ADRV9009-W/PCBZ [ADI]

Integrated Dual RF Transmitter, Receiver, and Observation Receiver;
ADRV9009-W/PCBZ
型号: ADRV9009-W/PCBZ
厂家: ADI    ADI
描述:

Integrated Dual RF Transmitter, Receiver, and Observation Receiver

文件: 总127页 (文件大小:3522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated Dual RF Transmitter, Receiver,  
and Observation Receiver  
ADRV9009  
Data Sheet  
In addition to automatic gain control (AGC), the ADRV9009  
also features flexible external gain control modes, allowing  
significant flexibility in setting system level gain dynamically.  
FEATURES  
Dual transmitters  
Dual receivers  
Dual input shared observation receiver  
Maximum receiver bandwidth: 200 MHz  
Maximum tunable transmitter synthesis bandwidth:  
450 MHz  
Maximum observation receiver bandwidth: 450 MHz  
Fully integrated fractional-N RF synthesizers  
Fully integrated clock synthesizer  
The received signals are digitized with a set of four high dynamic  
range, continuous time Σ-Δ ADCs that provide inherent  
antialiasing. The combination of the direct conversion  
architecture, which does not suffer from out of band image  
mixing, and the lack of aliasing, relaxes the requirements of the  
RF filters when compared to traditional intermediate frequency  
(IF) receivers.  
Multichip phase synchronization for RF LO and baseband  
clocks  
JESD204B datapath interface  
The transmitters use an innovative direct conversion  
modulator that achieves high modulation accuracy with  
exceptionally low noise.  
Tuning range (center frequency): 75 MHz to 6000 MHz  
The observation receiver path consists of a wide bandwidth,  
direct conversion receiver with state-of-the-art dynamic range.  
APPLICATIONS  
3G, 4G, and 5G TDD macrocell base stations  
TDD active antenna systems  
Massive multiple input, multiple output (MIMO)  
Phased array radar  
Electronic warfare  
Military communications  
The fully integrated phase-locked loop (PLL) provides high  
performance, low power, fractional-N RF frequency synthesis  
for the transmitter (Tx) and receiver (Rx) signal paths. An  
additional synthesizer generates the clocks needed for the  
converters, digital circuits, and the serial interface. A multichip  
synchronization mechanism synchronizes the phase of the RF  
local oscillator (LO) and baseband clocks between multiple  
ADRV9009 chips. Precautions are taken to provide the isolation  
required in high performance base station applications. All  
voltage controlled oscillators (VCOs) and loop filter  
components are integrated.  
Portable test equipment  
GENERAL DESCRIPTION  
The ADRV9009 is a highly integrated, radio frequency (RF), agile  
transceiver offering dual transmitters and receivers, integrated  
synthesizers, and digital signal processing functions. The IC  
delivers a versatile combination of high performance and low  
power consumption demanded by 3G, 4G, and 5G macro cell  
time division duplex (TDD) base station applications.  
The high speed JESD204B interface supports up to 12.288 Gbps  
lane rates, resulting in two lanes per transmitter and a single  
lane per receiver in the widest bandwidth mode. The interface  
also supports interleaved mode for lower bandwidths, thus  
reducing the total number of high speed data interface lanes to  
one. Both fixed and floating point data formats are supported.  
The floating point format allows internal AGC to be invisible to  
the demodulator device.  
The receive path consists of two independent, wide bandwidth,  
direct conversion receivers with state-of-the-art dynamic range.  
The device also supports a wide bandwidth, time shared  
observation path receiver (ORx) for use in TDD applications.  
The complete receive subsystem includes automatic and  
manual attenuation control, dc offset correction, quadrature error  
correction (QEC), and digital filtering, thus eliminating the need  
for these functions in the digital baseband. Several auxiliary  
functions, such as analog-to-digital converters (ADCs), digital-to-  
analog converters (DACs), and general-purpose inputs/outputs  
(GPIOs) for the power amplifier (PA), and RF front-end  
control are also integrated.  
The core of the ADRV9009 can be powered directly from 1.3 V  
regulators and 1.8 V regulators, and is controlled via a standard  
4-wire serial port. Comprehensive power-down modes are  
included to minimize power consumption in normal use. The  
ADRV9009 is packaged in a 12 mm × 12 mm, 196-ball chip  
scale ball grid array (CSP_BGA).  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
ADRV9009  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 98  
Transmitter.................................................................................. 98  
Receiver........................................................................................ 98  
Observation Receiver................................................................. 98  
Clock Input.................................................................................. 98  
Synthesizers................................................................................. 98  
SPI................................................................................................. 99  
JTAG Boundary Scan................................................................. 99  
Power Supply Sequence............................................................. 99  
GPIO_x Pins ............................................................................... 99  
Auxiliary Converters.................................................................. 99  
JESD204B Data Interface .......................................................... 99  
Applications Information............................................................ 101  
PCB Layout and Power Supply Recommendations............. 101  
PCB Material and Stackup Selection ..................................... 101  
Fanout and Trace Space Guidelines....................................... 103  
Component Placement and Routing Guidelines ................. 104  
RF and JESD204B Transmission Line Layout ...................... 110  
Isolation Techniques Used on the ADRV9009-W/PCBZ... 114  
RF Port Interface Information................................................ 116  
Outline Dimensions..................................................................... 127  
Ordering Guide ........................................................................ 127  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 4  
Specifications..................................................................................... 5  
Current and Power Consumption Specifications................... 14  
Timing Diagrams........................................................................ 15  
Absolute Maximum Ratings.......................................................... 16  
Reflow Profile.............................................................................. 16  
Thermal Management ............................................................... 16  
Thermal Resistance .................................................................... 16  
ESD Caution................................................................................ 16  
Pin Configuration and Function Descriptions........................... 17  
Typical Performance Characteristics ........................................... 23  
75 MHz to 525 MHz Band ........................................................ 23  
650 MHz to 3000 MHz Band.................................................... 44  
3400 MHz to 4800 MHz Band.................................................. 63  
5100 MHz to 5900 MHz Band.................................................. 80  
Transmitter Output Impedance................................................ 95  
Observation Receiver Input Impedance.................................. 95  
Receiver Input Impedance......................................................... 96  
Terminology .................................................................................... 97  
REVISION HISTORY  
5/2019—Rev. A to Rev B.  
Replaced ADRV9009 Customer Card to  
Changes to Terminology Section ................................................. 97  
Deleted Figure 432 ......................................................................... 98  
Changes to Theory of Operation Section and Clock  
Input Section................................................................................... 98  
Changed Serial Peripheral Interface Section to SPI Section and  
AUX DAC_x Section to Auxiliary DAC x Section......................... 99  
Changes to Power Supply Sequence Section, GPIO_x Pins  
Section, Auxiliary DAC x Section, and JESD204B Data  
Interface Section............................................................................. 99  
Changes to Table 7 Title, Figure 430, and Figure 431................... 100  
Changes to Overview Section, PCB Material and Stackup  
Selection Section, and Figure 432 Caption ............................... 101  
Changes to Table 9 and Table 10 ................................................ 102  
Changes to Fanout and Trace Space Guidelines Section......... 103  
Changes to Signals with Highest Routing Priority Section and  
Figure 434...................................................................................... 104  
Change to Figure 435 Caption.................................................... 105  
Changes to Signals with Second Routing Priority Section and  
Figure 436...................................................................................... 106  
Changes to Figure 437 ................................................................. 107  
Changes to Figure 438 ................................................................. 108  
ADRV9009-WPCBZ..................................................... Throughout  
Changes to Features Section............................................................ 1  
Changes to Figure 1.......................................................................... 4  
Changes to Specifications Section and Table 1............................. 5  
Change to Figure 2 ......................................................................... 15  
Changes to Table 3 and Thermal Resistance Section................. 16  
Changes to 75 MHz to 525 MHz Band Section, Figures and  
Captions........................................................................................... 23  
Deleted Figure 83 to Figure 85; Renumbered Sequentially ...... 34  
Added Figure 78, Figure 79, and Figure 80; Renumbered  
Sequentially ..................................................................................... 35  
Added Figure 90.............................................................................. 37  
Added Figure 125 to Figure 127 ................................................... 43  
Changes to 650 MHz to 3000 MHz Band Section, Figures and  
Captions........................................................................................... 44  
Changes to 3400 MHz to 4800 MHz Band Section, Figures and  
Captions........................................................................................... 63  
Changes to 5100 MHz to 5900 MHz Band Section, Figures and  
Captions........................................................................................... 80  
Rev. B | Page 2 of 127  
 
Data Sheet  
ADRV9009  
Changes to Signals with Lowest Routing Priority Section and  
Figure 439.......................................................................................109  
Changes to RF Routing Guidelines Section and  
Figure 440 Caption........................................................................110  
Change to Figure 441 Caption.....................................................111  
Changes to Transmitter Balun DC Feed  
Supplies Section.............................................................................112  
Changes to Stripline Transmission Lines vs. Microstrip  
Transmission Lines Section .........................................................113  
Moved Figure 444 to Isolation Techniques Used on the  
ADRV9009-W/PCBZ Section .....................................................114  
Moved Figure 446..........................................................................115  
Changes to Isolation Between JESD204B Lines Section..........115  
Changes to RF Port Interface Information Section ..................116  
Deleted RF Port Interface Overview Section ............................117  
Changes to Figure 448 Caption...................................................117  
Moved Table 11..............................................................................120  
Changes to Figure 456 Caption to Figure 459 Caption ................121  
Changes to General Receiver Path Interface Section ...............122  
Changes to Figure 463 ..................................................................124  
Changes to Figure 464 and Figure 465.......................................125  
Deleted Endnote 1, Table 12 to Endnote 1, Table 15;  
Renumbered Sequentially, and Endnote 2, Table 16 and  
Endnote 2, Table 17.......................................................................126  
Changes to Table 15 ......................................................................126  
6/2018—Revision A: Initial Version  
Rev. B | Page 3 of 127  
ADRV9009  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAM  
Rx1  
ADRV9009  
RX1_IN +  
RX1_IN –  
Rx2  
RX2_IN +  
RX2_IN –  
ADC  
ADC  
LPF  
LPF  
ORx1  
ORx2  
SYNCINx±  
ORX1_IN +  
ORX1_IN –  
SERDOUTx±  
SERDINx±  
ORX2_IN +  
ORX2_IN –  
SYNCOUTx±  
SYSREF_IN±  
GP_INTERRUPT  
RXx_ENABLE  
TXx_ENABLE  
RESET  
DIGITAL  
PROCESSING  
RF_EXT_LO_I/O+  
RF_EXT_LO_I/O–  
LO  
DECIMATION  
pFIR  
SYNTH  
ARM  
AGC  
M3  
DC-OFFSET  
QEC  
LOL  
JESD204B  
CIF/RIF  
Tx1  
TX1_OUT +  
TX1_OUT –  
TEST  
Tx2  
DAC  
SCLK  
CS  
TX2_OUT +  
TX2_OUT –  
LPF  
SDO  
SDIO  
DAC  
LPF  
GPIOS, AUXADCs, AND AUXDACs  
REF_CLK_IN +  
REF_CLK_IN –  
CLOCK  
GENERATION  
GPIO_3P3_x  
GPIO_x AUXADC_0 THROUGH AUXADC_3  
Figure 1.  
Rev. B | Page 4 of 127  
 
Data Sheet  
ADRV9009  
SPECIFICATIONS  
Electrical characteristics at VDDA1P31 = 1.3 V, VDDD1P3_DIG = 1.3 V, VDDA1P8_TX = 1.8 V, junction temperature (TJ) = full  
operating temperature range. LO frequency (fLO) = 1800 MHz, unless otherwise noted. The specifications in Table 1 are not de-embedded. Refer  
to the Typical Performance Characteristics section for input and output circuit path loss. The device configuration profile for the 75 MHz to  
525 MHz frequency range is as follows: receiver = 50 MHz bandwidth (inphase quadrature (IQ) rate = 61.44 MHz), transmitter = 50 MHz  
transmitter large signal bandwidth and 100 MHz transmitter synthesis bandwidth (IQ rate = 122.88 MHz), observation receiver = 100 MHz  
bandwidth (IQ rate = 122.88 MHz), JESD204B rate = 9.8304 GSPS, and device clock = 245.76 MHz. Unless otherwise specified, the device  
configuration for all other frequency ranges is as follows: receiver = 200 MHz bandwidth (IQ rate = 245.76 MHz), transmitter = 200 MHz  
transmitter large signal bandwidth and 450 MHz transmitter synthesis bandwidth (IQ rate = 491.52 MHz), observation receiver = 450 MHz  
bandwidth (IQ rate = 491.52 MHz), JESD204B rate = 9.8304 GSPS, and device clock = 245.76 MHz.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
TRANSMITTERS  
Center Frequency  
Transmitter Synthesis  
Bandwidth  
75  
6000  
450  
MHz  
MHz  
Transmitter Large Signal  
Bandwidth  
Peak-to-Peak Gain  
Deviation  
200  
MHz  
dB  
1.0  
0.1  
1
450 MHz bandwidth, compensated by  
programmable finite impulse response  
(FIR) filter  
Any 20 MHz bandwidth span,  
compensated by programmable FIR  
filter  
450 MHz bandwidth  
Signal-to-noise ratio (SNR) maintained  
for attenuation between 0 dB and 20 dB  
Gain Slope  
dB  
Deviation from Linear Phase  
Transmitter Attenuation  
Power Control Range  
Degrees  
dB  
0
32  
Transmitter Attenuation  
Power Control Resolution  
Transmitter Attenuation  
Integral Nonlinearity  
Transmitter Attenuation  
Differential Nonlinearity  
0.05  
0.1  
dB  
dB  
dB  
INL  
For any 4 dB step  
Monotonic  
DNL  
0.04  
Transmitter Attenuation  
Serial Peripheral  
See Figure 4  
Interface 2 (SPI 2) Timing  
Time from CS Going High  
to Change in Transmitter  
Attenuation  
Time Between Consecutive  
Microattenuation Steps  
tSCH  
tACH  
tDCH  
19.5  
6.5  
24  
ns  
ns  
ns  
dB  
8.1  
A large change in attenuation can be  
broken up into a series of smaller  
attenuation changes  
Time required to complete the change  
in attenuation from start attenuation  
to final attenuation value  
Time Required to Reach  
Final Attenuation Value  
800  
+0.5  
0.5  
Maximum Attenuation  
Overshoot During  
Transition  
Change in Attenuation per  
Microstep  
Maximum Attenuation  
Change when CS Goes  
High  
−1.0  
dB  
dB  
32  
Rev. B | Page 5 of 127  
 
ADRV9009  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Adjacent Channel Leakage  
Ratio (ACLR) Long Term  
Evolution (LTE)  
20 MHz LTE at −12 dBFS  
−67  
−64  
−60  
dB  
dB  
dB  
75 MHz < f ≤ 2800 MHz  
2800 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
In Band Noise Floor  
0 dB attenuation, in band noise falls  
1 dB for each dB of attenuation for  
attenuation between 0 dB and 20 dB  
−147  
−148  
−149  
−150.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
0 dB attenuation, 3 × bandwidth/2 offset  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Out of Band Noise Floor  
Interpolation Images  
−147  
−153  
−154  
−155.5  
−80  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBc  
Transmitter to Transmitter  
Isolation  
85  
dB  
75 MHz < f ≤ 600 MHz  
75  
70  
65  
56  
dB  
dB  
dB  
dB  
600 MHz < f ≤ 2800 MHz  
2800 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 5700 MHz  
5700 MHz < f ≤ 6000 MHz  
Image Rejection  
Within Large Signal  
Bandwidth  
QEC active  
70  
65  
62  
60  
40  
dB  
dB  
dB  
dB  
dB  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 4000 MHz  
4000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Assumes that distortion power density is  
25 dB below desired power density  
Beyond Large Signal  
Bandwidth  
Maximum Output Power  
0 dBFS, continuous wave (CW) tone into  
50 Ω load, 0 dB transmitter attenuation  
9
7
6
4.5  
dBm  
dBm  
dBm  
dBm  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
0 dB transmitter attenuation  
Third-Order Output  
Intermodulation  
Intercept Point  
OIP3  
29  
27  
23  
dBm  
dBm  
dBm  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 4000 MHz  
4000 MHz < f ≤ 6000 MHz  
Carrier Leakage  
With LO leakage correction active, 0 dB  
attenuation, scales decibel for decibel  
with attenuation, measured in 1 MHz  
bandwidth, resolution bandwidth and  
video bandwidth = 100 kHz, rms  
detector, 100 trace average  
Carrier Offset from LO  
Carrier on LO  
−84  
−82  
−80  
−71  
dBFS  
dBFS  
dBFS  
dBFS  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Rev. B | Page 6 of 127  
Data Sheet  
ADRV9009  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Error Vector Magnitude  
(Third Generation  
EVM  
Partnership Project  
(3GPP) Test Signals)  
75 MHz LO  
0.5  
%
300 kHz RF PLL loop bandwidth, test  
equipment phase noise performance  
limited  
1900 MHz LO  
3800 MHz LO  
5900 MHz LO  
0.7  
0.7  
1.1  
50  
%
%
%
Ω
50 kHz RF PLL loop bandwidth  
300 kHz RF PLL loop bandwidth  
300 kHz RF PLL loop bandwidth  
Differential (see Figure 427)  
Output Impedance  
OBSERVATION RECEIVER  
Center Frequency  
Gain Range  
ZOUT  
ORx  
75  
6000  
MHz  
dB  
30  
Third-order input intermodulation  
intercept point (IIP3) improves decibel  
for decibel for the first 18 dB of gain  
attenuation, QEC performance optimi-  
zed for 0 dB to 6 dB of attenuation only  
Analog Gain Step  
Peak-to-Peak Gain  
Deviation  
0.5  
1
dB  
dB  
For attenuator steps from 0 dB to 6 dB  
450 MHz bandwidth, compensated by  
programmable FIR filter  
Gain Slope  
0.1  
1
dB  
Any 20 MHz bandwidth span, compens-  
ated by programmable FIR filter  
Degree 450 MHz RF bandwidth  
s
Deviation from Linear Phase  
Observation Receiver  
Bandwidth  
450  
MHz  
Observation Receiver Alias  
Band Rejection  
60  
dB  
Due to digital filters  
Maximum Useable Input  
Level  
PHIGH  
0 dB attenuation, increases decibel for  
decibel with attenuation, CW  
corresponds to −1 dBFS at ADC  
−11  
−9.5  
−8  
−58.5  
−57.5  
62  
dBm  
dBm  
dBm  
dBFS  
dBFS  
dBm  
75 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
450 MHz integration bandwidth  
491.52 MHz integration bandwidth  
Maximum observation receiver gain,  
(PHIGH − 14 dB) per tone (see the  
Terminology section), 75 MHz < f ≤  
600 MHz  
Integrated Noise  
Second-Order Input  
Intermodulation  
Intercept Point  
IIP2  
IIP3  
62  
dBm  
Maximum observation receiver gain,  
(PHIGH − 8 dB) per tone (see the  
Terminology section), 600 MHz < f ≤  
3000 MHz  
Third-Order Input  
Intermodulation  
Intercept Point  
Narrow Band  
4
dBm  
dBm  
75 MHz < f ≤ 300 MHz, test condition:  
(PHIGH − 14) dB per tone  
300 MHz < f ≤ 600 MHz, (PHIGH − 14) dB  
per tone  
11  
Third-order intermodulation product  
(IM3) product < 130 MHz at baseband,  
(PHIGH − 8) dB per tone  
12  
12  
11  
dBm  
dBm  
dBm  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Rev. B | Page 7 of 127  
ADRV9009  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Wide Band  
7
7
6
dBm  
dBm  
dBm  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Third-Order Intermodulation IM3  
Product  
IM3 product < 130 MHz at baseband,  
two tones, each at (PHIGH − 12) dB  
−70  
−67  
−62  
−80  
dBc  
dBc  
dBc  
dBc  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
IM5 product < 50 MHz at baseband,  
two tones, each at (PHIGH − 12) dB,  
600 MHz < f ≤ 6000 MHz  
Fifth-Order Intermodulation  
Product (1800 MHz)  
IM5  
Seventh-Order  
Intermodulation Product  
(1800 MHz)  
Spurious-Free Dynamic  
Range  
IM7  
−80  
70  
dBc  
dB  
IM7 product < 50 MHz at baseband,  
two tones, each at (PHIGH − 12) dB,  
600 MHz < f ≤ 6000 MHz  
Non IMx related spurs, does not  
include HDx, (PHIGH − 9) dB input signal,  
600 MHz < f ≤ 6000 MHz  
SFDR  
Harmonic Distortion  
(PHIGH − 11) dB input signal  
Second-Order Harmonic  
Distortion Product  
HD2  
HD3  
−80  
dBc  
(PHIGH – 11) dB input signal 75 MHz < f ≤  
600 MHz, (PHIGH – 9) dB input signal  
600 MHz < f ≤ 6000 MHz, in band harmo-  
nic distortion falls within 100 MHz  
Out of band harmonic distortion falls  
within 225 MHz  
In band harmonic distortion falls  
within 100 MHz  
Out of band harmonic distortion falls  
within 225 MHz  
−80  
−70  
−60  
dBc  
dBc  
dBc  
Third-Order Harmonic  
Distortion Product  
Image Rejection  
QEC active  
Within Large Signal  
Bandwidth  
Outside Large Signal  
Bandwidth  
Input Impedance  
Isolation  
65  
dB  
dB  
Ω
55  
100  
Differential (see Figure 428)  
75 MHz < f ≤ 600 MHz  
Transmitter 1 (Tx1) to  
Observation Receiver 1  
(ORx1) and  
100  
dB  
Transmitter 2 (Tx2) to  
Observation Receiver 2  
(ORx2)  
65  
55  
105  
dB  
dB  
dB  
600 MHz < f ≤ 5300 MHz  
5300 MHz < f ≤ 6000 MHz  
75 MHz < f ≤ 600 MHz  
Tx1 to ORx2 and Tx2 to  
ORx1  
65  
55  
dB  
dB  
600 MHz < f ≤ 5300 MHz  
5300 MHz < f ≤ 6000 MHz  
RECEIVERS  
Center Frequency  
Gain Range  
Analog Gain Step  
75  
6000  
MHz  
dB  
dB  
30  
0.5  
1
Attenuator steps from 0 dB to 6 dB  
Attenuator steps from 6 dB to 30 dB  
dB  
Bandwidth Ripple  
0.5  
dB  
200 MHz bandwidth, compensated by  
programmable FIR filter  
0.2  
dB  
Any 20 MHz bandwidth span, compens-  
ated by programmable FIR filter  
Rev. B | Page 8 of 127  
Data Sheet  
ADRV9009  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MHz  
dB  
Test Conditions/Comments  
Receiver Bandwidth  
Receiver Alias Band  
Rejection  
200  
80  
Due to digital filters  
Maximum Useable Input  
Level  
PHIGH  
0 dB attenuation, increases decibel for  
decibel with attenuation, CW =  
1800 MHz, corresponds to −1 dBFS at  
ADC  
−11  
−10.2  
−9.5  
dBm  
dBm  
dBm  
75 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
0 dB attenuation, at receiver port  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Noise Figure  
Ripple  
NF  
11.5  
12  
13  
15.2  
1.8  
dB  
dB  
dB  
dB  
dB  
At band edge maximum bandwidth  
mode  
Third-Order Input  
Intermodulation  
Intercept Point  
IIP3  
Difference Product  
IIP3D  
12  
12  
dBm  
dBm  
75 MHz < f ≤ 600 MHz, (PHIGH − 12) dB  
per tone, 600 MHz < f ≤ 6000 MHz,  
(PHIGH − 10) dB per tone, two tones near  
band edge  
75 MHz < f ≤ 600 MHz, (PHIGH − 12) dB  
per tone, 600 MHz < f ≤ 6000 MHz,  
(PHIGH − 10) dB per tone, two tones at  
bandwidth/6 offset from the LO  
75 MHz < f ≤ 600 MHz, (PHIGH − 6) dB,  
600 MHz < f ≤ 6000 MHz, (PHIGH − 4) dB,  
CW tone at bandwidth/6 offset from  
the LO  
Sum Product  
IIP3S  
HD3  
Third-Order Harmonic  
Distortion Product  
−65  
−66  
−62  
62  
dBc  
dBc  
dBc  
dBm  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
75 MHz < f ≤ 600 MHz, (PHIGH − 12) dB  
per tone, 600 MHz < f ≤ 6000 MHz,  
(PHIGH − 10) dB per tone, 0 dB  
attenuation, complex  
Second-Order Input  
Intermodulation  
Intercept Point  
IIP2  
Image Rejection  
Input Impedance  
Receiver to Receiver  
Isolation  
75  
dB  
QEC active, within 200 MHz receiver  
bandwidth  
Differential (see Figure 429)  
75 MHz < f ≤ 600 MHz  
100  
77  
Ω
dB  
65  
61  
dB  
dB  
600 MHz < f ≤ 4800 MHz  
4800 MHz < f ≤ 6000 MHz  
Receiver Band Spurs  
Referenced to RF Input  
at Maximum Gain  
−95  
dBm  
No more than one spur at this level per  
10 MHz of receiver bandwidth  
Receiver LO Leakage at  
Receiver Input at  
Maximum Gain  
Leakage decreases decibel for decibel  
with attenuation for first 12 dB  
−70  
−70  
−65  
dBm  
dBm  
dBm  
75 MHz < f ≤ 600 MHz  
600 MHz < f ≤ 3000 MHz  
3000 MHz < f ≤ 6000 MHz  
Rev. B | Page 9 of 127  
ADRV9009  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LO SYNTHESIZER  
LO Frequency Step  
2.3  
Hz  
1.5 GHz to 2.8 GHz, 76.8 MHz phase  
frequency detector (PFD) frequency  
LO Spur  
Integrated Phase Noise  
75 MHz LO  
1900 MHz LO  
3800 MHz LO  
−85  
dBc  
Excludes integer boundary spurs  
2 kHz to 18 MHz  
Narrow PLL loop bandwidth (50 kHz)  
Narrow PLL loop bandwidth (50 kHz)  
Wide PLL loop bandwidth (300 kHz)  
Wide PLL loop bandwidth (300 kHz)  
0.014  
0.2  
0.36  
0.54  
°rms  
°rms  
°rms  
°rms  
5900 MHz LO  
Spot Phase Noise  
75 MHz LO  
Narrow PLL loop bandwidth  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
10 MHz Offset  
1900 MHz LO  
−126.5  
−132.8  
−150.1  
−150.7  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Narrow PLL loop bandwidth  
100 kHz Offset  
200 kHz Offset  
400 kHz Offset  
600 kHz Offset  
800 kHz Offset  
1.2 MHz Offset  
1.8 MHz Offset  
6 MHz Offset  
−100  
−115  
−120  
−129  
−132  
−135  
−140  
−150  
−153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
10 MHz Offset  
3800 MHz LO  
Wide PLL loop bandwidth  
Wide PLL loop bandwidth  
100 kHz Offset  
1.2 MHz Offset  
10 MHz Offset  
5900 MHz LO  
−104  
−125  
−145  
dBc/Hz  
dBc/Hz  
dBc/Hz  
100 kHz Offset  
1.2 MHz Offset  
10 MHz Offset  
LO PHASE SYNCHRONIZATION  
Phase Deviation  
−99  
−119.7  
−135.4  
dBc/Hz  
dBc/Hz  
dBc/Hz  
1.6  
ps/°C  
Change in LO delay per temperature  
change  
EXTERNAL LO INPUT  
Input Frequency  
fEXTLO  
150  
0
8000  
12  
MHz  
Input frequency must be 2 × the  
desired LO frequency  
50 Ω matching at the source  
fEXTLO ≤ 2 GHz, add 0.5 dBm/GHz above  
2 GHz  
Input Signal Power  
dBm  
dBm  
3
6
dBm  
fEXTLO = 8 GHz  
External LO Input Signal  
Differential  
To ensure adequate QEC  
Phase Error  
Amplitude Error  
Duty Cycle Error  
3.6  
1
2
ps  
dB  
%
Even Order Harmonics  
CLOCK SYNTHESIZER  
Integrated Phase Noise  
1966.08 MHz LO  
−50  
dBc  
1 kHz to 100 MHz  
PLL optimized for close in phase noise  
0.4  
°rms  
Rev. B | Page 10 of 127  
Data Sheet  
ADRV9009  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Spot Phase Noise  
1966.08 MHz  
100 kHz Offset  
1 MHz Offset  
10 MHz Offset  
−109  
−129  
−149  
dBc/Hz  
dBc/Hz  
dBc/Hz  
REFERENCE CLOCK  
(REF_CLK_IN )  
Frequency Range  
Signal Level  
10  
0.3  
1000  
2.0  
MHz  
V p-p  
AC-coupled, common-mode voltage  
(VCM) = 618 mV, for best spurious  
performance use <1 V p-p input clock  
AUXILIARY CONVERTERS  
ADC  
Resolution  
12  
Bits  
Input Voltage  
Minimum  
Maximum  
0.05  
V
V
VDDA_  
3P3 −  
0.05  
DAC  
Resolution  
Output Voltage  
Minimum  
Maximum  
10  
Bits  
Includes four offset levels  
0.7  
VDDA_  
V
V
1 V voltage reference (VREF)  
2.5 V VREF  
3P3 − 0.3  
Output Drive Capability  
10  
mA  
DIGITAL SPECIFICATIONS  
(COMPLEMENTARY METAL-  
OXIDE SEMICONDUCTOR  
(CMOS)) FOR SPI, GPIO_x,  
TXx_ENABLE, ORXx_ENABLE  
Logic Inputs  
Input Voltage  
High Level  
VDD_  
INTERFACE  
× 0.8  
VDD_  
INTERFACE  
V
V
Low Level  
0
VDD_  
INTERFACE  
× 0.2  
Input Current  
High Level  
Low Level  
−10  
−10  
+10  
+10  
μA  
μA  
Logic Outputs  
Output Voltage  
High Level  
VDD_  
INTERFACE  
× 0.8  
V
Low Level  
VDD_  
V
INTERFACE  
× 0.2  
Drive Capability  
3
mA  
Rev. B | Page 11 of 127  
ADRV9009  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL SPECIFICATIONS  
(CMOS) FOR GPIO_3P3_x  
Logic Inputs  
Input Voltage  
High Level  
VDDA_  
3P3 × 0.8  
0
VDDA_3P3  
V
V
Low Level  
VDDA_  
3P3 × 0.2  
Input Current  
High Level  
Low Level  
−10  
−10  
+10  
+10  
μA  
μA  
Logic Outputs  
Output Voltage  
High Level  
VDDA_  
3P3 × 0.8  
V
Low Level  
VDDA_  
V
3P3 × 0.2  
Drive Capability  
4
mA  
DIGITAL SPECIFICATIONS  
(LOW VOLTAGE  
DIFFERENTIAL SIGNALING  
(LVDS))  
Logic Inputs (SYSREF_IN ,  
SYNCINx )  
Input Voltage Range  
Input Differential  
Voltage Threshold  
Receiver Differential  
Input Impedance  
825  
−100  
1675  
+100  
mV  
mV  
Each differential input in the pair  
Internal termination enabled  
100  
Ω
Logic Outputs (SYNCOUTx )  
Output Voltage  
High  
Low  
Output Differential  
Voltage  
1375  
mV  
mV  
mV  
1025  
225  
Programmable in 75 mV steps  
Output Offset Voltage  
SPI TIMING  
1200  
mV  
SCLK Period  
SCLK Pulse Width  
CS Setup to First SCLK Rising tSC  
Edge  
tCP  
tMP  
20  
10  
3
ns  
ns  
ns  
Last SCLK Falling Edge to CS  
Hold  
SDIO Data Input Setup to  
SCLK  
SDIO Data Input Hold to  
SCLK  
SCLK Rising Edge to Output  
Data Delay (3-Wire or  
4-Wire Mode)  
tHC  
0
2
0
3
ns  
ns  
ns  
ns  
tS  
tH  
tCO  
8
Bus Turnaround Time,  
Read After Baseband  
Processor (BBP) Drives  
Last Address Bit  
Bus Turnaround Time,  
Read After ADRV9009  
Drives Last Data Bit  
tHZM  
tH  
0
tCO  
ns  
ns  
tHZS  
tCO  
Rev. B | Page 12 of 127  
Data Sheet  
ADRV9009  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
JESD204B DATA OUTPUT  
TIMING  
AC-coupled  
Unit Interval  
Data Rate per Channel,  
Nonreturn to Zero (NRZ)  
UI  
81.38  
3125  
320  
12,288  
ps  
Mbps  
Rise Time  
Fall Time  
Output Common-Mode  
Voltage  
tR  
tF  
VCM  
24  
24  
0
39.5  
39.4  
ps  
ps  
V
20% to 80% in 100 Ω load  
20% to 80% in 100 Ω load  
AC-coupled  
1.8  
Differential Output Voltage  
Short-Circuit Current  
Differential Termination  
Impedance  
VDIFF  
IDSHORT  
360  
−100  
80  
600  
770  
+100  
120  
mV  
mA  
Ω
94.2  
Total Jitter  
Uncorrelated Bounded High UBHPJ  
Probability Jitter  
15.13  
0.56  
ps  
ps  
Bit error rate (BER) = 10−15  
Duty Cycle Distortion  
SYSREF_IN Setup Time to  
REF_CLK_IN  
SYSREF_IN Hold Time to  
REF_CLK_IN  
Latency  
DCD  
0.369  
116.5  
ps  
ns  
2.5  
See Figure 2  
−1.5  
ns  
See Figure 2  
tLAT_FRM  
REF_CLK_IN = 245.76 MHz  
Clock  
Observation receiver bandwidth =  
450 MHz, IQ rate = 491.52 MHz, lane  
rate = 9830.4 MHz, number of  
cycles  
converters (M) = 4, number of lanes (L)  
= 2, converter resolution (N) = 16,  
number of samples per converter (S) = 1  
237.02  
89.4  
ns  
Clock  
cycles  
Receiver bandwidth = 200 MHz, IQ rate  
= 245.76 MHz, lane rate = 9830.4 MHz,  
M = 2, L = 2, N = 16, S = 1  
364.18  
ns  
JESD204B DATA INPUT TIMING  
Unit Interval  
Data Rate per Channel (NRZ)  
Differential Voltage  
Termination Voltage (VTT)  
Source Impedance  
AC-coupled  
UI  
81.38  
3125  
125  
320  
12288  
750  
30  
ps  
Mbps  
mV  
Ω
VDIFF  
ZTT  
8.9  
Differential Impedance  
Termination Voltage  
AC-Coupled  
ZRDIFF  
VTT  
80  
105.1  
120  
Ω
Ω
V
1.267  
1.33  
Latency  
tLAT_DEFRM  
74.45  
Clock  
cycles  
Device clock = 245.76 MHz, transmitter  
bandwidth = 200 MHz, IQ rate =  
491.52 MHz, lane rate = 9830.4 MHz,  
M = 2, L = 2, N = 16, S = 1  
153.5  
ns  
1 VDDA1P3 refers to all analog 1.3 V supplies, including: VDDA1P3_RF_SYNTH, VDDA1P3_BB, VDDA1P3_RX_RF, VDDA1P3_RX_TX, VDDA1P3_RF_VCO_LDO,  
VDDA1P3_RF_LO, VDDA1P3_DES, VDDA1P3_SER, VDDA1P3_CLOCK_SYNTH, VDDA1P3_CLOCK_VCO_LDO, VDDA1P3_AUX_SYNTH, and VDDA1P3_AUX_VCO_LDO.  
Rev. B | Page 13 of 127  
ADRV9009  
Data Sheet  
CURRENT AND POWER CONSUMPTION SPECIFICATIONS  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CHARACTERISTICS  
VDDA1P31 Analog Supply  
VDDD1P3_DIG Supply  
VDDA1P8_TX Supply  
VDDA1P8_BB Supply  
VDD_INTERFACE Supply  
VDDA_3P3 Supply  
1.267 1.3  
1.267 1.3  
1.33  
1.33  
1.89  
1.89  
2.625  
3.465  
V
V
V
V
V
V
1.71  
1.71  
1.71  
1.8  
1.8  
1.8  
CMOS and LVDS supply, 1.8 V to 2.5 V nominal range  
3.135 3.3  
POSITIVE SUPPLY CURRENT  
LO at 2600 MHz  
450 MHz Transmitter Bandwidth,  
Observation Receiver Disabled  
Two transmitters enabled  
VDDA1P31 Analog Supply  
VDDD1P3_DIG Supply  
VDDA1P8_TX Supply  
1520  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
619  
455  
135  
30  
8
Transmitter QEC active  
Transmitter RF attenuation = 0 dB, full-scale CW  
Transmitter RF attenuation = 15 dB, full-scale CW  
VDDA1P8_BB Supply  
VDD_INTERFACE Supply  
VDDA_3P3 Supply  
VDD_INTERFACE = 2.5 V  
No Auxiliary DAC x or AUXADC_x enabled, if enabled,  
3
AUXADC_x adds 2.7 mA and each Auxiliary DAC x adds 1.5 mA  
Total Power Dissipation  
3.68  
3.11  
W
W
Typical supply voltages, 0 dB transmitter attenuation,  
transmitter QEC active  
Typical supply voltages, 15 dB transmitter attenuation,  
transmitter QEC active  
450 MHz Transmitter Bandwidth,  
Observation Receiver Enabled  
Two transmitters enabled, one ORx enabled  
VDDA1P31 Analog Supply  
VDDD1P3_DIG Supply  
2073  
1541  
mA  
mA  
Transmitter QEC tracking active, observation receiver QEC  
enabled, transmitter LTE20 centered on LO, observation  
receiver LTE20 at −16 dBm centered on LO  
2100  
mA  
Transmitter two tone = −99 MHz and 100 MHz at −7 dBFS each,  
observation receiver one tone = 100 MHz at −16 dBm  
VDDA1P8_TX Supply  
455  
135  
63  
8
mA  
mA  
mA  
mA  
mA  
Transmitter RF attenuation = 0 dB, full scale CW  
Transmitter RF attenuation = 15 dB, full scale CW  
VDDA1P8_BB Supply  
VDD_INTERFACE Supply  
VDDA_3P3 Power Supply  
VDD_INTERFACE = 2.5 V  
No Auxiliary DAC x or AUXADC_x enabled, if enabled,  
3
AUXADC_x adds 2.7 mA and each Auxiliary DAC x adds 1.5 mA  
Total Power Dissipation  
5.66  
5.08  
W
W
Typical supply voltages, 0 dB transmitter attenuation,  
transmitter QEC active  
Typical supply voltages, 15 dB transmitter attenuation,  
transmitter QEC active  
200 MHz Receiver Bandwidth,  
Observation Receiver Disabled  
Two receivers enabled  
Receiver QEC active  
VDDA1P31 Analog Supply  
VDDD1P3_DIG Supply  
VDDA1P8_TX Supply  
VDDA1P8_BB Supply  
VDD_INTERFACE Supply  
VDDA_3P3 Supply  
1645  
984  
0.4  
68  
8
3
mA  
mA  
mA  
mA  
mA  
mA  
No Auxiliary DAC x or AUXADC_x enabled, if enabled,  
AUXADC_x adds 2.7 mA and each Auxiliary DAC x adds 1.5 mA  
Total Power Dissipation  
3.57  
W
Typical supply voltages, receiver QEC active  
1 VDDA1P3 refers to all analog 1.3 V supplies, including: VDDA1P3_RF_SYNTH, VDDA1P3_BB, VDDA1P3_RX_RF, VDDA1P3_RX_TX, VDDA1P3_RF_VCO_LDO,  
VDDA1P3_RF_LO, VDDA1P3_DES, VDDA1P3_SER, VDDA1P3_CLOCK_SYNTH, VDDA1P3_CLOCK_VCO_LDO, VDDA1P3_AUX_SYNTH, and VDDA1P3_AUX_VCO_LDO.  
Rev. B | Page 14 of 127  
 
