (dBm)  
RF FREQUENCY = 900MHz  
RF FREQUENCY = 1900MHz  
RF FREQUENCY = 2100MHz  
RF FREQUENCY = 2700MHz  
600  
1000  
1400  
1800  
2200  
2600  
3000  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 8. OIP2/OIP3 vs. RF Frequency; Measured on 1 V p-p on Each Tone  
at DGA Output  
Figure 11. OIP2/OIP3 vs. IF Frequency; LO Sweep with Fixed RF,  
IF Roll-Off; Measured on 1 V p-p on Each Tone at DGA Output  
15  
14  
95  
85  
LO FREQUENCY = 1100MHz  
13  
LO FREQUENCY = 2100MHz  
12  
OIP2 (dBm)  
75  
11  
10  
65  
LO FREQUENCY = 1100MHz  
LO FREQUENCY = 2300MHz  
LO FREQUENCY = 2300MHz  
9
8
7
6
5
4
3
2
1
0
55  
45  
35  
25  
15  
5
OIP3 (dBm)  
LO FREQUENCY = 2100MHz  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 9. Gain vs. IF Frequency; RF Sweep with Fixed LO;  
IF and RF Roll-Off; Measured on 1 V p-p on Each Tone at DGA Output  
Figure 12. OIP2/OIP3 vs. IF Frequency; RF Sweep with Fixed LO;  
IF and RF Roll-Off; Measured on 1 V p-p on Each Tone at DGA Output  
95  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T = +85°C  
A
85  
OIP2 (dBm)  
75  
65  
55  
T
= +25°C  
A
T
= –40°C  
A
OIP3 (dBm)  
45  
35  
25  
RF FREQUENCY = 900MHz  
RF FREQUENCY = 1900MHz  
RF FREQUENCY = 2100MHz  
RF FREQUENCY = 2700MHz  
15  
5
0
600  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
1000  
1400  
1800  
2200  
2600  
3000  
RFDSA  
RF FREQUENCY (MHz)  
Figure 13. Supply Current vs. RF Frequency  
Figure 10. OIP2/OIP3 vs. RFDSA; Measured on 1 V p-p on Each Tone at  
DGA Output  
Rev. 0 | Page 12 of 52  
 
Data Sheet  
ADRF6620  
PHASE-LOCKED LOOP (PLL)  
VCCx = 5 V, T A = 25°C, 120 kHz loop filter, fREF = 153.6 MHz, PLL reference amplitude = 4 dBm, fPFD = 38.4 MHz, measured at LO  
output, unless otherwise noted.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
LO_DIV_A = 00  
LO_DIV_A = 01  
LO_DIV_A = 10  
LO_DIV_A = 11  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
110  
–120  
–130  
–140  
–150  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 14. VCO2 Open-Loop VCO Phase Noise vs. Offset Frequency;  
VCO2 = 3.4 GHz, LO_DIV_A = 00, VTUNE = 2 V  
Figure 17. VCO2 Closed-Loop Phase Noise for Various LO_DIV_A Dividers vs.  
Offset Frequency; fVCO2 = 3.4 GHz  
f
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–60  
LO_DIV_A = 00  
–65  
LO_DIV_A = 01  
–70  
–75  
–80  
–85  
–90  
LO_DIV_A = 10  
LO_DIV_A = 11  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
110  
–120  
–130  
–140  
–150  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 15. VCO1 Open-Loop Phase Noise vs. Offset Frequency;  
VCO1 = 4.6 GHz, LO_DIV_A = 00, VTUNE = 2 V  
Figure 18. VCO1 Closed-Loop Phase Noise for Various LO_DIV_A Dividers vs.  
Offset Frequency; fVCO1 = 4.6 GHz  
f
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–60  
LO_DIV_A = 00  
–65  
LO_DIV_A = 01  
–70  
–75  
–80  
–85  
–90  
LO_DIV_A = 10  
LO_DIV_A = 11  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
110  
–120  
–130  
–140  
–150  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 16. VCO0 Open-Loop Phase Noise vs. Offset Frequency;  
VCO0 = 5.5 GHz, LO_DIV_A = 00, VTUNE = 2 V  
Figure 19. VCO0 Closed-Loop Phase Noise for Various LO_DIV_A Dividers vs.  
Offset Frequency; fVCO0 = 5.532 GHz  
f
Rev. 0 | Page 13 of 52  
 
ADRF6620  
Data Sheet  
200  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
205  
210  
215  
220  
225  
230  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
2800  
2800  
3200  
3600  
4000  
4400  
4800  
5200  
5600  
VCO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 23. VTUNE vs. VCO Frequency  
Figure 20. PLL Figure of Merit (FOM) vs. LO Frequency  
0
–100  
–105  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–10  
–20  
110  
115  
–30  
1kHz OFFSET  
10kHz OFFSET  
–40  
–50  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–60  
1MHz OFFSET  
–70  
–80  
–90  
100kHz OFFSET  
800kHz OFFSET  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
10MHz OFFSET  
6MHz OFFSET  
40MHz OFFSET  
2579 2979 3379 3779 4179 4579 4979 5379 5779  
VCO FREQUENCY (MHz)  
2579 2979 3379 3779 4179 4579 4979 5379 5779  
VCO FREQUENCY (MHz)  
Figure 24. Open-Loop Phase Noise vs. VCO Frequency;  
LO_DIV_A = 00  
Figure 21. Open-Loop Phase Noise vs. VCO Frequency;  
LO_DIV_A = 00  
–85  
–90  
–85  
–90  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–95  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
1kHz OFFSET  
100kHz OFFSET  
800kHz OFFSET  
50kHz OFFSET  
400kHz OFFSET  
6MHz OFFSET  
40MHz OFFSET  
1MHz OFFSET  
10MHz OFFSET  
1384  
1584  
1784  
1984  
2184  
2384  
2584  
2784  
1384  
1584  
1784  
1984  
2184  
2384  
2584  
2784  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 22. 120 kHz Bandwidth Loop Phase Noise, LO_DIV_A = 01;  
Offset = 1 kHz, 50 kHz, 400 kHz, 1 MHz, and 10 MHz  
Figure 25. 120 kHz Bandwidth Loop Phase Noise, LO_DIV_A = 01;  
Offset = 100 kHz, 800 kHz, 6 MHz, and 40 MHz  
Rev. 0 | Page 14 of 52  
Data Sheet  
ADRF6620  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
LO_DIV_A = 11  
LO_DIV_A = 10  
LO_DIV_A = 01  
LO_DIV_A = 11  
LO_DIV_A = 10  
LO_DIV_A = 01  
2768  
3168  
3568  
3968  
4368  
4768  
5168  
5568  
2768  
3168  
3568  
3968  
4368  
4768  
5168  
5568  
VCO FREQUENCY (MHz)  
VCO FREQUENCY (MHz)  
Figure 26. 10 kHz to 40 MHz Integrated Phase Noise vs. VCO Frequency;  
LO_DIV_A = 01, 10, and 11, Including Spurs, for Various LO Divider Ratios  
Figure 29. 10 kHz to 40 MHz Integrated Phase Noise vs. VCO Frequency;  
LO_DIV_A = 01, 10, and 11, Excluding Spurs, for Various LO Divider Ratios  
–70  
–70  
LO_DIV_A = 01  
LO_DIV_A = 10  
LO_DIV_A = 11  
LO_DIV_A = 01  
LO_DIV_A = 10  
LO_DIV_A = 11  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–75  
–80  
–75  
–80  
–85  
–85  
–90  
–90  
–95  
–95  
–100  
–105  
–110  
–100  
–105  
–110  
2768  
3168  
3568  
3968  
4368  
4768  
5168  
5568  
2768  
3168  
3568  
3968  
4368  
4768  
5168  
5568  
VCO FREQUENCY (MHz)  
VCO FREQUENCY (MHz)  
Figure 27. fPFD Spurs vs. VCO Frequency;  
1× PFD Offset; Measured at LO Output  
Figure 30. fPFD Spurs vs. VCO Frequency;  
2× PFD Offset; Measured at LO Output  
–70  
–75  
–70  
–75  
LO_DIV_A = 01  
LO_DIV_A = 10  
LO_DIV_A = 11  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO_DIV_A = 01  
LO_DIV_A = 10  
LO_DIV_A = 11  
A
A
A
A
A
A
–80  
–80  
–85  
–85  
–90  
–95  
–90  
–100  
–105  
–110  
–115  
–120  
–95  
–100  
–105  
–110  
2768  
3168  
3568  
3968  
4368  
4768  
5168  
5568  
2768  
3168  
3568  
3968  
4368  
4768  
5168  
5568  
VCO FREQUENCY (MHz)  
VCO FREQUENCY (MHz)  
Figure 28. fPFD Spurs vs. VCO Frequency;  
3× PFD Offset; Measured at LO Output  
Figure 31. fPFD Spurs vs. VCO Frequency;  
4× PFD Offset; Measured at LO Output  
Rev. 0 | Page 15 of 52  
ADRF6620  
Data Sheet  
10  
8
300  
290  
280  
270  
260  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO_DRV_LVL = 11  
LO_DRV_LVL = 10  
6
4
2
0
250 LO_DRV_LVL = 00  
LO_DRV_LVL = 01  
LO_DRV_LVL = 10  
LO_DRV_LVL = 11  
LO_DRV_LVL = 01  
LO_DRV_LVL = 00  
–2  
–4  
–6  
–8  
–10  
240  
230  
220  
210  
200  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
350  
850  
1350  
1850  
2350  
2850  
350  
850  
1350  
1850  
2350  
2850  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 32. Supply Current vs. LO Frequency; LO_DRV_LVL = 00, 01, 10, and 11  
Figure 35. LO Amplitude vs. LO Frequency; LO_DRV_LVL = 00, 01, 10, and 11  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–70  
LO OUTPUT  
–72  
DGA OUTPUT  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
–92  
–94  
–96  
–98  
–100  
1384  
1584  
1784  
1984  
2184  
2384  
2584  
2784  
600  
1000  
1400  
1800  
2200  
2600  
3000  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 33. RF to LO Output Feedthrough, LO_DRV_LVL = 00  
Figure 36. fPFD Spurs, LO_DIV_A = 01, 1× PFD Offset;  
Measured on LO Output and DGA Output  
2868.2  
2863.2  
2858.2  
2853.2  
2848.2  
2843.2  
2838.2  
2833.2  
2828.2  
2823.2  
2818.2  
0
25  
50  
75  
100 125 150 175 200 225 250  
TIME (µs)  
Figure 34. LO Frequency Settling Time, Loop Filter Bandwidth = 120 kHz  
Rev. 0 | Page 16 of 52  
Data Sheet  
ADRF6620  
RF INPUT TO MIXER OUTPUT PERFORMANCE  
VCCx = 5 V, T A = 25°C, RL = 250 Ω, external LO, PLO = 0 dBm, RFDSA_SEL = 00 (0 dB), RFSW_SEL = 00 (RFIN0), BAL_CIN and  
BAL_COUT optimized, MIXER_BIAS, MIXER_RDAC, and MIXER_CDAC optimized for highest linearity, DGA and LO output disabled,  
unless otherwise noted. All losses from input and output traces and baluns are de-embedded from results.  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
RF FREQUENCY = 900MHz  
RF FREQUENCY = 1900MHz  
RF FREQUENCY = 2100MHz  
RF FREQUENCY = 2700MHz  
–40°C  
+25°C  
+85°C  
600  
1000  
1400  
1800  
2200  
2600  
3000  
0
100 200 300 400 500 600 700 800 900 1000  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 40. Mixer Gain vs. IF Frequency; LO Sweep with Fixed RF, IF Roll-Off  
Figure 37. Mixer Gain vs. RF Frequency  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
6
6
4
4
RF FREQUENCY = 900MHz  
T
T
T
= –40°C  
= +25°C  
= +85°C  
RF FREQUENCY = 1900MHz  
A
A
A
2
2
RF FREQUENCY = 2100MHz  
RF FREQUENCY = 2700MHz  
0
0
600  
0
100 200 300 400 500 600 700 800 900 1000  
1000  
1400  
1800  
2200  
2600  
3000  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 41. Mixer IP1dB vs. IF Frequency; LO Sweep with Fixed RF, IF Roll-Off  
Figure 38. Mixer IP1dB vs. RF Frequency  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
80  
70  
60  
50  
40  
30  
20  
10  
0
IIP2 (dBm)  
IIP2 (dBm)  
IIP3 (dBm)  
IIP3 (dBm)  
RF FREQUENCY = 900MHz  
RF FREQUENCY = 1900MHz  
RF FREQUENCY = 2100MHz  
RF FREQUENCY = 2700MHz  
0
100 200 300 400 500 600 700 800 900 1000  
IF FREQUENCY (MHz)  
600  
1000  
1400  
1800  
2200  
2600  
3000  
RF FREQUENCY (MHz)  
Figure 42. Mixer IIP2/IIP3 vs. IF Frequency; PIN = −5 dBm/Tone,  
1 MHz Spacing, LO Sweep with Fixed RF, IF Roll-Off  
Figure 39. Mixer IIP2/IIP3 vs. RF Frequency; PIN = −5 dBm/Tone,  
1 MHz Spacing  
Rev. 0 | Page 17 of 52  
 