 
Data Sheet  
ADRV9009  
TIMING DIAGRAMS  
AT DEVICE PINS  
REF_CLK_IN± DELAY  
IN REFERENCE TO SYSREF_IN±  
AT DEVICE CORE  
t’H  
t’H  
tH  
tH  
tS  
tS  
t’S  
t’S  
REF_CLK_IN±  
tH = –1.5ns  
tS = +2.5ns  
CLK DELAY = 2ns  
t’H = +0.5ns  
t’S = +0.5ns  
NOTES  
1. tH AND tS ARE THE HOLD AND SETUP TIMES FOR THE REF_CLK_IN± PINS. t’H AND t’S REFER TO THE  
DELAYED HOLD AND SETUP TIMES AT THE DEVICE CORE IN REFERENCE TO THE SYSREF_N± SIGNALS  
DUE TO AN INTERNAL BUFFER THAT THE SIGNAL PASSES THROUGH.  
Figure 2. SYSREF_IN Setup and Hold Timing  
tH  
tH  
tH  
tH  
tS  
tS  
tS  
tS  
REF_CLK_IN±  
SYSREF_IN±  
tH = –1.5ns  
tS = +2.5ns  
VALID SYSREF  
INVALID SYSREF  
Figure 3. SYSREF_IN Setup and Hold Timing Examples, Relative to Device Clock  
SCLK  
SDIO  
CS  
tDCH  
Tx  
ATTENUATION  
tSCH tACH  
Figure 4. Transmitter Attenuation Update via SPI 2 Port  
Rev. B | Page 15 of 127  
 
 
ADRV9009  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL MANAGEMENT  
Table 3.  
The ADRV9009 is a high power device that can dissipate over  
3 W depending on the user application and configuration.  
Because of the power dissipation, the ADRV9009 uses an  
exposed die package to provide the customer with the most  
effective method of controlling the die temperature. The exposed  
die allows cooling of the die directly. Figure 5 shows the profile  
view of the device mounted to a user printed circuit board (PCB)  
and a heat sink (typically the aluminum case) to keep the junction  
(exposed die) below the maximum TJ detailed in Table 3. The  
device is designed for a lifetime of 10 years when operating at  
the maximum TJ.  
Parameter  
Rating  
VDDA1P31 to VSSA  
VDDD1P3_DIG to VSSD  
VDD_INTERFACE to VSSA  
VDDA_3P3 to VSSA  
VDDA1P8_TX to VSSA  
−0.3 V to +1.4 V  
−0.3 V to +1.4 V  
−0.3 V to +3.0 V  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
−0.3 V to VDD_  
INTERFACE + 0.3 V  
−0.3 V to  
VDDA1P3_SER  
VDD_INTERFACE Logic Inputs and  
Outputs to VSSD  
JESD204B Logic Outputs to VSSA  
JESD204B Logic Inputs to VSSA  
−0.3 V to  
VDDA1P3_DES +0.3 V  
THERMAL RESISTANCE  
Input Current to any Pin Except  
Supplies  
Maximum Input Power into RF Port 23 dBm (peak)  
Maximum Transmitter Voltage  
Standing Wave Ratio (VSWR)  
10 mA  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
3:1  
θJA is the natural convection junction to ambient thermal  
resistance measured in a circuit board for surface-mount  
packages.  
Maximum TJ  
Storage Temperature Range  
110°C  
−65°C to +150°C  
1 VDDA1P3 refers to all analog 1.3 V supplies.  
θ
JC_TOP is the conduction thermal resistance from junction to case  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
where the case temperature is measured at the top of the package.  
Thermal resistance data for the ADRV9009 mounted on both a  
JEDEC 2S2P test board and a 10-layer Analog Devices, Inc.,  
evaluation board is listed in Table 4. Do not exceed the absolute  
maximum TJ rating in Table 3. Ten-layer PCB entries refer to the  
10-layer Analog Devices evaluation board, which more  
accurately reflects the PCB used in customer applications.  
REFLOW PROFILE  
Table 4. Thermal Resistance1, 2  
The ADRV9009 reflow profile is in accordance with the JEDEC  
JESD204B criteria for Pb-free devices. The maximum reflow  
temperature is 260°C.  
Package Type  
θJA  
θJC_TOP θJB ΨJT ΨJB Unit  
BC-196-13  
21.1 0.04  
4.9 0.3 4.9  
°C/W  
1 For the θJC test, 100 µm thermal interface material (TIM) is used. TIM is  
assumed to have 3.6 thermal conductivity watts/(meter × Kelvin).  
2 Using enhanced heat removal techniques such as PCB, heat sink, and airflow  
improves the thermal resistance values.  
ESD CAUTION  
CUSTOMER CASE (HEAT SINK)  
CUSTOMER THERMAL FILLER  
SILICON (DIE)  
PACKAGE SUBSTRATE  
CUSTOMER PCB  
Figure 5. Typical Thermal Management Solution  
Rev. B | Page 16 of 127  
 
 
 
 
 
 
 
 
Data Sheet  
ADRV9009  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
F
VSSA  
ORX2_IN+  
ORX2_IN–  
VSSA  
RX2_IN+  
RX2_IN–  
VSSA  
VSSA  
RX1_IN+  
RX1_IN–  
VSSA  
ORX1_IN+  
ORX1_IN–  
VSSA  
VDDA1P3_  
RX_RF  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA_3P3  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
AUX_VCO_  
LDO  
VDDA1P3_  
RX_TX  
VDDA1P3_  
RF_VCO_LDO RF_VCO_LDO  
VDDA1P3_  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
GPIO_3P3_0 GPIO_3P3_3  
GPIO_3P3_1 GPIO_3P3_4  
GPIO_3P3_9  
RBIAS  
VDDA1P1_  
AUX_VCO  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_3P3_8 GPIO_3P3_10  
AUX_SYNTH_  
OUT  
GPIO_3P3_2 GPIO_3P3_5 GPIO_3P3_6 VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+ REF_CLK_IN–  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_TX GPIO_3P3_7 GPIO_3P3_11  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
AUXADC_0  
VSSA  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
CLOCK_ SYNTH  
VDDA1P3_  
RF_SYNTH  
VDDA1P3_  
AUX_SYNTH  
RF_SYNTH_  
VTUNE  
G
H
J
VSSA  
TX2_OUT–  
TX2_OUT+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_2  
GPIO_3  
VSSD  
VSSA  
VSSA  
SDIO  
SCLK  
VSSA  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
SERDIN1+  
SERDIN3–  
GPIO_11  
GPIO_10  
GPIO_9  
GPIO_8  
TX1_OUT+  
TX1_OUT–  
VSSA  
GP_  
INTERRUPT  
GPIO_18  
RESET  
TEST  
GPIO_1  
GPIO_0  
SDO  
K
L
SYSREF_IN+ SYSREF_IN–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
CS  
VDDD1P3_  
DIG  
VDDD1P3_  
DIG  
VSSA  
SYNCIN1–  
SYNCIN0–  
SYNCIN1+  
SYNCIN0+  
VSSD  
SYNCOUT1– SYNCOUT1+  
SYNCOUT0– SYNCOUT0+  
VDDA1P1_  
CLOCK_VCO  
VDD_  
INTERFACE  
M
N
P
RX1_ENABLE TX1_ENABLE RX2_ENABLE TX2_ENABLE  
VSSA  
GPIO_17  
SERDIN1–  
VSSA  
VDDA1P3_  
CLOCK_  
VCO_LDO  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDOUT3– SERDOUT3+ SERDOUT2– SERDOUT2+  
VSSA  
SERDIN0–  
SERDIN3+  
SERDIN0+  
SERDIN2–  
VSSA  
AUX_SYNTH_  
VTUNE  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
VSSA  
SERDOUT1– SERDOUT1+ SERDOUT0– SERDOUT0+  
SERDIN2+  
ADRV9009  
Figure 6. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Type  
Mnemonic  
Description  
A1, A4, A7, A8, A11, A14, B2 to Input  
B6, B9 to B14, C4, C9, C11,  
D3 to D9, D11, D12, E6, E9,  
F1, F2, F5 to F10, F12 to  
F14, G1 to G4, G6, G10 to  
G14, H2 to H10, H13, J2,  
J13, K1, K2, K13, K14, L1, L2,  
M2, M9, N2, N7, N14, P2,  
P3, P10  
VSSA  
Analog Supply Voltage (VSS).  
A2, A3  
Input  
ORX2_IN+, ORX2_IN−  
Differential Input for Observation Receiver 2. When unused, connect  
these pins to ground.  
Rev. B | Page 17 of 127  
 
 
ADRV9009  
Data Sheet  
Pin No.  
Type  
Mnemonic  
Description  
A5, A6  
Input  
RX2_IN+, RX2_IN−  
Differential Input for Main Receiver 2. When unused, connect these pins  
to ground.  
A9, A10  
Input  
Input  
RX1_IN+, RX1_IN−  
ORX1_IN+, ORX1_IN−  
VDDA1P3_RX_RF  
Differential Input for Main Receiver 1. When unused, connect these  
pins to ground.  
Differential Input for Observation Receiver 1. When unused, connect  
these pins to ground.  
A12, A13  
B1  
B7, B8  
Input  
Input  
Observation Receiver Supply.  
RF_EXT_LO_I/O−,  
RF_EXT_LO_I/O+,  
Differential External LO Input/Output. If these pins are used for the  
external LO, the input frequency must be 2× the desired carrier  
frequency. When unused, do not connect these pins.  
C1  
Input/  
output  
GPIO_3P3_0  
GPIO_3P3_3  
GPIO_3P3_9  
GPIO_3P3_1  
GPIO_3P3_4  
GPIO_3P3_8  
GPIO_3P3_10  
GPIO_3P3_2  
GPIO_3P3_5  
GPIO_3P3_6  
GPIO Pin Referenced to 3.3 V Supply. The alternate function is AUXDAC_4.  
Because this pin contains an input stage, the voltage on the pin must  
be controlled. When unused, this pin can be tied to ground through a  
resistor (to safeguard against misconfiguration), or this pin can be left  
floating, programmed as outputs, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When unused, this pin  
can be tied to ground through a resistor (to safeguard against  
misconfiguration), or these pins can be left floating, programmed as  
outputs, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function is  
AUXDAC_9. Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied to  
ground through a resistor (to safeguard against misconfiguration), or  
these pins can be left floating, programmed as outputs, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function is  
AUXDAC_5. Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied to  
ground through a resistor (to safeguard against misconfiguration), or  
these pins can be left floating, programmed as outputs, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function is  
AUXDAC_6. Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied to  
ground through a resistor (to safeguard against misconfiguration), or  
these pins can be left floating, programmed as outputs, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function is  
AUXDAC_1. Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied to  
ground through a resistor (to safeguard against misconfiguration), or  
these pins can be left floating, programmed as outputs, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function is  
AUXDAC_0. Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied to  
ground through a resistor (to safeguard against misconfiguration), or  
these pins can be left floating, programmed as outputs, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. Because this pin contains an input  
stage, the voltage on the pin must be controlled. When unused, this  
pin can be tied to ground through a resistor (to safeguard against  
misconfiguration), or these pins can be left floating, programmed as  
outputs, and driven low.  
C2  
Input/  
output  
C13  
D1  
D2  
D13  
D14  
E1  
Input/  
output  
Input/  
output  
Input/  
output  
Input/  
output  
Input/  
output  
Input/  
output  
E2  
Input/  
output  
GPIO Pin Referenced to 3.3 V Supply. The alternative function is  
AUXDAC_7. Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied to  
ground through a resistor (to safeguard against misconfiguration), or  
these pins can be left floating, programmed as outputs, and driven low.  
GPIO Pin Referenced to 3.3 V Supply. The alternative function is  
AUXDAC_8. Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied to  
ground through a resistor (to safeguard against misconfiguration), or  
these pins can be left floating, programmed as outputs, and driven low.  
E3  
Input/  
output  
Rev. B | Page 18 of 127  
Data Sheet  
ADRV9009  
Pin No.  
Type  
Mnemonic  
Description  
E13  
Input/  
output  
GPIO_3P3_7  
GPIO Pin Referenced to 3.3 V Supply. The alternative function is  
AUXDAC_2. Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied to  
ground through a resistor (to safeguard against misconfiguration), or  
these pins can be left floating, programmed as outputs, and driven low.  
E14  
Input/  
output  
GPIO_3P3_11  
GPIO Pin Referenced to 3.3 V Supply. The alternative function is  
AUXDAC_3. Because this pin contains an input stage, the voltage on  
the pin must be controlled. When unused, this pin can be tied to  
ground through a resistor (to safeguard against misconfiguration), or  
these pins can be left floating, programmed as outputs, and driven low.  
C3  
Input  
Input  
VDDA1P3_RX_TX  
1.3 V Supply for Transmitter/Receiver Baseband Circuits, Transimpedance  
Amplifier (TIA), Transmitter Transconductance (GM), Baseband Filters,  
and Auxiliary DACs.  
RF VCO LDO Supply Inputs. Connect Pin C5 to Pin C6. Use a separate  
trace on the PCB back to a common supply point.  
C5, C6  
VDDA1P3_RF_VCO_LDO  
C7  
C8  
Input  
Input  
VDDA1P1_RF_VCO  
VDDA1P3_RF_LO  
1.1 V VCO Supply. Decouple this pin with 1 μF.  
1.3 V LO Generator for the RF Synthesizer. This pin is sensitive to  
supply noise.  
C10  
C12  
Input  
Input  
VDDA1P3_AUX_VCO_LDO 1.3 V Supply.  
VDDA_3P3  
General-Purpose Output Pull-Up Voltage and Auxiliary DAC Supply  
Voltage.  
C14  
Input/  
output  
RBIAS  
Bias Resistor. Tie this pin to ground using a 14.3 kΩ resistor. This pin  
generates an internal current based on an external 1% resistor.  
D10  
E4  
E5  
Input  
Input  
Input  
Input  
VDDA1P1_AUX_VCO  
VDDA1P8_BB  
VDDA1P3_BB  
REF_CLK_IN+,  
REF_CLK_IN−  
1.1 V VCO Supply. Decouple this pin with 1 μF.  
1.8 V Supply for the ADC and DAC.  
1.3 V Supply for the ADC, DAC, and AUXADC.  
Device Clock Differential Input.  
E7, E8  
E10  
E12  
Output AUX_SYNTH_OUT  
Auxiliary PLL Output. When unused, do not connect this pin.  
1.8 V Supply for Transmitter.  
Input  
Input  
VDDA1P8_TX  
F3, F4, F11, E11  
AUXADC_0 to AUXADC_3 Auxiliary ADC Input. When unused, connect these pins to ground with a  
pull-down resistor, or connect directly to ground.  
G5  
Input  
VDDA1P3_CLOCK_SYNTH  
1.3 V Supply Input for Clock Synthesizer. Use a separate trace on the  
PCB back to a common supply point.  
G7  
G8  
Input  
Input  
VDDA1P3_RF_SYNTH  
VDDA1P3_AUX_SYNTH  
1.3 V RF Synthesizer Supply Input. This pin is sensitive to supply noise.  
1.3 V Auxiliary Synthesizer Supply Input.  
G9  
Output RF_SYNTH_VTUNE  
RF Synthesizer VTUNE Output.  
H11  
Input/  
output  
GPIO_12  
GPIO_11  
GPIO_13  
GPIO_10  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be  
tied to ground through a resistor (to safeguard against misconfiguration),  
or it can be left floating, programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be  
tied to ground through a resistor (to safeguard against misconfiguration),  
or it can be left floating, programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be  
tied to ground through a resistor (to safeguard against misconfiguration),  
or it can be left floating, programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be tied  
to ground through a resistor (to safeguard against misconfiguration), or it  
can be left floating, programmed as output, and driven low.  
H12  
J11  
J12  
Input/  
output  
Input/  
output  
Input/  
output  
Rev. B | Page 19 of 127  
ADRV9009  
Data Sheet  
Pin No.  
Type  
Mnemonic  
Description  
J3  
Input/  
output  
GPIO_18  
Digital GPIO, 1.8 V to 2.5 V. The joint test action group (JTAG) function is  
TCLK. Because this pin contains an input stage, the voltage on the pin  
must be controlled. When unused, this pin can be tied to ground  
through a resistor (to safeguard against misconfiguration), or it can be  
left floating, programmed as output, and driven low.  
J7  
Input/  
output  
GPIO_2  
GPIO_1  
GPIO_5  
GPIO_4  
GPIO_3  
GPIO_0  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 0.  
Because this pin contains an input stage, the voltage on the pin must  
be controlled. When unused, this pin can be tied to ground through a  
resistor (to safeguard against misconfiguration), or it can be left floating,  
programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 0. Because  
this pin contains an input stage, the voltage on the pin must be  
controlled. When unused, this pin can be tied to ground through a  
resistor (to safeguard against misconfiguration), or it can be left floating,  
programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is TDO. Because this pin  
contains an input stage, the voltage on the pin must be controlled.  
When unused, this pin can be tied to ground through a resistor (to  
safeguard against misconfiguration), or it can be left floating,  
programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is TRST. Because this pin  
contains an input stage, the voltage on the pin must be controlled.  
When unused, this pin can be tied to ground through a resistor (to  
safeguard against misconfiguration), or it can be left floating,  
programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 1. Because  
this pin contains an input stage, the voltage on the pin must be  
controlled. When unused, this pin can be tied to ground through a  
resistor (to safeguard against misconfiguration), or it can be left floating,  
programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. The user sets the JTAG function to 1. Because  
this pin contains an input stage, the voltage on the pin must be  
controlled. When unused, this pin can be tied to ground through a  
resistor (to safeguard against misconfiguration), or it can be left floating,  
programmed as output, and driven low.  
J8  
Input/  
output  
K5  
K6  
K7  
K8  
Input/  
output  
Input/  
output  
Input/  
output  
Input/  
output  
K11  
K12  
L5  
Input/  
output  
GPIO_14  
GPIO_9  
GPIO_6  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be  
tied to ground through a resistor (to safeguard against misconfiguration),  
or it can be left floating, programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be  
tied to ground through a resistor (to safeguard against misconfiguration),  
or it can be left floating, programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is TDI. Because this pin  
contains an input stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor (to safeguard  
against misconfiguration), or it can be left floating, programmed as  
output, and driven low.  
Input/  
output  
Input/  
output  
L6  
Input/  
output  
GPIO_7  
Digital GPIO, 1.8 V to 2.5 V. The JTAG function is TMS. Because this pin  
contains an input stage, the voltage on the pin must be controlled. When  
unused, this pin can be tied to ground through a resistor (to safeguard  
against misconfiguration), or it can be left floating, programmed as  
output, and driven low.  
L11  
Input/  
output  
GPIO_15  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be  
tied to ground through a resistor (to safeguard against misconfiguration),  
or it can be left floating, programmed as output, and driven low.  
Rev. B | Page 20 of 127  
Data Sheet  
ADRV9009  
Pin No.  
Type  
Mnemonic  
Description  
L12  
Input/  
output  
GPIO_8  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be  
tied to ground through a resistor (to safeguard against misconfiguration),  
or it can be left floating, programmed as output, and driven low.  
M10  
M11  
Input/  
output  
GPIO_17  
GPIO_16  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be  
tied to ground through a resistor (to safeguard against misconfiguration),  
or it can be left floating, programmed as output, and driven low.  
Digital GPIO, 1.8 V to 2.5 V. Because this pin contains an input stage, the  
voltage on the pin must be controlled. When unused, this pin can be  
tied to ground through a resistor (to safeguard against misconfiguration),  
or it can be left floating, programmed as output, and driven low.  
Input/  
output  
H14, J14  
H1, J1  
J4  
Output TX1_OUT+, TX1_OUT−  
Output TX2_OUT−, TX2_OUT+  
Transmitter 1 Output. When unused, do not connect these pins.  
Transmitter 2 Output. When unused, do not connect these pins.  
Active Low Chip Reset.  
Input  
RESET  
J5  
Output GP_INTERRUPT  
General-Purpose Digital Interrupt Output Signal. When unused, do  
not connect this pin.  
J6  
J9  
Input  
TEST  
SDIO  
Pin Used for JTAG Boundary Scan. When unused, connect this pin to  
ground.  
Serial Data Input in 4-Wire Mode or Input/Output in 3-Wire Mode.  
Input/  
output  
J10  
K3, K4  
K9  
Output SDO  
Serial Data Output. In SPI 3-wire mode, do not connect this pin.  
LVDS Input.  
Serial Data Bus Clock.  
Input  
Input  
Input  
Input  
SYSREF_IN+, SYSREF_IN−  
SCLK  
CS  
K10  
Serial Data Bus Chip Select, Active Low.  
L3, L4  
SYNCIN1−, SYNCIN1+  
LVDS Input. These pins form the sync signal associated with receiver  
channel data on the JESD204B interface. When unused, connect these  
pins to ground with a pull-down resistor, or connect these pins directly to  
ground.  
L7, L10  
L8, L9  
Input  
Input  
VSSD  
VDDD1P3_DIG  
Digital VSS.  
1.3 V Digital Core. Connect Pin L8 and Pin L9 together. Use a wide  
trace to connect to a separate power supply domain.  
L13, L14  
Output SYNCOUT1−, SYNCOUT1+ LVDS Output. These pins form the sync signal associated with transmitter  
channel data on the JESD204B interface. When unused, do not connect  
these pins.  
M1  
M3, M4  
Input  
Input  
VDDA1P1_CLOCK_VCO  
SYNCIN0−, SYNCIN0+  
1.1 V VCO Supply. Decouple this pin with 1 μF.  
LVDS Input. These pins form the sync signal associated with receiver  
channel data on the JESD204B interface. When unused, connect these  
pins to ground with a pull-down resistor, or connect these pins directly to  
ground.  
M5  
M6  
M7  
M8  
Input  
Input  
Input  
Input  
Input  
RX1_ENABLE  
TX1_ENABLE  
RX2_ENABLE  
TX2_ENABLE  
VDD_INTERFACE  
Receiver 1 Enable Pin. When unused, connect this pin to ground with a  
pull-down resistor, or connect this pin directly to ground.  
Transmitter 1 Enable Pin. When unused, connect this pin to ground  
with a pull-down resistor, or connect this pin directly to ground.  
Receiver 2 Enable Pin. When unused, connect this pin to ground with a  
pull-down resistor, or connect this pin directly to ground.  
Transmitter 2 Enable Pin. When unused, connect this pin to ground  
with a pull-down resistor, or connect this pin directly to ground.  
M12  
Input/Output Interface Supply, 1.8 V to 2.5 V.  
M13, M14  
Output SYNCOUT0−, SYNCOUT0+ LVDS Output. These pins form the sync signal associated with transmitter  
channel data on the JESD204B interface. When unused, do not connect  
these pins.  
Rev. B | Page 21 of 127  
ADRV9009  
Data Sheet  
Pin No.  
Type  
Mnemonic  
Description  
N1  
Input  
VDDA1P3_CLOCK_  
VCO_LDO  
1.3 V Use Separate Trace to Common Supply Point.  
N3, N4  
Output SERDOUT3−, SERDOUT3+  
RF Current Mode Logic (CML) Differential Output 3. When unused, do  
not connect these pins.  
N5, N6  
N8, P8  
N9, P9  
N10, N11  
N13, N12  
P1  
Output SERDOUT2−, SERDOUT2+  
RF CML Differential Output 2. When unused, do not connect these pins.  
1.3 V Supply for JESD204B Serializer.  
1.3 V Supply for JESD204B Deserializer.  
RF CML Differential Input 1. When unused, do not connect these pins.  
RF CML Differential Input 0. When unused, do not connect these pins.  
Auxiliary Synthesizer VTUNE Output.  
Input  
Input  
Input  
Input  
VDDA1P3_SER  
VDDA1P3_DES  
SERDIN1−, SERDIN1+  
SERDIN0+, SERDIN0−  
Output AUX_SYNTH_VTUNE  
P4, P5  
Output SERDOUT1−, SERDOUT1+, RF CML Differential Output 1. When unused, do not connect these  
pins.  
P6, P7  
Output SERDOUT0−,  
SERDOUT0+,  
RF CML Differential Output 0. When unused, do not connect these  
pins.  
P11, P12  
P13, P14  
Input  
Input  
SERDIN3−, SERDIN3+  
SERDIN2−, SERDIN2+  
RF CML Differential Input 3. When unused, do not connect these pins.  
RF CML Differential Input 2. When unused, do not connect these pins.  
Rev. B | Page 22 of 127  
Data Sheet  
ADRV9009  
TYPICAL PERFORMANCE CHARACTERISTICS  
The temperature settings refer to the die temperature  
75 MHz TO 525 MHz BAND  
15  
14  
13  
12  
11  
10  
9
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
+110°C ATTN = 20dB  
+110°C ATTN = 15dB  
+110°C ATTN = 10dB  
+110°C ATTN = 5dB  
+110°C ATTN = 0dB  
+25°C ATTN = 20dB  
+25°C ATTN = 15dB  
+25°C ATTN = 10dB  
+25°C ATTN = 5dB  
+25°C ATTN = 0dB  
–40°C ATTN = 20dB  
–40°C ATTN = 15dB  
–40°C ATTN = 10dB  
–40°C ATTN = 5dB  
–40°C ATTN = 0dB  
8
7
6
5
4
3
2
1
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–25  
–20  
–15  
BASEBAND OFFSET FREQUENCY AND  
TRANSMITTER ATTENUATION FREQUENCY (MHz)  
–10  
–5  
5
10  
15  
20  
25  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 7. Transmitter CW Output Power vs. Transmitter LO Frequency, Transmitter  
QEC and External LO Leakage Active, Transmitter 50 MHz/100 MHz Bandwidth  
Mode, IQ Rate = 122.88 MHz, Attenuation = 0 dB, Not De-Embedded  
Figure 9. Transmitter Image Rejection vs. Baseband Offset Frequency and  
Transmitter Attenuation, QEC Trained with Three Tones Placed at 10 MHz,  
48 MHz, and 100 MHz (Tracking On), Total Combined Power = −10 dBFS,  
Correction Then Frozen (Tracking Turned Off), CW Tone Swept Across Large  
Signal Bandwidth, LO = 300 MHz  
0
0
–10  
+110°C ATTN = 20dB  
+110°C ATTN = 15dB  
+110°C ATTN = 10dB  
+110°C ATTN = 5dB  
+110°C ATTN = 0dB  
+25°C ATTN = 20dB  
+25°C ATTN = 15dB  
+25°C ATTN = 10dB  
+25°C ATTN = 5dB  
+25°C ATTN = 0dB  
–40°C ATTN = 20dB  
–40°C ATTN = 15dB  
–40°C ATTN = 10dB  
–40°C ATTN = 5dB  
–40°C ATTN = 0dB  
+110°C ATTN = 20dB  
+110°C ATTN = 15dB  
+110°C ATTN = 10dB  
+110°C ATTN = 5dB  
+110°C ATTN = 0dB  
+25°C ATTN = 20dB  
+25°C ATTN = 15dB  
+25°C ATTN = 10dB  
+25°C ATTN = 5dB  
+25°C ATTN = 0dB  
–40°C ATTN = 20dB  
–40°C ATTN = 15dB  
–40°C ATTN = 10dB  
–40°C ATTN = 5dB  
–40°C ATTN = 0dB  
–10  
–30  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–50  
–70  
–90  
–110  
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
BASEBAND OFFSET FREQUENCY AND  
TRANSMITTER ATTENUATION (MHz)  
BASEBAND OFFSET FREQUENCY AND  
TRANSMITTER ATTENUATION (MHz)  
Figure 10. Transmitter Image Rejection vs. Baseband Offset Frequency and  
Transmitter Attenuation, QEC Trained with Three Tones Placed at 10 MHz,  
48 MHz, and 100 MHz (Tracking On), Total Combined Power = −10 dBFS,  
Correction Then Frozen (Tracking Turned Off), CW Tone Swept Across Large  
Signal Bandwidth, LO = 525 MHz  
Figure 8. Transmitter Image Rejection vs. Baseband Offset Frequency and  
Transmitter Attenuation, QEC Trained with Three Tones Placed at 10 MHz,  
48 MHz, and 100 MHz (Tracking On), Total Combined Power = −10 dBFS,  
Correction Then Frozen (Tracking Turned Off), CW Tone Swept Across Large  
Signal Bandwidth, LO = 75.2 MHz  
Rev. B | Page 23 of 127  
 