ADRF6620  
Data Sheet  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RFSW_SEL = 00  
RFSW_SEL = 01  
RFSW_SEL = 10  
RFSW_SEL = 11  
RFSW_SEL = 00  
RFSW_SEL = 01  
RFSW_SEL = 10  
RFSW_SEL = 11  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
IIP2 (dBm)  
IIP3 (dBm)  
600  
1000  
1400  
1800  
2200  
2600  
3000  
600  
1000  
1400  
1800  
2200  
2600  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 43. Mixer Gain vs. RF Frequency; RFSW_SEL = 00, 01, 10, and 11  
Figure 46. Mixer IIP2/IIP3 vs. RF Frequency; RFSW_SEL = 00, 01, 10, and 11  
0
0
ISOLATION RFSW_SEL = 00 TO 11  
ISOLATION RFSW_SEL = 11 TO 11  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
ISOLATION RFSW_SEL = 00 TO 01  
ISOLATION RFSW_SEL = 00 TO 10  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
ISOLATION RFSW_SEL = 11 TO 00  
ISOLATION RFSW_SEL = 11 TO 01  
600  
1000  
1400  
1800  
2200  
2600  
3000  
600  
1000  
1400  
1800  
2200  
2600  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 44. Mixer Input to Mixer Output Isolation vs. RF Frequency;  
RFSW_SEL = 00 Driven  
Figure 47. Mixer Input to Mixer Output Isolation vs. RF Frequency;  
RFSW_SEL = 11 Driven  
0
0
ISOLATION RFSW_SEL = 01 TO 11  
ISOLATION RFSW_SEL = 10 TO 11  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
ISOLATION RFSW_SEL = 01 TO 00  
ISOLATION RFSW_SEL = 01 TO 10  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
ISOLATION RFSW_SEL = 10 TO 00  
ISOLATION RFSW_SEL = 10 TO 01  
600  
1000  
1400  
1800  
2200  
2600  
3000  
600  
1000  
1400  
1800  
2200  
2600  
3000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 45. Mixer Input to Mixer Output Isolation vs. RF Frequency;  
RFSW_SEL = 01 Driven  
Figure 48. Mixer Input to Mixer Output Isolation vs. RF Frequency;  
RFSW_SEL = 10 Driven  
Rev. 0 | Page 18 of 52  
Data Sheet  
ADRF6620  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
0
–5  
INTERNAL LO  
EXTERNAL LO  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
50  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
0
600  
800  
1200  
1600  
2000  
2400  
2800  
3200  
1000  
1400  
1800  
2200  
2600  
3000  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 52. ICC vs. RF Frequency; DGA and LO Output Disabled  
Figure 49. LO to IF Feedthrough at Mixer Output Without Filtering  
24  
23  
22  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
21  
OPTIMIZED FOR  
HIGH LINEARITY  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
NOISE FIGURE  
OPTIMIZED  
800  
1200  
1600  
2000  
2400  
2800  
3200  
600  
1000  
1400  
1800  
2200  
2600  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 50. RF to IF Feedthrough at Mixer Output Without Filtering;  
Mixer Input Power = 0 dBm  
Figure 53. SSB Noise Figure vs. RF Frequency (see Table 16)  
0
–10  
–20  
–30  
–40  
–50  
EXTERNAL LO  
–60  
–70  
INTERNAL LO  
–80  
–90  
–100  
–110  
350 600 850 1100 1350 1600 1850 2100 2350 2600 2850  
LO FREQUENCY (MHz)  
Figure 51. LO to RF Feedthrough; PLO = 0 dBm  
Rev. 0 | Page 19 of 52  
ADRF6620  
Data Sheet  
IF DGA  
VCCx = 5 V, T A = 25°C, RS = RL = 150 Ω, IF = 200 MHz, 2 V p-p differential output, unless otherwise noted. All losses from input and  
output traces and baluns are de-embedded from results.  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0.5  
17  
16  
15  
14  
13  
12  
11  
10  
9
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
GAIN = 15dB  
0.4  
0.3  
0.2  
GAIN = 11dB  
0.1  
0
8
GAIN = 7dB  
GAIN = 3dB  
7
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
6
5
4
3
2
1
T
= +85°C  
T
= +25°C  
300  
T
A
= –40°C  
400  
A
A
0
0
50  
3
4
5
6
7
8
9
10 11 12 13 14 15  
100  
150  
200  
250  
350  
450  
500  
GAIN (dB)  
IF FREQUENCY (MHz)  
Figure 54. DGA Gain vs. IF Frequency and Temperature  
Figure 57. DGA Gain and Gain Step Error vs. Gain Setting and Temperature  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
4
4
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
2
0
2
0
3
4
5
6
7
8
9
10 11 12 13 14 15  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
GAIN (dB)  
IF FREQUENCY (MHz)  
Figure 55. DGA OP1dB vs. Frequency and Temperature; Maximum Gain  
Figure 58. DGA OP1dB vs. Gain Setting and Temperature  
70  
80  
75  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
OIP2 (dBm)  
65  
OIP2 (dBm)  
60  
55  
50  
45  
OIP3 (dBm)  
40  
35  
30  
25  
20  
15  
10  
5
OIP3 (dBm)  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
0
0
50  
3
4
5
6
7
8
9
10 11 12 13 14 15  
100  
150  
200  
250  
300  
350  
400  
450  
500  
GAIN (dB)  
IF FREQUENCY (MHz)  
Figure 56. DGA OIP2/OIP3 vs. IF Frequency and Temperature;  
Maximum Gain  
Figure 59. DGA OIP2/OIP3 vs. Gain Setting and Temperature  
Rev. 0 | Page 20 of 52  
 
Data Sheet  
ADRF6620  
–50  
0
–50  
–60  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–100  
–110  
–120  
–130  
–140  
–150  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
3
4
5
6
7
8
9
10 11 12 13 14 15  
IF FREQUENCY (MHz)  
GAIN (dB)  
Figure 60. DGA HD2/HD3 vs. IF Frequency and Temperature; Maximum Gain  
Figure 63. DGA HD2/HD3 vs. Gain Setting and Temperature  
–50  
–60  
0
70  
GAIN = 15dB  
GAIN = 11dB  
GAIN = 7dB  
GAIN = 3dB  
OIP2 (dBm)  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–70  
–80  
–90  
OIP3 (dBm)  
–100  
–110  
–120  
–130  
–140  
–150  
GAIN = 15dB  
GAIN = 11dB  
GAIN = 7dB  
GAIN = 3dB  
0
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
8
9 10  
–7 –6 –5 –4 –3 –5 –1  
0
1
2
3
4
5
P
(dBm)  
P
(dBm)  
OUT  
OUT  
Figure 61. DGA HD2/HD3 vs. Output Power (POUT) and Gain Setting  
Figure 64. DGA OIP2/OIP3 vs. Output Power (POUT) and Gain Setting  
0
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IMD2 (dBc)  
IMD3 (dBc)  
IMD2 (dBc)  
IMD3 (dBc)  
3
4
5
6
7
8
9
10 11 12 13 14 15  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
GAIN (dB)  
IF FREQUENCY (MHz)  
Figure 62. DGA IMD2/IMD3 vs. IF Frequency and Temperature;  
Maximum Gain  
Figure 65. DGA IMD2/IMD3 vs. Gain Setting  
Rev. 0 | Page 21 of 52  
ADRF6620  
Data Sheet  
SPURIOUS PERFORMANCE  
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products were measured in decibels  
(dB) relative to the carrier (dBc) from the IF output power level. Data is shown for all spurious components greater than −115 dBc and  
frequencies of less than 3 GHz.  
915 MHz Performance  
VCCx = 5 V, T A = 25°C, RF power = 0 dBm, internal LO, fRF = 914 MHz, fLO = 1114 MHz  
M
0
1
2
3
4
5
6
0
1
2
3
4
5
6
−34  
0
−35  
−43  
−52  
−16  
−72  
−60  
−73  
−102  
−72  
−67  
−74  
N
−102  
−103  
<−115  
<−115  
−78  
<−115  
<−115  
<−115  
<−115  
−80  
<−115  
−105  
<−115  
<−115  
<−115  
<−115  
<−115  
<−115  
1910 MHz Performance  
VCCx = 5 V, T A = 25°C, RF power = 0 dBm, internal LO, fRF = 1910 MHz, fLO = 2110 MHz.  
M
0
1
2
3
4
5
6
0
1
2
3
4
5
6
−38.208  
−0.001  
−59.208  
−40.462  
−50.9  
−69.655  
−106.741  
−62.35  
−74.322  
<−115  
<−115  
N
−106.429  
<−115  
<−115  
<−115  
−110.954  
<−115  
<−115  
2140 MHz Performance  
VCCx = 5 V, T A = 25°C, RF power = 0 dBm, internal LO, fRF = 2140 MHz, fLO = 2340 MHz.  
M
0
1
2
3
4
5
6
0
1
2
3
4
5
6
−40  
0
−36  
−45  
−58  
−67  
−59  
N
<−115  
−74  
<−115  
<−115  
<−115  
<−115  
<−115  
<−115  
<−115  
<−115  
<−115  
Rev. 0 | Page 22 of 52  
 