 
ADRV9009  
Data Sheet  
0.5  
0.4  
0
10  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
Tx1 – Tx2  
Tx2 – Tx1  
20  
0.3  
30  
0.2  
40  
0.1  
50  
0
60  
70  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
80  
90  
100  
110  
120  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
0
100  
200  
300  
400  
500  
600  
BASEBAND OFFSET FREQUENCY (MHz)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 11. Transmitter Pass Band Flatness vs. Baseband Offset Frequency, Off Chip  
Match Response De-Embedded, LO = 300 MHz, Calibrated at 25°C  
Figure 14. Transmitter to Transmitter Isolation vs. Transmitter LO Frequency,  
Temperature = 25°C  
–75  
–77  
–79  
–81  
–83  
–85  
–140  
525MHz = +110°C  
300MHz = +110°C  
75MHz = +110°C  
525MHz = +25°C  
300MHz = +25°C  
75MHz = +25°C  
525MHz = –40°C  
300MHz = –40°C  
75MHz = –40°C  
–145  
–150  
–155  
–160  
–165  
–170  
–87  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–89  
–91  
–93  
–95  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
TRANSMITTER LO FREQUENCY (MHz)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 12. Transmitter LO Leakage vs. Transmitter LO Frequency, Transmitter  
Attenuation = 0 dB, Baseband Tone Frequency = 10 MHz, Tracked  
Figure 15. Transmitter Noise vs. Transmitter Attenuator Setting, Offset = 50 MHz  
0
–40  
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
20  
40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
Tx1 – Rx1  
Tx1 – Rx2  
Tx2 – Rx1  
Tx2 – Rx2  
60  
80  
100  
120  
140  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
100  
200  
300  
400  
500  
600  
TRANSMITTER ATTENUATOR SETTING (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 16. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 0 MHz, LO = 75 MHz, LTE = 20 MHz, Peak to  
Average Ratio (PAR) = 12 dB, DAC Boost Normal, Upper Side and Lower Side,  
Performance Limited by Spectrum Analyzer at Higher Attenuation Settings  
Figure 13. Transmitter to Receiver Isolation vs. Receiver LO Frequency,  
Temperature = 25°C  
Rev. B | Page 24 of 127  
Data Sheet  
ADRV9009  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
+110°C  
+25°C  
–40°C  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 17. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 0 MHz, LO = 300 MHz, LTE = 20 MHz,  
PAR = 12 dB, DAC Boost Normal, Upper Side and Lower Side, Performance Limited  
by Spectrum Analyzer at Higher Attenuation Settings  
Figure 20. Transmitter OIP3 Right vs. Transmitter Attenuator Setting,  
LO = 300 MHz, Total RMS Power = −12 dBFS, 20 MHz/25 MHz Tones  
50  
–40  
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
45  
+110°C  
+25°C  
–40°C  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
40  
35  
30  
25  
20  
15  
10  
5
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 18. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 0 MHz, LO = 525 MHz, LTE = 20 MHz,  
PAR = 12 dB, DAC Boost Normal, Upper Side and Lower Side, Performance Limited  
by Spectrum Analyzer at Higher Attenuation Settings  
Figure 21. Transmitter OIP3 Right vs. Transmitter Attenuator Setting,  
LO = 525 MHz, Total RMS Power = −12 dBFS, 20 MHz/25 MHz Tones  
50  
45  
40  
35  
30  
25  
20  
50  
45  
+110°C  
+25°C  
40  
–40°C  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0
0
5
10  
15  
15  
20  
20  
25  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
10  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 19. Transmitter OIP3 Right vs. Transmitter Attenuator Setting, LO = 75 MHz,  
Total Root Mean Square (RMS) Power = −12 dBFS, 20 MHz/25 MHz Tones  
Figure 22. Transmitter OIP3 Right vs. Baseband Tone Pair Swept Across Pass Band,  
LO = 75 MHz, Total RMS Power = −12 dBFS, Transmitter Attenuation = 4 dB  
Rev. B | Page 25 of 127  
ADRV9009  
Data Sheet  
50  
45  
40  
35  
30  
25  
20  
0
–20  
+110°C = (UPPER)  
+110°C = (HD2)  
+25°C = (UPPER)  
+25°C = (HD2)  
–40°C = (UPPER)  
–40°C = (HD2)  
–40  
–60  
–80  
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–100  
–120  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5
10  
10  
15  
15  
20  
20  
25  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 23. Transmitter OIP3 Right vs. Baseband Frequency Offset, LO =  
300 MHz, Total RMS Power = −12 dBFS, Transmitter Attenuation = 4 dB  
Figure 26. Transmitter HD2 vs. Transmitter Attenuator Setting,  
Baseband Frequency = 10 MHz, LO = 300 MHz, CW = −15 dBFS  
50  
45  
40  
35  
30  
25  
20  
0
+110°C = (UPPER)  
+110°C = (HD2)  
+25°C = (UPPER)  
+25°C = (HD2)  
–40°C = (UPPER)  
–40°C = (HD2)  
–20  
–40  
–60  
–80  
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–100  
–120  
0
5
10  
10  
15  
15  
20  
20  
25  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 24. Transmitter OIP3 Right vs. Baseband Frequency Offset,  
LO = 525 MHz, Total RMS Power = −12 dBFS, Transmitter Attenuation = 4 dB  
Figure 27. Transmitter HD2 vs. Transmitter Attenuator Setting,  
Baseband Frequency = 10 MHz, LO = 525 MHz, CW = −15 dBFS  
0
0
+110°C = (UPPER)  
+110°C = (HD2)  
+25°C = (UPPER)  
+25°C = (HD2)  
–40°C = (UPPER)  
–40°C = (HD2)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 28. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 75 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
Figure 25. Transmitter HD2 vs. Transmitter Attenuator Setting,  
Baseband Frequency = 10 MHz, LO = 75 MHz, CW = −15 dBFS  
Rev. B | Page 26 of 127  
Data Sheet  
ADRV9009  
0
–10  
0
–10  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 29. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 300 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
Figure 32. Transmitter HD3 Image Appears on Same Side as Desired Signal  
vs. Transmitter Attenuator Setting, LO = 300 MHz, CW = −15 dBFS  
0
0
Tx1 = +110°C  
–10  
–10  
Tx1 = +110°C  
Tx1 = +25°C  
–20  
–30  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–30  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 30. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 525 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
Figure 33. Transmitter HD3 Image Appears on Same Side as Desired Signal  
vs. Transmitter Attenuator Setting, LO = 525 MHz, CW = −15 dBFS  
0
0.03  
–10  
Tx1 = +110°C  
+110°C  
+25°C  
–40°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–30  
0.02  
–40  
0.01  
0
–50  
–60  
–70  
–80  
–90  
–0.01  
–0.02  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 34. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 75 MHz, Baseband Frequency = 10 MHz, Backoff = 15 dBFS  
Figure 31. Transmitter HD3 Image Appears on Same Side as Desired Signal  
vs. Transmitter Attenuator Setting, LO = 75 MHz, CW = −15 dBFS  
Rev. B | Page 27 of 127  
ADRV9009  
Data Sheet  
0.03  
0.02  
0.01  
0
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–0.01  
–0.02  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
5
10  
15  
20  
25  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATION (dB)  
Figure 35. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 300 MHz, Baseband Frequency = 10 MHz, Backoff = 15 dBFS  
Figure 38. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz,  
Signal Centered on DC, LO = 300 MHz  
0.03  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.02  
0.01  
0
–0.01  
–0.02  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
5
10  
15  
20  
25  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATION (dB)  
Figure 36. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 525 MHz, Baseband Frequency = 10 MHz, Backoff = 15 dBFS  
Figure 39. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz,  
Signal Centered on DC, LO = 525 MHz  
–30  
0
–32  
–10  
+110°C  
+110°C  
+25°C  
–40°C  
+25°C  
–40°C  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
TRANSMITTER ATTENUATION (dB)  
LO FREQUENCY (MHz)  
Figure 37. Transmitter EVM vs. Transmitter Attenuation, LTE = 20 MHz,  
Signal Centered on DC, LO = 75 MHz  
Figure 40. Observation Receiver LO Leakage vs. LO Frequency, LO = 75 MHz,  
300 MHz, and 525 MHz, Attenuation = 0 dB  
Rev. B | Page 28 of 127  
Data Sheet  
ADRV9009  
25  
20  
15  
10  
5
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
IIP2 SUM +110°C  
+110°C  
+25°C  
–40°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
80  
81  
85  
86  
90  
91  
95  
96  
100  
101  
105  
106  
110  
111  
115  
116  
120  
121  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 41. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 75 MHz, Total Nyquist Integration Bandwidth  
Figure 44. Observation Receiver IIP2, Sum and Difference Products vs. f1  
(Where f1 is Frequency 1) Offset Frequency, Tones Separated by 1 MHz Swept  
Across Pass Band at −25 dBm Each, LO = 75 MHz, Attenuation = 0 dB  
25  
20  
15  
80  
75  
70  
65  
60  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
+110°C  
+25°C  
–40°C  
10  
5
55  
50  
45  
40  
0
305 310 315 320 325 330 335 340 345 350 355  
306 311 316 321 326 331 336 341 346 351 356  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 45. Observation Receiver IIP2, Sum and Difference Products vs. f1  
Offset Frequency, Tones Separated by 1 MHz Swept Across Pass Band at  
−25 dBm Each, LO = 300 MHz, Attenuation = 0 dB  
Figure 42. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 300 MHz, Total Nyquist Integration Bandwidth  
80  
75  
70  
65  
25  
20  
15  
60  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
+110°C  
+25°C  
–40°C  
10  
5
55  
50  
45  
40  
0
530 535 540 545 550 555 560 565 570 575 380  
531 536 541 546 551 556 561 566 571 576 381  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 46. Observation Receiver IIP2, Sum and Difference Products vs. f1  
Offset Frequency, Tones Separated by 1 MHz Swept Across Pass Band at  
−25 dBm Each, LO = 525 MHz, Attenuation = 0 dB  
Figure 43. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 525 MHz, Total Nyquist Integration Bandwidth  
Rev. B | Page 29 of 127  
ADRV9009  
Data Sheet  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
77  
82  
77  
87  
77  
92  
77  
97  
77  
102  
77  
107  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 50. Observation Receiver IIP2, f1 − f2 (Where f2 is Frequency 2) vs.  
Intermodulation Frequency, LO = 75 MHz, Tone 1 = 77 MHz,  
Tone 2 = Swept, −25 dBm Each, Attenuation = 0 dB  
Figure 47. Observation Receiver IIP2, Sum and Difference Products vs. Observation  
Receiver Attenuation, LO = 75 MHz, Tone 1 = 95 MHz, Tone 2 = 96 MHz at  
−25 dBm Plus Attenuation  
80  
70  
60  
50  
100  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
40  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
30  
20  
10  
0
302 302 302 302 302 302 302 302 302 302 302  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
307 312 317 322 327 332 337 342 347 352 357  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 48. Observation Receiver IIP2, Sum and Difference Products vs.  
Observation Receiver Attenuation, LO = 300 MHz, Tone 1 = 320 MHz,  
Tone 2 = 321 MHz at −25 dBm Plus Attenuation  
Figure 51. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency,  
LO = 300 MHz, Tone 1 = 302 MHz, Tone 2 = Swept, −25 dBm Each,  
Attenuation = 0 dB  
95  
80  
70  
60  
50  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
90  
85  
80  
75  
70  
65  
60  
55  
50  
40  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
30  
20  
10  
0
527  
532  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
527  
542  
527  
547  
527  
552  
527  
557  
527  
562  
527  
567  
527  
572  
527  
577  
527  
582  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY  
Figure 52. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency, LO =  
525 MHz, Tone 1 = 527 MHz, Tone 2 = Swept, −25 dBm Each, Attenuation = 0 dB  
Figure 49. Observation Receiver IIP2, Sum and Difference Products vs. Observation  
Receiver Attenuation, LO = 525 MHz, Tone 1 = 545 MHz, Tone 2 = 546 MHz at  
−25 dBm Plus Attenuation  
Rev. B | Page 30 of 127  
Data Sheet  
ADRV9009  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10  
9
8
7
6
5
4
3
2
1
0
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
80  
81  
85  
86  
90  
91  
95  
96  
100 105 110 115 120 125 130  
101 106 111 116 121 126 131  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
OBSERVATION RECEIVER ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 56. Observation Receiver IIP3, 2f1 (Where 2f1 is 2 × f1) − f2 vs.  
Intermodulation Frequency, LO = 75 MHz, Attenuation = 0 dB, Tones Separated  
by 1 MHz Swept Across Pass Band at −25 dBm Each  
Figure 53. Observation Receiver IIP2, f1 − f2 vs. Observation Receiver  
Attenuation, LO = 75 MHz, Tone 1 = 77 MHz, Tone 2 = 97 MHz at −25 dBm  
Plus Attenuation  
25  
90  
85  
80  
75  
70  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
20  
15  
10  
5
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
65  
60  
55  
50  
0
305 310 315 320 325 330 335 340 345 350 355  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
306 311 316 321 326 331 336 341 346 351 356  
OBSERVATION RECEIVER ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 57. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency, LO =  
300 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass Band  
at −25 dBm Each  
Figure 54. Observation Receiver IIP2, f1 − f2 vs. Observation Receiver  
Attenuation, LO = 300 MHz, Tone 1 = 302 MHz, Tone 2 = 322 MHz at  
−25 dBm Plus Attenuation  
90  
85  
80  
75  
70  
25  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
20  
15  
10  
5
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
65  
60  
55  
50  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 58. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 75 MHz, Tone 1 = 100 MHz, Tone 2 = 101 MHz at −24 dBm  
Plus Attenuation  
Figure 55. Observation Receiver IIP2, f1 − f2 vs. Observation Receiver Attenuation,  
LO = 525 MHz, Tone 1 = 527 MHz, Tone 2 = 547 MHz at −25 dBm Plus Attenuation  
Rev. B | Page 31 of 127  
ADRV9009  
Data Sheet  
25  
20  
15  
10  
5
–70  
–75  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
–80  
–85  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
0
0
2
4
6
8
10  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz) AND ATTENUATION  
Figure 59. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation, LO = 300 MHz,  
Tone 1 = 345 MHz, Tone 2 = 346 MHz at −24 dBm Plus Attenuation  
Figure 62. Observation Receiver Image Rejection vs. Baseband Frequency  
Offset and Attenuation, CW Signal Swept Across the Pass Band, LO = 75 MHz  
18  
–70  
–75  
–80  
–85  
–90  
–95  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
16  
14  
12  
10  
8
–100  
6
+110°C = 10dB  
–105  
–110  
–115  
–120  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
4
2
0
302 302 302 302 302 302 302 302 302 302 302  
307 312 317 322 327 332 337 342 347 352 357  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
BASEBAND FREQUENCY OFFSET (MHz) AND ATTENUATION  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 63. Observation Receiver Image Rejection vs. Baseband Frequency  
Offset and Attenuation, CW Signal Swept Across the Pass Band, LO = 300 MHz  
Figure 60. Observation Receiver IIP3, 2f1 − f2 vs. Swept Pass Band Frequency,  
LO = 300 MHz, Attenuation = 0 dB, Tone 1 = 302 MHz, Tone 2 = Swept Across  
the Pass Band, Tones Separated by 1 MHz Swept Across Pass Band at  
−19 dBm Each  
20  
22  
+110°C  
+25°C  
–40°C  
IIP3 = +110°C  
20  
18  
16  
14  
12  
10  
8
IIP3 = +25°C  
IIP3 = –40°C  
18  
16  
14  
12  
10  
8
6
4
0
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 64. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 75 MHz  
Figure 61. Observation Receiver IIP3, 2f1 − f2 vs. Observation Receiver  
Attenuation, LO = 300 MHz, Tone 1 = 302 MHz, Tone 2 = 352 MHz at  
−19 dBm Plus Attenuation  
Rev. B | Page 32 of 127  
Data Sheet  
ADRV9009  
20  
18  
16  
14  
12  
10  
8
0.5  
0.4  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
6
4
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR (dB)  
Figure 65. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 300 MHz  
Figure 68. Observation Receiver Attenuator Gain Step Error vs. Observation  
Receiver Attenuator, LO = 525 MHz  
0.5  
0.5  
0.4  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
0.3  
0.2  
0.1  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
I RIPPLE = +110°C  
I RIPPLE = +25°C  
I RIPPLE = –40°C  
Q RIPPLE = +110°C  
Q RIPPLE = +25°C  
Q RIPPLE = –40°C  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR (dB)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 69. Normalized Observation Receiver Baseband Flatness vs. Baseband  
Offset Frequency, LO = 75 MHz, Attenuation = 0 dB  
Figure 66. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator, LO = 75 MHz  
0
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
–20  
–40  
0.3  
0.2  
0.1  
–60  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
5
10  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR (dB)  
Figure 70. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, LO = 75 MHz, Baseband Frequency = 50 MHz  
Figure 67. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator, LO = 325 MHz  
Rev. B | Page 33 of 127  
ADRV9009  
Data Sheet  
0
–10  
–30  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
+110°C  
+25°C  
–40°C  
–20  
–50  
–40  
–70  
–60  
–90  
–80  
–110  
–130  
–150  
–100  
–120  
0
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
5
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
FREQUENCY OFFSET FROM LO  
Figure 71. Observation Receiver DC Offset vs. Observation Receiver  
Attenuation, LO = 325 MHz, Baseband Frequency = 50 MHz  
Figure 74. Observation Receiver HD3 vs. Frequency Offset from LO,  
Tone Level = −21 dBm at Attenuation = 0 dB, LO = 75 MHz  
–10  
0
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
HD2 RIGHT ATTN = 0 +110°C  
HD2 RIGHT ATTN = 10 +110°C  
–30  
–50  
HD2 LEFT ATTN = 0 +110°C  
HD2 LEFT ATTN = 10 +110°C  
HD2 RIGHT ATTN = 0 +25°C  
HD2 RIGHT ATTN = 10 +25°C  
HD2 LEFT ATTN = 0 +25°C  
HD2 LEFT ATTN = 10 +25°C  
HD2 RIGHT ATTN = 0 –40°C  
HD2 RIGHT ATTN = 10 –40°C  
HD2 LEFT ATTN = 0 –40°C  
HD2 LEFT ATTN = 10 –40°C  
–20  
–40  
–70  
–60  
–90  
–80  
–110  
–130  
–150  
–100  
–120  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
–50  
–30  
–10  
10  
30  
50  
OFFSET FREQUENCY AND ATTENUATION (MHz)  
FREQUENCY OFFSET FROM LO  
Figure 75. Observation Receiver HD3 vs. Frequency Offset from LO,  
Tone Level = −22 dBm at Attenuation = 0 dB, LO = 300 MHz  
Figure 72. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 75 MHz, Tone Level = −21 dBm Plus Attenuation  
–10  
0
HD2 RIGHT ATTN = 0 +110°C  
HD2 RIGHT ATTN = 10 +110°C  
HD2 LEFT ATTN = 0 +110°C  
HD2 LEFT ATTN = 10 +110°C  
HD2 RIGHT ATTN = 0 +25°C  
HD2 RIGHT ATTN = 10 +25°C  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
–30  
–50  
–20  
–40  
HD2 LEFT ATTN = 0 +25°C  
HD2 LEFT ATTN = 10 +25°C  
HD2 RIGHT ATTN = 0 –40°C  
–70  
–60  
–80  
HD2 RIGHT ATTN = 10 –40°C  
HD2 LEFT ATTN = 0 –40°C  
HD2 LEFT ATTN = 10 –40°C  
–90  
–110  
–130  
–150  
–100  
–120  
–50  
–30  
–10  
10  
30  
50  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
525  
FREQUENCY OFFSET FROM LO  
OFFSET FREQUENCY AND ATTENUATION (MHz)  
Figure 73. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 300 MHz, Tone Level = −22 dBm Plus Attenuation  
Figure 76. Observation Receiver HD3 vs. Frequency Offset from LO,  
Tone Level = −22 dBm at Attenuation = 0 dB, LO = 525 MHz  
Rev. B | Page 34 of 127  
Data Sheet  
ADRV9009  
–80  
–85  
–90  
0
100Hz = –95.48dBc/Hz  
1kHz = –103.55dBc/Hz  
10kHz = –109.36dBc/Hz  
100kHz = –116.28dBc/Hz  
1MHz = –144.62dBc/Hz  
10MHz = –152.33dBc/Hz  
100MHz = –152.85dBc/Hz  
Tx1 TO ORx1  
10  
20  
Tx2 TO ORx1  
Tx1 TO ORx2  
Tx2 TO ORx2  
–95  
30  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
0
100  
200  
300  
400  
500  
600  
100  
1k  
10k  
100k  
1M  
10M  
100M  
LO FREQUENCY (MHz)  
FREQUENCY OFFSET (Hz)  
Figure 77. Transmitter to Observation Receiver Isolation vs. LO Frequency,  
Temperature = 25°C  
Figure 80. LO Phase Noise vs. Frequency Offset, LO = 525 MHz, PLL Loop  
Bandwidth = 50 kHz  
–80  
–85  
–90  
–95  
0
100Hz = –110.00dBc/Hz  
1kHz  
= –120.75dBc/Hz  
–10  
10kHz = –126.54dBc/Hz  
100kHz = –132.76dBc/Hz  
1MHz = –150.09dBc/Hz  
10MHz = –151.09dBc/Hz  
100MHz = –150.74dBc/Hz  
+110°C  
+25°C  
–40°C  
–20  
–30  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
1k  
10k  
100k  
1M  
10M  
100M  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
RECEIVER LO FREQUENCY (MHz)  
FREQUENCY OFFSET (Hz)  
Figure 78. LO Phase Noise vs. Frequency Offset, LO = 75 MHz, PLL Loop  
Bandwidth = 50 kHz  
Figure 81. Receiver LO Leakage vs. Receiver LO Frequency = 75 MHz,  
300 MHz, and 525 MHz, Receiver Attenuation = 0 dB, RF Bandwidth =  
50 MHz, Sample Rate = 61.44 MSPS  
–80  
45  
100Hz = –99.81dBc/Hz  
–85  
1kHz  
= –108.20dBc/Hz  
–90  
–95  
40  
10kHz = –114.24dBc/Hz  
100kHz = –120.82dBc/Hz  
1MHz = –147.16dBc/Hz  
10MHz = –152.38dBc/Hz  
100MHz = –152.51dBc/Hz  
+110°C  
+25°C  
–40°C  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
35  
30  
25  
20  
15  
10  
5
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
RECEIVER ATTENUATION (dB)  
FREQUENCY OFFSET (Hz)  
Figure 79. LO Phase Noise vs. Frequency Offset, LO = 300 MHz, PLL Loop  
Bandwidth = 50 kHz  
Figure 82. Receiver Noise Figure vs. Receiver Attenuation, LO = 75 MHz,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS, Integration  
Bandwidth = 1 MHz to 25 MHz  
Rev. B | Page 35 of 127  
ADRV9009  
Data Sheet  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–25  
–15  
–5  
5
15  
25  
RECEIVER ATTENUATION (dB)  
RECEIVER OFFSET FREQUENCY FROM LO (75MHz)  
Figure 83. Receiver Noise Figure vs. Receiver Attenuation, LO = 300 MHz,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS, Integration  
Bandwidth = 1 MHz to 25 MHz  
Figure 86. Receiver Noise Figure vs. Receiver Offset Frequency from LO,  
Integration Bandwidth = 200 kHz, LO = 75 MHz  
45  
20  
40  
+110°C  
+110°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
+25°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–25  
–15  
–5  
5
15  
25  
RECEIVER ATTENUATION (dB)  
RECEIVER OFFSET FREQUENCY FROM LO (300MHz)  
Figure 84. Receiver Noise Figure vs. Receiver Attenuation, LO = 525 MHz,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS, Integration  
Bandwidth = 1 MHz to 25 MHz  
Figure 87. Receiver Noise Figure vs. Receiver Offset Frequency from LO,  
Integration Bandwidth = 200 kHz, LO = 300 MHz  
20  
20  
18  
+110°C  
18  
16  
14  
12  
10  
8
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
16  
14  
12  
10  
8
6
4
2
0
75  
–25  
–15  
–5  
5
15  
25  
175  
275  
375  
475  
RECEIVER OFFSET FREQUENCY FROM LO (525MHz)  
RECEIVER LO FREQUENCY (MHz)  
Figure 88. Receiver Noise Figure vs. Receiver Offset Frequency from LO,  
Integration Bandwidth = 200 kHz, LO = 525 MHz  
Figure 85. Receiver Noise Figure vs. Receiver LO Frequency, Receiver  
Attenuation = 0 dB, RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS,  
Integration Bandwidth = 25 MHz  
Rev. B | Page 36 of 127  
Data Sheet  
ADRV9009  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
45  
40  
+110°C (SUM)  
+25°C (SUM)  
–40°C (SUM)  
+110°C (DIFF)  
+25°C (DIFF)  
–40°C (DIFF)  
+110°C (SUM)  
+25°C (SUM)  
–40°C (SUM)  
+110°C (DIFF)  
+25°C (DIFF)  
–40°C (DIFF)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
305.0 307.5 310.0 312.5 315.0 317.5 320.0 322.5 325.0 327.5  
306.0 308.5 311.0 313.5 316.0 318.5 321.0 323.5 326.0 328.5  
RECEIVER ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 89. Receiver IIP2 vs. Receiver Attenuation, LO = 75 MHz,  
Tones Placed at 82.5 MHz and 83.5 MHz, −23.5 dBm Plus Attenuation  
Figure 92. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 300 MHz, 10 Tone Pairs,  
−23.5 dBm Each  
110  
100  
90  
110  
Rx1 (SUM) = +110°C  
Rx1 (DIFF) = +110°C  
Rx1 (SUM) = +25°C  
Rx1 (DIFF) = +25°C  
Rx1 (SUM) = –40°C  
Rx1 (DIFF) = –40°C  
100  
90  
80  
70  
60  
50  
80  
Rx2 (SUM) = +110°C  
Rx2 (DIFF) = +110°C  
Rx2 (SUM) = +25°C  
Rx2 (DIFF) = +25°C  
Rx2 (SUM) = –40°C  
Rx2 (DIFF) = –40°C  
70  
60  
50  
+110°C (SUM)  
+25°C (SUM)  
–40°C (SUM)  
+110°C (DIFF)  
+25°C (DIFF)  
–40°C (DIFF)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 90. Receiver IIP2 vs. Receiver Attenuation, LO = 300 MHz, Tones Placed  
at 310 MHz and 311 MHz, −23.5 dBm Plus Attenuation  
Figure 93. Receiver IIP2 vs. Receiver Attenuation, LO = 75 MHz, Tones Placed  
at 77 MHz and 97 MHz, −23.5 dBm Plus Attenuation  
80  
75  
70  
65  
80  
Rx1 (SUM) = +110°C  
Rx1 (DIFF) = +110°C  
Rx1 (SUM) = +25°C  
Rx1 (DIFF) = +25°C  
Rx1 (SUM) = –40°C  
75  
70  
Rx1 (DIFF) = –40°C  
65  
60  
60  
+110°C (SUM)  
+25°C (SUM)  
–40°C (SUM)  
+110°C (DIFF)  
+25°C (DIFF)  
–40°C (DIFF)  
55  
50  
45  
40  
55  
Rx2 (SUM) = +110°C  
Rx2 (DIFF) = +110°C  
Rx2 (SUM) = +25°C  
Rx2 (DIFF) = +25°C  
Rx2 (SUM) = –40°C  
Rx2 (DIFF) = –40°C  
50  
45  
40  
79.5  
77.0  
80.0  
81.0  
82.5  
83.5  
87.5  
88.5  
90.0  
91.0  
92.5  
93.5  
95.0  
96.0  
97.5  
98.5  
100.0 102.5  
101.0 103.5  
82.0  
77.0  
84.5  
77.0  
87.0  
77.0  
89.5  
77.0  
92.0  
77.0  
94.5  
77.0  
97.0  
77.0  
99.5  
77.0  
SWEPT PASS BAND FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 91. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 75 MHz, 10 Tone Pairs,  
−23.5 dBm Each  
Figure 94. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept Pass  
Band Frequency, Receiver Attenuation = 0 dB, LO = 75 MHz, Tone 1 =  
77 MHz, Tone 2 Swept, −23.5 dBm Each  
Rev. B | Page 37 of 127  
ADRV9009  
Data Sheet  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
0
0
0
5
10  
15  
20  
25  
30  
302.0 302.0 302.0 302.0 302.0 302.0 302.0 302.0 302.0 302.0  
304.5 307.0 309.5 312.0 314.5 317.0 319.5 322.0 324.5 327.0  
ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 98. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver Attenuation  
= 0 dB, LO = 300 MHz, Tone 1 = 302 MHz, Tone 2 = Swept Across Pass Band,  
−19 dBm Each  
Figure 95. Receiver IIP3 vs. Attenuation, LO = 300 MHz, Tone 1 = 325 MHz,  
Tone 2 = 326 MHz, −21 dBm Plus Attenuation  
25  
20  
15  
–10  
–20  
+110°C  
+25°C  
–30  
–40°C  
–40  
–50  
–60  
10  
5
–70  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
–80  
–90  
–100  
0
–110  
305.0 307.5 310.0 312.5 315.0 317.5 320.0 322.5 325.0 327.5  
306.0 308.5 311.0 313.5 316.0 318.5 321.0 323.5 326.0 328.5  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
BASEBAND FREQUENCY OFFSET  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 96. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver Attenuation  
= 0 dB, LO = 300 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm Each  
Figure 99. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 50 MHz, Tracking Calibration Active,  
Sample Rate = 61.44 MSPS, LO = 75 MHz  
50  
45  
40  
35  
30  
25  
–10  
–20  
+110°C  
+25°C  
–30  
–40°C  
–40  
–50  
–60  
20  
–70  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
15  
–80  
Rx2 = +110°C  
Rx2 = +25°C  
10  
–90  
Rx2 = –40°C  
5
–100  
0
–110  
0
5
10  
20  
25  
30  
35  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET  
Figure 97. Receiver IIP3 vs. Attenuation, LO = 300 MHz, Tone 1 = 302 MHz,  
Tone 2 = 322 MHz, −19 dBm Plus Attenuation  
Figure 100. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 50 MHz, Tracking Calibration Active,  
Sample Rate = 61.44 MSPS, LO = 300 MHz  
Rev. B | Page 38 of 127  
Data Sheet  
ADRV9009  
–10  
–20  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–30  
–40  
–50  
–60  
–70  
0
–80  
–5  
–10  
–15  
–90  
–100  
–110  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
30  
BASEBAND FREQUENCY OFFSET  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 101. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 50 MHz, Tracking Calibration Active,  
Sample Rate = 61.44 MSPS, LO = 525 MHz  
Figure 104. Receiver Gain vs. Receiver Attenuator Setting, RF Bandwidth =  
50 MHz, Sample Rate = 61.44 MSPS, LO = 75 MHz  
0
25  
20  
+110°C  
+25°C  
+110°C  
+25°C  
–20  
–40°C  
–40°C  
15  
10  
5
–40  
–60  
–80  
0
–5  
–10  
–15  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 102. Receiver Image vs. Attenuator Setting, RF Bandwidth = 25 MHz,  
Tracking Calibration Active, Sample Rate = 61.44 MSPS, LO = 75 MHz,  
Baseband Frequency = 25 MHz  
Figure 105. Receiver Gain vs. Receiver Attenuator Setting,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS, LO = 325 MHz  
0
25  
20  
+110°C  
+25°C  
+110°C  
+25°C  
–20  
–40°C  
–40°C  
15  
10  
5
–40  
–60  
–80  
0
–5  
–10  
–15  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 103. Receiver Image vs. Attenuator Setting, RF Bandwidth = 25 MHz,  
Tracking Calibration Active, Sample Rate = 61.44 MSPS, LO = 325 MHz,  
Baseband Frequency = 25 MHz  
Figure 106. Receiver Gain vs. Receiver Attenuator Setting,  
RF Bandwidth = 50 MHz, Sample Rate = 61.44 MSPS, LO = 525 MHz  
Rev. B | Page 39 of 127  
ADRV9009  
Data Sheet  
0.5  
0.4  
24  
22  
20  
18  
16  
14  
12  
10  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
75  
125  
175  
225  
275  
320  
375  
425  
475  
525  
RECEIVER ATTENUATOR SETTING (dB)  
LO FREQUENCY (MHz)  
Figure 107. Receiver Gain vs. LO Frequency, RF Bandwidth = 50 MHz,  
Sample Rate = 61.44 MSPS  
Figure 110. Receiver Gain Step Error vs. Receiver Attenuator Setting,  
LO = 525 MHz  
0.5  
0.5  
0.4  
0.4  
0.3  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
0.2  
0.1  
0
0.1  
–0.1  
–0.2  
–0.3  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
I RIPPLE = +110°C  
I RIPPLE = +25°C  
I RIPPLE = –40°C  
Q RIPPLE = +110°C  
Q RIPPLE = +25°C  
Q RIPPLE = –40°C  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
RECEIVER ATTENUATOR SETTING (dB)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 108. Receiver Gain Step Error vs. Receiver Attenuator Setting,  
LO = 75 MHz  
Figure 111. Normalized Receiver Baseband Flatness vs. Baseband Offset  
Frequency, LO = 75 MHz  
0.5  
–50  
0.4  
+110°C  
+110°C  
+25°C  
–40°C  
–60  
+25°C  
–40°C  
0.3  
0.2  
–70  
0.1  
0
–80  
–90  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–100  
–110  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
75  
125  
175  
225  
275  
325  
375  
425  
475  
525  
RECEIVER ATTENUATOR SETTING (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 109. Receiver Gain Step Error vs. Receiver Attenuator Setting,  
LO = 325 MHz  
Figure 112. Receiver DC Offset vs. Receiver LO Frequency  
Rev. B | Page 40 of 127  
Data Sheet  
ADRV9009  
–70  
–30  
–40  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
–75  
+110°C  
+25°C  
–40°C  
–50  
–80  
–85  
–60  
–70  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–95  
–100  
–105  
–110  
0
5
10  
15  
20  
25  
30  
–30  
–20  
–10  
0
10  
20  
30  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 113. Receiver DC Offset vs. Receiver Attenuator Setting, LO = 75 MHz  
Figure 116. Receiver HD2 Left vs. Baseband Frequency Offset and Attenuation,  
Tone Level = −21 dBm at Attenuation = 0 dB, X-Axis is Baseband Frequency Offset  
of Fundamental Tone, Not Frequency of HD2 Product (HD2 Product Is 2 ×  
Baseband Frequency), HD2 Canceller Disabled, LO = 300 MHz  
–70  
–30  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
–40  
–75  
+110°C  
+25°C  
–40°C  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
–50  
–80  
–85  
–60  
–70  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–95  
–100  
–105  
–110  
0
5
10  
15  
20  
25  
30  
–30  
–20  
–10  
0
10  
20  
30  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 114. Receiver DC Offset vs. Receiver Attenuator Setting, LO = 525 MHz  
Figure 117. Receiver HD2 Left vs. Baseband Frequency Offset and Attenuation,  
Tone Level = −21 dBm at Attenuation = 0 dB, X-Axis is Baseband Frequency Offset  
of Fundamental Tone, Not Frequency of HD2 Product (HD2 Product Is 2 ×  
Baseband Frequency), HD2 Canceller Disabled, LO = 525 MHz  
–30  
–10  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
+110°C Rx2 (RIGHT)  
+110°C Rx1 (RIGHT)  
+25°C Rx2 (RIGHT)  
+25°C Rx1 (RIGHT)  
–40°C Rx2 (RIGHT)  
–40°C Rx1 (RIGHT)  
+110°C Rx2 (LEFT)  
+110°C Rx1 (LEFT)  
+25°C Rx2 (LEFT)  
+25°C Rx1 (LEFT)  
–40°C Rx2 (LEFT)  
–40°C Rx1 (LEFT)  
–40  
–30  
–50  
–50  
–60  
–70  
–80  
–70  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–110  
–130  
–150  
–30  
–20  
–10  
0
10  
20  
30  
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
FREQUENCY OFFSET FROM LO AND ATTENUATION (MHz)  
Figure 115. Receiver HD2, Left vs. Baseband Frequency Offset and Attenuation,  
Tone Level = −21 dBm at Attenuation = 0 dB, X-Axis is Baseband Frequency Offset  
of Fundamental Tone, Not Frequency of HD2 Product (HD2 Product is 2 ×  
Baseband Frequency), HD2 Canceller Disabled, LO = 75 MHz  
Figure 118. Receiver HD3, Left and Right vs. Frequency Offset from LO and  
Attenuation, Tone Level = −16 dBm at Attenuation = 0 dB, LO = 75 MHz  
Rev. B | Page 41 of 127  
ADRV9009  
Data Sheet  
–10  
0
–5  
+110°C Rx2 (RIGHT)  
+110°C Rx1 (RIGHT)  
+25°C Rx2 (RIGHT)  
+25°C Rx1 (RIGHT)  
–40°C Rx2 (RIGHT)  
–40°C Rx1 (RIGHT)  
+110°C Rx2 (LEFT)  
+110°C Rx1 (LEFT)  
+25°C Rx2 (LEFT)  
+25°C Rx1 (LEFT)  
–40°C Rx2 (LEFT)  
–40°C Rx1 (LEFT)  
–30  
+110°C  
+25°C  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–50  
–70  
–90  
–110  
–130  
–150  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
FREQUENCY OFFSET FROM LO (MHz)  
LTE 20MHz RF INPUT POWER (dBm)  
Figure 119. Receiver HD3, Left and Right vs. Frequency Offset from LO,  
Tone Level = −17 dBm at Attenuation = 0 dB, LO = 300 MHz  
Figure 122. Receiver EVM vs. LTE 20 MHz RF Input Power, LTE 20 MHz RF  
Signal, LO = 300 MHz, Default AGC Settings  
–10  
0
+110°C Rx2 (RIGHT)  
+110°C Rx1 (RIGHT)  
+25°C Rx2 (RIGHT)  
+25°C Rx1 (RIGHT)  
–40°C Rx2 (RIGHT)  
–40°C Rx1 (RIGHT)  
+110°C Rx2 (LEFT)  
+110°C Rx1 (LEFT)  
+25°C Rx2 (LEFT)  
+25°C Rx1 (LEFT)  
–40°C Rx2 (LEFT)  
–40°C Rx1 (LEFT)  
–5  
–30  
–50  
+110°C  
+25°C  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–70  
–90  
–110  
–130  
–150  
–25  
–20  
–15  
–10  
–5  
5
10  
15  
20  
25  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
FREQUENCY OFFSET FROM LO (MHz)  
LTE 20MHz RF INPUT POWER (dBm)  
Figure 120. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −17 dBm at Attenuation = 0 dB, LO = 525 MHz  
Figure 123. Receiver EVM vs. LTE 20 MHz RF Input Power, LTE 20 MHz RF  
Signal, LO = 525 MHz, Default AGC Settings  
0
0
–5  
10  
+110°C  
Rx1 TO Rx2  
Rx2 TO Rx1  
+25°C  
–10  
20  
–40°C  
–15  
30  
40  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
50  
60  
70  
80  
90  
100  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
0
100  
200  
300  
400  
500  
600  
LTE 20MHz RF INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
Figure 121. Receiver EVM vs. LTE 20 MHz RF Input Power, LTE 20 MHz RF  
Signal, LO = 75 MHz, Default AGC Settings  
Figure 124. Receiver to Receiver Isolation vs. LO Frequency, Baseband  
Frequency = 10 MHz  
Rev. B | Page 42 of 127  
Data Sheet  
ADRV9009  
–80  
–85  
–90  
–80  
–85  
–90  
100Hz = –95.48dBc/Hz  
1kHz = –103.55dBc/Hz  
10kHz = –109.36dBc/Hz  
100kHz = –116.28dBc/Hz  
1MHz = –144.62dBc/Hz  
10MHz = –152.33dBc/Hz  
100MHz = –152.85dBc/Hz  
100Hz = –110.00dBc/Hz  
1kHz = –120.75dBc/Hz  
10kHz = –126.54dBc/Hz  
100kHz = –132.76dBc/Hz  
1MHz = –150.09dBc/Hz  
10MHz = –151.09dBc/Hz  
100MHz = –150.74dBc/Hz  
–95  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET (Hz)  
FREQUENCY OFFSET (Hz)  
Figure 125. LO Phase Noise vs. Frequency Offset, LO = 75 MHz, PLL Loop  
Bandwidth = 50 kHz  
Figure 127. LO Phase Noise vs. Frequency Offset, LO = 525 MHz, PLL Loop  
Bandwidth = 50 kHz  
–80  
100Hz = –99.81dBc/Hz  
–85  
1kHz  
= –108.20dBc/Hz  
–90  
–95  
10kHz = –114.24dBc/Hz  
100kHz = –120.82dBc/Hz  
1MHz = –147.16dBc/Hz  
10MHz = –152.38dBc/Hz  
100MHz = –152.51dBc/Hz  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET (Hz)  
Figure 126. LO Phase Noise vs. Frequency Offset, LO = 300 MHz, PLL Loop  
Bandwidth = 50 kHz  
Rev. B | Page 43 of 127  
ADRV9009  
Data Sheet  
650 MHz TO 3000 MHz BAND  
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
–2.25  
–2.50  
–2.75  
–3.00  
1.0  
0.8  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–225 –175 –125 –75  
–25  
25  
75  
125  
175  
225  
BASEBAND OFFSET FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 128. Transmitter Matching Circuit Path Loss vs. LO Frequency, Can be  
Used for De-Embedding Performance Data  
Figure 131. Transmitter Pass Band Flatness vs. Baseband Offset Frequency,  
LO = 2600 MHz  
14  
–70  
+110°C  
+25°C  
–40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
13  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
12  
11  
10  
9
8
7
6
5
4
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
TRANSMITTER LO FREQUENCY (MHz)  
BASEBAND LO FREQUENCY (MHz)  
Figure 129. Transmitter CW Output Power vs. Transmitter LO Frequency,  
Transmitter QEC and External LO Leakage Active, Transmitter in  
200 MHz/450 MHz Bandwidth Mode, IQ Rate = 491.52 MHz, 0 dB  
Attenuation, Not De-Embedded  
Figure 132. Transmitter LO Leakage vs. Baseband LO Frequency, Transmitter  
Attenuation = 0 dB  
0
0
+110°C ATTN = 25  
+110°C ATTN = 20  
+110°C ATTN = 15  
+110°C ATTN = 10  
+110°C ATTN = 5  
+110°C ATTN = 0  
+25°C ATTN = 25  
+25°C ATTN = 20  
+25°C ATTN = 15  
+25°C ATTN = 10  
+25°C ATTN = 5  
+25°C ATTN = 0  
–40°C ATTN = 25  
–40°C ATTN = 20  
–40°C ATTN = 15  
–40°C ATTN = 10  
–40°C ATTN = 5  
–40°C ATTN = 0  
Tx2 TO Rx2 = +110°C  
Tx2 TO Rx1 = +110°C  
Tx1 TO Rx2 = +110°C  
Tx1 TO Rx1 = +110°C  
Tx2 TO Rx2 = +25°C  
Tx2 TO Rx1 = +25°C  
Tx1 TO Rx2 = +25°C  
Tx1 TO Rx1 = +25°C  
Tx2 TO Rx2 = –40°C  
Tx2 TO Rx1 = –40°C  
Tx1 TO Rx2 = –40°C  
Tx1 TO Rx1 = –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
40  
60  
80  
100  
120  
–100  
–50  
0
50  
100  
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
RECEIVER LO FREQUENCY (MHz)  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 130. Transmitter Image Rejection Across Large Signal Bandwidth vs.  
Baseband Frequency Offset and Attenuation, QEC Trained with Three Tones  
Placed at 10 MHz, 50 MHz, and 100 MHz (Tracking On), Total Combined  
Power = −6 dBFS, Correction Then Frozen (Tracking Turned Off), CW Tone  
Swept Across Large Signal Bandwidth  
Figure 133. Transmitter to Receiver Isolation vs. Receiver LO Frequency  
Rev. B | Page 44 of 127  
 