Data Sheet  
ADRF6620  
2700 MHz Performance  
VCCx = 5 V, T A = 25°C, RF power = 0 dBm, internal LO, fRF = 2700 MHz, fLO = 2500 MHz.  
M
0
1
2
3
4
5
6
0
1
2
3
4
5
6
−38.613  
−0.001  
−58.299  
−40.126  
−43.84  
−67.06  
−62.116  
−73.603  
N
<−115  
<−115  
<−115  
<−115  
<−115  
<−115  
Rev. 0 | Page 23 of 52  
ADRF6620  
Data Sheet  
THEORY OF OPERATION  
The ADRF6620 integrates the essential elements of a multi-  
channel loopback receiver that is typically used in digital  
predistortion systems. The main features of the ADRF6620  
include a single-pole four throw (SP4T) RF input switch with  
tunable balun, variable attenuation, a wideband active mixer,  
and digitally programmable variable gain amplifier (DGA).  
In addition, the ADRF6620 integrates a local oscillator (LO)  
generation block consisting of a synthesizer and a multicore  
voltage controlled oscillator (VCO) with an octave range and  
low phase noise. The synthesizer uses a fractional-N phase-locked  
loop (PLL) to enable continuous LO coverage from 350 MHz to  
2850 MHz.  
100 ns. When serial port control is used, the switch time is 100 ns,  
plus the latency of the SPI programming.  
The RFSW_MUX bit (Register 0x23, Bit 11) selects whether the  
RF input switch is controlled via the external pins or the SPI port.  
By default at power-up, the device is configured for serial control.  
Writing to the RFSW_SEL bits (Register 0x23, Bits[10:9]) allows  
selection of one of the four RF inputs. Alternatively, by setting  
the RFSW_MUX bit high, the RFSW0 and RFSW1 pins can be  
used to select the RF input. Table 10 summarizes the different  
control options for the RF inputs.  
To maintain good channel-to-channel isolation, ensure that unused  
RF inputs are properly terminated. The RFINx ports are internally  
terminated with 50 Ω resistors and have a dc bias level of 2.5 V.  
To avoid disrupting the dc level, the recommended termination  
is a dc blocking capacitor to GND. Figure 66 shows the recom-  
mended configuration when only RFIN0 is used, and the other  
RF input ports are properly terminated.  
Putting all the building blocks of the ADRF6620 together,  
the signal path through the device starts at the RF input, where  
one of four single-ended RF inputs is selected by the input mux  
and converted to a differential signal via a tunable balun. The  
differential RF signal is attenuated to an optimal input level via  
the digital step attenuator with 15 dB of attenuation range in steps  
of 1 dB. The RF signal is then mixed via a Gilbert cell mixer with  
the LO signal down to an IF frequency. The 255 Ω terminated  
differential output of the mixer is brought off chip to a pair of  
inductors and passed through an IF filter. The output of the IF  
filter is ac-coupled off chip and fed to an on-chip digital attenuator  
and IF DGA. The output of the IF DGA is then passed to an  
off-chip analog-to-digital converter (ADC).  
35  
RFIN0  
50Ω  
RFIN1  
32  
0.1µF  
50Ω  
RFIN2  
29  
0.1µF  
RF INPUT SWITCHES  
50Ω  
The ADRF6620 integrates a SP4T switch where one of four RF  
inputs is selected. The desired RF input can be selected using  
either pin control or register writes via the SPI. Compared to the  
serial write approach, pin control allows faster control over the  
switch. When the RFSW0 pin (Pin 38) and the RFSW1 pin  
(Pin 39) are used, the RF switches can switch at speeds of up to  
RFIN3  
26  
0.1µF  
50Ω  
Figure 66. Terminating Unused RF Input Ports  
Table 10. RF Input Selection Table  
SPI Control, RFSW_SEL  
(Register Address 0x23[10:9])  
RFSW_MUX (Register Address 0x23[11])  
Pin Control  
RFSW1, Pin 39 RFSW0, Pin 38  
Bit 11  
Bit 10  
Bit 9  
0
RF Input  
RFIN0  
RFIN1  
RFIN2  
RFIN3  
RFIN0  
RFIN1  
RFIN2  
RFIN3  
0
0
0
0
1
1
1
1
0
0
1
1
X1  
X1  
X1  
X1  
X1  
X1  
X1  
X1  
0
X1  
X1  
X1  
X1  
0
1
0
1
X1  
X1  
X1  
X1  
0
1
1
0
1
1
1 X = don’t care.  
Rev. 0 | Page 24 of 52  
 
 
 
 
 
 
Data Sheet  
ADRF6620  
+5V  
TUNABLE BALUN  
IFOUT1–  
IFOUT1+  
The ADRF6620 integrates a programmable balun operating over  
a frequency range from 700 MHz to 2700 MHz. The tunable  
balun offers the benefit of ease of drivability from a single-ended  
50 Ω RF input, and the single-ended-to-differential conversion  
of the balun optimizes common-mode rejection.  
RFINx  
9
8
IFIN+  
IFIN–  
16  
15  
ATTENUATOR  
LOGIC  
g
AMP  
m
R
R
IN  
R
ROUT  
S
L
IFOUT2–  
11  
IFOUT2+  
10  
REF  
Figure 68. Simplified IF DGA Schematic  
BAL_COUT  
BAL_CIN  
REG 0x30[7:5]  
An independent internal voltage reference circuit sets the dc  
voltage level at the input of the amplifier to approximately 1.5 V.  
This reference is not accessible and cannot be adjusted.  
REG 0x30[3:1]  
Figure 67. Integrated Tunable Balun  
The IF DGA consumes 35 mA through the VCC2 pin (Pin 12)  
and 75 mA through the two output choke inductors. The IF  
DGA can be powered down by disabling the IF_AMP_EN bit  
(Register 0x01, Bit 11). In its power-down state, the IF DGA  
current reduces to 6 mA. The dc bias level at the input remains  
at approximately 1.5 V when the DGA is disabled.  
The RF balun is tuned by switching parallel capacitances on the  
primary and secondary sides by writing to Register 0x30. The  
added capacitance, in parallel with the inductive windings of the  
balun, changes the resonant frequency of the inductive capacitive  
(LC) tank. Therefore, selecting the proper combination of BAL_  
CIN (Register 0x30, Bits[3:1]) and BAL_COUT (Register 0x30,  
Bits[7:5]) sets the desired frequency and minimizes the insertion  
loss of the balun. Under most circumstances, the input and output  
can be tuned together; however, sometimes for matching reasons,  
it may be advantageous to tune them separately. See the RF Input  
Balun Insertion Loss Optimization section for the recommended  
BAL_CIN and BAL_COUT settings.  
At minimum attenuation, the gain of the IF DGA is 15 dB when  
driving a 150 Ω load. The source and load resistance of the  
amplifier is set to 150 Ω in a matched condition. If the load or  
the source resistance is not equal to 150 Ω, the following equations  
can be used to determine the resulting gain and input/output  
resistances.  
Voltage Gain = AV = 0.044 × (1000||RL)  
RF DIGITAL STEP ATTENUATOR (DSA)  
R
IN = (1000 + RL)/(1 + 0.044 × RL)  
S21 (Gain) = 2 × RIN/(RIN + RS) × AV  
OUT = (1000 + RS)/(1 + 0.044 × RS)  
The RF DSA follows the tunable balun. The attenuation range is  
0 dB to 15 dB with a step size of 1 dB. DSA attenuation is set using  
the RFDSA_SEL bits (Register 0x23, Bits[8:5]).  
R
ACTIVE MIXER  
The dc current to the outputs of each amplifier is supplied  
through two external choke inductors. The inductance of the  
chokes and the resistance of the load, in parallel with the output  
resistance of the device, add a low frequency pole to the response.  
The parasitic capacitance of the chokes adds to the output capa-  
citance of the part. This total capacitance, in parallel with the  
load and output resistance, sets the high frequency pole of the  
device. In general, the larger the inductance of the choke, the  
higher the parasitic capacitance. Therefore, this trade-off must be  
considered when the value and type of the choke are selected.  
The double balanced mixer uses high performance SiGe NPN  
transistors. This mixer is based on the Gilbert cell design of four  
cross-connected transistors.  
The mixer output has a 255 Ω differential output resistance.  
Bias the mixer outputs using either a pair of supply referenced  
RF chokes or an output transformer with the center tap connected  
to the positive supply.  
DIGITALLY PROGRAMMABLE VARIABLE GAIN  
AMPLIFIER (DGA)  
For each polarity, the amplifier has two output pins that are  
oriented in an alternating fashion: IFOUT1+ (Pin 8), IFOUT1−  
(Pin 9), IFOUT2+ (Pin 10), and IFOUT2− (Pin 11). When  
designing the board, minimize the parasitic capacitance caused  
by routing the corresponding outputs together. See the Layout  
section for the recommended printed circuit board (PCB)  
layout.  
The ADRF6620 integrates a differential IF DGA consisting of a  
150 Ω digitally controlled passive attenuator followed by a highly  
linear transconductance amplifier with feedback. The attenuation  
range is 12 dB, and the transconductor amplifier has a fixed gain  
of 15 dB. Therefore, at minimum attenuation, the gain of the IF  
DGA is 15 dB; at maximum attenuation, the gain is 3 dB. The  
attenuation is controlled by addressing the IF_ATTN bits in  
Register 0x23, Bits[4:0]. The attenuation step size is 0.5 dB.  
Rev. 0 | Page 25 of 52  
 
 
 
 
ADRF6620  
Data Sheet  
Internal LO Mode  
LO GENERATION BLOCK  
The ADRF6620 includes an on-chip VCO and PLL for LO  
synthesis. The PLL, shown in Figure 69, consists of a reference  
input, phase and frequency detector (PFD), charge pump, and a  
programmable integer divider with prescaler. The reference path  
takes in a reference clock and divides it down by a factor of 1, 2, 4,  
or 8 or multiplies it by a factor of 2 before passing it to the PFD.  
The PFD compares this signal to the divided down signal from the  
VCO. Depending on the PFD polarity selected, the PFD sends an  
up/down signal to the charge pump if the VCO signal is slow/fast  
compared to the reference frequency. The charge pump sends  
a current pulse to the off-chip loop filter to increase or decrease  
the tuning voltage (VTUNE).  
The ADRF6620 offers two modes for sourcing the LO signal to  
the mixer. The first mode uses the on-chip PLL and VCO. This  
mode of operation provides a high quality LO that meets the  
performance requirements of most applications. Using the on-  
chip synthesizer and VCO removes the burden of generating  
and distributing a high frequency LO signal.  
The second mode bypasses the integrated LO generation block  
and allows the LO to be supplied externally. This second mode  
can provide a very high quality signal directly to the mixer core.  
Sourcing the LO signal externally may be necessary in demanding  
applications that require the lowest possible phase noise  
performance.  
The ADRF6620 integrates three VCO cores that cover an octave  
range from 2.8 GHz to 5.7 GHz. Table 11 summarizes the fre-  
quency range for each VCO. The desired VCO can be selected  
by addressing the VCO_SEL bits (Register 0x22, Bits[2:0]).  
External LO Mode  
External or internal LO mode can be selected via the VCO_SEL  
bits (Register 0x22, Bits[2:0]). To configure for external LO mode,  
set Register 0x22, Bits[2:0] to 011 and apply the differential LO  
signals to Pin 44 (LOIN−) and Pin 45 (LOIN+). The external LO  
frequency range is 350 MHz to 3.2 GHz. The ADRF6620 offers the  
flexibility of using a higher LO frequency signal and dividing it  
down before it drives the mixer. The LO divider can be found in  
the LO_DIV_A bits (Register 0x22, Bits[4:3]), where options  
include ÷1, ÷2, ÷4, or ÷8.  
Table 11. VCO Range  
VCO_SEL (Register 0x22, Bits[2:0]) Frequency Range (GHz)  
000  
001  
010  
011  
5.2 to 5.7  
4.1 to 5.2  
2.8 to 4.1  
External LO  
The external LO input pins present a broadband differential 50 Ω  
input impedance. The LOIN+ and LOIN− input pins must be  
ac-coupled. When not in use, LOIN+ and LOIN− can be left  
unconnected.  
The N-divider divides down the differential VCO signal to the PFD  
frequency. The N-divider can be configured for fractional mode or  
integer mode by addressing the DIV_MODE bit (Register 0x02,  
Bit 11). The default configuration is set for fractional mode.  
VCO_SEL  
REG 0x22[2:0]  
REFSEL  
REG 0x21[2:0]  
LOIN+  
EXTERNAL  
LOOP  
FILTER  
LO_DIV_A  
REG 0x22[4:3]  
LOIN–  
PFD_POLARITY  
REG 0x21[3]  
÷8  
LOOUT+ TO MIXER  
LOOUT– TO MIXER  
÷1, ÷2,  
÷4, ÷8  
÷4  
CP  
VTUNE  
PFD  
CHARGE  
+
÷2  
×1  
×2  
REFIN  
PUMP  
LPF  
CP_CTRL  
REG 0x20[13:0]  
FRAC  
MOD  
÷2  
N = INT +  
DIV_MODE: REG 0x02[11]  
INT_DIV: REG 0x02[10:0]  
FRAC_DIV: REG 0x03[10:0]  
MOD_DIV: REG 0x04[10:0]  
Figure 69. LO Generation Block Diagram  
Rev. 0 | Page 26 of 52  
 
 
 