Data Sheet  
ADRV9009  
0
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
Tx1 – Tx2  
Tx2 – Tx1  
20  
40  
60  
80  
100  
120  
600  
1000  
1400  
1800  
2200  
2600  
3000  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
SIGNAL OFFSET 90MHz  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 134. Transmitter to Transmitter Isolation vs. Transmitter LO  
Frequency, Temperature = 25°C  
Figure 137. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 90 MHz, LO = 1850 MHz, LTE20 MHz,  
PAR = 12 dB, Upper Side and Lower Side  
–40  
–145  
–150  
–155  
–160  
–165  
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
2600MHz = +110°C  
1800MHz = +110°C  
650MHz = +110°C  
2600MHz = +25°C  
1800MHz = +25°C  
650MHz = +25°C  
2600MHz = –40°C  
1800MHz = –40°C  
650MHz = –40°C  
–170  
–175  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
TRANSMITTER ATTENUATOR SETTING (dB)  
SIGNAL OFFSET 90MHz  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 138. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset = 90 MHz, LO = 2850 MHz, LTE20 MHz,  
PAR = 12 dB, Upper Side and Lower Side  
Figure 135. Transmitter Noise vs. Transmitter Attenuator Setting,  
35  
–40  
+110°C  
+25°C  
–40°C  
Tx1 +110°C (LOWER)  
Tx1 +110°C (UPPER)  
Tx1 +25°C (LOWER)  
Tx1 +25°C (UPPER)  
Tx1 –40°C (LOWER)  
Tx1 –40°C (UPPER)  
Tx2 +110°C (LOWER)  
Tx2 +110°C (UPPER)  
Tx2 +25°C (LOWER)  
Tx2 +25°C (UPPER)  
Tx2 –40°C (LOWER)  
Tx2 –40°C (UPPER)  
30  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
25  
20  
15  
10  
5
0
–5  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
SIGNAL OFFSET 90MHz  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 139. Transmitter OIP3, Right or Upper Sideband vs. Transmitter  
Attenuator Setting, LO = 850 MHz, 15 dB Digital Backoff per Tone  
Figure 136. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, Signal Offset 90 MHz, LO = 650 MHz, LTE20 PAR = 12 dB,  
Upper Side and Lower Side  
Rev. B | Page 45 of 127  
ADRV9009  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0
–5  
–10  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 85 90 95  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 90 95 100  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 140. Transmitter OIP3, Right vs. Transmitter Attenuator Setting, LO =  
1850 MHz, 15 dB Digital Backoff per Tone  
Figure 143. Transmitter OIP3, Right vs. Baseband Tone Pair Swept Across Pass  
Band, LO = 1850 MHz 15 dB Digital Backoff per Tone  
40  
40  
35  
30  
25  
20  
+110°C  
+25°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
Tx1 = +110°C  
15  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
10  
5
0
–5  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 85 90 95  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 90 95 100  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 141. Transmitter OIP3, Right vs. Transmitter Attenuator Setting, LO =  
2650 MHz, 15 dB Digital Backoff per Tone  
Figure 144. Transmitter OIP3, Right vs. Baseband Tone Pair Swept Across Pass  
Band, LO = 2850 MHz,15 dB Digital Backoff per Tone  
45  
40  
35  
30  
25  
20  
0
+110°C = (UPPER)  
+110°C = (HD2)  
+25°C = (UPPER)  
+25°C = (HD2)  
–40°C = (UPPER)  
–40°C = (HD2)  
–20  
–40  
–60  
Tx1 = +110°C  
15  
–80  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
10  
–100  
–120  
Tx2 = +25°C  
Tx2 = –40°C  
5
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 85 90 95  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 90 95 100  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 145. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 1850 MHz, Digital Backoff = 15 dB  
Figure 142. Transmitter OIP3, Right vs. Baseband Tone Pair Swept Across Pass  
Band, LO = 850 MHz, 15 dB Digital Backoff per Tone  
Rev. B | Page 46 of 127  
Data Sheet  
ADRV9009  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–20  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 149. Transmitter HD3 Image Appears on Same Sideband as Desired Signal  
vs. Transmitter Attenuator Setting, LO = 1850 MHz Digital Backoff = 15 dB  
Figure 146. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 650 MHz, Digital Backoff = 15 dB  
0.025  
0
+110°C  
+25°C  
–40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0.020  
0.015  
0.010  
0.005  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATION SETTING (dB)  
Figure 147. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 1850 MHz, Digital Backoff = 15 dB  
Figure 150. Transmitter Attenuation Step Error vs. Transmitter Attenuator  
Setting, LO = 650 MHz  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
#VBW 1.0kHz  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 151. Amplitude vs. Frequency, Transmitter Output Spurious,  
Transmitter 1 = 650 MHz, LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS,  
Temperature = 25°C  
Figure 148. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 2850 MHz, Digital Backoff = 15 dB  
Rev. B | Page 47 of 127  
ADRV9009  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
#VBW 1.0kHz  
#VBW 1.0kHz  
Figure 152. Amplitude vs. Frequency, Transmitter Output Spurious,  
Transmitter 2 = 650 MHz, LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS,  
Temperature = 25°C  
Figure 155. Amplitude vs. Frequency, Transmitter Output Spurious,  
Transmitter 1 = 2850 MHz, LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS,  
Temperature = 25°C  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
#VBW 1.0kHz  
#VBW 1.0kHz  
Figure 153. Amplitude vs. Frequency, Transmitter Output Spurious, Transmitter 1  
= 1850 MHz, LTE = 5 MHz, Offset = 10 MHz, RMS −12 dBFS, Temperature = 25°C  
Figure 156. Amplitude vs. Frequency, Transmitter Output Spurious,  
Transmitter 2 = 2850 MHz, LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS,  
Temperature = 25°C  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
–2.25  
–2.50  
–2.75  
–3.00  
CENTER 650.0MHz  
#RES BW 1.0MHz  
SPAN 1.000GHz  
SWEEP 1.007s (3001pts)  
#VBW 1.0kHz  
LO FREQUENCY (MHz)  
Figure 154. Amplitude vs. Frequency, Transmitter Output Spurious,  
Transmitter 2 = 1850 MHz, LTE = 5 MHz, Offset = 10 MHz, RMS = −12 dBFS,  
Temperature = 25°C  
Figure 157. Observation Receiver Matching Circuit Path Loss vs. LO  
Frequency, Can Be Used for De-Embedding Performance Data  
Rev. B | Page 48 of 127  
Data Sheet  
ADRV9009  
0
80  
75  
70  
65  
60  
55  
50  
45  
40  
+110°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
1806 1826 1846 1866 1886 1906 1926 1946 1966 1986 2006 2026 2046 2066  
1805 1825 1845 1865 1885 1905 1925 1945 1965 1985 2005 2025 2045 2065  
TRANSMITTER LO FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 161. Observation Receiver IIP2, Sum and Difference Products vs.  
Swept Pass Band Frequency, LO =1800 MHz, Attenuation = 0 dB  
Figure 158. Observation Receiver LO Leakage vs. Transmitter LO Frequency,  
80  
75  
70  
65  
60  
24  
+110°C  
23  
+25°C  
–40°C  
22  
21  
20  
19  
18  
17  
16  
15  
55  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
50  
45  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
14  
40  
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
2856 2876 2896 2916 2936 2956 2976 2996 3016 3036 3056 3076 3096 3116  
2855 2875 2895 2915 2935 2955 2975 2995 3015 3035 3055 3075 3095 3115  
OBSERVATION RECEIVER LO FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 162. Observation Receiver IIP2, Sum and Difference Products vs.  
Swept Pass Band Frequency, LO = 2850 MHz, Attenuation = 0 dB  
Figure 159. Observation Receiver Noise Figure vs. Observation Receiver LO  
Frequency, Total Nyquist Integration Bandwidth  
75  
70  
65  
60  
80  
75  
70  
65  
60  
55  
INPUT IP2 SUM +110°C  
INPUT IP2 SUM +25°C  
INPUT IP2 SUM –40°C  
INPUT IP2 DIFF +110°C  
INPUT IP2 DIFF +25°C  
INPUT IP2 DIFF –40°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
50  
55  
50  
45  
40  
656 676 696 716 736 756 776 796 806 826 846 866 886 906  
655 675 695 715 735 755 775 795 805 825 845 865 885 905  
0
2
4
6
8
10  
ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 160. Observation Receiver IIP2, Sum and Difference Products vs.  
Swept Pass Band Frequency, LO = 650 MHz, Attenuation = 0 dB  
Figure 163. Observation Receiver IIP2, Sum and Difference Products vs.  
Attenuation, Tone 1 = 1845 MHz, Tone 2 = 1846 MHz at −19 dBm Plus  
Attenuation, LO = 1800 MHz  
Rev. B | Page 49 of 127  
ADRV9009  
Data Sheet  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
75  
70  
65  
60  
55  
50  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
2
4
6
8
10  
662 682 702 722 742 762 782 802 822 842 862 882 902  
ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 167. Observation Receiver IIP2, f1 − f2 vs. Attenuation,  
LO = 1800 MHz, Tone 1 = 1802 MHz, Tone 2 = 1902 MHz at −19 dBm  
Plus Attenuation  
Figure 164. Observation Receiver IIP2, f1 − f2 vs. f1 Offset Frequency, LO =  
650 MHz, Tone 1 = 652 MHz, Tone 2 = Swept at −19 dBm Each, Attenuation = 0 dB  
25  
80  
70  
60  
50  
40  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
20  
15  
10  
5
30  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
20  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
10  
0
0
656 676 696 716 736 756 776 796 816 836  
875 895 915 935  
876 896 916 936  
856  
655 675 695 715 735 755 775 795  
815 835 855  
f1 OFFSET FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 165. Observation Receiver IIP2, f1 − f2 vs. f1 Offset Frequency, LO =  
1800 MHz, Tone 1 = 1802 MHz, Tone 2 = Swept at −19 dBm Each, Attenuation =  
0 dB  
Figure 168. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency,  
LO = 650 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass  
Band at −19 dBm Each  
25  
80  
70  
60  
50  
40  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
20  
15  
10  
5
30  
IIP2 SUM +110°C  
20  
10  
0
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
1805 1825 1845 1865 1885 1905 1925 1945 1965 1985 2005 2025 2045  
1806 1826 1846 1866 1886 1906 1926 1946 1966 1986 2006 2026 2046  
f1 OFFSET FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 169. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency,  
LO = 1800 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass  
Band at −19 dBm Each  
Figure 166. Observation Receiver IIP2, f1 − f2 vs. f1 Offset Frequency, LO =  
2850 MHz, Tone 1 = 2852 MHz, Tone 2 = Swept at −19 dBm Each,  
Attenuation = 0 dB  
Rev. B | Page 50 of 127  
Data Sheet  
ADRV9009  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
ORx2 = +110°C  
ORx2 = +25°C  
ORx2 = –40°C  
0
2855  
2856  
0
1812  
1842  
1872  
1902  
1932  
1962  
1992  
2022  
2052  
2885  
2886  
2915  
2916  
2945  
2946  
2975  
2976  
3005  
3006  
3035  
3036  
3065  
3066  
3095  
3096  
INTERMODULATION FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 173. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation  
Frequency, LO = 1800 MHz, Tone 1 = 1802 MHz, Tone 2 = Swept at −19 dBm Each  
Figure 170. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency,  
LO = 2850 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across  
Pass Band at −19 dBm Each  
30  
24  
22  
20  
18  
16  
14  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
ORx2 = +110°C  
ORx2 = +25°C  
ORx2 = –40°C  
25  
20  
15  
10  
5
12  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
10  
8
0
2862  
6
2892  
2922  
2952  
2982  
3012  
3042  
3072  
3102  
0
2
4
6
8
10  
INTERMODULATION FREQUENCY (MHz)  
ATTENUATION (dB)  
Figure 174. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation  
Frequency, LO = 2850 MHz, Tone 1 = 2852 MHz, Tone 2 = Swept at −19 dBm Each  
Figure 171. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation,  
LO = 1800 MHz, Tone 1 = 1895 MHz, Tone 2 = 1896 MHz at −19 dBm Plus  
Attenuation  
24  
22  
20  
18  
16  
14  
25  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
ORx2 = +110°C  
ORx2 = +25°C  
ORx2 = –40°C  
20  
15  
10  
5
12  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
10  
8
6
0
662  
692  
722  
752  
782  
812  
842  
872  
902  
0
2
4
6
8
10  
ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 175. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation,  
LO = 1800 MHz, Tone 1 = 1802 MHz, Tone 2 = 1922 MHz at −19 dBm  
Plus Attenuation  
Figure 172. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation Frequency,  
LO = 650 MHz, Tone 1 = 652 MHz, Tone 2 = Swept at −19 dBm Each  
Rev. B | Page 51 of 127  
ADRV9009  
Data Sheet  
0
18  
16  
14  
12  
10  
8
+110°C = 11.5dB  
+110°C = 0dB  
+25°C = 11.5dB  
+25°C = 0dB  
–40°C = 11.5dB  
–40°C = 0dB  
+110°C  
+25°C  
–40°C  
–20  
–40  
–60  
–80  
–100  
–120  
6
0
1
2
3
4
5
6
7
8
9
10 11 12  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 176. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Pass Band, LO = 650 MHz  
Figure 179. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 650 MHz  
0
18  
+110°C = 11.5dB  
+110°C = 0dB  
+25°C = 11.5dB  
+25°C = 0dB  
–40°C = 11.5dB  
–40°C = 0dB  
+110°C  
+25°C  
–40°C  
–20  
–40  
16  
14  
12  
10  
8
–60  
–80  
–100  
–120  
6
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 180. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 1800 MHz  
Figure 177. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Pass Band, LO = 1850 MHz  
18  
0
+110°C  
+25°C  
–40°C  
+110°C = 11.5dB  
+110°C = 0dB  
+25°C = 11.5dB  
16  
–20  
+25°C = 0dB  
–40°C = 11.5dB  
–40°C = 0dB  
14  
12  
10  
8
–40  
–60  
–80  
–100  
6
–120  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 178. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Pass Band, LO = 2850 MHz  
Figure 181. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 2800 MHz  
Rev. B | Page 52 of 127  
Data Sheet  
ADRV9009  
0.5  
0.4  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+25°C  
–40°C  
+110°C = 0 (RIGHT)  
+110°C = 11.5 (RIGHT)  
+110°C = 0 (LEFT)  
+110°C = 11.5 (LEFT)  
+25°C = 0 (RIGHT)  
+25°C = 11.5 (RIGHT)  
+25°C = 0 (LEFT)  
+25°C = 11.5 (LEFT)  
–40°C = 0 (RIGHT)  
–40°C = 11.5 (RIGHT)  
–40°C = 0 (LEFT)  
0.3  
0.2  
–40°C = 11.5 (LEFT)  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
1
2
3
4
5
6
7
8
9
10  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
OFFSET FREQUENCY AND ATTENUATION (MHz)  
Figure 185. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 650 MHz, Tone Level = −20 dBm at 0 dB Attenuation  
Figure 182. Transmitter Pass Band Flatness vs. Observation Receiver  
Attenuator Setting, LO = 2600 MHz  
0.5  
0
+110°C = 0 (RIGHT)  
+110°C = 11.5 (RIGHT)  
+110°C = 0 (LEFT)  
+110°C = 11.5 (LEFT)  
+25°C = 0 (RIGHT)  
+25°C = 11.5 (RIGHT)  
+25°C = 0 (LEFT)  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
+25°C = 11.5 (LEFT)  
–40°C = 0 (RIGHT)  
–40°C = 11.5 (RIGHT)  
–40°C = 0 (LEFT)  
–20  
–40  
0.2  
–40°C = 11.5 (LEFT)  
0.1  
0
–60  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
OFFSET FREQUENCY AND ATTENUATION (MHz)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 183. Observation Receiver Pass Band Flatness vs. Baseband Frequency  
Offset, LO = 1800 MHz  
Figure 186. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 1850 MHz, Tone Level = −20 dBm at 0 dB Attenuation  
0
0
HD2 RIGHT ATTENUATION = 0dB, +110°C  
HD2 RIGHT ATTENUATION = 11.0dB, +110°C  
+110°C  
+25°C  
–40°C  
–20  
–20  
–40  
HD2 LEFT ATTENUATION = 0dB, +110°C  
HD2 LEFT ATTENUATION = 11.5dB, +110°C  
HD2 RIGHT ATTENUATION = 0dB, +25°C  
HD2 RIGHT ATTENUATION = 11.5dB, +25°C  
HD2 LEFT ATTENUATION = 0dB, +25°C  
HD2 LEFT ATTENUATION = 11.5dB, +25°C  
HD2 RIGHT ATTENUATION = 0dB, –40°C  
HD2 RIGHT ATTENUATION = 11.5dB, –40°C  
HD2 LEFT ATTENUATION = 0dB, –40°C  
HD2 LEFT ATTENUATION = 11.5dB, –40°C  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
0
1
2
3
4
5
6
7
8
9
10  
–75  
–50  
–25  
0
25  
50  
75  
100  
ATTENUATION (dB)  
OFFSET FREQUENCY AND ATTENUATION (MHz)  
Figure 184. Observation Receiver DC Offset vs. Attenuation, LO = 1850 MHz  
Figure 187. Observation Receiver HD2 vs. Offset Frequency and Attenuation,  
LO = 2850 MHz, Tone Level = −20 dBm at 0 dB Attenuation  
Rev. B | Page 53 of 127  
ADRV9009  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C RIGHT = 11.5dBc  
+110°C RIGHT = 0dBc  
+110°C LEFT = 11.5dBc  
+110°C LEFT = 0dBc  
+25°C RIGHT = 11.5dBc  
+25°C RIGHT = 0dBc  
+25°C LEFT = 11.5dBc  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
+25°C LEFT = 0dBc  
–40°C RIGHT = 11.5dBc  
–40°C RIGHT = 0dBc  
–40°C LEFT = 11.5dBc  
–40°C LEFT = 0dBc  
–100  
–75  
–50  
–25  
25  
50  
75  
100  
–100  
–75  
–50  
–25  
25  
50  
75  
100  
1850  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 191. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 1850 MHz, Observation Receiver Attenuation = 0 dB and 11.5 dB  
Figure 188. Observation Receiver HD3 vs. Offset Frequency, LO = 650 MHz,  
Tone Level = −20 dBm at 0 dB Attenuation  
0
0
HD3 RIGHT dBc = +110°C  
Tx1 TO ORx1  
Tx2 TO ORx1  
Tx1 TO ORx2  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
20  
Tx2 TO ORx2  
40  
60  
80  
100  
120  
–100  
–75  
–50  
–25  
25  
50  
75  
100  
OFFSET FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 189. Observation Receiver HD3 vs. Offset Frequency, LO = 1850 MHz,  
Tone Level = −20 dBm at 0 dB Attenuation  
Figure 192. Transmitter to Observation Receiver Isolation vs. LO Frequency,  
Temperature = 25°C  
0
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
–2.25  
–2.50  
–2.75  
–3.00  
HD3 RIGHT dBc = +110°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
–100  
–75  
–50  
–25  
25  
50  
75  
100  
OFFSET FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 190. Observation Receiver HD3 vs. Offset Frequency, LO = 2850 MHz,  
Tone Level = −20 dBm at 0 dB Attenuation  
Figure 193. Receiver Matching Circuit Path Loss vs. LO Frequency, Can be  
Used for De-Embedding Performance Data  
Rev. B | Page 54 of 127  
Data Sheet  
ADRV9009  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
45  
40  
35  
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
RECEIVER ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 194. Receiver LO Leakage vs. Receiver LO Frequency, Receiver  
Attenuation = 0 dB, RF Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS  
Figure 197. Receiver Noise Figure vs. Receiver Attenuation, LO = 2850 MHz,  
Receiver Bandwidth = 200 MHz Bandwidth, Sample Rate = 245.76 MSPS,  
Integration Bandwidth = 500 kHz to 100 MHz  
45  
20  
18  
16  
14  
12  
10  
40  
35  
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
8
+110°C  
+25°C  
–40°C  
6
4
2
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
ATTENUATION (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 195. Receiver Noise Figure vs. Attenuation, LO = 650 MHz, Receiver  
Bandwidth = 200 MHz Bandwidth, Sample Rate = 245.76 MSPS, Integration  
Bandwidth = 500 kHz to 100 MHz  
Figure 198. Receiver Noise Figure vs. Receiver LO Frequency, Receiver  