Data Sheet  
ADRF6620  
The following equations can be used to determine the N value and  
PLL frequency:  
captures these effects. In general, higher bandwidth loops tend  
to lock more quickly than lower bandwidth loops.  
Additional LO Controls  
fVCO  
2×N  
fPFD  
=
To access the LO signal going to the mixer core through the  
LOOUT+ and LOOUT− pins (Pin 21 and Pin 22), enable the  
LO_DRV_EN bit in Register 0x01, Bit 7. This setting offers direct  
monitoring of the LO signal to the mixer for debug purposes; or the  
LO signal can be used to daisy-chain many devices synchronously.  
One ADRF6620 can serve as the master where the LO signal is  
sourced, and the subsequent slave devices share the same LO signal  
from the master. This flexibility substantially eases the LO require-  
ments of a system with multiple LOs.  
FRAC  
MOD  
N = INT +  
f
PFD ×2×N  
fLO  
where:  
=
LO_DIVIDER  
f
f
PFD is the phase frequency detector frequency.  
VCO is the voltage controlled oscillator frequency.  
N is the fractional divide ratio (INT + FRAC/MOD)  
The LO output drive level is controlled by the LO_DRV_LVL  
bits (Register 0x22, Bits[8:7]). Table 13 shows the available drive  
levels.  
INT is the integer divide ratio programmed in Register 0x02.  
FRAC is the fractional divider programmed in Register 0x03.  
MOD is the modulus divide ratio programmed in Register 0x04.  
Table 13. LO Drive Level  
fLO is the LO frequency going to the mixer core when the loop is  
LO_DRV_LVL (Register 0x22, Bits[8:7])  
Amplitude (dBm)  
locked.  
00  
01  
10  
11  
−4  
0.5  
3
LO_DIVIDER is the final divider block that divides the VCO  
frequency down by 1, 2, 4, or 8 before it reaches the mixer  
(see Table 12). This control is located in the LO_DIV_A bits  
(Register 0x22, Bits[4:3]).  
4.5  
SERIAL PORT INTERFACE (SPI)  
Table 12. LO Divider  
The SPI port of the ADRF6620 allows the user to configure the  
device through a structured register space provided inside the  
chip. Registers are accessed via the serial port interface and can  
be written to or read from via the serial port interface.  
LO_DIV_A (Register 0x22, Bits[4:3])  
LO_DIVIDER  
00  
01  
10  
11  
1
2
4
8
The serial port interface consists of three control lines: SCLK,  
CS  
SDIO, and . SCLK (serial clock) is the serial shift clock. The  
The lock detect signal is available as one of the selectable outputs  
through the MUXOUT pin; a logic high indicates that the loop  
is locked. The MUXOUT pin is controlled by the REF_MUX_SEL  
bits (Register 0x21, Bits[6:4]); the PLL lock detect signal is the  
default configuration.  
SCLK signal clocks data on its rising edge. SDIO (serial data  
input/output) is an input or output depending on the instruction  
being sent and the relative position in the timing frame.  
(chip select bar) is an active low control that gates the read and  
write cycles. The falling edge of , in conjunction with the rising  
edge of SCLK, determines the start of the frame. All SCLK and  
CS  
CS  
To ensure that the PLL locks to the desired frequency, follow the  
proper write sequence of the PLL registers. The PLL registers must  
be configured accordingly to achieve the desired frequency, and the  
last writes must be to Register 0x02 (INT_DIV), Register 0x03  
(FRAC_DIV), or Register 0x04 (MOD_DIV). When one of these  
registers is programmed, an internal VCO calibration is initiated,  
which is the last step in locking the PLL.  
CS  
SDIO activity is ignored when  
show the serial timing and its definitions.  
is high. Table 6 and Figure 2  
The ADRF6620 protocol consists of seven register address bits,  
followed by a read/  
address and data fields are organized from MSB to LSB.  
write  
indicator and 16 data bits. Both the  
The time it takes to lock the PLL after the last register is written  
can be broken down into two parts: VCO band calibration and  
loop settling.  
On a write cycle, up to 16 bits of serial write data are shifted in,  
CS  
MSB to LSB. If the rising edge of  
occurs before the LSB of  
the serial data is latched, only the bits that were clocked in are  
written to the device. If more than 16 data bits are shifted in,  
the 16 most recent bits are written to the device. The ADRF6620  
input logic level for the write cycle supports a logic level as low  
as 1.8 V.  
After the last register is written, the PLL automatically performs  
a VCO band calibration to choose the correct VCO band. This  
calibration takes approximately 5120 PFD cycles. For a 40 MHz  
f
PFD, this corresponds to 128 µs. After calibration is complete, the  
feedback action of the PLL causes the VCO to eventually lock to  
the correct frequency. The speed with which this locking occurs  
depends on the nonlinear cycle-slipping behavior, as well as the  
small-signal settling of the loop. For an accurate estimation of  
the lock time, download the ADIsimPLL tool, which correctly  
On a read cycle, up to 16 bits of serial read data are shifted out,  
MSB to LSB. Data shifted out beyond 16 bits is undefined. It is  
not necessary for readback content at a given register address to  
correspond with the write data of the same address. The output  
logic level for a read cycle is 2.5 V.  
Rev. 0 | Page 27 of 52  
 
 
 
ADRF6620  
Data Sheet  
BASIC CONNECTIONS  
+5V  
470nH  
(0603)  
470nH  
(0603)  
39nH  
(0402)  
0.1µF  
(0402)  
DNP  
DNP  
39nH  
(0402)  
0.1µF  
(0402)  
CSB  
SCLK  
SDIO  
GND  
3.3V  
10kΩ  
(0402)  
3.3V  
+5V  
4
5
17 20 23 25 27 28 30 31 33 34 36 48 18 19 15 16  
42 41 40  
RFSW1  
39  
38  
35  
S2  
10kΩ  
(0402)  
1µH  
1µH  
SPI  
INTERFACE  
RFSW0  
RFIN0  
ADRF6620  
100pF  
(0402)  
S1  
0Ω  
100pF  
(0402)  
(0402)  
TCM3-1T+  
LOIN  
IFOUT1–  
9
8
0.1µF  
RFIN0  
IFOUT1+  
IFOUT2–  
IFOUT2+  
6
(0402) 1  
DNP  
100pF  
(0402)  
2
100pF  
(0402)  
RFIN1  
0Ω  
(0402)  
32  
RFIN1  
100pF  
(0402)  
11  
3
4
10  
RFIN2  
RFIN3  
DNP  
29  
26  
RFIN2  
100pF  
(0402)  
100pF  
(0402)  
LOOUT+  
LOOUT–  
TC1-1-43A+  
21  
22  
3
4
RFIN3  
LOOUT  
LOIN+  
LOIN–  
100pF  
(0402)  
÷8  
÷4  
÷2  
×1  
×2  
1
6
÷1, ÷2,  
÷4, ÷8  
CP  
VTUNE  
REFIN  
100pF  
(0402)  
PFD CHARGE  
PUMP  
+
REF_IN  
6
100pF  
(0402)  
49.9Ω  
(0402)  
LOIN+  
LOIN–  
TC1-1-43A+  
3
45  
44  
4
LOIN  
FRAC  
MOD  
÷2  
N = INT +  
1
6
MUXOUT  
100pF  
(0402)  
MUXOUT  
43  
LOCK_DET  
VPTAT  
VTUNE  
CP  
0Ω  
LDO  
VCO  
LDO  
LO  
LDO  
2.5V  
LDO  
3.3V  
47  
3
(0402)  
VTUNE_TP  
OPEN  
EXPOSED  
PADDLE  
10kΩ  
(0402)  
10kΩ  
(0402)  
OPEN  
(0402)  
24  
14  
13  
12  
1
46  
37  
7
2
22pF  
(0402)  
3kΩ  
(0402)  
22pF  
(0402)  
6.8pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
2.7nF  
(0603)  
0.1µF  
(0402)  
0.1µF  
(0402)  
0.1µF  
(0402)  
0.1µF  
(0402)  
0.1µF  
(0402)  
100pF  
(0402)  
10µF  
(0603)  
0.1µF  
(0402)  
+5V  
RED  
10µF  
(0603)  
100pF  
(0402)  
0.1µF  
(0402)  
100pF  
(0402)  
0.1µF  
(0402)  
10µF  
(0603)  
10µF  
(0603)  
0.1µF  
(0402)  
100pF  
(0402)  
Figure 70. Basic Connection Diagram  
Table 14. Basic Connections  
Pin No.  
Mnemonic  
Description  
Basic Connection  
5 V Power  
1
12  
13  
14  
24  
PLL/VCO  
3
VCC1  
VCC2  
VCC3  
VCC4  
VCC5  
LO, VCO, mixer power supply Decouple all power supply pins to ground using 100 pF and 0.1 µF  
capacitors. Place the decoupling capacitors close to the pins.  
IF DGA power supply  
Factory calibration pin  
Factory calibration pin  
RF front-end power supply  
CP  
Synthesizer charge pump  
output  
Connect this pin to the VTUNE pin through the loop filter.  
6
REFIN  
Synthesizer reference  
frequency input  
The nominal input level of this pin is 1 V p-p. The input range is  
12 MHz to 464 MHz. This pin is internally biased and must be ac-  
coupled and terminated externally with a 50 Ω resistor. Place  
the ac coupling capacitor between the pin and the resistor.  
When driven from an 50 Ω RF signal generator, the recommended  
input level is 4 dBm.  
21, 22  
LOOUT+, LOOUT−  
Differential LO outputs  
The differential output impedance of these pins is 50 Ω. The pins  
Rev. 0 | Page 28 of 52  
 
 
Data Sheet  
ADRF6620  
Pin No.  
Mnemonic  
Description  
Basic Connection  
are internally biased to 2.5 V and must be ac-coupled.  
44, 45  
43  
LOIN−, LOIN+  
MUXOUT  
VTUNE  
Differential LO inputs  
PLL multiplex output  
VCO tuning voltage  
The differential input impedance of these pins is 50 Ω. The pins  
are internally biased to 2.5 V and must be ac-coupled.  
This output pin provides the PLL reference signal or the PLL lock  
detect signal.  
This pin is driven by the output of the loop filter; its nominal  
input voltage range is 1.5 V to 2.5 V.  
47  
RF Inputs  
26, 29, 32, 35  
RFIN3, RFIN2  
RFIN1, RFIN0  
RF inputs  
The single-ended RF inputs have a 50 Ω input impedance and  
are internally biased to 2.5 V. These pins must be ac-coupled.  
Terminate unused RF inputs with a dc blocking capacitor to  
GND to improve isolation. Refer to the Layout section for the  
recommended PCB layout for optimized channel-to-channel  
isolation.  
38, 39  
RFSW0, RFSW1  
Pin control of the RF inputs See Table 10 for the pin settings for RF input pin control. For  
logic high, connect these pins to 2.5 V logic.  
IF DGA  
8, 9, 10, 11  
IFOUT1+, IFOUT1−,  
IFOUT2+, IFOUT2−  
IF DGA outputs  
The differential IF DGA outputs have two output pins for each  
polarity. They are oriented in alternating fashion: IFOUT1+ (Pin 8),  
IFOUT1− (Pin 9), IFOUT2+ (Pin 10), and IFOUT2− (Pin 11).  
Connect the positive pins such that IFOUT1+ and IFOUT2+ are  
tied together. Similarly, connect the negative pins such that  
IFOUT1− and IFOUT2− are tied together. Refer to the Layout  
section for a recommended layout that minimizes parasitic  
capacitance and optimizes on performance.  
The output stage of the IF DAG is an open-collector configuration  
that requires a dc bias of 5 V. Use bias choke inductors to  
achieve this configuration. Choose the bias choke inductors  
such that they can handle a maximum current of 50 mA on  
each side. By design, the IF DGA is optimized for linearity when  
the source and load are terminated with 150 Ω.  
15, 16  
IFIN−, IFIN+  
IF DGA inputs  
AC couple the mixer outputs to the IF DGA inputs. See the  
Interstage Filtering Requirements section for the recommended  
filter designs.  
Mixer Outputs  
18, 19  
MXOUT+, MXOUT−  
Differential mixer outputs  
The output stage of the mixer is an open collector configuration  
that requires a dc bias of 5V. Use bias choke inductors to achieve  
this configuration. Carefully choose the bias choke inductors  
such that they can handle a maximum current of 50 mA on each  
side. The differential output impedance of the mixer is 255 Ω.  
Serial Port Interface  
40  
CS  
SPI chip select  
Active low. 3.3 V logic levels.  
3.3 V tolerant logic levels.  
3.3 V tolerant logic levels.  
41  
42  
SCLK  
SDIO  
SPI clock  
SPI data input and output  
LDO Decoupling  
2
7
37  
DECL1  
DECL2  
DECL3  
DECL4  
3.3 V LDO decoupling  
2.5 V LDO decoupling  
LO LDO decoupling  
VCO LDO decoupling  
Decouple all DECLx pins to ground using 100 pF, 0.1 µF, and 10 µF  
capacitors. Place the decoupling capacitors close to the pin.  
46  
GND  
4, 5, 17, 20, 23, 25,  
27, 28, 30, 31, 33,  
34, 36, 48  
GND  
Ground  
Connect these pins to the GND of the PCB.  
49 (EPAD)  
Exposed pad (EPAD)  
The exposed thermal pad is on the bottom of the package.  
The exposed pad must be soldered to ground.  
Rev. 0 | Page 29 of 52  
ADRF6620  
Data Sheet  
At lower input frequencies, more capacitance is needed. This  
increase is achieved by programming higher codes into BAL_CIN  
and BAL_COUT. At high frequencies, less capacitance is required;  
therefore, lower BAL_CIN and BAL_COUT codes are appropriate.  
Table 16 provides a list of recomended BAL_CIN and BAL_COUT  
codes for popular radio frequencies. Use Figure 71 to Figure 74  
and Table 16 only as guides; do not interpret them in the absolute  
sense because every application and PCB design varies. Addi-  
tional fine-tuning may be necessary to achieve the maximum gain.  
RF INPUT BALUN INSERTION LOSS OPTIMIZATION  
As shown in Figure 71 to Figure 74, the gain of the ADRF6620  
mixer has been characterized for every combination of BAL_CIN  
and BAL_COUT (Register 0x30). As shown, a range of BAL_CIN  
and BAL_COUT values can be used to optimize the gain of the  
ADRF6620. The optimized values do not change with temperature.  
After the values are chosen, the absolute gain changes over tem-  
perature; however, the signature of the BAL_CIN and BAL_COUT  
values is fixed.  
0
0
–40°C  
+25°C  
–40°C  
+25°C  
+85°C  
1
2
3
4
5
6
7
8
+85°C  
–1  
–2  
–3  
–4  
–5  
–6  
–9  
–10  
0123456701234567012345670123456701234567012345670123456701234567 BAL_CIN  
BAL_COUT  
0123456701234567012345670123456701234567012345670123456701234567  
BAL_CIN  
BAL_COUT  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
BAL_CIN/BAL_COUT  
BAL_CIN/BAL_COUT  
Figure 71. Gain vs. BAL_CIN and BAL_COUT at RF = 900 MHz  
Figure 73. Gain vs. BAL_CIN and BAL_COUT at RF = 1900 MHz  
0
–2  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–2  
–4  
–4  
–6  
–8  
–6  
–10  
–12  
–14  
–16  
–18  
–8  
–10  
–12  
BAL_CIN  
BAL_COUT  
0123456701234567012345670123456701234567012345670123456701234567  
0123456701234567012345670123456701234567012345670123456701234567  
BAL_CIN  
BAL_COUT  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
BAL_CIN/BAL_COUT  
BAL_CIN/BAL_COUT  
Figure 72. Gain vs. BAL_CIN and BAL_COUT at RF = 2100 MHz  
Figure 74. Gain vs. BAL_CIN and BAL_COUT at RF = 2700 MHz  
Rev. 0 | Page 30 of 52  
 
 
 
Data Sheet  
ADRF6620  
Inevitably, there is a limit on how much the bias current can  
IP3 AND NOISE FIGURE OPTIMIZATION  
increase before the improvement in linearity no longer justifies the  
increase in power and noise. The mixer core reaches a saturation  
point where further increases in bias current do not translate to  
improved performance. When that point is reached, it is best to  
decrease the bias current to a level where the desired performance  
is achieved. Depending on the system specifications of the cus-  
tomer, a balance between linearity, noise figure, and power can  
be attained.  
The ADRF6620 can be configured for either improved perfor-  
mance or reduced power consumption. In applications where  
performance is critical, the ADRF6620 offers IP3 or noise figure  
optimization. However, if power consumption is the priority, the  
mixer bias current can be reduced to save on the overall power  
at the expense of degraded performance. Whatever the application  
specific needs are, the ADRF6620 offers configurability that  
balances performance and power consumption.  
In addition to bias optimization, the ADRF6620 also has  
configurable distortion cancellation circuitry. The linearized  
transconductor input of the ADRF6620 is made up of a main path  
and a secondary path. Through adjustments of the amplitude and  
phase of the secondary path, the distortion generated by the main  
path can be canceled, resulting in improved IPd3 performance.  
The amplitude and phase adjustments are located in the following  
serial interface bits: MIXER_RDAC (Register 0x31, Bits[8:5])  
and MIXER_CDAC (Register 0x31, Bits[4:0]).  
Adjustments to the mixer bias setting have the most impact on  
performance and power. For this reason, mixer bias should be  
the first adjustment. The active mixer core of the ADRF6620 is a  
linearized transconductor. With increased bias current, the  
transconductor becomes more linear, resulting in higher IP3.  
The improved IP3, however, is at the expense of degraded noise  
figure and increased power consumption (see Figure 75). For a  
1-bit change of the mixer bias (MIXER_BIAS, Register 0x31,  
Bits[11:9]), the current increases by 7.71 mA.  
220  
RF FREQ:  
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
155  
150  
900MHz  
1900MHz  
2100MHz  
2600MHz  
Δ7.71 mA  
Δ1  
0
1
2
3
4
5
6
7
MIXER BIAS  
Figure 75. Change in Current Consumption vs. MIXER_BIAS  
Rev. 0 | Page 31 of 52  
 
 
ADRF6620  
Data Sheet  
Figure 76 to Figure 83 show the IIP3 and noise figure sweeps for  
all MIXER_RDAC, MIXER_CDAC, and MIXER_BIAS combi-  
nations. The IIP3 vs. MIXER_RDAC and MIXER_CDAC figures  
show both a surface and a contour plot in one figure. The contour  
plot is located directly underneath the surface plot. The best  
approach for reading the figure is to localize the peaks on the  
surface plot, which indicate maximum IIP3, and to follow the  
same color pattern to the contour plot to determine the optimized  
MIXER_RDAC and MIXER_CDAC values. The overall shape  
of the IIP3 plot does not vary with the MIXER_BIAS setting;  
therefore, only MIXER_BIAS = 011 is displayed.  
The data shows that MIXER_BIAS has the largest impact on  
performance. As previously mentioned and evident in the data,  
IIP3 improves with increased MIXER_BIAS, and noise figure is  
optimized at the lowest bias setting. Taking a more detailed look  
at the data, the different MIXER_RDAC and MIXER_CDAC  
combinations can result in a ~5 dB to +10 dB change in IIP3, but  
the noise figure changes by only ~0.5 dB. These trends become  
very important in deciding the trade-offs between IP3, noise figure,  
and power consumption. The total current consumption of the  
ADRF6620 does not change with MIXER_RDAC and MIXER_  
CDAC and varies only with the mixer bias settings (see Figure 75).  
19.5  
40  
35  
30  
25  
MIXER BIAS  
900-0  
900-2  
900-4  
900-6  
900-7  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
20  
0
M
5
I
X
E
R_CDA1C0  
15  
10  
MIXER_RDAC  
MIXER_CDAC  
0
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150 7 15 0 7 150 7 150 7 150 7 150 7 15  
5
15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
Figure 76. IIP3 vs. MIXER_RDAC, MIXER_CDAC; MIXER_BIAS = 011  
at RF Frequency = 900 MHz  
Figure 78. Noise Figure vs. MIXER_RDAC, MIXER_CDAC, and  
Various MIXER_BIAS Values at RF Frequency = 900 MHz  
40  
35  
30  
25  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
20  
15  
10  
5
MIXER BIAS  
1900-0  
1900-2  
1900-4  
1900-6  
1900-7  
MIXER_RDAC  
MIXER_CDAC  
0
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150 7 15 0 7 150 7 150 7 150 7 150 7 15  
15  
0
10  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
5
0
MIXER_CDAC  
Figure 77. IIP3 vs. MIXER_RDAC, MIXER_CDAC; MIXER_BIAS = 011  
at RF Frequency = 1900 MHz  
Figure 79. Noise Figure vs. MIXER_RDAC, MIXER_CDAC, and  
Various MIXER_BIAS Values at RF Frequency = 1900 MHz  
Rev. 0 | Page 32 of 52  
 
Data Sheet  
ADRF6620  
23.5  
23.0  
22.5  
22.0  
21.5  
45  
40  
35  
30  
25  
20  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
15  
MIXER BIAS  
2100-0  
10  
2100-6  
2100-7  
15  
0
2100-2  
5
2100-4  
5
10  
0
MIXER_RDAC  
MIXER_CDAC  
0
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150 7 15 0 7 150 7 150 7 150 7 150 7 15  
15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Figure 80. IIP3 vs. MIXER_RDAC, MIXER_CDAC; MIXER_BIAS = 011  
at RF Frequency = 2100 MHz  
Figure 82. Noise Figure vs. MIXER_RDAC, MIXER_CDAC, and  
Various MIXER_BIAS Values at RF Frequency = 2100 MHz  
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
45  
40  
35  
30  
25  
20  
15  
20  
MIXER BIAS  
2600-0  
2600-2  
2600-4  
2600-6  
2600-7  
10  
0
0
MIXER_RDAC  
MIXER_CDAC  
5
0
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150  
7
150 7 15 0 7 150 7 150 7 150 7 150 7 15  
10  
15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Figure 83. Noise Figure vs. MIXER_RDAC, MIXER_CDAC, and  
Various MIXER_BIAS Values at RF Frequency = 2700 MHz  
Figure 81. IIP3 vs. MIXER_RDAC, MIXER_CDAC; MIXER_BIAS = 011  
at RF Frequency = 2700 MHz  
Rev. 0 | Page 33 of 52  
 