Attenuation = 0 dB, RF Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS,  
Integration Bandwidth = 100 MHz  
45  
20  
–40°C  
+25°C  
40  
35  
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
+110°C  
18  
16  
14  
12  
10  
8
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
RECEIVER OFFSET FREQUENCY FROM LO (650MHz)  
ATTENUATION (dB)  
Figure 196. Receiver Noise Figure vs. Attenuation, LO = 1850 MHz, Receiver  
Bandwidth = 200 MHz Bandwidth, Sample Rate = 245.76 MSPS, Integration  
Bandwidth = 500 kHz to 100 MHz  
Figure 199. Receiver Noise Figure vs. Receiver Offset Frequency from LO,  
LO = 650 MHz  
Rev. B | Page 55 of 127  
ADRV9009  
Data Sheet  
110  
100  
90  
20  
–40°C  
–40°C (SUM)  
–40°C (DIFF)  
+25°C (SUM)  
+25°C (DIFF)  
+110°C (SUM)  
+110°C (DIFF)  
+25°C  
+110°C  
18  
16  
14  
12  
10  
8
80  
70  
60  
50  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
–80 –60 –40 –20  
0
20  
40  
60  
80  
100  
–100  
RECEIVER ATTENUATION (dB)  
RECEIVER OFFSET FREQUENCY FROM LO (1850MHz)  
Figure 203. Receiver IIP2 vs. Receiver Attenuation, LO = 1800 MHz, Tones  
Placed at 1845 MHz and 1846 MHz, −21 dBm Each at Attenuation = 0 dB  
Figure 200. Receiver Noise Figure vs. Receiver Offset Frequency from LO,  
LO = 1850 MHz  
80  
75  
70  
65  
60  
20  
–40°C  
+25°C  
+110°C  
18  
16  
14  
12  
10  
8
55  
–40°C (SUM)  
–40°C (DIFF)  
+25°C (SUM)  
+25°C (DIFF)  
+110°C (SUM)  
+110°C (DIFF)  
50  
45  
40  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
806  
805  
826  
825  
846  
845  
866  
865  
886  
885  
906  
905  
RECEIVER OFFSET FREQUENCY FROM LO (2850MHz)  
800  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 204. Receiver IIP2 Sum and Difference Across Bandwidth vs Swept  
Pass Band Frequency, LO = 800 MHz  
Figure 201. Receiver Noise Figure vs. Receiver Offset Frequency from LO,  
LO = 2850 MHz  
80  
75  
70  
65  
60  
40  
–40°C  
+25°C  
+110°C  
35  
30  
25  
20  
15  
10  
5
55  
–40°C (SUM)  
50  
–40°C (DIFF)  
+25°C (SUM)  
+25°C (DIFF)  
+110°C (SUM)  
+110°C (DIFF)  
45  
40  
0
1806  
1805  
1826  
1825  
1846  
1845  
1866  
1865  
1886  
1885  
1906  
1905  
–20  
–15  
–10  
–5  
0
5
10  
CW OUT OF BAND BLOCKER LEVEL (dBm)  
1800  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 202. Receiver Noise Figure vs. CW Out of Band Blocker Level, Receiver  
LO = 1685 MHz, Blocker = 2085 MHz  
Figure 205. Receiver IIP2 Sum and Difference Across Bandwidth vs Swept  
Pass Band Frequency, LO = 1800 MHz  
Rev. B | Page 56 of 127  
Data Sheet  
ADRV9009  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Rx1 –40°C MAX OF IIP2_SUM_CF  
Rx1 –40°C MAX OF IIP2_DIF_CF  
Rx1 +25°C MAX OF IIP2_SUM_CF  
Rx1 +25°C MAX OF IIP2_DIF_CF  
Rx1 +110°C MAX OF IIP2_SUM_CF  
Rx1 +110°C MAX OF IIP2_DIF_CF  
Rx2 –40°C MAX OF IIP2_SUM_CF  
Rx2 –40°C MAX OF IIP2_DIF_CF  
Rx2 +25°C MAX OF IIP2_SUM_CF  
Rx2 +25°C MAX OF IIP2_DIF_CF  
Rx2 +110°C MAX OF IIP2_SUM_CF  
Rx2 +110°C MAX OF IIP2_DIF_CF  
–40°C (SUM)  
–40°C (DIFF)  
+25°C (SUM)  
+25°C (DIFF)  
+110°C (SUM)  
+110°C (DIFF)  
1807 1817 1827 1837 1847 1857 1867 1877 1887 1897 1907  
2906  
2905  
2926  
2925  
2946  
2945  
2966  
2965  
2986  
2985  
3006  
3005  
SWEPT PASS BAND FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 206. Receiver IIP2 Sum and Difference Across Bandwidth vs Swept  
Pass Band Frequency, LO = 2900 MHz  
Figure 209. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 1800 MHz,  
Tone 1 = 1802 MHz, Tone 2 = Swept, −21 dBm Each  
100  
100  
Rx1 –40°C (SUM)  
Rx1 –40°C (SUM)  
Rx1 –40°C (DIF)  
95  
Rx1 –40°C (DIFF)  
Rx1 +25°C (SUM)  
Rx1 +25°C (DIFF)  
Rx1 +110°C (SUM)  
Rx1 +110°C (DIFF)  
Rx2 –40°C (SUM)  
Rx2 –40°C (DIFF)  
Rx2 +25°C (SUM)  
Rx2 +25°C (DIFF)  
Rx2 +110°C (SUM)  
Rx2 +110°C (DIFF)  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Rx1 +25°C (SUM)  
Rx1 +25°C (DIF)  
90  
Rx1 +110°C (SUM)  
Rx1 +110°C (DIF)  
85  
80  
75  
70  
65  
60  
55  
50  
Rx2 –40°C (SUM)  
Rx2 –40°C (DIF)  
Rx2 +110°C (SUM)  
Rx2 +110°C (DIF)  
807  
817  
827  
837  
847  
857  
867  
877  
887  
897  
907  
2907 2917 2927 2937 2947 2957 2967 2977 2987 2997 3007  
SWEPT PASS BAND FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 207. Receiver IIP2 vs. Swept Pass Band Frequency, LO = 1800 MHz,  
Tones Placed at 1802 MHz and 1892 MHz, −21 dBm Each at Attenuation = 0 dB  
Figure 210. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 2900 MHz,  
Tone 1 = 2902 MHz, Tone 2 = Swept, −21 dBm Each  
100  
45  
Rx1 –40°C  
Rx1 +25°C  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
RX  
1 +110°C MAX OF IIP2_SUM_CF  
1 +110°C MAX OF IIP2_DIF_CF  
2 +110°C MAX OF IIP2_SUM_CF  
2 +110°C MAX OF IIP2_DIF_CF  
1 +25°C MAX OF IIP2_SUM_CF  
1 +25°C MAX OF IIP2_DIF_CF  
2 +25°C MAX OF IIP2_SUM_CF  
2 +25°C MAX OF IIP2_DIF_CF  
1 –40°C MAX OF IIP2_SUM_CF  
1 –40°C MAX OF IIP2_DIF_CF  
2 –40°C MAX OF IIP2_SUM_CF  
2 –40°C MAX OF IIP2_DIF_CF  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
40  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +25°C  
35  
Rx2 +110°C  
30  
25  
20  
15  
10  
5
0
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
ATTENUATION (dB)  
TONE1 = 802MHz, TONE2 = SWEPT ACROSS PASSBAND  
ATTENUATOR = 0  
Figure 208. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 800 MHz,  
Tone 1 = 802 MHz, Tone 2 Swept, −21 dBm Each  
Figure 211. Receiver IIP3 vs. Attenuation, LO = 1800 MHz, Tone 1 = 1890 MHz,  
Tone 2 = 1891 MHz, −21 dBm Each at Attenuation = 0 dB  
Rev. B | Page 57 of 127  
ADRV9009  
Data Sheet  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +25°C  
Rx2 +110°C  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +25°C  
Rx2 +110°C  
0
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
ATTENUATION (dB)  
805 815 825 835 845 855 865 875 885 895 905 915 925  
806 816 826 836 846 856 866 876 886 896 906 916 926  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 215. Receiver IIP3 vs. Attenuation, LO = 1800 MHz, Tone 1 = 1802 MHz,  
Tone 2 = 1892 MHz, −21 dBm Each at Attenuation = 0 dB  
Figure 212. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver  
Attenuation = 0 dB, LO = 800 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm Each,  
Swept Across Pass Band  
30  
30  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +25°C  
Rx2 +110°C  
Rx2 –40°C  
25  
20  
15  
10  
5
25  
Rx2 +25°C  
Rx2 +110°C  
20  
15  
10  
5
0
0
1805 1815 1825 1835 1845 1855 1865 1875 1885 1895 1905 1915 1925  
1806 1816 1826 1836 1846 1856 1866 1876 1886 1896 1906 1916 1926  
807 817 827 837 847 857 867 877 887 897 907  
SWEPT PASS BAND FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 213. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver  
Attenuation = 0 dB, LO = 1800 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm  
Each, Swept Across Pass Band  
Figure 216. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver  
Attenuation = 0 dB, LO = 800 MHz, Tone 1 = 802 MHz, Tone 2 = Swept Across  
Pass Band, −21 dBm Each  
25  
30  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx1 –40°C  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +25°C  
Rx2 +110°C  
25  
20  
15  
10  
5
20  
15  
10  
5
Rx2 +25°C  
Rx2 +110°C  
0
0
2905 2915 2925 2935 2945 2955 2965 2975 2985 2995 3005 3015 3025  
2906 2916 2926 2936 2946 2956 2966 2976 2986 2996 3006 3016 3026  
1807 1817 1827 1837 1847 1857 1867 1877 1887 1897 1907  
SWEPT PASS BAND FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 214. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver  
Attenuation = 0 dB, LO = 2900 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm  
Each, Swept Across Pass Band  
Figure 217. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver  
Attenuation = 0 dB, LO = 1800 MHz, Tone 1 = 1802 MHz, Tone 2 = Swept  
Across Pass Band, −21 dBm Each  
Rev. B | Page 58 of 127  
Data Sheet  
ADRV9009  
30  
25  
20  
15  
10  
0
–20  
–40°C  
+25°C  
+110°C  
–40  
–60  
–80  
Rx1 –40°C  
5
0
–100  
–120  
Rx1 +25°C  
Rx1 +110°C  
Rx2 –40°C  
Rx2 +110°C  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
2907 2917 2927 2937 2947 2957 2967 2977 2987 2997 3007  
BASEBAND FREQUENCY OFFSET (Hz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 218. Receiver IIP3 vs. Swept Pass Band Frequency, Receiver  
Attenuation = 0 dB, LO = 2900 MHz, Tone 1 = 2902 MHz, Tone 2 = Swept  
Across Pass Band, −21 dBm Each  
Figure 221. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 2850 MHz  
0
0
–40°C  
+25°C  
+110°C  
–40°C  
+25°C  
+110°C  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
0
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
BASEBAND FREQUENCY OFFSET (Hz)  
ATTENUATOR SETTING (dB)  
Figure 219. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 650 MHz  
Figure 222. Receiver Image vs. Attenuator Setting, RF Bandwidth = 200 MHz,  
Tracking Calibration Active, Sample Rate = 245.76 MSPS, LO = 1850 MHz  
0
25  
–40°C  
–40°C  
+25°C  
+110°C  
+25°C  
+110°C  
20  
15  
10  
5
–20  
–40  
–60  
0
–80  
–5  
–10  
–15  
–100  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
BASEBAND FREQUENCY OFFSET (Hz)  
RECEIVER ATTENUATION (dB)  
Figure 220. Receiver Image vs. Baseband Frequency Offset,  
Attenuation = 0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 1850 MHz  
Figure 223. Receiver Gain vs. Receiver Attenuation, RF Bandwidth = 20 MHz,  
Sample Rate = 245.76 MSPS, LO = 1850 MHz  
Rev. B | Page 59 of 127  
ADRV9009  
Data Sheet  
24  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–40°C  
+25°C  
+110°C  
–40°C  
+25°C  
+110°C  
22  
20  
18  
16  
14  
12  
10  
650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850  
RECEIVER LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 224. Receiver Gain vs. LO Frequency, RF Bandwidth = 20 MHz,  
Sample Rate = 245.76 MSPS  
Figure 227. Receiver DC Offset vs. Receiver LO Frequency  
0.5  
–70  
–40°C  
+25°C  
+110°C  
–40°C  
+25°C  
0.4  
+110°C  
–75  
–80  
0.3  
0.2  
0.1  
0
–85  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–90  
–95  
–100  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 225. Receiver Gain Step Error vs. Receiver Attenuator Setting over  
Temperature  
Figure 228. Receiver DC Offset vs. Receiver Attenuator Setting, LO = 1850 MHz  
0.10  
0.05  
0
–30  
ATTN = 15 –40°C  
ATTN = 0 –40°C  
ATTN = 15 +25°C  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
–0.50  
–0.55  
–0.60  
–0.65  
ATTN = 0 +25°C  
ATTN = 15 +110°C  
ATTN = 0 +110°C  
–50  
–70  
–90  
–110  
–130  
–150  
–0.70  
NORMALIZED I RIPPLE  
–0.75  
–0.80  
–0.85  
–0.90  
–0.95  
–1.00  
NORMALIZED I RIPPLE  
NORMALIZED I RIPPLE  
NORMALIZED Q RIPPLE  
NORMALIZED Q RIPPLE  
NORMALIZED Q RIPPLE  
–60  
–40  
–20  
0
20  
40  
60  
BASEBAND FREQUENCY OFFSET (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 226. Normalized Receiver Baseband Flatness vs. Baseband Offset  
Frequency, LO = 2600 MHz  
Figure 229. Receiver HD2, Left vs. Baseband Frequency Offset and  
Attenuation, Tone Level = −15 dBm at Attenuation = 0, HD2 Correction  
Configured for Low-Side Optimization, X-Axis = Baseband Frequency Offset  
of Fundamental Tone, Not the Frequency of the HD2 Product (HD2 Product =  
2 × Baseband Frequency), LO = 650 MHz  
Rev. B | Page 60 of 127  
Data Sheet  
ADRV9009  
–30  
10  
–10  
Rx1 –40°C HD3 (LEFT)  
Rx1 –40°C HD3 (RIGHT)  
Rx1 +25°C HD3 (LEFT)  
Rx1 +25°C HD3 (RIGHT)  
Rx1 +110°C HD3 (LEFT)  
Rx1 +110°C HD3 (RIGHT)  
Rx2 –40°C HD3 (LEFT)  
Rx2 –40°C HD3 (RIGHT)  
ATTN = 15 –40°C  
ATTN = 0 –40°C  
ATTN = 15 +25°C  
ATTN = 0 +25°C  
ATTN = 15 +110°C  
ATTN = 0 +110°C  
–50  
–70  
–30  
–50  
–90  
–70  
–90  
–110  
–130  
–150  
–110  
–130  
–150  
Rx2 +25°C HD3 (LEFT)  
Rx2 +25°C HD3 (RIGHT)  
Rx2 +110°C HD3 (LEFT)  
Rx2 +110°C HD3 (RIGHT)  
–60  
–40  
–20  
0
20  
40  
60  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
FREQUENCY OFFSET FROM LO (MHz)  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 230. Receiver HD2, Left vs. Baseband Frequency Offset and  
Attenuation, Tone Level = −15 dBm at Attenuation = 0, HD2 Correction  
Configured for Low-Side Optimization, X-Axis = Baseband Frequency Offset  
of the Fundamental Tone, Not the Frequency of the HD2 Product (HD2  
Product = 2 × the Baseband Frequency), LO = 1850 MHz  
Figure 233. Receiver HD3 vs. Frequency Offset from LO, Tone Level =  
−15 dBm at Attenuation = 0, LO = 2850 MHz  
10  
10  
Rx1 –40°C HD3 (LEFT)  
Rx1 –40°C HD3 (RIGHT)  
Rx1 +25°C HD3 (LEFT)  
Rx1 +25°C HD3 (RIGHT)  
Rx1 +110°C HD3 (LEFT)  
Rx1 –40°C HD3 (LEFT)  
Rx1 –40°C HD3 (RIGHT)  
Rx1 +25°C HD3 (LEFT)  
Rx1 +25°C HD3 (RIGHT)  
Rx1 +110°C HD3 (LEFT)  
Rx1 +110°C HD3 (RIGHT)  
–10  
–10  
Rx1 +110°C HD3 (RIGHT)  
–30  
–30  
Rx2 –40°C HD3 (LEFT)  
Rx2 –40°C HD3 (LEFT)  
Rx2 –40°C HD3 (RIGHT)  
Rx2 –40°C HD3 (RIGHT)  
–50  
–50  
–70  
–90  
–70  
–90  
–110  
–110  
Rx2 +25°C HD3 (LEFT)  
Rx2 +25°C HD3 (RIGHT)  
Rx2 +110°C HD3 (LEFT)  
Rx2 +110°C HD3 (RIGHT)  
Rx2 +25°C HD3 (LEFT)  
Rx2 +25°C HD3 (RIGHT)  
Rx2 +110°C HD3 (LEFT)  
Rx2 +110°C HD3 (RIGHT)  
–130  
–130  
–150  
–150  
0 15 30 10 25 5 20 0 15 30 10 25 5 20 0 15 30 10 25 5 20 0 15 30  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
–50 –40 –30 –20 –10  
10  
20  
30  
40  
50  
FREQUENCY OFFSET FROM LO (MHz)  
FREQUENCY OFFSET FROM LO (MHz)  
Figure 231. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −15 dBm at Attenuation = 0, LO = 650 MHz  
Figure 234. Receiver HD3, Left and Right vs. Frequency Offset from LO,  
Baseband Tone Held Constant, Tone Level Increased 1 for 1 as Attenuator is  
Swept from 0 dB to 30 dB, HD3 Right (High-Side): Tone on Same Side as HD3  
Product, HD3 Left (Low-Side): Tone on Opposite Side as HD3 Product, CW  
Signal, LO = 1850 MHz, Tone Level = −15 dBm at Attenuation = 0 dB  
10  
0
–40°C  
Rx1 –40°C HD3 (LEFT)  
Rx1 –40°C HD3 (RIGHT)  
+25°C  
–5  
+110°C  
–10  
–30  
Rx1 +25°C HD3 (LEFT)  
Rx1 +25°C HD3 (RIGHT)  
Rx1 +110°C HD3 (LEFT)  
Rx1 +110°C HD3 (RIGHT)  
Rx2 –40°C HD3 (LEFT)  
Rx2 –40°C HD3 (RIGHT)  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–50  
–70  
–90  
–110  
–130  
–150  
Rx2 +25°C HD3 (LEFT)  
Rx2 +25°C HD3 (RIGHT)  
Rx2 +110°C HD3 (LEFT)  
Rx2 +110°C HD3 (RIGHT)  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
FREQUENCY OFFSET FROM LO (MHz)  
LTE20 RF INPUT POWER (dBm)  
Figure 232. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −15 dBm at Attenuation = 0, LO = 1850 MHz  
Figure 235. Receiver EVM vs. LTE20 RF Input Power, LTE = 20 MHz RF Signal,  
LO = 600 MHz  
Rev. B | Page 61 of 127  
ADRV9009  
Data Sheet  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
–40°C  
+25°C  
+110°C  
–40°C  
+25°C  
–5  
+110°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
LTE20 RF INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
Figure 238. Receiver to Receiver Isolation vs. LO Frequency  
Figure 236. Receiver EVM vs. LTE20 RF Input Power, LTE = 20 MHz RF Signal,  
LO = 1800 MHz  
0
–70  
–40°C  
+25°C  
+110°C  
–80  
–90  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
100  
1k  
10k  
100k  
1M  
10M  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
100M  
FREQUENCY OFFSET (Hz)  
LTE20 RF INPUT POWER (dBm)  
Figure 239. LO Phase Noise vs. Frequency Offset, LO = 1900 MHz, RMS Phase Error  
Integrated from 2 kHz to 18 MHz, Spectrum Analyzer Limits Far Out Noise  
Figure 237. Receiver EVM vs. LTE20 RF Input Power, LTE = 20 MHz RF Signal,  
LO = 2700 MHz  
Rev. B | Page 62 of 127  
Data Sheet  
ADRV9009  
3400 MHz TO 4800 MHz BAND  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40°C ATTENUATION = 0dB  
–40°C ATTENUATION = 5dB  
–40°C ATTENUATION = 10dB  
–40°C ATTENUATION = 15dB  
–40°C ATTENUATION = 20dB  
–40°C ATTENUATION = 25dB  
+110°C ATTENUATION = 0dB  
+110°C ATTENUATION = 5dB  
+110°C ATTENUATION = 10dB  
+110°C ATTENUATION = 15dB  
+110°C ATTENUATION = 20dB  
+110°C ATTENUATION = 25dB  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
+25°C ATTENUATION = 0dB  
+25°C ATTENUATION = 5dB  
+25°C ATTENUATION = 10dB  
+25°C ATTENUATION = 15dB  
+25°C ATTENUATION = 20dB  
+25°C ATTENUATION = 25dB  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
5000  
–100  
–50  
0
50  
100  
LO FREQUENCY (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 240. Transmitter Path Loss vs. LO Frequency (Simulation), Can Be  
Used for De-Embedding Performance Data  
Figure 243. Transmitter Image Rejection Across Large Signal Bandwidth vs.  
Baseband Offset Frequency and Attenuation, QEC Trained with Three Tones  
(Tracking On), Total Combined Power = −6 dBFS, Correction Then Frozen  
(Tracking Turned Off), CW Tone Swept Across Large Signal Bandwidth,  
LO = 4600 MHz  
10  
9
1.0  
0.9  
0.8  
0.7  
0.6  
Tx1 = –40°C  
Tx2 = –40°C  
Tx1 = +25°C  
Tx2 = +25°C  
Tx1 = +110°C  
Tx2 = +110°C  
8
7
0.5  
0.4  
6
0.3  
0.2  
0.1  
5
0.0  
4
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
3
Tx1 = –40°C  
Tx2 = –40°C  
2
Tx1 = +25°C  
Tx2 = +25°C  
1
Tx1 = +110°C  
Tx2 = +110°C  
0
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
TRANSMITTER LO FREQUENCY (MHz)  
–225 –175 –125 –75  
–25  
25  
75  
125  
175  
225  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 241. Transmitter CW Output Power vs. Transmitter LO Frequency,  
Transmitter QEC and External LO Leakage Active, Transmitter in  
200 MHz/450 MHz Bandwidth Mode, IQ Rate = 491.52 MHz,  
Attenuation = 0 dB, Not De-Embedded  
Figure 244. Transmitter Pass Band Flatness vs. Baseband Offset Frequency,  
Off Chip Match Response De-Embedded, LO = 3600 MHz  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
+110°C ATTENUATION = 0dB  
+110°C ATTENUATION = 5dB  
+110°C ATTENUATION = 10dB  
+110°C ATTENUATION = 15dB  
+110°C ATTENUATION = 20dB  
+110°C ATTENUATION = 25dB  
–40°C ATTENUATION = 0dB  
–40°C ATTENUATION = 5dB  
–40°C ATTENUATION = 10dB  
–40°C ATTENUATION = 15dB  
–40°C ATTENUATION = 20dB  
–40°C ATTENUATION = 25dB  
Tx1 = –40°C  
Tx2 = –40°C  
Tx1 = +25°C  
Tx2 = +25°C  
Tx1 = +110°C  
Tx2 = +110°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+25°C ATTENUATION = 0dB  
+25°C ATTENUATION = 5dB  
+25°C ATTENUATION = 10dB  
+25°C ATTENUATION = 15dB  
+25°C ATTENUATION = 20dB  
+25°C ATTENUATION = 25dB  
0.1  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
–100  
–50  
0
50  
100  
–225 –175 –125 –75  
–25  
25  
75  
125  
175  
225  
BASEBAND OFFSET FREQUENCY AND ATTENUATION (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 245. Transmitter Pass Band Flatness vs. Baseband Offset Frequency,  
Off Chip Match Response De-Embedded, LO = 4600 MHz  
Figure 242. Transmitter Image Rejection Across Large Signal Bandwidth vs.  
Baseband Offset Frequency and Attenuation, QEC Trained with Three Tones  
Placed at 10 MHz, 50 MHz, and 100 MHz (Tracking On), Total Combined  
Power = −6 dBFS, Correction Then Frozen (Tracking Turned Off), CW Tone  
Swept Across Large Signal Bandwidth, LO = 3700 MHz  
Rev. B | Page 63 of 127  
 