ADRF6620  
Data Sheet  
As an example, the MIXER_RDAC, MIXER_CDAC, and MIXER_  
BIAS settings of the ADRF6620 were carefully selected, based on  
three individual goals that resulted in three sets of MIXER_RDAC,  
MIXER_CDAC, and MIXER_BIAS values. The first goal was for  
optimized IIP3. To achieve the most optimal IIP3 performance,  
the MIXER_BIAS was set to a higher current setting, and MIXER_  
RDAC and MIXER_CDAC were selected at the peaks. This  
configuration allowed for the most optimal IIP3 performance.  
However, it also consumed the most power, and the noise figure  
was degraded. The second goal was to achieve a balance among  
IIP3, the noise figure, and power consumption. Finally, the third  
goal was for an optimized noise figure. This configuration resulted  
in the lowest power consumption while IIP3 was not optimized.  
Table 15 summarizes the test conditions; Table 16 shows the cor-  
responding MIXER_RDAC, MIXER_CDAC, and MIXER_BIAS  
values. The resulting IIP3 and noise figure performance for the  
specific MIXER_RDAC, MIXER_CDAC, and MIXER_BIAS  
settings are shown in Figure 84.  
50  
IIP3  
45  
40  
35  
30  
25  
20  
15  
IIP3: OPT IIP3  
IIP3: OPT NOISE FIGURE  
10  
5
NOISE  
FIGURE  
IIP3: IIP3 AND NOISE FIGURE BALANCE  
NF: OPT IIP3  
NF: OPT NOISE FIGURE  
NF: IIP3 AND NOISE FIGURE BALANCE  
0
0.6  
1.1  
1.6  
2.1  
2.6  
RF FREQUENCY (GHz)  
Figure 84. Example IIP3 and Noise Figure Optimization  
Table 15. Mixer Optimization Summary  
Parameter  
Test Conditions/Comments  
Optimized IIP3  
MIXER_RDAC, MIXER_CDAC, and MIXER_BIAS were configured for optimized IIP3 performance.  
Noise Figure, IIP3, and  
Power Consumption  
Balance  
MIXER_BIAS was limited to 0, 1, or 2 decimal for improved noise figure while allowing IIP3 to degrade. MIXER_RDAC and  
MIXER_CDAC were chosen for optimized IIP3 because MIXER_RDAC and MIXER_CDAC have a larger impact on IIP3  
than on noise figure.  
Optimized Noise Figure  
MIXER_BIAS was set to 0 decimal for the best noise figure. MIXER_RDAC and MIXER_CDAC were chosen for optimized  
IIP3 because they have a larger impact on IIP3 than on noise figure.  
Table 16. Recommended BAL_CIN, BAL_COUT, MIXER_RDAC, MIXER_CDAC, and MIXER_BIAS Settings (in Decimal)  
Optimized IIP3  
IIP3 and Noise Figure Balance  
Optimized Noise Figure  
RF Frequency  
(MHz)  
BAL_CIN  
BAL_COUT  
RDAC  
6
5
3
0
5
5
5
5
8
6
6
8
6
9
9
9
7
9
9
7
7
7
7
7
7
7
7
7
CDAC  
10  
14  
13  
15  
12  
11  
10  
9
8
7
7
7
6
6
6
6
5
5
5
4
BIAS  
4
4
3
0
4
4
4
4
4
4
4
4
4
4
5
5
5
5
4
4
4
4
4
4
4
4
4
4
RDAC  
4
4
3
3
5
4
3
3
CDAC  
15  
15  
14  
13  
11  
10  
10  
9
BIAS  
2
2
2
2
2
2
1
1
RDAC  
4
CDAC  
15  
15  
15  
14  
13  
11  
11  
10  
10  
9
BIAS  
0
0
0
0
0
0
0
0
600  
700  
800  
900  
7
7
5
3
3
2
1
1
0
0
0
0
0
0
0
0
0
1
1
2
2
1
1
1
1
1
1
0
7
7
5
4
3
3
2
2
2
2
2
2
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
4
2
2
2
3
2
2
2
2
3
2
4
4
3
3
3
3
3
3
3
3
3
3
3
940  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1840  
1900  
2000  
2100  
2140  
2200  
2300  
2400  
2500  
2600  
2700  
2800  
2900  
3000  
3
9
1
0
0
4
8
1
5
7
2
8
0
5
7
2
8
0
5
6
2
7
0
5
6
2
7
0
5
6
2
7
0
6
5
2
7
0
3
6
0
6
0
5
5
1
6
0
5
5
1
6
0
5
5
1
6
0
4
4
4
4
4
4
4
4
5
5
1
6
0
5
5
1
6
0
5
5
1
6
0
5
5
1
6
0
5
5
1
6
0
4
4
3
15  
15  
14  
2
2
2
4
4
2
15  
15  
15  
0
0
0
Rev. 0 | Page 34 of 52  
 
 
 
Data Sheet  
ADRF6620  
MXOUT+  
INTERSTAGE FILTERING REQUIREMENTS  
82.5Ω  
90Ω  
Filtering at the mixer output may be necessary for improved  
linearity performance. For applications where the frequency plan  
requires low RF frequency inputs and IF outputs, the resulting sum  
term at the mixer outputs, fRF + fLO, may fall within the band of  
interest. The unwanted sum term may cause the IF DGA to  
operate in its nonlinear region because of the unnecessary presence  
of additional signal power. As a result, the linearity performance  
degrades where OIP3 and OIP2 decrease substantially. For this  
reason, a low-pass filter is necessary to attenuate the unwanted  
signal while maintaining the integrity of the wanted signal within  
the band of interest. In addition, the low-pass filter serves to  
suppress the LO feedthrough. Because of the absence of blockers  
in a typical DPD receive application, a lower order filter, such as  
a third-order Chebyshev, is typically adequate.  
+
+
1.1pF  
2.5pF  
82.5Ω  
MXOUT–  
Figure 86. Equivalent Model of the Mixer Output Impedance  
10  
9
8
7
6
5
4
3
2
1
0
290  
270  
250  
230  
210  
190  
170  
150  
PARALLEL RESISTANCE  
The low-pass filter resides between the mixer outputs and the IF  
DGA inputs, as shown in Figure 85. The signal flow starts with the  
differential outputs of the mixer being dc biased to positive  
supply (5 V) via a pair of pull-up inductors, L1 and L2. The  
inductor value is determined by the low frequency cutoff of the  
signal band of interest. Next, the third-order low-pass filter  
attenuates the high frequency sum term. The combination of  
the pull-up inductors and the low-pass filter results in a band-  
pass filter profile. The outputs of the filter are then ac-coupled  
through series capacitors and routed to the on-chip IF DGA via  
the IFIN+ and IFIN− pins.  
PARALLEL CAPACITANCE  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
Figure 87. Mixer Output Impedance vs. Frequency  
Likewise, Figure 88 shows the impedance vs. frequency for the  
IF DGA. The four-port S parameter files for the IF DGA and  
mixer are available on analog.com and can serve as a useful tool  
to accurately capture the input and output impedance when  
designing the interstage filter. As a first-order approximation  
at low frequencies, the mixer output has a fixed impedance of  
approximately 255 Ω, and the input impedance of the IF DAG is  
approximately 150 Ω. Therefore, design the low-pass filter to  
have an input impedance of 255 Ω and an output impedance of  
150 Ω.  
+5V  
L2  
L1  
L3  
L4  
MXOUT+  
18  
19  
RF  
C2  
C1  
MXOUT–  
20  
18  
16  
14  
12  
10  
8
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
LO  
0.1µF  
OUTPUT CAPACITANCE  
INPUT CAPACITANCE  
OUTPUT RESISTANCE  
INPUT RESISTANCE  
IFIN+  
IFIN–  
16  
15  
0.1µF  
9
8
IFOUT1–  
IFOUT1+  
11 IFOUT2–  
10  
IFOUT2+  
PARALLEL RESISTANCE  
Figure 85. Low-Pass IF Filter  
6
When designing the low-pass filter, it is important to consider  
the output impedance of the mixer and the input impedance of  
the IF DGA. The output impedance of the mixer has both a real  
and reactive component, and its equivalent model is shown in  
Figure 86. Correspondingly, Figure 87 shows the impedance vs.  
frequency for the mixer output.  
4
PARALLEL CAPACITANCE  
2
0
0
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
Figure 88. IF DGA Input/Output Impedance vs. Frequency  
Rev. 0 | Page 35 of 52  
 
 
 
 
 
ADRF6620  
Data Sheet  
Most important, the low-pass interstage filter must attenuate the  
sum term (fRF + fLO) and LO feedthrough to prevent unnecessary  
overdrive of the DGA. The level of attenuation that is required to  
achieve optimal OIP3 performance is shown in Figure 89, where  
OIP3 vs. (fRF + fLO) amplitude is plotted. To maintain performance,  
attenuate the amplitude of the sum term to at least −16 dBm (see  
Figure 89). Beyond this point, the OIP3 degrades decibel per  
decibel for increased amplitudes.  
Table 17. Example Filter Design  
Parameter  
Value  
RS  
RL  
255 Ω  
150 Ω  
500 MHz  
0.5 dB  
1400 MHz  
20 dB  
Pass-Band Edge  
Attenuation at Pass-Band Edge  
Stop-Band Edge  
Attenuation at Stop-Band Edge  
Filter Type  
46  
Third-order Chebyshev  
44  
42  
40  
38  
36  
34  
32  
30  
Using filter equations from a textbook or filter design software,  
a third-order Chebyshev filter can be designed to satisfy all the  
specifications in Table 17, as shown in Figure 91. The mixer output  
capacitance of 1.1 pF can be absorbed into the filter, resulting in a  
reduction in C1 from 2 pF to 0.8 pF. In addition, depending on the  
PCB board stack-up, C2 can be further reduced, or eliminated,  
because the capacitance of the PCB board can be used as the  
third pole of the filter. The components used in the simulation  
were the Coilcraft 0805CS inductors and Murata GRM15 series  
capacitors. Figure 90 shows the filter profile that satisfies all the  
filter specifications in Table 17.  
–20  
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
0
AMPLITUDE (dBm)  
Figure 89. OIP3 vs. (fRF + fLO) Amplitude  
5
The ADRF6620 is optimized for use in digital predistortion  
(DPD) receivers. An example filter design for DPD is shown in  
Figure 91. Table 17 lists the interstage filter design targets.  
In most DPD systems for cellular transmission, the pass band  
is between 50 MHz and 500 MHz. For this reason, the pull-up  
inductors have a low frequency cutoff of 50 MHz, and the pass-  
band edge of the interstage low-pass filter is 500 MHz. This results  
in a band-pass filter profile with a maximally flat pass band from  
50 MHz to 500 MHz. The stop-band attenuation at 1400 MHz is  
20 dB, which typically provides the necessary attenuation of the  
mixer sum term with some margin.  
10  
15  
20  
25  
30  
35  
40  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 90. Third-Order Chebyshev Filter Profile  
+5V  
R
R
L
S
L1  
470nH  
L2  
470nH  
MXOUT+  
MXOUT–  
IFIN+  
L3  
82.5Ω  
90Ω  
0.1µF  
0.1µF  
24nH  
+
+
C1  
0.8pF  
C2  
1pF  
150Ω  
+
+
2.5pF  
1.1pF  
L4  
24nH  
82.5Ω  
IFIN–  
MIXER OUTPUT IMPEDANCE  
EQUIVALENT MODEL  
THIRD-ORDER CHEBYSHEV  
FILTER  
DC BLOCKING  
CAPS  
IDEAL IF AMP  
INPUT IMPEDANCE  
Figure 91. Low-Pass Interstage Filter Design  
Rev. 0 | Page 36 of 52  
 
 
 
 
Data Sheet  
ADRF6620  
Maintaining the same third-order Chebyshev filter design shown  
in Figure 91, the component values can be tuned to optimize  
performance with some trade-offs. To achieve maximally flat pass-  
band response, the trade-off is signal bandwidth (see Figure 92).  
The L3 and L4 inductors are replaced with 47 nH, and the  
capacitors are not populated. This configuration results in the  
flattest pass-band ripple; however, the signal bandwidth starts to  
roll off at 300 MHz. A narrower bandwidth translates to more  
attenuation of the mixer sum and LO leakage, which is a desirable  
effect if the wider signal bandwidth is not a requirement. Use the  
results shown in Figure 92 only as a guide, and design the interstage  
filter to the specific PCB board conditions. The plots in Figure 92  
were measured using the ADRF6620 evaluation board.  
12  
Because the capacitance of the ADRF6620 evaluation board  
closely approximates the C1 and C2 capacitors, they can be  
removed from the design. However, this may not be the case  
for every PCB design with different stack-ups.  
Figure 93 compares the OIP3 and OIP2 performance of the  
ADRF6620 with and without filtering at the mixer output.  
85  
OIP2 WITH FILTER  
75  
OIP2 WITH NO FILTER  
65  
55  
45  
35  
25  
15  
OIP3 WITH FILTER  
11  
L3 = L4 = 47nH, C1 = C2 = OPEN  
OIP3 WITH NO FILTER  
L3 = L4 = 39nH, C1 = C2 = OPEN  
10  
9
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
L3 = L4 = 24nH, C1 = 0.8pF, C2 = 1pF  
8
7
6
5
4
IF FREQUENCY (MHz)  
Figure 93. OIP2/OIP3 Performance With and Without Filtering at  
the DGA Output; RF Frequency = 900 MHz; High-Side LO Injection, LO Sweep  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
IF FREQUENCY (MHz)  
Figure 92. Interstage Filter Design Trade-Offs  
Rev. 0 | Page 37 of 52  
 