ADRV9009  
Data Sheet  
–70  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
Tx1 = –40°C  
4600MHz = +110°C  
Tx2 = –40°C  
Tx1 = +25°C  
Tx2 = +25°C  
Tx1 = +110°C  
Tx2 = +110°C  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
4600MHz = +25°C  
4600MHz = –40°C  
3600MHz = +110°C  
3600MHz = +25°C  
3600MHz = –40°C  
3700  
4600  
TRANSMITTER LO FREQUENCY (MHz)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 246. Transmitter LO Leakage vs. Transmitter LO Frequency,  
Transmitter Attenuation = 0 dB  
Figure 249. Transmitter Noise vs. Transmitter Attenuator Setting  
0
40  
Tx1 TO Rx1  
Tx1 TO Rx2  
Tx2 TO Rx1  
35  
+110°C  
+25°C  
–40°C  
Tx2 TO Rx2  
20  
40  
30  
25  
20  
15  
10  
5
60  
80  
0
100  
120  
–5  
–10  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
TRANSMITTER ATTENUATOR SETTING (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 247. Transmitter to Receiver Isolation vs. Receiver LO Frequency,  
Temperature = −40°C, +25°C, and +110°C  
Figure 250. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 3600 MHz, Total RMS Power = −12 dBFS  
0
35  
Tx1 TO Tx2 0dB  
10  
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
Tx2 TO Tx1 0dB  
20  
30  
40  
50  
60  
70  
0
80  
–5  
–10  
90  
100  
3400  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 251. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 4600 MHz, Total RMS Power = −12 dBFS  
Figure 248. Transmitter to Transmitter Isolation vs. Transmitter LO  
Frequency, Temperature = 25°C  
Rev. B | Page 64 of 127  
Data Sheet  
ADRV9009  
40  
35  
30  
25  
20  
15  
0
–20  
+110°C = HD2  
+25°C = HD2  
–40°C = HD2  
+110°C = UPPER HD2  
+25°C = UPPER HD2  
–40°C = UPPER HD2  
–40  
–60  
–80  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
10  
5
–100  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 252. Transmitter OIP3 Right vs. Baseband Tone Pair Swept Across Pass  
Band, LO = 3600 MHz, Total RMS Power = −12 dBFS  
Figure 255. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 4600 MHz, CW = −15 dBFS  
40  
35  
30  
25  
20  
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–40  
–60  
15  
–80  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
10  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–100  
–120  
5
0
5
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
10  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND TONE PAIR SWEPT ACROSS PASS BAND (MHz)  
Figure 253. Transmitter OIP3 Right vs. Baseband Tone Pair Swept Across Pass  
Band, LO = 4600 MHz, Total RMS Power = −12 dBFS  
Figure 256. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 3600 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
0
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
+110°C = HD2  
+25°C = HD2  
–40°C = HD2  
+110°C = UPPER HD2  
+25°C = UPPER HD2  
–40°C = UPPER HD2  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 254. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 3600 MHz, CW = −15 dBFS  
Figure 257. Transmitter HD3 vs. Transmitter Attenuator Setting,  
LO = 4600 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
Rev. B | Page 65 of 127  
ADRV9009  
Data Sheet  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–40  
–60  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–80  
+110°C  
+25°C  
–40°C  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 261. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 4600 MHz  
Figure 258. Transmitter HD3 Image Appears on Same Side as Desired Signal vs.  
Transmitter Attenuator Setting, LO = 3600 MHz, CW = −15 dBFS  
–30  
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
+110°C  
+25°C  
–40°C  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
–20  
–40  
–60  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATION (dBm)  
Figure 259. Transmitter HD3 Image Appears on Same Side as Desired Signal vs.  
Transmitter Attenuator Setting, LO = 4600 MHz, CW = −15 dBFS  
Figure 262. EVM vs. Transmitter Attenuation, LTE = 20 MHz Signal Centered on  
DC, LO = 3600 MHz  
0.05  
0.04  
0.03  
0.02  
0.01  
0
–30  
+110°C  
+25°C  
–40°C  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
–0.01  
–0.02  
+110°C  
+25°C  
–40°C  
–0.03  
–0.04  
–0.05  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
5
10  
15  
20  
25  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATION (dBm)  
Figure 260. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 3600 MHz  
Figure 263. EVM vs. Transmitter Attenuation, LTE = 20 MHz Signal Centered  
on DC, LO = 4600 MHz  
Rev. B | Page 66 of 127  
Data Sheet  
ADRV9009  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
–10  
+110°C  
+25°C  
–40°C  
Tx OUTPUT  
ANALYZER NO SIGNAL  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 264. Amplitude vs. Frequency, Transmitter Output Spurious,  
Transmitter 1 = 4600 MHz, LTE = 5 MHz, Offset = 10 MHz, RMS Ripple in Noise  
Floor Due to Spectrum Analyzer = −12 dBFS, Temperature = 25°C  
Figure 267. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 3600 MHz, Total Nyquist Integration Bandwidth  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
+110°C  
+25°C  
–40°C  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
5000  
0
1
2
3
4
5
6
7
8
9
10  
LO FREQUENCY (MHz)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 265. Observation Receiver Off Chip Matching Circuit Path Loss vs. LO  
Frequency, Simulation, Can be Used for De-Embedding Performance Data  
Figure 268. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 4600 MHz, Total Nyquist Integration Bandwidth  
0
80  
75  
70  
65  
60  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+25°C  
–40°C  
55  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
50  
45  
40  
3600  
4600  
3606 3626 3646 3666 3686 3706 3726 3746 3766 3786 3806 3826  
3605 3625 3645 3665 3685 3705 3725 3745 3765 3785 3805 3825  
LO FREQUENCY (MHz)  
f1 OFFSET FREQUENCY (MHz)  
Figure 269. Observation Receiver IIP2, Sum and Difference Products vs. f1  
Offset Frequency, Tones Separated by 1 MHz Swept Across Pass Band at  
−22 dBm Each, LO = 3600 MHz, Attenuation = 0 dB  
Figure 266. Observation Receiver LO Leakage vs. LO Frequency, from  
3600 MHz to 4600 MHz  
Rev. B | Page 67 of 127  
ADRV9009  
Data Sheet  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
70  
60  
50  
40  
30  
20  
10  
0
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
4606 4626 4646 4666 4686 4706 4726 4746 4766 4786 4806 4826  
4605 4625 4645 4665 4685 4705 4725 4745 4765 4785 4805 4825  
f1 OFFSET FREQUENCY (MHz)  
INTERMODULATION FREQUENCY (MHz)  
Figure 270. Observation Receiver IIP2, Sum and Difference Products vs. f1  
Offset Frequency, Tones Separated By 1 MHz Swept Across Pass Band at  
−22 dBm Each, 4600 MHz, Attenuation = 0 dB  
Figure 273. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency,  
LO = 3600 MHz, Tone 1 = 3602 MHz, Tone 2 Swept, −22 dBm Each,  
Attenuation = 0 dB  
80  
75  
70  
65  
80  
70  
60  
50  
40  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
30  
20  
10  
0
60  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
55  
50  
0
2
4
6
8
10  
ATTENUATION (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 271. Observation Receiver IIP2, Sum and Difference Products vs.  
Attenuation, LO = 3600 MHz, Tone 1 = 3645 MHz, Tone 2 = 3646 MHz at  
−22 dBm Plus Attenuation  
Figure 274. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency,  
LO = 4600 MHz, Tone 1 = 4602 MHz, Tone 2 Swept, −22 dBm Each,  
Attenuation = 0 dB  
80  
75  
70  
65  
80  
75  
70  
65  
60  
60  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
55  
55  
IIP2 DIFF –40°C  
IIP2 DIFF –40°C  
50  
50  
0
2
4
6
8
10  
0
2
4
6
8
10  
ATTENUATION (dB)  
ATTENUATION (dB)  
Figure 275. Observation Receiver IIP2, f1 − f2 vs. Attenuation, LO = 3600 MHz,  
Tone 1 = 3602 MHz, Tone 2 = 3702 MHz at −22 dBm Plus Attenuation  
Figure 272. Observation Receiver IIP2, Sum and Difference Products vs.  
Attenuation, LO = 4600 MHz, Tone 1 = 4645 MHz, Tone 2 = 4646 MHz at  
−22 dBm Plus Attenuation  
Rev. B | Page 68 of 127  
Data Sheet  
ADRV9009  
80  
75  
70  
65  
60  
55  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
INPUT IP2 SUM +110°C  
INPUT IP2 SUM +25°C  
INPUT IP2 SUM –40°C  
INPUT IP2 DIFF +110°C  
INPUT IP2 DIFF +25°C  
INPUT IP2 DIFF –40°C  
INPUT IP3 = +110°C  
INPUT IP3 = +25°C  
INPUT IP3 = –40°C  
50  
0
6
2
4
6
8
10  
0
2
4
6
8
10  
ATTENUATION (dB)  
ATTENUATION (dB)  
Figure 276. Observation Receiver IIP2, f1 − f2 vs. Attenuation,  
LO = 4600 MHz, Tone 1 = 4602 MHz, Tone 2 = 4612 MHz at −22 dBm Plus  
Attenuation  
Figure 279. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation, LO = 3600 MHz,  
Tone 1 = 3695 MHz, Tone 2 = 3696 MHz at −22 dBm Plus Attenuation  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
25  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
20  
15  
10  
5
10  
INPUT IP3 = +110°C  
INPUT IP3 = +25°C  
INPUT IP3 = –40°C  
8
6
0
3605 3625 3645 3665 3685 3705 3725 3745 3765 3785 3805 3825  
3606 3626 3646 3666 3686 3706 3726 3746 3766 3786 3806 3826  
0
2
4
6
8
10  
ATTENUATION (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 277. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency,  
LO = 3600 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass  
Band at −22 dBm Each  
Figure 280. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation, LO = 4600 MHz,  
Tone 1 = 4695 MHz, Tone 2 = 4696 MHz at −22 dBm Plus Attenuation  
25  
30  
25  
20  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
20  
15  
10  
5
15  
INPUT IP3 SUM +110°C  
INPUT IP3 SUM +25°C  
INPUT IP3 SUM –40°C  
INPUT IP3 DIFF +110°C  
INPUT IP3 DIFF +25°C  
INPUT IP3 DIFF –40°C  
10  
5
0
0
4606 4626 4646 4666 4686 4706 4726 4746 4766 4786 4806 4826  
4605 4625 4645 4665 4685 4705 4725 4745 4765 4785 4805 4825  
f1 OFFSET FREQUENCY (MHz)  
INTERMODULATION FREQUENCY (MHz)  
Figure 278. Observation Receiver IIP3, 2f1 − f2 vs. f1 Offset Frequency,  
LO = 4600 MHz, Attenuation = 0 dB, Tones Separated by 1 MHz Swept Across Pass  
Band at −22 dBm Each  
Figure 281. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation  
Frequency, LO = 3600 MHz, Tone 1 = 3602 MHz, Tone 2 = Swept,  
−22 dBm Each  
Rev. B | Page 69 of 127  
ADRV9009  
Data Sheet  
30  
25  
20  
15  
10  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
IIP3 SUM +110°C  
IIP3 SUM +25°C  
IIP3 SUM –40°C  
IIP3 DIFF +110°C  
IIP3 DIFF +25°C  
IIP3 DIFF –40°C  
0
BASEBAND FREQUENCY OFFSET (MHz)  
INTERMODULATION FREQUENCY (MHz)  
Figure 282. Observation Receiver IIP3, 2f1 − f2 vs. Intermodulation Frequency,  
LO = 4600 MHz, Tone 1 = 4602 MHz, Tone 2 = Swept, −22 dBm Each  
Figure 285. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Band, LO = 3600 MHz  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
0
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
8
6
0
2
4
6
8
10  
ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 283. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation, LO = 3600 MHz,  
Tone 1 = 3602 MHz, Tone 2 = 3722 MHz, −22 dBm Each Plus Attenuation  
Figure 286. Observation Receiver Image Rejection vs. Baseband Frequency Offset,  
CW Signal Swept Across the Band, LO = 4600 MHz  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
18  
+110°C  
+25°C  
–40°C  
16  
14  
12  
10  
8
10  
6
IIP3 = +110°C  
IIP3 = +25°C  
IIP3 = –40°C  
8
6
4
0
2
4
6
8
10  
0
1
2
3
4
5
6
7
8
9
10  
ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATION (dB)  
Figure 284. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation,  
LO = 4600 MHz, Tone 1 = 4602 MHz, Tone 2 = 4722 MHz at −22 dBm Plus  
Attenuation Each  
Figure 287. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 3600 MHz  
Rev. B | Page 70 of 127  
Data Sheet  
ADRV9009  
18  
16  
14  
12  
10  
8
0.5  
0.4  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
+110°C  
+25°C  
–40°C  
6
4
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 291. Observation Receiver Pass Band Flatness vs. Baseband Frequency  
Offset, LO = 3600 MHz  
Figure 288. Observation Receiver Gain vs. Observation Receiver Attenuation,  
LO = 4600 MHz  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
+110°C  
+25°C  
–40°C  
0.2  
0.1  
0
–0.1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.3  
–0.4  
–0.5  
+110°C  
+25°C  
–40°C  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 292. Observation Receiver Pass Band Flatness vs. Baseband Frequency  
Offset, LO = 4600 MHz  
Figure 289. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 3600 MHz  
0
0.5  
INPUT IP3 = +110°C  
INPUT IP3 = +25°C  
INPUT IP3 = –40°C  
0.4  
0.3  
+110°C  
+25°C  
–40°C  
–20  
0.2  
–40  
–60  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
5
10  
0
1
2
3
4
5
6
7
8
9
10  
ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 293. Observation Receiver DC Offset vs. Attenuation, LO = 3600 MHz  
Figure 290. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 4600 MHz  
Rev. B | Page 71 of 127  
ADRV9009  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
INPUT IP3 = +110°C  
INPUT IP3 = +25°C  
INPUT IP3 = –40°C  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
–20  
–40  
–60  
–80  
–100  
–120  
0
5
10  
–90.0  
–67.5  
–45.0  
–22.5  
22.5  
45.0  
67.5  
90.0  
ATTENUATION (dB)  
OFFSET FREQUENCY (MHz)  
Figure 294. Observation Receiver DC Offset vs. Attenuation, LO = 4600 MHz  
Figure 297. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 3600 MHz, Tone Level = −20 dBm  
0
0
+110°C = 0 (RIGHT)  
+110°C = 11.5 (RIGHT)  
+110°C = 0 (LEFT)  
+110°C = 11.5 (LEFT)  
+25°C = 0 (RIGHT)  
+25°C = 11.5 (RIGHT)  
+25°C = 0 (LEFT)  
HD3 RIGHT dBc = +110°C  
+25°C = 11.5 (LEFT)  
–40°C = 0 (RIGHT)  
–40°C = 11.5 (RIGHT)  
–40°C = 0 (LEFT)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
–20  
–40  
–40°C = 11.5 (LEFT)  
–60  
–80  
–100  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
–90.0  
–67.5  
–45.0  
–22.5  
22.5  
45.0  
67.5  
90.0  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 295. Observation Receiver HD2 vs. Offset Frequency, LO = 3600 MHz,  
Tone Level = −20 dBm Plus Attenuation  
Figure 298. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 4600 MHz, Tone Level = −20 dBm  
0
0
+110°C = 0 (RIGHT)  
+110°C = 11.5 (RIGHT)  
+110°C = 0 (LEFT)  
+110°C = 11.5 (LEFT)  
+25°C = 0 (RIGHT)  
+25°C = 11.5 (RIGHT)  
+25°C = 0 (LEFT)  
Tx1 TO ORx1  
+25°C = 11.5 (LEFT)  
–40°C = 0 (RIGHT)  
–40°C = 11.5 (RIGHT)  
–40°C = 0 (LEFT)  
Tx2 TO ORx1  
Tx1 TO ORx2  
Tx2 TO ORx2  
20  
40  
–20  
–40  
–40°C = 11.5 (LEFT)  
60  
–60  
80  
–80  
100  
120  
140  
–100  
–120  
–100  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
–75  
–50  
–25  
0
25  
50  
75  
100  
LO FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 296. Observation Receiver HD2 vs. Offset Frequency, LO = 4600 MHz,  
Tone Level = −20 dBm Plus Attenuation  
Figure 299. Transmitter to Observation Receiver Isolation vs. LO Frequency,  
Temperature = 25°C  
Rev. B | Page 72 of 127  
Data Sheet  
ADRV9009  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
45  
40  
35  
30  
25  
20  
15  
10  
5
+110°C  
+25°C  
–40°C  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
5000  
RECEIVER ATTENUATION (dB)  
LO FREQUENCY (MHz)  
Figure 300. Receiver Off Chip Matching Circuit Path Loss vs. LO Frequency,  
(Simulation), Can Be Used for De-Embedding Performance Data  
Figure 303. Receiver Noise Figure vs. Receiver Attenuation, LO = 4600 MHz,  
Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS, Integration Bandwidth  
= 500 kHz to 100 MHz  
0
120  
110  
100  
90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C  
+25°C  
–40°C  
80  
INPUT IP2 SUM +110°C  
INPUT IP2 SUM +25°C  
INPUT IP2 SUM –40°C  
INPUT IP2 DIFF +110°C  
INPUT IP2 DIFF +25°C  
INPUT IP2 DIFF –40°C  
70  
60  
50  
3600  
4600  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
RECEIVER LO FREQUENCY (MHz)  
RECEIVER ATTENUATION (dB)  
Figure 301. Receiver LO Leakage vs. Receiver LO Frequency, Receiver  
Attenuation = 0 dB, RF Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS  
Figure 304. Receiver IIP2 vs. Receiver Attenuation, LO = 3600 MHz, Tones  
Placed at 3645 MHz and 3646 MHz, −21 dBm Plus Attenuation  
45  
110  
100  
90  
+110°C  
+25°C  
–40°C  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
INPUT IP2 SUM +110°C  
INPUT IP2 SUM +25°C  
INPUT IP2 SUM –40°C  
INPUT IP2 DIFF +110°C  
INPUT IP2 DIFF +25°C  
60  
INPUT IP2 DIFF –40°C  
10 12 14 16 18 20 22 24 26 28 30  
RECEIVER ATTENUATION (dB)  
0
50  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
RECEIVER ATTENUATION (dB)  
Figure 305. Receiver IIP2 vs. Receiver Attenuation, LO = 4600 MHz, Tones  
Placed at 4645 MHz and 4646 MHz, −21 dBm Plus Attenuation  
Figure 302. Receiver Noise Figure vs. Receiver Attenuation, LO = 3600 MHz,  
Receiver Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS, Integration  
Bandwidth = 500 kHz to 100 MHz  
Rev. B | Page 73 of 127  
ADRV9009  
Data Sheet  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
+110°C = Rx1 (DIFF)  
+110°C = Rx1 (SUM)  
+25°C = Rx1 (DIFF)  
+25°C = Rx1 (SUM)  
–40°C = Rx1 (DIFF)  
–40°C = Rx1 (SUM)  
+110°C = Rx2 (DIFF)  
+110°C = Rx2 (SUM)  
+25°C = Rx2 (DIFF)  
+25°C = Rx2 (SUM)  
–40°C = Rx2 (DIFF)  
–40°C = Rx2 (SUM)  
40  
3606  
3605  
3626  
3625  
3646  
3645  
3666  
3665  
3686  
3685  
3706  
3705  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 306. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 3600 MHz, Six Tone  
Pairs, −21 dBm Each Plus Attenuation  
Figure 309. Receiver IIP2 vs. Receiver Attenuation, LO = 4600 MHz, Tones  
Placed at 4602 MHz and 4692 MHz, −21dBm Plus Attenuation  
80  
75  
70  
65  
60  
100  
+110°C = Rx1 (DIFF)  
+110°C = Rx1 (SUM)  
+25°C = Rx1 (DIFF)  
+25°C = Rx1 (SUM)  
–40°C = Rx1 (DIFF)  
–40°C = Rx1 (SUM)  
+110°C = Rx2 (DIFF)  
+110°C = Rx2 (SUM)  
+25°C = Rx2 (DIFF)  
+25°C = Rx2 (SUM)  
–40°C = Rx2 (DIFF)  
–40°C = Rx2 (SUM)  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
55  
IIP2 SUM +110°C  
50  
45  
40  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
4606  
4605  
4626  
4625  
4646  
4645  
4666  
4665  
4686  
4685  
4706  
4705  
3612 3622 3632 3642 3652 3662 3672 3682 3692 3702 3712  
SWEPT PASS BAND FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 307. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 4600 MHz, Six Tone  
Pairs, −21 dBm Each  
Figure 310. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 3600 MHz,  
Tone 1 = 3602 MHz, Tone 2 = Swept, −21 dBm Each  
100  
95  
90  
85  
80  
75  
70  
100  
Rx1 +110°C IIP2_SUM_CF  
Rx1 +110°C IIP2_DIF_CF  
Rx2 +110°C IIP2_SUM_CF  
Rx2 +110°C IIP2_DIF_CF  
Rx1 +25°C IIP2_SUM_CF  
Rx1 +25°C IIP2_DIF_CF  
Rx2 +25°C IIP2_SUM_CF  
Rx2 +25°C IIP2_DIF_CF  
Rx1 –40°C IIP2_SUM_CF  
Rx1 –40°C IIP2_DIF_CF  
Rx2 –40°C IIP2_SUM_CF  
Rx2 –40°C IIP2_DIF_CF  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
40  
+110°C = Rx1 (DIFF)  
+110°C = Rx1 (SUM)  
+25°C = Rx1 (DIFF)  
+25°C = Rx1 (SUM)  
–40°C = Rx1 (DIFF)  
–40°C = Rx1 (SUM)  
+110°C = Rx2 (DIFF)  
+110°C = Rx2 (SUM)  
+25°C = Rx2 (DIFF)  
+25°C = Rx2 (SUM)  
–40°C = Rx2 (DIFF)  
–40°C = Rx2 (SUM)  
65  
60  
55  
50  
4612 4622 4632 4642 4652 4662 4672 4682 4692 4702 4712  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 308. Receiver IIP2 vs. Receiver Attenuation, LO = 3600 MHz, Tones  
Placed at 3602 MHz and 3692 MHz, −21 dBm Plus Attenuation  
Figure 311. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 4600 MHz,  
Tone 1 = 4602 MHz, Tone 2 = Swept, −21 dBm Each  
Rev. B | Page 74 of 127  
Data Sheet  
ADRV9009  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
0
0
0
5
10  
15  
20  
25  
30  
4605  
4625  
4626  
4645  
4646  
4665  
4666  
4685  
4686  
4705  
4706  
4606  
ATTENUATION (dB)  
RECEIVER ATTENUATION (dB)  
Figure 312. Receiver IIP3 vs. Attenuation, LO = 3600 MHz, Tone 1 = 3695 MHz,  
Tone 2 = 3696 MHz, −21 dBm Plus Attenuation  
Figure 315. Receiver IIP3 vs. Receiver Attenuation, Receiver Attenuation = 0 dB,  
LO = 4600 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm Each, Swept Across Pass Band  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx1 = +110°C  
15  
15  
10  
5
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
10  
5
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION SWEPT (dB)  
RECEIVER ATTENUATION (dB)  
Figure 313. Receiver IIP3 vs. Receiver Attenuation Swept, LO = 4600 MHz,  
Tone 1 = 4695 MHz, Tone 2 = 4696 MHz, −21 dBm Plus Attenuation  
Figure 316. Receiver IIP3 vs. Receiver Attenuation, LO = 3600 MHz,  
Tone 1 = 3602 MHz, Tone 2 = 3692 MHz, −21 dBm Plus Attenuation  
30  
25  
20  
15  
50  
50  
40  
30  
Rx1 = +110°C  
10  
Rx1 = +110°C  
20  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
5
10  
Rx2 = +25°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx2 = –40°C  
0
3605  
3606  
0
3625  
3626  
3645  
3646  
3665  
3666  
3685  
3686  
3705  
3706  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (dB)  
Figure 314. Receiver IIP3 Across Bandwidth vs. Swept Pass Band Frequency,  
Receiver Attenuation = 0 dB, LO = 3600 MHz, Tone 2 = Tone 1 + 1 MHz, −21 dBm  
Each, Swept Across Pass Band  
Figure 317. Receiver IIP3 vs. Receiver Attenuation, LO = 4600 MHz,  
Tone 1 = 4602 MHz, Tone 2 = 4692 MHz, −21 dBm Plus Attenuation  
Rev. B | Page 75 of 127  
ADRV9009  
Data Sheet  
35  
30  
25  
20  
15  
10  
5
0
–20  
+110°C  
+25°C  
–40°C  
–40  
–60  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
–80  
–100  
–120  
0
3612  
3632  
3652  
3672  
3692  
3712  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
SWEPT PASS BAND FREQUENCY (MHz)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 318. Receiver IIP3 Across Bandwidth vs. Swept Pass Band Frequency,  
Receiver Attenuation = 0 dB, LO = 3600 MHz, Tone 1 = 3602 MHz, Tone 2 =  
Swept Across Pass Band, −21 dBm Each  
Figure 321. Receiver Image vs. Baseband Frequency Offset, Attenuation =  
0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active, Sample Rate =  
245.76 MSPS, LO = 4600 MHz  
35  
30  
25  
20  
0
+110°C  
+25°C  
–40°C  
–20  
–40  
–60  
–80  
15  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
10  
5
–100  
–120  
0
4612  
4632  
4652  
4672  
4692  
4712  
0
5
10  
15  
20  
25  
30  
SWEPT PASS BAND FREQUENCY (MHz)  
ATTENUATOR SETTING (dB)  
Figure 319. Receiver IIP3 Across Bandwidth vs. Swept Pass Band Frequency,  
Receiver Attenuation = 0 dB, LO = 4600 MHz, Tone 1 = 4602 MHz, Tone 2 =  
Swept Across Pass Band, −21 dBm Each  
Figure 322. Receiver Image vs. Attenuator Setting, RF Bandwidth = 200 MHz,  
Tracking Calibration Active, Sample Rate = 245.76 MSPS, LO = 3600 MHz,  
Baseband Frequency = 10 MHz  
0
0
+110°C  
+110°C  
+25°C  
–40°C  
+25°C  
–40°C  
–20  
–20  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–100  
–120  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
0
5
10  
15  
20  
25  
30  
BASEBAND FREQUENCY OFFSET (MHz)  
ATTENUATOR SETTING (dB)  
Figure 320. Receiver Image vs. Baseband Frequency Offset, Attenuation =  
0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 3600 MHz  
Figure 323. Receiver Image vs. Attenuator Setting, RF Bandwidth = 200 MHz,  
Tracking Calibration Active, Sample Rate = 245.76 MSPS, LO = 4600 MHz,  
Baseband Frequency = 10 MHz  
Rev. B | Page 76 of 127  
Data Sheet  
ADRV9009  
25  
20  
15  
10  
5
0.5  
0.4  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–5  
–10  
–15  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATION (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 327. Receiver Attenuator Gain Step Error vs. Receiver Attenuator Setting,  
LO = 3600 MHz  
Figure 324. Receiver Gain vs. Receiver Attenuation, RF Bandwidth = 20 MHz,  
Sample Rate = 245.76 MSPS, LO = 3600 MHz  
0.5  
25  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
+110°C  
+25°C  
–40°C  
20  
15  
0.2  
10  
5
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–5  
–10  
–15  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
RECEIVER ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATION (dB)  
Figure 325. Receiver Gain vs. Receiver Attenuation, RF Bandwidth = 20 MHz,  
Sample Rate = 245.76 MSPS, LO = 4600 MHz  
Figure 328. Receiver Attenuator Gain Step Error vs. Receiver Attenuator Setting,  
LO = 4600 MHz  
24  
–50  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
22  
20  
18  
16  
14  
12  
10  
–60  
–70  
–80  
–90  
–100  
–110  
3400  
3600  
3800  
4000  
4200  
4400  
4600  
4800  
RECEIVER LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 329. Receiver DC Offset vs. Receiver LO Frequency  
Figure 326. Receiver Gain vs. LO Frequency, RF Bandwidth = 200 MHz,  
Sample Rate = 245.76 MSPS  
Rev. B | Page 77 of 127  
ADRV9009  
Data Sheet  
–70  
–30  
–40  
+110°C  
+25°C  
–40°C  
–75  
–50  
–60  
–80  
–70  
–85  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–95  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
–100  
–105  
–110  
0
–60  
–40  
–20  
0
20  
40  
60  
5
10  
15  
20  
25  
30  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 330. Receiver DC Offset vs. Receiver Attenuator Setting, LO = 3600 MHz  
Figure 333. Receiver HD2, Left vs. Baseband Frequency Offset and  
Attenuation, Tone Level = −15 dBm at Attenuation = 0, X-Axis = Baseband  
Frequency Offset of the Fundamental Tone, Not the Frequency of the HD2  
Product (HD2 Product = 2 × the Baseband Frequency), HD2 Canceller  
Disabled, LO = 4600 MHz  
–70  
10  
Rx1 = +110°C (RIGHT)  
Rx1 = +110°C (LEFT)  
Rx1 = +25°C (RIGHT)  
Rx1 = +25°C (LEFT)  
Rx1 = –40°C (RIGHT)  
Rx1 = –40°C (LEFT)  
Rx2 = +110°C (RIGHT)  
Rx2 = +110°C (LEFT)  
Rx2 = +25°C (RIGHT)  
Rx2 = +25°C (LEFT)  
Rx2 = –40°C (RIGHT)  
Rx2 = –40°C (LEFT)  
+110°C  
+25°C  
–40°C  
–75  
–80  
–10  
–30  
–85  
–90  
–50  
–70  
–95  
–90  
–100  
–105  
–110  
–110  
–130  
–150  
0
5
10  
15  
20  
25  
30  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
FREQUENCY OFFSET FROM LO AND ATTENUATION (MHz)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 331. Receiver DC Offset vs. Receiver Attenuator Setting,  
LO = 4600 MHz  
Figure 334. Receiver HD3, Left and Right vs. Frequency Offset from LO and  
Attenuation, Tone Level = −15 dBm at Attenuation = 0 dB, LO = 3600 MHz  
10  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
Rx1 = +110°C (RIGHT)  
Rx1 = +110°C (LEFT)  
Rx1 = +25°C (RIGHT)  
Rx1 = +25°C (LEFT)  
Rx1 = –40°C (RIGHT)  
Rx1 = –40°C (LEFT)  
Rx2 = +110°C (RIGHT)  
Rx2 = +110°C (LEFT)  
Rx2 = +25°C (RIGHT)  
Rx2 = +25°C (LEFT)  
Rx2 = –40°C (RIGHT)  
Rx2 = –40°C (LEFT)  
–10  
–30  
–50  
–70  
–100  
–90  
–110  
–120  
–130  
–140  
–150  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
–110  
–130  
–150  
–60  
–40  
–20  
0
20  
40  
60  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
FREQUENCY OFFSET FROM LO AND ATTENUATION (MHz)  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 335. Receiver HD3, Left and Right vs. Frequency Offset from LO and  
Attenuation, Tone Level = −15 dBm at Attenuation = 0 dB, LO = 4600 MHz  
Figure 332. Receiver HD2, Left vs. Baseband Frequency Offset and  
Attenuation, Tone Level = −15 dBm at Attenuation = 0, X-Axis = Baseband  
Frequency Offset of the Fundamental Tone, Not the Frequency of the HD2  
Product (HD2 Product = 2 × the Baseband Frequency), HD2 Canceller  
Disabled, LO = 3600 MHz  
Rev. B | Page 78 of 127  
Data Sheet  
ADRV9009  
0
–5  
0
–5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
LTE 20MHz RF INPUT POWER (dBm)  
LTE 20MHz RF INPUT POWER (dBm)  
Figure 338. Receiver EVM vs. LTE = 20 MHz RF Input Power,  
RF Signal = LTE 20 MHz, LO = 4600 MHz, Default AGC Settings  
Figure 336. Receiver EVM vs. LTE = 20 MHz RF Input Power, RF Signal =  
LTE 20 MHz, LO = 3600 MHz, Default AGC Settings  
–70  
–80  
–90  
0
Rx1 TO Rx2 ISOLATION  
Rx2 TO Rx1 ISOLATION  
10  
20  
30  
40  
50  
60  
70  
80  
90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY OFFSET (Hz)  
LO FREQUENCY (MHz)  
Figure 339. Phase Noise vs. Frequency Offset, LO = 3800 MHz, RMS Phase  
Error Integrated from 2 kHz to 18 MHz, PLL Loop Bandwidth = 300 kHz,  
Spectrum Analyzer Limits Far Out Noise  
Figure 337. Receiver to Receiver Isolation vs. LO Frequency  
Rev. B | Page 79 of 127  
ADRV9009  
Data Sheet  
5100 MHz TO 5900 MHz BAND  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+110°C = 20dB  
+110°C = 15dB  
+110°C = 10dB  
+110°C = 5dB  
+110°C = 0dB  
+25°C = 20dB  
+25°C = 15dB  
+25°C = 10dB  
+25°C = 5dB  
+25°C = 0dB  
–40°C = 20dB  
–40°C = 15dB  
–40°C = 10dB  
–40°C = 5dB  
–40°C = 0dB  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
5000  
5200  
5400  
5600  
5800  
6000  
LO FREQUENCY (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 343. Transmitter Image Rejection vs. Baseband Offset Frequency, QEC  
Trained with Three Tones Placed at 10 MHz, 50 MHz, and 100 MHz (Tracking  
On), Total Combined Power = −6 dBFS, Correction then Frozen (Tracking  
Turned Off), CW Tone Swept Across Large Signal Bandwidth, LO = 5500 MHz  
Figure 340. Transmitter Path Loss vs. LO Frequency (Simulation), Useful for  
De-Embedding Performance Data  
0
10  
+110 – 20  
+110 – 15  
+110 – 10  
+110 – 5  
+110 – 0  
+25 – 20  
+25 – 15  
+25 – 10  
+25 – 5  
+25 – 0  
–40 – 20  
–40 – 15  
–40 – 10  
–40 – 5  
–40 – 0  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
9
8
7
6
5
4
3
2
1
0
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
5100  
5300  
5500  
5700  
5900  
BASEBAND OFFSET FREQUENCY (MHz)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 344. Transmitter Image Rejection vs. Baseband Offset Frequency, QEC  
Trained with Three Tones Placed at 10 MHz, 50 MHz, and 100 MHz (Tracking  
On), Total Combined Power = −6 dBFS, Correction then Frozen (Tracking  
Turned Off), CW Tone Swept Across Large Signal Bandwidth, LO = 5900 MHz  
Figure 341. Transmitter CW Output Power vs. Transmitter LO Frequency,  
Transmitter QEC, and External LO Leakage Active, Bandwidth Mode =  
200 MHz/450 MHz, IQ Rate = 491.52 MHz, Attenuation = 0 dB,  
Not De-Embedded  
0
1.0  
Tx1 = +110°C  
+110°C = 20dB  
+110°C = 15dB  
+110°C = 10dB  
+110°C = 5dB  
+110°C = 0dB  
+25°C = 20dB  
+25°C = 15dB  
+25°C = 10dB  
+25°C = 5dB  
+25°C = 0dB  
–40°C = 20dB  
–40°C = 15dB  
–40°C = 10dB  
–40°C = 5dB  
–40°C = 0dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.8  
0.6  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–225 –175 –125 –75  
–25  
25  
75  
125  
175  
225  
BASEBAND OFFSET FREQUENCY (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 345. Transmitter Pass Band Flatness vs. Baseband Offset Frequency,  
Off Chip Match Response De-Embedded, LO = 5700 MHz, Measurements  
Performed with Device Calibrated at 25°C  
Figure 342. Transmitter Image Rejection vs. Baseband Offset Frequency, QEC  
Trained with Three Tones Placed at 10 MHz, 50 MHz, and 100 MHz (Tracking  
On), Total Combined Power = −6 dBFS, Correction then Frozen (Tracking  
Turned Off), CW Tone Swept Across Large Signal Bandwidth, LO = 5100 MHz  
Rev. B | Page 80 of 127  
 
Data Sheet  
ADRV9009  
–70  
–150  
–155  
–160  
–165  
–170  
–175  
Tx1 = +110°C  
5100MHz = +110°C  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
5100MHz = +25°C  
5100MHz = –40°C  
5500MHz = +110°C  
5500MHz = +25°C  
5500MHz = –40°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
5100  
5500  
TRANSMITTER LO FREQUENCY (MHz)  
5900  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 346. Transmitter LO Leakage vs. Transmitter LO Frequency,  
Transmitter Attenuation = 0 dB  
Figure 349. Transmitter Noise vs. Transmitter Attenuator Setting  
0
–40  
Tx1 TO Rx1  
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
10  
20  
Tx1 TO Rx2  
Tx2 TO Rx1  
Tx2 TO Rx2  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
30  
40  
50  
60  
70  
80  
90  
100  
5000  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
5200  
5400  
5600  
5800  
6000  
TRANSMITTER ATTENUATOR SETTING (dB)  
RECEIVER LO FREQUENCY (MHz)  
Figure 350. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, LO = 5100 MHz, LTE = 20 MHz, PAR = 12 dB, DAC Boost  
Normal, Upper Side and Lower Side, Decreasing ACLR at Higher Attenuation  
Due to Spectrum Analyzer Noise Floor  
Figure 347. Transmitter to Receiver Isolation vs. Receiver LO Frequency,  
Temperature = 25°C  
–40  
0
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
Tx1 TO Tx2  
Tx2 TO Tx1  
10  
20  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
30  
40  
50  
60  
70  
80  
90  
100  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER LO FREQUENCY (MHz)  
Figure 351. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, LO = 5500 MHz, LTE = 20 MHz, PAR = 12 dB, DAC Boost  
Normal, Upper Side and Lower Side, Decreasing ACLR at Higher Attenuation  
Due to Spectrum Analyzer Noise Floor  
Figure 348. Transmitter to Transmitter Isolation vs. Transmitter LO Frequency,  
Temperature = 25°C  
Rev. B | Page 81 of 127  
ADRV9009  
Data Sheet  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
35  
30  
25  
20  
15  
10  
5
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
Tx2 = +110°C (LOWER)  
Tx2 = +110°C (UPPER)  
Tx2 = +25°C (LOWER)  
Tx2 = +25°C (UPPER)  
Tx2 = –40°C (LOWER)  
Tx2 = –40°C (UPPER)  
+110°C  
+25°C  
–40°C  
0
–5  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
TRANSMITTER ATTENUATION SETTING (dB)  
TRANSMITTER ATTENUATION SETTING (dB)  
Figure 352. Transmitter Adjacent Channel Leakage Ratio vs. Transmitter  
Attenuator Setting, LO = 5900 MHz, LTE = 20 MHz, PAR = 12 dB, DAC Boost  
Normal, Upper Side and Lower Side, Decreasing ACLR at Higher Attenuation  
Due to Spectrum Analyzer Noise Floor  
Figure 355. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 5800 MHz, Total RMS Power = −12 dBFS  
30  
25  
20  
15  
40  
+110°C  
+25°C  
–40°C  
35  
30  
25  
20  
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
10  
5
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
TRANSMITTER ATTENUATION SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 356. Transmitter OIP3, Right vs. Baseband Frequency Offset,  
LO = 5100 MHz, Total RMS Power = −12 dBFS Power, Transmitter  
Attenuation = 4 dB  
Figure 353. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 5100 MHz, Total RMS Power = −12 dBFS  
30  
25  
20  
15  
35  
+110°C  
+25°C  
–40°C  
30  
25  
20  
15  
10  
5
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
10  
Tx2 = –40°C  
5
0
0
–5  
5
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
10  
TRANSMITTER ATTENUATION SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 354. Transmitter OIP3, Right vs. Transmitter Attenuator Setting,  
LO = 5500 MHz, Total RMS Power = −12 dBFS  
Figure 357. Transmitter OIP3, Right vs. Baseband Frequency Offset,  
LO = 5500 MHz, Total RMS Power = −12 dBFS, Transmitter Attenuation = 4 dB  
Rev. B | Page 82 of 127  
Data Sheet  
ADRV9009  
30  
25  
20  
15  
10  
5
0
–20  
+110°C (HD2)  
+25°C (HD2)  
–40°C (HD2)  
+110°C (UPPER)  
+25°C (UPPER)  
–40°C (UPPER)  
–40  
–60  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–80  
–100  
–120  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
5
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
10  
TRANSMITTER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 358. Transmitter Output, Right vs. Baseband Frequency Offset,  
LO = 5900 MHz, Total RMS Power = −12 dBFS, Transmitter Attenuation = 4 dB  
Figure 361. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 5900 MHz, CW = −15 dBFS  
0
0
+110°C (HD2)  
+25°C (HD2)  
–40°C (HD2)  
+110°C (UPPER)  
+25°C (UPPER)  
–40°C (UPPER)  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
TRANSMITTER ATTENUATION SETTING (dB)  
TRANSMITTER ATTENUATION SETTING (dB)  
Figure 359. Transmitter HD2 vs. Transmitter Attenuation Setting, Baseband  
Frequency = 10 MHz, LO = 5100 MHz, CW = −15 dBFS  
Figure 362. Transmitter HD3 on Opposite Sideband vs. Transmitter Attenuator  
Setting, LO = 5100 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
0
0
+110°C (HD2)  
+25°C (HD2)  
–40°C (HD2)  
+110°C (UPPER)  
+25°C (UPPER)  
–40°C (UPPER)  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 360. Transmitter HD2 vs. Transmitter Attenuator Setting, Baseband  
Frequency = 10 MHz, LO = 5500 MHz, CW = −15 dBFS  
Figure 363. Transmitter HD3 on Opposite Sideband vs. Transmitter Attenuator  
Setting, LO = 5500 MHz, CW = −15 dBFS, Baseband Frequency = 10 MHz  
Rev. B | Page 83 of 127  
ADRV9009  
Data Sheet  
0
–10  
0
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–20  
–20  
–30  
–40  
–40  
–50  
–60  
–60  
–70  
–80  
–80  
–90  
–100  
–110  
–120  
–100  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 364. Transmitter HD3 on Opposite Sideband vs. Transmitter  
Attenuator Setting, LO = 5900 MHz, CW = −15 dBFS, Baseband Frequency =  
10 MHz  
Figure 367. Transmitter HD3 Image on Same Sideband as Signal vs.  
Transmitter Attenuator Setting, LO = 5900 MHz, CW = −15 dBFS  
0
0.06  
+110°C  
+25°C  
–40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
0.05  
0.04  
0.03  
0.02  
0.01  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–0.01  
–0.02  
–0.03  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATION SETTING (dB)  
Figure 368. Transmitter Attenuation Step Error vs. Transmitter Attenuator  
Setting, LO = 5100 MHz  
Figure 365. Transmitter HD3 Image on Same Sideband as Signal vs.  
Transmitter Attenuator Setting, LO = 5100 MHz, CW = −15 dBFS  
0.07  
0
+110°C  
+25°C  
–40°C  
Tx1 = +110°C  
Tx1 = +25°C  
Tx1 = –40°C  
Tx2 = +110°C  
Tx2 = +25°C  
Tx2 = –40°C  
–10  
–20  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–0.01  
–0.02  
–0.03  
–100  
–110  
–120  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATOR SETTING (dB)  
Figure 369. Transmitter Attenuation Step Error vs. Transmitter Attenuator  
Setting, LO = 5500 MHz  
Figure 366. Transmitter HD3 Image on Same Sideband as Signal vs.  
Transmitter Attenuator Setting, LO = 5500 MHz, CW = −15 dBFS  
Rev. B | Page 84 of 127  
Data Sheet  
ADRV9009  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
0
5
10  
15  
20  
25  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 20 32  
TRANSMITTER ATTENUATOR SETTING (dB)  
TRANSMITTER ATTENUATION (dBm)  
Figure 370. Transmitter Attenuator Step Error vs. Transmitter Attenuator  
Setting, LO = 5900 MHz  
Figure 373. EVM vs. Transmitter Attenuation, LTE Signal = 20 MHz, Centered  
on DC, LO = 5900 MHz  
–30  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
+110°C  
+25°C  
–40°C  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
0
5
10  
15  
20  
25  
5000  
5200  
5400  
5600  
5800  
6000  
TRANSMITTER ATTENUATION (dBm)  
LO FREQUENCY (MHz)  
Figure 371. EVM vs. Transmitter Attenuation, LTE Signal = 20 MHz Centered  
on DC, LO = 5100 MHz  
Figure 374. Observation Receiver Path Loss vs. LO Frequency, Can be Used for  
De-Embedding Performance Data  
–30  
0
+110°C  
+25°C  
–40°C  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
+110°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
5200  
5300  
5400  
5500  
5600  
5700  
5800  
5900  
TRANSMITTER ATTENUATION (dBm)  
LO FREQUENCY (MHz)  
Figure 372. EVM vs. Transmitter Attenuation, LTE Signal = 20 MHz, Centered  
on DC, LO = 5500 MHz  
Figure 375. Observation Receiver LO Leakage vs. LO Frequency  
LO = 5200 MHz, 5500 MHz, and 5900 MHz  
Rev. B | Page 85 of 127  
ADRV9009  
Data Sheet  
80  
75  
70  
65  
60  
55  
50  
45  
40  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
+110°C  
+25°C  
–40°C  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
1
2
3
4
5
6
7
8
9
10  
5705 5725 5745 5765 5785 5805 5825 5845 5865 5885 5905 5925  
5706 5726 5746 5766 5786 5806 5826 5846 5866 5886 5906 5926  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
f1 OFFSET FREQUENCY (MHz)  
Figure 376. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, 5200 MHz, Total Nyquist Integration Bandwidth  
Figure 379. Observation Receiver IIP2, Sum and Difference Products vs. f1 Offset  
Frequency, Tones Separated by 1 MHz Swept Across Pass Band at −19 dBm Each,  
LO = 5700 MHz, Attenuation = 0 dB  
36  
85  
80  
75  
70  
65  
+110°C  
+25°C  
–40°C  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
60  
55  
50  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
ATTENUATION (dB)  
Figure 380. Observation Receiver IIP2, Sum and Difference Products vs.  
Attenuation, LO = 5700 MHz, Tone 1 = 5725 MHz, Tone 2 = 5726 MHz at  
−19 dBm Plus Attenuation  
Figure 377. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 5500 MHz, Total Nyquist Integration Bandwidth  
80  
70  
60  
50  
40  
36  
+110°C  
+25°C  
–40°C  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
30  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
20  
10  
0
5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702  
5722 5742 5762 5782 5802 5822 5842 5862 5882 5902 5922 5942  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
INTERMODULATION FREQUENCY (MHz)  
Figure 378. Observation Receiver Noise Figure vs. Observation Receiver  
Attenuator Setting, LO = 5800 MHz, Total Nyquist Integration Bandwidth  
Figure 381. Observation Receiver IIP2, f1 − f2 vs. Intermodulation Frequency,  
LO = 5700 MHz, Tone 1 = 5702 MHz, Tone 2 = Swept, −19 dBm Each,  
Attenuation = 0 dB  
Rev. B | Page 86 of 127  
Data Sheet  
ADRV9009  
80  
75  
70  
65  
60  
55  
25  
20  
15  
10  
5
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
INPUT IP2 SUM +110°C  
INPUT IP2 SUM +25°C  
INPUT IP2 SUM –40°C  
INPUT IP2 DIFF +110°C  
INPUT IP2 DIFF +25°C  
INPUT IP2 DIFF –40°C  
50  
0
0
2
4
6
8
10  
5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702  
5722 5742 5762 5782 5802 5822 5842 5862 5882 5902 5922 5942  
ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 382. Observation Receiver IIP2, 2f1 − f2 vs. Attenuation, LO = 5700 MHz,  
Tone 1 = 5702 MHz, Tone 2 = 5802 MHz at −19 dBm Plus Attenuation  
Figure 385. Observation Receiver IIP3, 2f1 − f2 vs. Swept Pass Band  
Frequency, LO = 5700 MHz, Tone 1 = 5702 MHz, Tone 2 = 5722 MHz at −22  
dBm Each Plus Attenuation  
30  
28  
26  
24  
22  
20  
18  
16  
200  
0
–200  
–400  
–600  
INPUT IP3 = +110°C  
INPUT IP3 = +25°C  
INPUT IP3 = –40°C  
14  
12  
10  
8
–800  
ORx1 = +110°C  
ORx1 = +25°C  
ORx1 = –40°C  
–1000  
6
–1200  
0
2
4
6
8
10  
5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702 5702  
5722 5742 5762 5782 5802 5822 5842 5862 5882 5902 5922 5942  
ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 383. Observation Receiver IIP3, 2f1 − f2 vs. Swept Pass Band  
Frequency, LO = 5700 MHz, Observer Receiver Attenuation = 0 dB, Tones  
Separated by 1 MHz Swept Across Pass Band at −19 dBm Each  
Figure 386. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation, LO = 5700 MHz,  
Tone 1 = 5702 MHz, Tone 2 = 5822 MHz at −19 dBm Plus Attenuation  
30  
28  
26  
24  
22  
20  
18  
16  
0
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
INPUT IP3 = +110°C  
INPUT IP3 = +25°C  
INPUT IP3 = –40°C  
14  
12  
10  
8
6
0
2
4
6
8
10  
ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET AND ATTENUATION (MHz)  
Figure 384. Observation Receiver IIP3, 2f1 − f2 vs. Attenuation, LO = 5700 MHz,  
Tone 1 = 5745 MHz, Tone 2 = 5746 MHz at −19 dBm Plus Attenuation  
Figure 387. Observation Receiver Image Rejection vs. Baseband Frequency  
Offset and Attenuation, CW Signal Swept Across the Pass Band, LO = 5200 MHz  
Rev. B | Page 87 of 127  
ADRV9009  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.5  
0.4  
+110°C = 10dB  
+25°C = 10dB  
–40°C = 10dB  
+110°C = 0dB  
+25°C = 0dB  
–40°C = 0dB  
+110°C  
+25°C  
–40°C  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
1
2
3
4
5
6
7
8
9
10  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
BASEBAND FREQUENCY OFFSET AND OBSERVATION  
RECEIVER ATTENUATION (MHz)  
Figure 388. Observation Receiver Image Rejection vs. Baseband Frequency Offset  
and Observation Receiver Attenuation, CW Signal Swept Across the Pass Band,  
LO = 5700 MHz  
Figure 391. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 5200 MHz  
18  
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
16  
14  
12  
10  
8
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
6
4
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 389. Observation Receiver Gain vs. Attenuation, LO = 5200 MHz  
Figure 392. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 5600 MHz  
16  
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
14  
0.2  
0.1  
12  
10  
8
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
6
4
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
ATTENUATION (dB)  
OBSERVATION RECEIVER ATTENUATOR SETTING (dB)  
Figure 393. Observation Receiver Gain Step Error vs. Observation Receiver  
Attenuator Setting, LO = 5600 MHz  
Figure 390. Observation Receiver Gain vs. Attenuation, LO = 5700 MHz  
Rev. B | Page 88 of 127  
Data Sheet  
ADRV9009  
0.7  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +110°C  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
+110°C  
+25°C  
–40°C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–90.0  
–67.5  
–45.0  
–22.5  
22.5  
45.0  
67.5  
90.0  
OFFSET FREQUENCY (MHz)  
BASEBAND OFFSET FREQUENCY (MHz)  
Figure 394. Observation Receiver Pass Band Flatness vs. Baseband Offset  
Frequency, LO = 5700 MHz  
Figure 397. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 5200 MHz, Tone Level = −20 dBm  
0
0
HD3 RIGHT dBc = +110°C  
+110°C = 0dB (RIGHT)  
+110°C = 10dB (RIGHT)  
+110°C = 0dB (LEFT)  
+110°C = 10dB (LEFT)  
+25°C = 0dB (RIGHT)  
+25°C = 10dB (RIGHT)  
+25°C = 0dB (LEFT)  
+25°C = 10dB (LEFT)  
–40°C = 0dB (RIGHT)  
–40°C = 10dB (RIGHT)  
–40°C = 0dB (LEFT)  
–40°C = 10dB (LEFT)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HD3 RIGHT dBc = +25°C  
HD3 RIGHT dBc = –40°C  
HD3 LEFT dBc = = +110°C  
HD3 LEFT dBc = +25°C  
HD3 LEFT dBc = –40°C  
–20  
–40  
–60  
–80  
–100  
–120  
–100  
–90.0  
–67.5  
–45.0  
–22.5  
22.5  
45.0  
67.5  
90.0  
–75  
–50  
–25  
0
25  
50  
75  
100  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 398. Observation Receiver HD3, Left and Right vs. Offset Frequency,  
LO = 5700 MHz, Tone Level = −20 dBm  
Figure 395. Observation Receiver HD2 vs. Offset Frequency, LO = 5200 MHz,  
Tone Level = −20 dBm Plus Attenuation  
0
0
TX1 TO ORX1  
+110°C = 0dB (RIGHT)  
+110°C = 10dB (RIGHT)  
+110°C = 0dB (LEFT)  
+110°C = 10dB (LEFT)  
+25°C = 0dB (RIGHT)  
+25°C = 10dB (RIGHT)  
+25°C = 0dB (LEFT)  
+25°C = 10dB (LEFT)  
–40°C = 0dB (RIGHT)  
–40°C = 10dB (RIGHT)  
–40°C = 0dB (LEFT)  
–40°C = 10dB (LEFT)  
TX2 TO ORX1  
TX1 TO ORX2  
TX2 TO ORX2  
10  
20  
30  
40  
50  
60  
70  
80  
90  
–20  
–40  
–60  
–80  
–100  
–120  
–100  
5000  
5200  
5400  
5600  
5800  
6000  
–75  
–50  
–25  
0
25  
50  
75  
100  
LO FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 396. Observation Receiver HD2 vs. Offset Frequency, LO = 5700 MHz,  
Tone Level = −20 dBm Plus Attenuation  
Figure 399. Transmitter to Observation Receiver Isolation vs. LO Frequency,  
Temperature = 25°C  
Rev. B | Page 89 of 127  
ADRV9009  
Data Sheet  
0
–0.20  
–0.40  
–0.60  
–0.80  
–1.00  
–1.20  
–1.40  
–1.60  
–1.80  
80  
75  
70  
65  
60  
55  
50  
45  
40  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
IIP2 DIFF +110°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
–2.00  
5000  
5805  
5806  
5825  
5826  
5845  
5846  
5865  
5866  
5885  
5886  
5905  
5906  
5200  
5400  
5600  
5800  
6000  
LO FREQUENCY (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 400. Receiver Path Loss vs. LO Frequency, Can Be Used for De-  
Embedding Performance Data  
Figure 403. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 5800 MHz, Six Tone  
Pairs, −21 dBm Plus Attenuation Each  
110  
0
Rx1 IIP2 DIFF +110°C  
Rx1 IIP2 SUM +110°C  
Rx1 IIP2 DIFF +25°C  
Rx1 IIP2 SUM +25°C  
Rx1 IIP2 DIFF –40°C  
Rx1 IIP2 SUM –40°C  
+110°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100  
90  
80  
70  
60  
50  
Rx2 IIP2 DIFF +110°C  
Rx2 IIP2 SUM +110°C  
Rx2 IIP2 DIFF +25°C  
Rx2 IIP2 SUM +25°C  
Rx2 IIP2 DIFF –40°C  
Rx2 IIP2 SUM –40°C  
5200  
5300  
5400  
5500  
5600  
5700  
5800  
0
5
10  
15  
20  
25  
30  
RECEIVER LO FREQUENCY (MHz)  
RECEIVER ATTENUATION  
Figure 401. Receiver LO Leakage vs. Receiver LO Frequency, LO = 5200 MHz,  
5500 MHz, and 5800 MHz, Receiver Attenuation = 0 dB, RF  
Bandwidth = 200 MHz, Sample Rate = 245.76 MSPS  
Figure 404. Receiver IIP2 vs. Receiver Attenuation, LO = 5800 MHz, Tones  
Placed at 5802 MHz and 5892 MHz, −21 dBm Plus Attenuation  
110  
80  
IIP2 SUM +110°C  
IIP2 SUM +25°C  
IIP2 SUM –40°C  
Rx1 IIP2 DIFF +110°C  
Rx1 IIP2 SUM +110°C  
Rx1 IIP2 DIFF +25°C  
75  
100  
IIP2 DIFF +110°C  
Rx1 IIP2 SUM +25°C  
Rx1 IIP2 DIFF –40°C  
Rx1 IIP2 SUM –40°C  
IIP2 DIFF +25°C  
IIP2 DIFF –40°C  
90  
70  
65  
60  
55  
50  
45  
40  
80  
70  
60  
50  
Rx2 IIP2 DIFF +110°C  
Rx2 IIP2 SUM +110°C  
Rx2 IIP2 DIFF +25°C  
Rx2 IIP2 SUM +25°C  
Rx2 IIP2 DIFF –40°C  
Rx2 IIP2 SUM –40°C  
5802 5812 5822 5832 5842 5852 5862 5872 5882 5892 5902  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
ATTENUATION (dB)  
5802 5802 5802 5802 5802 5802 5802 5802 5802 5802 5802  
SWEPT PASS BAND FREQUENCY  
Figure 405. Receiver IIP2 Sum and Difference Across Bandwidth vs. Swept  
Pass Band Frequency, Receiver Attenuation = 0 dB, LO = 5800 MHz,  
Tone 1 = 5802 MHz, Tone 2 Swept, −21 dBm Each  
Figure 402. Receiver IIP2 vs. Attenuation, LO = 5800 MHz LO, Tones Placed at  
5845 MHz and 5846 MHz, −21 dBm Plus Attenuation  
Rev. B | Page 90 of 127  
Data Sheet  
ADRV9009  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
0
0
0
5
10  
15  
20  
25  
30  
5802 5802 5802 5802 5802 5802 5802 5802 5802 5802 5802 5802  
5812 5822 5832 5842 5852 5862 5872 5882 5892 5902 5912 5922  
RECEIVER ATTENUATION (dB)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 409. Receiver IIP3 Across Bandwidth vs. Swept Pass Band Frequency,  
Receiver Attenuation = 0 dB, LO = 5800 MHz, Tone 1 = 5802 MHz, Tone 2  
Swept Across Pass Band, −21 dBm Each  
Figure 406. Receiver IIP3 vs. Receiver Attenuation, LO = 5800 MHz, Tone 1 =  
5895 MHz, Tone 2 = 5896 MHz, −21 dBm Plus Attenuation  
–10  
30  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
+110°C  
+25°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
25  
20  
15  
10  
5
0
5805 5815 5825 5835 5845 5855 5865 5875 5888 5895 5905 5915  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
5806 5816 5826 5836 5846 5856 5866 5876 5886 5896 5906 5916  
BASEBAND FREQUENCY OFFSET (MHz)  
SWEPT PASS BAND FREQUENCY (MHz)  
Figure 410. Receiver Image vs. Baseband Frequency Offset, Attenuation =  
0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 5200 MHz  
Figure 407. Receiver IIP3 Across Bandwidth vs. Swept Pass Band Frequency,  
Receiver Attenuation = 0 dB, LO = 5800 MHz, Tone 2 = Tone 1 + 1 MHz,  
−21 dBm each, Swept Across Pass Band  
–10  
60  
Rx1 = +110°C  
Rx1 = +25°C  
Rx1 = –40°C  
Rx2 = +110°C  
Rx2 = +25°C  
Rx2 = –40°C  
+110°C  
+25°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
RECEIVER ATTENUATION (dB)  
BASEBAND FREQUENCY OFFSET (MHz)  
Figure 408. Receiver IIP3 vs. Receiver Attenuation, LO = 5800 MHz,  
Tone 1 = 5802 MHz, Tone 2 = 5892 MHz, −21 dBm Plus Attenuation  
Figure 411. Receiver Image vs. Baseband Frequency Offset, Attenuation =  
0 dB, RF Bandwidth = 200 MHz, Tracking Calibration Active,  
Sample Rate = 245.76 MSPS, LO = 5900 MHz  
Rev. B | Page 91 of 127  
ADRV9009  
Data Sheet  
0
0.5  
0.4  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
–20  
0.3  
0.2  
–40  
0.1  
–60  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
2
10  
15  
20  
25  
30  
0
2
10  
15  
20  
25  
30  
ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 412. Receiver Image vs. Attenuator Setting, RF Bandwidth = 200 MHz,  
Tracking Calibration Active, Sample Rate = 245.76 MSPS, LO = 5200 MHz,  
Baseband Frequency = 10 MHz  
Figure 415. Receiver Gain Step Error vs. Receiver Attenuator Setting, LO =  
5600 MHz  
0
0.5  
+110°C  
+25°C  
–40°C  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
–20  
0.2  
–40  
0.1  
–60  
–80  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–100  
–120  
0
2
10  
15  
20  
25  
30  
0
2
10  
15  
20  
25  
30  
ATTENUATOR SETTING (dB)  
RECEIVER ATTENUATOR SETTING (dB)  
Figure 413. Receiver Image vs. Attenuator Setting, RF Bandwidth = 200 MHz,  
Tracking Calibration Active, Sample Rate = 245.76 MSPS, LO = 5900 MHz,  
Baseband Frequency = 10 MHz  
Figure 416. Receiver Gain Step Error vs. Receiver Attenuator Setting, LO =  
6000 MHz  
0.5  
0.5  
0.4  
+110°C  
+25°C  
–40°C  
0.4  
0.3  
0.3  
0.2  
0.1  
0.2  
0
0.1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
MAX OF NORMALIZED_I_RIPPLE –40°C  
MAX OF NORMALIZED_I_RIPPLE +25°C  
MAX OF NORMALIZED_I_RIPPLE +110°C  
MAX OF NORMALIZED_Q_RIPPLE –40°C  
MAX OF NORMALIZED_Q_RIPPLE +25°C  
MAX OF NORMALIZED_Q_RIPPLE +110°C  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
0
2
10  
15  
20  
25  
30  
RECEIVER ATTENUATOR SETTING (dB)  
BASEBAND AND FREQUENCY (MHz)  
Figure 417. Normalized Receiver Baseband Flatness vs. Baseband and Frequency  
(Receiver Flatness)  
Figure 414. Receiver Gain Step Error vs. Receiver Attenuator Setting,  
LO = 5200 MHz  
Rev. B | Page 92 of 127  
Data Sheet  
ADRV9009  
–30  
–40  
–10  
–30  
Rx2 = +110°C (LEFT)  
Rx1 = +110°C (LEFT)  
Rx2 = +25°C (LEFT)  
Rx1 = +25°C (LEFT)  
Rx2 = –40°C (LEFT)  
Rx1 = –40°C (LEFT)  
Rx2 = +110°C (RIGHT)  
Rx1 = +110°C (RIGHT)  
Rx2 = +25°C (RIGHT)  
Rx1 = +25°C (RIGHT)  
Rx2 = –40°C (RIGHT)  
Rx1 = –40°C (RIGHT)  
–50  
–60  
–50  
–70  
–80  
–70  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
–110  
–130  
–150  
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
–60  
–40  
–20  
0
20  
40  
60  
BASEBAND FREQUENCY OFFSET (MHz)  
FREQUENCY OFFSET FROM LO (MHz)  
Figure 418. Receiver HD2, Left vs. Baseband Frequency Offset, Tone Level =  
−15 dBm at Attenuation = 0 dB, X-Axis = Baseband Frequency Offset of the  
Fundamental Tone, Not the Frequency of the HD2 Product (HD2 Product =  
2 × the Baseband Frequency), HD2 Canceller Disabled, LO = 5200 MHz  
Figure 421. Receiver HD3, Left and Right vs. Frequency Offset from LO,  
Tone Level = −15 dBm at Attenuation = 0 dB, LO = 5900 MHz  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
+110°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–110  
–120  
–130  
–140  
–150  
ATTN = 15 +110°C  
ATTN = 15 +25°C  
ATTN = 15 –40°C  
ATTN = 0 +110°C  
ATTN = 0 +25°C  
ATTN = 0 –40°C  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
–60  
–40  
–20  
0
20  
40  
60  
BASEBAND FREQUENCY OFFSET (MHz)  
LTE 20 RF INPUT POWER (dBm)  
Figure 419. Receiver HD2, Left vs. Baseband Frequency Offset, Tone Level =  
−15 dBm at Attenuation = 0 dB, X-Axis = Baseband Frequency Offset of the  
Fundamental Tone, Not the Frequency of the HD2 Product (HD2 Product =  
2 × the Baseband Frequency), HD2 Canceller Disabled, LO = 5900 MHz  
Figure 422. Receiver EVM vs. LTE20 RF Input Power, LO = 5200 MHz, Default  
AGC Settings  
–10  
0
Rx2 = +110°C (LEFT)  
Rx1 = +110°C (LEFT)  
Rx2 = +25°C (LEFT)  
Rx1 = +25°C (LEFT)  
Rx2 = –40°C (LEFT)  
Rx1 = –40°C (LEFT)  
Rx2 = +110°C (RIGHT)  
Rx1 = +110°C (RIGHT)  
Rx2 = +25°C (RIGHT)  
Rx1 = +25°C (RIGHT)  
Rx2 = –40°C (RIGHT)  
Rx1 = –40°C (RIGHT)  
+110°C  
+25°C  
–40°C  
–5  
–10  
–30  
–50  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–70  
–90  
–110  
–130  
–150  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
–50  
–40  
–30  
–20  
–10  
10  
20  
30  
40  
50  
FREQUENCY OFFSET FROM LO (MHz)  
LTE 20 RF INPUT POWER (dBm)  
Figure 420. Receiver HD3, Left and Right vs. Frequency Offset from LO, Tone  
Level = −15 dBm at Attenuation = 0 dB, LO = 5200 MHz  
Figure 423. Receiver EVM vs. LTE20 RF Input Power, LO = 5500 MHz, Default  
AGC Settings  
Rev. B | Page 93 of 127  
ADRV9009  
Data Sheet  
0
–20  
–40  
+110°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
100  
1k  
10k  
100k  
1M  
10M  
100M  
LTE 20 RF INPUT POWER (dBm)  
FREQUENCY OFFSET (Hz)  
Figure 426. LO Phase Noise vs. Frequency Offset, LO = 5900 MHz, RMS Phase  
Error Integrated from 2 kHz to 18 MHz, PLL Loop Bandwidth > 300 kHz,  
Spectrum Analyzer Limits Far Out Noise  
Figure 424. EVM vs. LTE20 RF Input Power, LO = 5800 MHz, Default AGC  
Settings  
0
Rx1 TO Rx2  
Rx2 TO Rx1  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000  
LO FREQUENCY (MHz)  
Figure 425. Receiver to Receiver Isolation vs. LO Frequency  
Rev. B | Page 94 of 127  
Data Sheet  
ADRV9009  
TRANSMITTER OUTPUT IMPEDANCE  
Tx PORT SIMULATED IMPEDANCE: SEDZ  
M26  
M21  
FREQ = 3.000GHz  
S (1,1) = 0.368 / 150.626  
IMPEDANCE = 24.355 + j10.153  
FREQ = 100.0MHz  
S (1,1) = 0.143 / –7.865  
IMPEDANCE = 66.439 – j2.654  
M28  
M27  
M27  
M22  
M29  
FREQ = 4.000GHz  
S (1,1) = 0.484 / –107.379  
IMPEDANCE = 25.118 + j30.329  
FREQ = 300.0MHz  
S (1,1) = 0.141 / –25.589  
IMPEDANCE = 64.063 – j7.987  
M26  
M28  
M23  
FREQ = 5.000GHz  
S (1,1) = 0.569 / 70.352  
IMPEDANCE = 35.932 + j56.936  
FREQ = 500.0MHz  
S (1,1) = 0.145 / –42.661  
IMPEDANCE = 60.623 – j12.201  
M21  
M22  
M23  
M25  
M24  
M29  
M24  
FREQ = 6.000GHz  
S (1,1) = 0.614 / 36.074  
IMPEDANCE = 81.032 + j94.014  
FREQ = 1.000GHz  
S (1,1) = 0.164 / –84.046  
IMPEDANCE = 49.000 – j16.447  
M25  
FREQ = 2.000GHz  
S (1,1) = 0.247 / 155.186  
IMPEDANCE = 31.131 – j6.860  
FREQ (0Hz TO 6.000GHz)  
Figure 427. Transmitter Output Impedance Series Equivalent Differential Impedance (SEDZ)  
OBSERVATION RECEIVER INPUT IMPEDANCE  
ORx PORT SIMULATED IMPEDANCE: SEDZ  
M20  
M15  
FREQ = 3.000GHz  
S (1,1) = 0.104 / –66.720  
IMPEDANCE = 53.262 – j10.292  
FREQ = 100.0MHz  
S (1,1) = 0.391 / –1.848  
IMPEDANCE = 114.099 – j3.397  
M23  
M22  
M21  
M16  
FREQ = 4.000GHz  
S (1,1) = 0.116 / –104.276  
IMPEDANCE = 46.060 + j10.522  
FREQ = 300.0MHz  
S (1,1) = 0.389 / –5.601  
IMPEDANCE = 112.639 – j10.091  
M21  
M21  
M22  
M17  
M15  
M16  
M18  
FREQ = 5.000GHz  
S (1,1) = 0.342 / 75.761  
IMPEDANCE = 46.551 + j34.914  
FREQ = 500.0MHz  
S (1,1) = 0.385 / –9.396  
IMPEDANCE = 109.556 – j16.156  
M17  
M20  
M19  
M23  
M18  
FREQ = 6.000GHz  
S (1,1) = 0.525 / 53.007  
IMPEDANCE = 56.249 + j65.146  
FREQ = 1.000GHz  
S (1,1) = 0.362 / –19.087  
IMPEDANCE = 97.259 – j26.513  
M19  
FREQ = 2.000GHz  
S (1,1) = 0.267 / –39.928  
IMPEDANCE = 70.189 – j25.940  
FREQ (0Hz TO 6.000GHz)  
Figure 428. Observation Receiver Input Impedance SEDZ  
Rev. B | Page 95 of 127  
 