 
ADRF6620  
Data Sheet  
20  
18  
16  
14  
12  
10  
8
IF DGA VS. LOAD  
By design, the IF DGA is optimized for performance in a matched  
condition where the source and load resistances are both 150 Ω.  
If the load or the source resistance is not equal to 150 Ω (see the  
Digitally Programmable Variable Gain Amplifier (DGA) section),  
use the following equations to determine the resulting gain and  
input/output resistances:  
R
= 500Ω  
L
R
= 150Ω  
L
R
= 73Ω  
L
Voltage Gain = AV = 0.044 × (1000||RL)  
6
R
= 50Ω  
R
IN = (1000 + RL)/(1 + 0.044 × RL)  
S21 (Gain) = 2 × RIN/(RIN + RS) × AV  
OUT = (1000 + RS)/(1 + 0.044 × RS)  
L
4
2
0
R
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
In a configuration where the mixer outputs of the ADRF6620  
are routed to the IF DGA inputs, the matched condition is no  
longer satisfied because the source impedance, as seen by the IF  
DGA, is the 255 Ω output impedance of the mixer outputs. As a  
result, the gain and output resistance of the amplifier vary from  
the expected 15 dB (see Figure 94).  
Figure 95. IF DGA Gain vs. Frequency for Different Loads  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
R
= 50Ω  
L
255Ω  
R
R
R
L
IN  
OUT  
R
= 73Ω  
L
Figure 94. Mixer Loading of the IF DGA  
The ideal load is 150 Ω for the matched condition; however, this  
may not be the most readily available load impedance.  
As a result, load vs. performance trade-offs must be considered.  
In the matched condition, the IF DGA is optimized for linearity;  
therefore, the third-order intermodulation product degrades with  
load. Table 18 shows some common output loads, and Figure 95,  
Figure 96, and Figure 97 show the effects of loading on gain,  
IMD2, and IMD3.  
R
= 500Ω  
L
R
= 150Ω  
L
40  
120  
200  
280  
360  
440  
520  
600  
680  
FREQUENCY (MHz)  
Figure 96. IF DGA IMD3 vs. Frequency for Different Loads  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
150LOAD  
50LOAD  
500LOAD  
73LOAD  
As the equations in this section indicate, the manner in which  
the IF DGA is loaded affects the input resistance, RIN, of the  
amplifier. RIN, in turn, determines the load resistance of the  
interstage filter between the mixer outputs and the IF DGA  
inputs. The interstage filter has a source impedance of 255 Ω from  
the mixer outputs and a load impedance of RIN for the particular  
RL load (see Table 18). As a result of the impedance mismatch,  
the insertion loss of the interstage filter must be included in the  
level planning calculations.  
FREQUENCY (MHz)  
Figure 97. IF DGA IMD2 vs. Frequency for Different Loads  
Table 18. Common Output Loads  
RS (Ω)  
RIN (Ω)  
AV (Linear)  
AV (dB)  
23.3  
15.2  
9.5  
S21 (Linear)  
S21 (dB)  
15.5  
12.6  
9.5  
7.5  
ROUT (Ω)  
102.7  
102.7  
102.7  
102.7  
RL (Ω)  
500  
150  
73  
255  
255  
255  
255  
65  
14.7  
5.7  
3
6
4.3  
3
151  
255  
328  
2.1  
6.4  
2.4  
50  
Rev. 0 | Page 38 of 52  
 
 
 
 
 
 
Data Sheet  
ADRF6620  
The parallel combination of the 176 Ω with the 1 kΩ of the ADC  
input impedance results in an equivalent 150 Ω differential output  
load as seen by the IF DGA of the ADRF6620. In addition, the  
input capacitance of the AD9434 can be used as the fourth pole  
of the antialiasing filter. The final schematic design is shown in  
Figure 99. The antialiasing filter is maximally flat, with a pass-  
band bandwidth of 500 MHz. Table 19 shows the component  
values for the antialiasing filter design for DPD. Figure 98 shows  
the simulated antialiasing filter design.  
ADC INTERFACING  
The integrated IF DGA of the ADRF6620 provides variable and  
sufficient drive capability for both buffered and unbuffered ADCs.  
It also provides isolation between the sampling edges of the ADC  
and the mixer core. As result, only an antialiasing filter is required  
when interfacing with an ADC.  
The ADRF6620 is optimized for use in cellular base station digital  
predistortion (DPD) systems. Predistortion is used to improve  
the linearity of transmitter power amplifiers (PA). Because the  
input signal to the DPD path is the known transmitted signal, the  
hardware specifications are not typically as stringent as the main  
receive path. The signal-to-noise ratio (SNR) of the ADC is not  
paramount, due to the autocorrelation with the known transmitted  
signal. For this reason, lower resolution ADCs are usually adequate,  
and 11-bit to 14-bit resolution typically suffices. A more critical  
consideration is the analog bandwidth of the converter. Traditional  
DPD systems require 3× to 5× the transmit bandwidth. Therefore,  
for a 100 MHz Tx bandwidth, the DPD bandwidth must be at  
least 500 MHz for fifth-order correction.  
Table 19. Component Values for 500 MHz Antialiasing Filter  
Design  
Parameter  
L1 = L2  
C1  
L3 = L4  
C2  
L5 = L6  
L7 = L8  
C3  
Value  
470 nH  
DNP  
39 nH  
DNP  
Type  
Manufacturer  
Coilcraft  
Murata  
Coilcraft  
Murata  
Coilcraft  
Coilcraft  
Murata  
0805CS  
GRM15  
0805CS  
GRM15  
0805LS  
0805CS  
GRM15  
0805CS  
1 µH  
15 nH  
2.7 pF  
27 nH  
L9 = L10  
Coilcraft  
The AD9434 complements the ADRF6620 very well in a DPD  
design. The AD9434 is a 12-bit, 370 MSPS/500 MSPS buffered  
ADC. Its full power analog bandwidth is 1 GHz, making it wide  
enough for fifth-order correction with substantial margin. The  
sampling rate of the AD9434 is insufficient in satisfying the  
sampling theorem; however, this may be acceptable in DPD  
applications where undersampling is often permissible. Because  
the receive signal in the DPD path is the known transmitted signal,  
the desired signal and its aliases are clearly distinguished.  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
The antialiasing filter resides between the ADRF6620 and the  
AD9434. Because aliasing is common practice in a DPD receive  
chain, the antialiasing filter requirements can be relaxed. A  
second-order or third-order filter is sufficient in reducing the  
high frequency noise from folding back into the band of interest.  
When designing the antialiasing filter, it is important to consider  
the output impedance of the IF DGA of the ADRF6620 and the  
input impedance of the AD9434. The differential resistance of  
the AD9434 is 1 kΩ, and the parallel capacitance is 1.3 pF. For the  
matched load condition, where the IF DGA is optimized for gain  
and linearity, load the IF DGA with 150 Ω. To do this, place a  
176 Ω resistor in parallel with the input of the ADC.  
–50  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 98. Simulated Antialiasing Filter Design  
+5V  
+5V  
ADRF6620  
MIXER  
L1  
L2  
L5  
L6  
OUTPUT  
0.1µF  
0.1µF  
0.1µF  
L3  
L4  
L7  
L8  
L9  
AD9434  
1.3pF  
+
88Ω  
88Ω  
C1  
C2  
C3  
+
+
+
1kΩ  
255Ω  
0.1µF  
L10  
ADRF6620  
IF AMP  
Figure 99. ADRF6620 Interface to the AD9434  
Rev. 0 | Page 39 of 52  
 
 
 
 
ADRF6620  
Data Sheet  
traces as far away from each other as possible (and at an angle,  
if possible) to prevent cross coupling.  
POWER MODES  
The ADRF6620 has many building blocks, and these blocks can  
be independently powered off by writing to Register 0x01 (see  
Table 23).  
The input impedance of the RF inputs is 50 Ω, and the traces  
leading to the pin must also have a 50 Ω characteristic impedance.  
Terminate unused RF inputs with a dc blocking capacitor to  
ground.  
External LO Mode  
In external LO mode, the internal PLL and VCO are disabled,  
which reduces the current consumption by approximately 100 mA.  
Table 20 lists the register settings that are required to configure  
external LO mode.  
GND  
Table 20. Serial Port Configuration for External LO Mode  
RFIN0  
GND  
Bit Name  
LDO_3P3_EN  
VCO_LDO_EN  
CP_EN  
DIV_EN  
VCO_EN  
REF_BUF_EN  
LO_DRV_EN  
LO_PATH_EN  
MIX_EN  
IF_AMP_EN  
LO_LDO_EN  
VCO_SEL  
State  
Register  
GND  
On  
On  
Off  
Off  
On  
Off  
Off  
On  
On  
On  
On  
External LO  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x01 = 0x8B53  
0x22, Bits[2:0] = 011  
RFIN1  
GND  
GND  
RFIN2  
GND  
GND  
RFIN3  
GND  
Figure 100. Recommended Layout for the RF Inputs  
The IF DGA outputs on the ADRF6620 have two output pins for  
each polarity, and they are oriented in an alternating fashion, as  
follows: IFOUT1+ (Pin 8), IFOUT1− (Pin 9), IFOUT2+ (Pin 10),  
and IFOUT2− (Pin 11). When designing the board, minimize the  
parasitic capacitance due to the routing that connects the corre-  
sponding outputs together. A good practice is to avoid any ground  
or power plane under this routing region and under the chokes  
to minimize the parasitic capacitance. Figure 101 shows the  
recommended layout. The IF DGA output pins with the same  
polarity are tied together on the bottom of the board with the  
blue traces and vias.  
IF DGA Disable Mode  
In applications where the IF DGA is not used, it can be powered  
down. Power-down is achieved by disabling the IF_AMP_EN bit  
(Register 0x01, Bit 11 = 0). By disabling the amplifier, the current  
consumption of the ADRF6620 decreases by approximately 25 mA,  
along with a 35 mA to 50 mA current savings through each bias  
inductor at the output of the amplifier. When the IF DGA is  
disabled, its input and output impedance is high-Z. For this reason,  
the input and output pins can be left open. If the preference is  
not to leave the nodes open, the alternative option is to terminate  
the pins to ground via a 1 kΩ resistor.  
LAYOUT  
IFOUT1+  
IFOUT1–  
IFOUT2+  
IFOUT2–  
Careful layout of the ADRF6620 is necessary for optimizing  
performance and minimizing stray parasitics. Because the  
ADRF6620 supports four RF inputs, the layout of the RF section  
is critical in achieving isolation between each channel. Figure 100  
shows the recommended layout for the RF inputs. Each RF input,  
RFIN0 to RFIN3, is isolated between ground pins, and the best  
layout approach is to keep the traces short and direct. To achieve  
this layout, connect the pins directly to the center ground pad  
of the exposed pad of the ADRF6620. This approach minimizes  
the trace inductance and promotes better isolation between the  
channels. In additional, for improved isolation, do not route the  
RFIN0 to RFIN3 traces in parallel to each other; instead, spread  
the traces immediately after each one leaves the pins. Keep the  
Figure 101. Recommended Layout for the IF DGA Outputs  
(Green traces are routings on top of the board,  
and blue traces are routings on the bottom of the board.)  
Rev. 0 | Page 40 of 52  
 
 
 
 
 
Data Sheet  
ADRF6620  
REGISTER MAP  
Table 21. Register Map Summary Table  
Bit 15  
Bit 14  
Bit 13  
Bit 5  
Bit 12  
Bit 4  
Bit 11  
Bit 3  
Bit 10  
Bit 2  
Bit 9  
Bit 1  
Bit 8  
Bit 0  
Reg Name  
Bits Bit 7  
Bit 6  
Reset  
RW  
0x00 SOFT_RESET [15:8]  
[7:0]  
RESERVED  
0x00000 W  
0x8B7F RW  
0x0058 RW  
0x0250 RW  
0x0600 RW  
0x0C26 RW  
0x0003 RW  
RESERVED  
SOFT_RESET  
LO_PATH_EN  
0x01 Enables  
0x02 INT_DIV  
0x03 FRAC_DIV  
0x04 MOD_DIV  
0x20 CP_CTL  
0x21 PFD_CTL  
0x22 FLO_CTL  
0x23 DGA_CTL  
[15:8] LO_LDO_EN  
RESERVED RESERVED  
RESERVED IF_AMP_EN  
RESERVED MIX_EN  
[7:0] LO_DRV_EN  
RESERVED REF_BUF_EN VCO_EN DIV_EN  
RESERVED DIV_MODE  
CP_EN  
VCO_LDO_EN LDO_3P3_EN  
INT_DIV[10:8]  
[15:8]  
[7:0]  
INT_DIV[7:0]  
[15:8]  
RESERVED  
FRAC_DIV[10:8]  
MOD_DIV[10:8]  
RESERVED  
[7:0]  
FRAC_DIV[7:0]  
[15:8]  
RESERVED  
[7:0]  
MOD_DIV[7:0]  
CSCALE  
[15:8] RESERVED  
RESERVED  
[7:0]  
RESERVED  
BLEED_DIR  
BLEED  
[15:8]  
RESERVED  
[7:0] RESERVED  
[15:8]  
REF_MUX_SEL  
PFD_POLARITY  
REFSEL  
RESERVED  
LO_DIV_A  
RFSW_MUX  
LO_DRV_LVL[1] 0x000A RW  
RFDSA_SEL[3] 0x0000 RW  
[7:0] LO_DRV_LVL[0]  
[15:8]  
RESERVED  
RESERVED  
VCO_SEL  
RFSW_SEL  
IF_ATTN  
[7:0]  
RFDSA_SEL[2:0]  
0x30 BALUN_CTL [15:8]  
[7:0]  
RESERVED  
RESERVED  
0x00000 RW  
RESERVED  
BAL_COUT  
BAL_CIN  
MIXER_BIAS  
MIXER_CDAC  
0x31 MIXER_CTL  
0x40 PFD_CTL2  
0x42 DITH_CTL1  
0x43 DITH_CTL2  
[15:8]  
RESERVED  
MIXER_RDAC[2:0]  
MIXER_RDAC[3] 0x08EF RW  
[7:0]  
RESERVED  
RESERVED  
CPCTRL  
[15:8]  
0x0010 RW  
[7:0] RESERVED  
[15:8]  
ABLDLY  
RESERVED  
CLKEDGE  
DITH_VAL  
RESERVED  
DITH_EN  
0x000E RW  
0x0001 RW  
[7:0]  
DITH_MAG  
[15:8]  
DITH_VAL[15:8]  
DITH_VAL[7:0]  
[7:0]  
Rev. 0 | Page 41 of 52  
 
ADRF6620  
Data Sheet  
REGISTER ADDRESS DESCRIPTIONS  
REGISTER 0x00, RESET: 0x00000, NAME: SOFT_RESET  
Table 22. Bit Descriptions for SOFT_RESET  
Bit  
Bit Name  
Settings  
Description  
Reset  
Access  
0
SOFT_RESET  
Soft reset  
0x0000  
W
REGISTER 0x01, RESET: 0x8B7F, NAME: ENABLES  
Table 23. Bit Descriptions for Enables  
Bits  
15  
11  
9
Bit Name  
Settings  
Description  
Reset  
0x1  
0x1  
0x1  
0x1  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LO_LDO_EN  
IF_AMP_EN  
MIX_EN  
Power up LO LDO  
IF DGA enable  
Mixer enable  
8
LO_PATH_EN  
LO_DRV_EN  
REF_BUF_EN  
VCO_EN  
External LO path enable  
LO driver enable  
7
5
Reference buffer enable  
Power up VCOs  
4
3
DIV_EN  
Power up dividers  
Power up charge pump  
Power up VCO LDO  
Power up 3.3 V LDO  
2
CP_EN  
1
VCO_LDO_EN  
LDO_3P3_EN  
0
Rev. 0 | Page 42 of 52  
 
 
 
 
Data Sheet  
ADRF6620  
REGISTER 0x02, RESET: 0x0058, NAME: INT_DIV  
Table 24. Bit Descriptions for INT_DIV  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
11  
DIV_MODE  
0x0  
RW  
0
1
Fractional  
Integer  
[10:0]  
INT_DIV  
Set divider INT value  
0x58  
RW  
REGISTER 0x03, RESET: 0x0250, NAME: FRAC_DIV  
Table 25. Bit Descriptions for FRAC_DIV  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[10:0]  
FRAC_DIV  
Set divider FRAC value  
0x250  
RW  
REGISTER 0x04, RESET: 0x0600, NAME: MOD_DIV  
Table 26. Bit Descriptions for MOD_DIV  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[10:0]  
MOD_DIV  
Set divider MOD value  
0x600  
RW  
Rev. 0 | Page 43 of 52  
 
 
 
ADRF6620  
Data Sheet  
REGISTER 0x20, RESET: 0x0C26, NAME: CP_CTL  
Table 27. Bit Descriptions for CP_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[13:10]  
CSCALE  
Charge pump current  
0x3  
RW  
0001 250 μA  
0011 500 μA  
0111 750 μA  
1111 1000 μA  
5
BLEED_DIR  
BLEED  
Charge pump bleed direction  
Sink  
Source  
0x1  
RW  
RW  
0
1
[4:0]  
Charge pump bleed  
0x06  
00000 0 μA  
00001 15.625 μA  
N × 15.625 μA  
11110 468.75 μA  
11111 484.375 μA  
Rev. 0 | Page 44 of 52  
 
Data Sheet  
ADRF6620  
REGISTER 0x21, RESET: 0x0003, NAME: PFD_CTL  
Table 28. Bit Descriptions for PFD_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:4]  
REF_MUX_SEL  
Set REF output divide ratio/VPTAT/LOCK_DET  
0x0  
RW  
000 LOCK_DET  
001 VPTAT  
010 REFCLK  
011 REFCLK/2  
100 REFCLK × 2  
101 RESERVED  
110 REFCLK/4  
111 RESERVED  
3
PFD_POLARITY  
REFSEL  
Set PFD polarity  
Positive KV VCO  
Negative KV VCO  
0x0  
0x3  
RW  
RW  
0
1
[2:0]  
Set REF input divide ratio  
000 ×2  
001 ×1  
010 DIV2  
011 DIV4  
100 DIV8  
Rev. 0 | Page 45 of 52  
 
ADRF6620  
Data Sheet  
REGISTER 0x22, RESET: 0x000A, NAME: FLO_CTL  
Table 29. Bit Descriptions for FLO_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[8:7]  
LO_DRV_LVL  
LO amplitude  
0x0  
RW  
00 −4 dBm  
01 0.5 dBm  
10 +3 dBm  
11 +4.5 dBm  
LO_DIV_A  
00 DIV1  
01 DIV2  
[4:3]  
[2:0]  
LO_DIV_A  
VCO_SEL  
0x1  
0x2  
RW  
RW  
10 DIV4  
11 DIV8  
Select VCO core/external LO  
000 5.2 GHz to 5.7 GHz  
001 4.1 GHz to 5.2 GHz  
010 2.8 GHz to 4.1 GHz  
011 EXT LO  
100 VCO_PWRDWN  
101 VCO_PWRDWN  
110 VCO_PWRDWN  
111 VCO_PWRDWN  
Rev. 0 | Page 46 of 52  
 
Data Sheet  
ADRF6620  
REGISTER 0x23, RESET: 0x0000, NAME: DGA_CTL  
Table 30. Bit Descriptions for DGA_CTL  
Bits  
Bit Name  
Settings  
Description  
Set switch control.  
Serial CNTRL  
Pin CNTRL  
Reset  
Access  
11  
RFSW_MUX  
0x0  
RW  
0
1
[10:9]  
[8:5]  
RFSW_SEL  
RFDSA_SEL  
Set RF input.  
0x0  
0x0  
RW  
RW  
00 RFIN0  
01 RFIN1  
10 RFIN2  
11 RFIN3  
Set RFDSA attenuation. Range: 0 dB to 15 dB in steps of 1 dB.  
0000 0 dB  
0001 1 dB  
...  
1110 14 dB  
1111 15 dB  
[4:0]  
IF_ATTN  
IF Attenuation. Range: 3 dB to 15 dB in steps of 0.5 dB.  
0x0  
RW  
00000 3 dB  
00001 3.5 dB  
...  
10111 14.5 dB  
11000 15 dB  
Rev. 0 | Page 47 of 52  
 
ADRF6620  
Data Sheet  
REGISTER 0x30, RESET: 0x00000, NAME: BALUN_CTL  
Table 31. Bit Descriptions for BALUN_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:5]  
BAL_COUT  
Set balun output capacitance  
0x0  
RW  
000 Minimum capacitance  
... ...  
111 Maximum capacitance  
Set balun input capacitance  
000 Minimum capacitance  
... ...  
[3:1]  
BAL_CIN  
0x0  
RW  
111 Maximum capacitance  
REGISTER 0x31, RESET: 0x08EF, NAME: MIXER_CTL  
Table 32. Bit Descriptions for MIXER_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[11:9]  
MIXER_BIAS  
Set mixer bias value  
0x4  
RW  
000 Minimum  
...  
111 Maximum  
[8:5]  
[3:0]  
MIXER_RDAC  
MIXER_CDAC  
Set mixer RDAC value  
Set mixer CDAC value  
0x7  
0xF  
RW  
RW  
Rev. 0 | Page 48 of 52  
 
 
Data Sheet  
ADRF6620  
REGISTER 0x40, RESET: 0x0010, NAME: PFD_CTL2  
Table 33. Bit Descriptions for PFD_CTL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:5]  
ABLDLY  
Set antibacklash delay  
0x0  
RW  
00 0 ns  
01 0.5 ns  
10 0.75 ns  
11 0.9 ns  
[4:2]  
[1:0]  
CPCTRL  
Set charge pump control.  
0x4  
0x0  
RW  
RW  
000 Both on  
001 Pump down  
010 Pump up  
011 Tristate  
100 PFD  
CLKEDGE  
Set PFD edge sensitivity  
00 Div and REF down edge  
01 Div down edge, REF up edge  
10 Div up edge, REF down edge  
11 Div and REF up edge  
Rev. 0 | Page 49 of 52  
 
ADRF6620  
Data Sheet  
REGISTER 0x42, RESET: 0x000E, NAME: DITH_CTL1  
Table 34. Bit Descriptions for DITH_CTL1  
Bits  
Bit Name  
Settings  
Description  
Set dither enable  
Disable  
Reset  
Access  
3
DITH_EN  
0x1  
RW  
0
1
Enable  
[2:1]  
0
DITH_MAG  
DITH_VAL  
Set dither magnitude  
Set dither value  
0x3  
0x0  
RW  
RW  
REGISTER 0x43, RESET: 0x0001, NAME: DITH_CTL2  
Table 35. Bit Descriptions for DITH_CTL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
DITH_VAL  
Set dither value  
0x1  
RW  
Rev. 0 | Page 50 of 52  
 
 
Data Sheet  
ADRF6620  
OUTLINE DIMENSIONS  
7.10  
7.00 SQ  
6.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
37  
36  
48  
1
0.50  
BSC  
EXPOSED  
PAD  
5.65  
5.50 SQ  
5.35  
24  
13  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
5.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD.  
Figure 102. 48-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
7 mm × 7 mm Body, Very Very Thin Quad  
(CP-48-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
CP-48-9  
ADRF6620ACPZ-R7  
ADRF6620-EVALZ  
48-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 51 of 52  
 
 
ADRF6620  
NOTES  
Data Sheet  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11489-0-7/13(0)  
Rev. 0 | Page 52 of 52  
 

相关型号:

ADRF6620ACPZ-R7

700 MHz to 2700 MHz Rx Mixer with Integrated IF DGA, Fractional-N PLL, and VCO
ADI

ADRF6650

Dual Downconverter with DVGA and PLL/VCO, 450 MHz to 2700 MHz
ADI

ADRF6650-EVALZ

Dual Downconverter with DVGA and PLL/VCO, 450 MHz to 2700 MHz
ADI

ADRF6650ACPZ

Dual Downconverter with DVGA and PLL/VCO, 450 MHz to 2700 MHz
ADI

ADRF6650ACPZ-RL7

RF and Baseband Circuit, BICMOS
ADI

ADRF6655

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6655-EVALZ

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6655ACPZ-R7

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6658

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6658BCPZ

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6658BCPZ-RL7

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6701

2050 MHz to 3000 MHz Quadrature Modulator
ADI