 
 
 
ADRV9009  
Data Sheet  
RECEIVER INPUT IMPEDANCE  
Rx PORT SIMULATED IMPEDANCE: SEDZ  
M20  
M15  
FREQ = 3.000GHz  
S (1,1) = 0.267 / –64.650  
IMPEDANCE = 55.102 – j28.685  
FREQ = 100.0MHz  
S (1,1) = 0.390 / –1.819  
IMPEDANCE = 113.933 – j3.331  
M21  
M16  
FREQ = 4.000GHz  
S (1,1) = 0.186 / –104.336  
IMPEDANCE = 42.821 – j16.026  
FREQ = 300.0MHz  
S (1,1) = 0.390 / –5.495  
IMPEDANCE = 112.803 – j9.931  
M23  
M22  
M17  
M15  
M16  
M17  
M18  
FREQ = 5.000GHz  
S (1,1) = 0.164 / –173.106  
IMPEDANCE = 35.977 – j1.455  
FREQ = 500.0MHz  
S (1,1) = 0.388 / –9.198  
IMPEDANCE = 110.398 – j16.107  
M22  
M21  
M19  
M20  
M23  
M18  
FREQ = 6.000GHz  
S (1,1) = 0.266 / 130.063  
IMPEDANCE = 32.890 + j14.399  
FREQ = 1.000GHz  
S (1,1) = 0.377 / –18.643  
IMPEDANCE = 100.377 – j28.250  
M19  
FREQ = 2.000GHz  
S (1,1) = 0.336 / –39.123  
IMPEDANCE = 74.966 – j35.800  
FREQ (0Hz TO 6.000GHz)  
Figure 429. Receiver Input Impedance SEDZ  
Rev. B | Page 96 of 127  
 
 
Data Sheet  
ADRV9009  
TERMINOLOGY  
Large Signal Bandwidth  
Observation Bandwidth  
Large signal bandwidth, otherwise known as instantaneous  
bandwidth or signal bandwidth, is the bandwidth over which  
there are large signals. For example, for Band 42 LTE, the large  
signal bandwidth is 200 MHz.  
Observation bandwidth is the 1 dB bandwidth of the observation  
receiver. With the observation receiver sharing the transmitter  
LO, the observation receiver senses similar power densities,  
such as those in the occupied bandwidth and synthesis bandwidth  
of the transmitter.  
Occupied Bandwidth  
Occupied bandwidth is the total bandwidth of the active signals.  
For example, three 20 MHz carriers have a 60 MHz occupied  
bandwidth, regardless of where the carriers are placed within  
the large signal bandwidth.  
Backoff  
Backoff is the difference (in dB) between full scale and the rms  
signal power.  
PHIGH  
Synthesis Bandwidth  
PHIGH is the largest signal that can be applied without  
overloading the ADC for the receiver or observation receiver  
input. This input level results in slightly less than full scale at  
the digital output because of the nature of the continuous time  
Σ-Δ ADCs, which, for example, exhibit a soft overload in  
contrast to the hard clipping of pipeline ADCs.  
Synthesis bandwidth is the bandwidth over which digital  
predistortion (DPD) linearization is transmitted. Synthesis  
bandwidth is the 1 dB bandwidth of the transmitter. The power  
density of the signal outside the occupied bandwidth is assumed  
to be 25 dB below the signal in the occupied bandwidth, which  
also assumes that the unlinearized power amplifier (PA)  
achieves 25 dB ACLR.  
Rev. B | Page 97 of 127  
 
ADRV9009  
Data Sheet  
THEORY OF OPERATION  
The ADRV9009 is a highly integrated RF transmitter subsystem  
capable of configuration for a wide range of applications. The  
device integrates all RF, mixed-signal, and digital blocks necessary  
to provide all transmitter traffic and DPD observation receiver  
functions in a single device. Programmability allows the  
transmitter to be adapted for use in many TDD systems and  
3G/4G/5G cellular standards. The ADRV9009 contains four high  
speed serial interface links for the transmitter chain, and two  
high speed links each for the receiver and observation receiver  
chains. The links are JESD204B, Subclass 1 compliant. The two  
receiver lanes can be reused for the observation receiver, providing  
a low pin count and a reliable data interface to field programmable  
gate arrays (FPGAs) or integrated baseband solutions.  
The receivers include ADCs and adjustable sample rates that  
produce data streams from the received signals. The signals can  
be conditioned further by a series of decimation filters and a  
programmable FIR filter with additional decimation settings. The  
sample rate of each digital filter block is adjustable by changing  
decimation factors to produce the desired output data rate.  
OBSERVATION RECEIVER  
The ADRV9009 contains an independent DPD observation  
receiver front end with two multiplexed inputs and a common  
digital back end that is shared with the traffic receiver. This  
configuration enables an efficient shared receiver and observation  
receiver mode where the device can support fast switching  
between receiver and observation receiver mode in TDD  
applications. The observation receiver shares the common  
frequency synthesizer with the transmitter.  
The ADRV9009 also provides tracking correction of dc offset  
QEC errors and transmitter LO leakage to maintain high  
performance under varying temperatures and input signal  
conditions. The device also includes test modes that allow  
system designers to debug designs during prototyping and to  
optimize radio configurations.  
The observation receiver is a direct conversion system that  
contains a programmable attenuator stage, followed by matched  
I and Q mixers, baseband filters, and ADCs.  
The continuous time Σ-Δ ADCs have inherent antialiasing that  
reduces the RF filtering requirement.  
TRANSMITTER  
The ADRV9009 transmitter section consists of two identical  
and independently controlled channels that provide all digital  
processing, mixed-signal, and RF blocks necessary to implement a  
direct conversion system while sharing a common frequency  
synthesizer. The digital data from the JESD204B lanes pass  
through a fully programmable, 128-tap FIR filter with variable  
interpolation rates. The FIR output is sent to a series of  
interpolation filters that provide additional filtering and  
interpolation prior to reaching the DAC. Each 14-bit DAC  
has an adjustable sample rate.  
The ADC outputs can be conditioned further by a series of  
decimation filters and a programmable FIR filter with additional  
decimation settings. The sample rate of each digital filter block  
is adjustable by changing decimation factors to produce the  
desired output data rate.  
CLOCK INPUT  
The ADRV9009 requires a differential clock connected to the  
REF_CLK_IN pins. The frequency of the clock input must be  
between 10 MHz and 1000 MHz and must have very low phase  
noise because this signal generates the RF LO and internal  
sampling clocks.  
When converted to baseband analog signals, the inphase (I) and  
quadrature (Q) signals are filtered to remove sampling artifacts  
and are fed to the upconversion mixers. Each transmitter chain  
provides a wide attenuation adjustment range with fine  
granularity to optimize SNR.  
SYNTHESIZERS  
RF PLL  
The ADRV9009 contains a fractional-N PLL to generate the RF  
LO for the signal paths. The PLL incorporates an internal VCO  
and loop filter, requiring no external components. The LOs on  
multiple chips can be phase synchronized to support active  
antenna systems and beamforming applications.  
RECEIVER  
The ADRV9009 receiver contains all the blocks necessary to  
receive RF signals and convert them to digital data usable by a BBP.  
Each receiver can be configured as a direct conversion system  
that supports up to a 200 MHz bandwidth. Each receiver  
contains a programmable attenuator stage, followed by matched  
I and Q mixers that downconvert received signals to baseband  
for digitization.  
Clock PLL  
The ADRV9009 contains a PLL synthesizer that generates all  
the baseband related clock signals and serialization/deserial-  
ization (SERDES) clocks. This PLL is programmed based on the  
data rate and sample rate requirements of the system.  
Gain control can be achieved by using the on-chip AGC or by  
allowing the BBP to make gain adjustments in a manual gain  
control mode. Performance is optimized by mapping each gain  
control setting to specific attenuation levels at each adjustable  
gain block in the receiver signal path. Additionally, each  
channel contains independent receive signal strength indicator  
(RSSI) measurement capability, dc offset tracking, and all  
circuitry necessary for self calibration.  
Rev. B | Page 98 of 127  
 
 
 
 
 
 
Data Sheet  
ADRV9009  
performance. A pointer register selects the information that is  
output to these pins. Signals used for manual gain mode,  
calibration flags, state machine states, and various observation  
receiver parameters are among the outputs that can be  
monitored on these pins. Additionally, certain pins can be  
configured as inputs and used for various functions, such as  
setting the observation receiver gain in real time.  
SPI  
The ADRV9009 uses an SPI interface to communicate with the  
BBP. This interface can be configured as a 4-wire interface with  
dedicated receiver and transmitter ports, or the interface can be  
configured as a 3-wire interface with a bidirectional data  
communications port. This bus allows the BBP to set all device  
control parameters using a simple address data serial bus  
protocol.  
Twelve 3.3 V GPIO_x pins are also included on the device.  
These pins provide control signals to external components.  
Write commands follow a 24-bit format. The first five bits set  
the bus direction and the number of bytes to transfer. The next  
11 bits set the address where data is written. The final 8 bits are  
the data to be transferred to the specific register address.  
AUXILIARY CONVERTERS  
AUXADC_x  
The ADRV9009 contains an auxiliary ADC that is multiplexed  
to four input pins (AUXADC_x). The auxiliary ADC is 12 bits  
with an input voltage range of 0.05 V to VDDA_3P3 − 0.05 V.  
When enabled, the auxiliary ADC is free running. The SPI reads  
provide the last value latched at the ADC output. The auxiliary  
ADC can also be multiplexed to a built in, diode-based  
temperature sensor.  
Read commands follow a similar format with the exception that  
the first 16 bits are transferred on the SDIO pin and the final  
eight bits are read from the ADRV9009, either on the SDO pin  
in 4-wire mode or on the SDIO pin in 3-wire mode.  
JTAG BOUNDARY SCAN  
The ADRV9009 provides support for JTAG boundary scan. Five  
dual function pins are associated with the JTAG interface. Use  
these pins, listed in Table 5, to access the on-chip test access port.  
To enable the JTAG functionality, set the GPIO_3 pin through the  
GPIO_0 pin to 1001, and then pull the TEST pin high.  
Auxiliary DAC x  
The ADRV9009 contains 10 identical auxiliary DACs (auxiliary  
DAC x) that can be used for bias or other system functionality.  
The auxiliary DACs are 10 bits, have an output voltage range of  
approximately 0.7 V to VDDA_3P3 − 0.3 V, and have an output  
drive of 10 mA.  
POWER SUPPLY SEQUENCE  
The ADRV9009 requires a specific power-up sequence to avoid  
undesired power-up currents. In the optimal power-up sequence,  
the VDDD1P3_DIG and the VDDA1P3 supplies (VDDA1P3  
includes all 1.3 V domains) power up first and at the same time.  
If these supplies cannot be powered up simultaneously, the  
VDDD1P3_DIG supply must power up first. Power up the  
VDDA_3P3, VDDA1P8_BB, VDDA1P8_TX, VDDA1P3_DES,  
and VDDA1P3_SER supplies after the 1.3 V supplies. The  
VDD_INTERFACE supply can be powered up at any time. Note  
that no device damage occurs if this sequence is not followed.  
However, failure to follow this sequence may result in higher  
than expected power-up currents. It is also recommended to toggle  
JESD204B DATA INTERFACE  
The digital data interface for the ADRV9009 uses JEDEC  
JESD204B Subclass 1. The serial interface operates at speeds of  
up to 12.288 Gbps. The benefits of the JESD204B interface  
include a reduction in required board area for data interface  
routing, resulting in smaller total system size. Four high speed  
serial lanes are provided for the transmitter and four high speed  
lanes are provided for the observation receiver. The ADRV9009  
supports single-lane or dual-lane interfaces as well as fixed and  
floating point data formats for observation receiver data.  
Table 6. Observation Path Interface Rates  
RESET  
the  
signal after power stabilizes, prior to configuration.  
JESD204B  
The power-down sequence is not critical. If a power-down  
sequence is followed, remove the VDDD1P3_DIG supply last to  
avoid any back biasing of the digital control lines.  
Bandwidth  
(MHz)  
Output Rate Lane Rate  
Number of  
Lanes  
(MSPS)  
245.76  
307.2  
(Mbps)  
9830.4  
12288  
12288  
9830.4  
4915.2  
200  
200  
250  
450  
450  
1
1
1
2
4
GPIO_x PINS  
The ADRV9009 provides 19, 1.8 V to 2.5 V GPIO signals that  
can be configured for numerous functions. When configured as  
outputs, certain pins can provide real-time signal information  
to the BBP, allowing the BBP to determine observation receiver  
307.2  
491.52  
491.52  
Rev. B | Page 99 of 127  
 
 
 
 
 
 
ADRV9009  
Data Sheet  
Table 7. Example Transmitter Interface Rates (Other Input Rates, Bandwidth, and JESD204B Lanes Also Supported)  
Single-Channel Operation Dual-Channel Operation  
JESD204B Lane Rate JESD204B Number of JESD204B Lane Rate JESD204B Number of  
Bandwidth  
(MHz)  
Input Rate  
(MSPS)  
(Mbps)  
9830.4  
12288  
12288  
9830.4  
Lanes  
(Mbps)  
9830.4  
12288  
12288  
9830.4  
Lanes  
200  
200  
250  
450  
245.76  
307.2  
307.2  
1
1
1
2
2
2
2
4
491.52  
TRANSMIT  
HALF-BAND  
FILTER 1  
(INTERPOLATION  
FACTOR 1, 2)  
TRANSMIT  
HALF-BAND  
FILTER 2  
(INTERPOLATION  
FACTOR 1, 2)  
TRANSMIT FIR  
DIGITAL  
GAIN  
QUADRATURE  
CORRECTION  
JESD204B  
FILTER  
(INTERPOLATION  
FACTOR 1, 2, 4)  
I/Q DAC  
Figure 430. Transmitter Datapath Filter Implementation  
Table 8. Example Receiver Interface Rates (Other Output Rates, Bandwidth, and JESD204B Lanes Also Supported)  
Single-Channel Operation Dual-Channel Operation  
JESD204B Lane Rate JESD204B Number JESD204B Lane Rate JESD204B Number  
Bandwidth  
(MHz)  
Output Rate  
(MSPS)  
(Mbps)  
4915.2  
6144  
9830.4  
9830.4  
4915.2  
of Lanes  
(Mbps)  
9830.4  
12288  
9830.4  
9830.4  
4915.2  
of Lanes  
80  
122.88  
153.6  
245.76  
245.76  
245.76  
1
1
1
1
2
1
1
2
2
4
100  
100  
200  
200  
FIR  
FILTER  
(DECIMATION  
FACTOR 1, 2, 4)  
RECEIVE  
HALF-BAND  
FILTER  
3
RECEIVE  
HALF-BAND  
FILTER  
2
RECEIVE  
HALF-BAND  
FILTER  
1
DC  
DIGITAL  
GAIN  
JESD204B  
ADC  
ESTIMATION  
Figure 431. Receiver and Observation Receiver Datapath Filter Implementation  
Rev. B | Page 100 of 127  
Data Sheet  
ADRV9009  
APPLICATIONS INFORMATION  
PCB LAYOUT AND POWER SUPPLY  
RECOMMENDATIONS  
Layer 2 and Layer 13 are crucial to maintaining the RF signal  
integrity and, ultimately, the ADRV9009 performance. Layer 3 and  
Layer 12 route power supply domains. To keep the RF section of  
the ADRV9009 isolated from the fast transients of the digital  
section, the JESD204B interface lines are routed on Layer 5 and  
Layer 10. These layers have impedance control set to a 100 Ω  
differential. The remaining digital lines from the ADRV9009  
are routed on Inner Layer 7 and Inner Layer 8. RF traces on the  
outer layers must be a controlled impedance to get the best  
performance from the device. The inner layers on this board  
use 0.5 ounce copper or 1 ounce copper. The outer layers use  
1.5 ounce copper so the RF traces are less prone to pealing.  
Ground planes on this board are full copper floods with no  
splits except for vias, through-hole components, and isolation  
structures. The ground planes must route entirely to the edge of  
the PCB under the Surface-Mount Type A (SMA) connectors to  
maintain signal launch integrity. Power planes can be pulled  
back from the board edge to decrease the risk of shorting from  
the board edge.  
Overview  
The ADRV9009 device is a highly integrated RF agile transceiver  
with significant signal conditioning integrated on one chip. Due  
to the increased complexity of the device and its high pin count,  
careful PCB layout is important to get the optimal performance.  
This data sheet provides a checklist of issues to look for and  
guidelines on how to optimize the PCB to mitigate performance  
issues. The goal of this data sheet is to help achieve the optimal  
performance from the ADRV9009 while reducing board layout  
effort. This data sheet assumes that the user is an experienced  
analog and RF engineer with an understanding of RF PCB  
layout and RF transmission lines. This data sheet discusses the  
following issues and provides guidelines for system designers to  
achieve the optimal performance for the ADRV9009:  
PCB material and stack up selection  
Fanout and trace space layout guidelines  
Component placement and routing guidelines  
RF and JESD204B transmission line layout  
Isolation techniques used on the ADRV9009-W/PCBZ  
Power management considerations  
Unused pin instructions  
PCB MATERIAL AND STACKUP SELECTION  
Figure 432 shows the PCB stackup used for the ADRV9009-  
W/PCBZ. Table 9 and Table 10 list the single-ended and  
differential impedance for the stackup shown in Figure 432. The  
dielectric material used on the top and the bottom layers is  
8 mil Rogers 4003C. The remaining dielectric layers are FR4-  
370 HR. The board design uses the Rogers laminate for the top  
layer and bottom layer for the low loss tangent at high  
frequencies. The ground planes under the Rogers laminate  
(Layer 2 and Layer 13) are the reference planes for the  
transmission lines routed on the outer surfaces. These layers are  
solid copper planes without any splits under the RF traces.  
Figure 432. ADRV9009-W/PCBZ Trace Impedance and Stackup  
Rev. B | Page 101 of 127  
 
 
 
 
ADRV9009  
Data Sheet  
Table 9. ADRV9009-W/PCBZ Single Ended Impedance and Stackup1  
Single-  
Ended  
Board  
Designed Trace Finished Trace  
Copper Starting  
%
Finished  
Single-Ended  
Single-Ended  
(Inches)  
Single-Ended  
(Inches)  
Calculated  
Impedance (Ω) Layers  
Reference  
Layer  
1
2
3
4
5
6
7
8
Copper (oz.) Copper (oz.) Impedance  
N/A  
65  
50  
65  
50  
65  
50  
50  
65  
50  
65  
50  
65  
N/A  
0.5  
1
0.5  
1
0.5  
1
0.5  
0.5  
1
0.5  
0.5  
1
1
0.5  
1.71  
1
1
1
0.5  
1
0.5  
0.5  
1
1
1
50 Ω 10ꢀ  
N/A  
N/A  
N/A  
50 Ω 10ꢀ  
N/A  
50 Ω 10ꢀ  
50 Ω 10ꢀ  
N/A  
50 Ω 10ꢀ  
N/A  
0.0155  
N/A  
N/A  
N/A  
0.0045  
N/A  
0.0049  
0.0049  
N/A  
0.0045  
N/A  
0.0135  
N/A  
N/A  
N/A  
0.0042  
N/A  
0.0039  
0.0039  
N/A  
0.0039  
N/A  
49.97  
N/A  
N/A  
N/A  
49.79  
N/A  
50.05  
50.05  
N/A  
49.88  
N/A  
2
N/A  
N/A  
N/A  
4, 6  
N/A  
6, 9  
6, 9  
N/A  
9, 11  
N/A  
N/A  
N/A  
13  
9
10  
11  
12  
13  
14  
1
1
1.64  
N/A  
N/A  
50 Ω 10ꢀ  
N/A  
N/A  
0.0155  
N/A  
N/A  
0.0135  
N/A  
N/A  
49.97  
1 N/A means not applicable.  
Table 10. ADRV9009-W/PCBZ Differential Impedance and Stackup1  
Finished  
Gap  
Differential  
(Inches)  
Designed Trace  
Differential  
(Inches)  
Designed Gap  
Differential  
(Inches)  
Calculated  
Impedance  
(Ω)  
Differential  
Reference  
Layers  
Differential  
Layer Impedance  
Finished Trace  
(Inches)  
1
100 Ω 10ꢀ  
50 Ω 10ꢀ  
N/A  
0.008  
0.0032  
N/A  
0.006  
0.004  
N/A  
0.007  
0.0304  
N/A  
0.007  
0.0056  
N/A  
99.55  
50.11  
N/A  
2
2
2
N/A  
N/A  
N/A  
4, 6  
N/A  
6, 9  
6, 9  
N/A  
9, 11  
N/A  
N/A  
N/A  
N/A  
13  
3
4
5
6
7
8
9
10  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
100 Ω 10ꢀ  
N/A  
100 Ω 10ꢀ  
100 Ω 10ꢀ  
N/A  
100 Ω 10ꢀ  
N/A  
N/A  
N/A  
N/A  
100 Ω 10ꢀ  
50 Ω 10ꢀ  
0.0036  
N/A  
0.0036  
0.0038  
N/A  
0.0036  
N/A  
N/A  
N/A  
N/A  
0.008  
0.032  
0.0064  
N/A  
0.0064  
0.0062  
N/A  
0.0064  
N/A  
N/A  
N/A  
N/A  
0.006  
N/A  
0.0034  
N/A  
0.0034  
0.0034  
N/A  
0.003  
N/A  
N/A  
N/A  
N/A  
0.007  
0.004  
0.0065  
N/A  
0.0066  
0.0066  
N/A  
0.007  
N/A  
N/A  
N/A  
N/A  
0.007  
N/A  
99.95  
N/A  
100.51  
100.51  
N/A  
100.80  
N/A  
N/A  
N/A  
N/A  
99.55  
50.11  
11  
12  
13  
14  
13  
1 N/A means not applicable.  
Rev. B | Page 102 of 127  
 
 
Data Sheet  
ADRV9009  
The JESD204B interface signals are routed on two signal layers  
that use impedance control (Layer 5 and Layer 10). The spacing  
between the CSP_BGA pads is 17.5 mil. After the signal is on  
the inner layers, a 3.6 mil trace (50 Ω) connects the JESD204B  
signal to the FPGA mezzanine card (FMC) connector. The  
recommended CSP_BGA land pad size is 15 mil.  
FANOUT AND TRACE SPACE GUIDELINES  
The ADRV9009 uses a 196-ball chip scale package ball grid  
array (CSP_BGA), 12 mm × 12 mm package. The pitch between  
the pins is 0.8 mm. This small pitch makes it impractical to route  
all signals on a single layer. RF pins are placed on the outer edges  
of the ADRV9009 package. The location of the pins helps route the  
critical signals without a fanout via. Each digital signal is routed  
from the CSP_BGA pad using a 4.5 mil trace. The trace is  
connected to the CSP_BGA using a via in the pad structure.  
The signals are buried in the inner layers of the board for  
routing to other parts of the system.  
Figure 433 shows the fanout scheme of the ADRV9009-W/PCBZ.  
Like the CSP_BGA, the ADRV9009-W/PCBZ uses a via in the  
pad technique. This routing approach can be used for the  
ADRV9009 if there are no issues with manufacturing capabilities.  
4.5mil TRACE  
AIR GAP = 17.5mil  
JESD INTERFACE  
TRACE WIDTH = 3.6mil  
PAD SIZE = 15mil  
VIA SIZE = 14mil  
Figure 433. Trace Fanout Scheme on the ADRV9009-W/PCBZ (PCB Layer Top and Layer 5 Enabled)  
Rev. B | Page 103 of 127  
 
 
ADRV9009  
Data Sheet  
ADRV9009 transceiver. Make every effort to optimize the  
COMPONENT PLACEMENT AND ROUTING  
GUIDELINES  
component selection and placement to avoid performance  
degradation. The RF Routing Guidelines section describes  
proper matching circuit placement and routing in more detail.  
Refer to the RF Port Interface Information section for more  
information.  
The ADRV9009 transceiver requires few external components  
to function, but those that are used require careful placement  
and routing to optimize performance. This section provides a  
checklist for properly placing and routing critical signals and  
components.  
To achieve the desired level of isolation between RF signal  
paths, use the technique described in the Isolation Techniques  
Used on the ADRV9009-W/PCBZ section in customer designs.  
Signals with Highest Routing Priority  
RF lines and JESD204B interface signals are the signals that are  
most critical and must be routed with the highest priority.  
Install a 10 μF capacitor near the transmitter balun(s)  
VDDA1P8_TX dc feed(s) for RF transmitter outputs. The  
capacitor acts as a reservoir for the transmitter supply current.  
The Transmitter Balun DC Feed Supplies section discusses  
more details about the transmitter output power supply  
configuration.  
Figure 434 shows the general directions in which each of the  
signals must be routed so that they can be properly isolated  
from noisy signals.  
The observation receiver and transmitter baluns and the  
matching circuits affect the overall RF performance of the  
VSSA  
ORX2_IN+  
VSSA  
ORX2_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
ORX1_IN+  
VSSA  
ORX1_IN–  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
RX_RF  
VSSA  
VSSA  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VDDA1P3_  
RF_VCO_LDO RF_VCO_LDO  
VDDA1P3_  
VDDA1P3_  
AUX_VCO_  
LDO  
GPIO_3p3_0  
GPIO_3p3_1  
GPIO_3p3_2  
VSSA  
GPIO_3p3_3  
GPIO_3p3_4  
GPIO_3p3_5  
VSSA  
VDDA1P3_  
RX_TX  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
VSSA  
VDDA_3P3  
GPIO_3p3_9  
GPIO_3p3_8  
GPIO_3p3_7  
VSSA  
RBIAS  
VSSA  
GPIO_3p3_6  
AUXADC_0  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TEST  
VSSA  
VSSA  
VDDA1P1_  
AUX_VCO  
VSSA  
VSSA  
GPIO_3p3_10  
GPIO_3p3_11  
VSSA  
VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+ REF_CLK_IN–  
AUX_  
SYNTH_OUT  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_TX  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
VDDA1P3_  
AUX_SYNTH  
VSSA  
VSSA  
VSSA  
RF_SYNTH_  
VTUNE  
VSSA  
VSSA  
VSSA  
TX2_OUT–  
TX2_OUT+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_2  
GPIO_3  
VSSD  
VSSA  
GPIO_1  
GPIO_0  
VSSA  
SDIO  
SCLK  
VSSA  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
SERDIN1+  
SERDIN3–  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
TX1_OUT+  
TX1_OUT–  
VSSA  
VSSA  
GPIO_18  
RESET  
GP_  
INTERRUPT  
SDO  
VSSA  
VSSA  
SYSREF_IN+  
SYNCIN1–  
SYNCIN0–  
SERDOUT3–  
VSSA  
SYSREF_IN–  
SYNCIN1+  
SYNCIN0+  
SERDOUT3+  
SERDOUT1–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
CS  
VSSA  
VSSA  
VSSA  
VDDD1P3_  
DIG  
VDDD1P3_  
DIG  
VSSD  
GPIO_8  
SYNCOUT1–  
SYNCOUT0–  
SERDIN0+  
SERDIN2–  
SYNCOUT1+  
SYNCOUT0+  
VSSA  
VDDA1P1_  
VSSA  
ORX1_  
ENABLE  
TX1_  
ENABLE  
ORX2_  
ENABLE  
TX2_  
ENABLE  
VSSA  
GPIO_17  
SERDIN1–  
VSSA  
VDD_  
INTERFACE  
CLOCK_VCO  
VDDA1P3_  
CLOCK_  
VCO_ LDO  
VSSA  
SERDOUT2–  
SERDOUT1+  
SERDOUT2+  
SERDOUT0–  
VSSA  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN0–  
SERDIN3+  
AUX_SYNTH_  
VTUNE  
VSSA  
SERDOUT0+  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN2+  
Figure 434. RF Input/Output, REF_CLK_IN , and JESD204B Signal Routing Guidelines  
Rev. B | Page 104 of 127  
 
 
Data Sheet  
ADRV9009  
Figure 435 shows placement for ac coupling capacitors and a  
100 Ω termination resistor near the REF_CLK_IN pins. Shield  
the traces with ground flooding that is surrounded with vias  
staggered along the edge of the trace pair. The trace pair creates  
a shielded channel that shields the reference clock from any  
interference from other signals. Refer to the ADRV9009-  
W/PCBZ layout, including board support files included with  
the evaluation board software, for exact details.  
JESD204B interface routing. Provide appropriate isolation  
between interface differential pairs. The Isolation Between  
JESD204B Lines section provides guidelines for optimizing  
isolation.  
The RF_EXT_LO_I/O− pin (B7) and the RF_EXT_LO_I/O+ pin  
(B8) on the ADRV9009 are internally dc biased. If an external  
LO is used, connect the LO via ac coupling capacitors.  
Route the JESD204B interface at the beginning of the PCB  
design and with the same priority as the RF signals. The RF  
Routing Guidelines section outlines recommendations for  
AC COUPLING  
CAPS  
100ΩTERMINATION  
RESISTOR  
TO ADRV9009  
BGA BALLS  
Figure 435. REF_CLK_IN Routing Recommendation  
Rev. B | Page 105 of 127  
 
ADRV9009  
Data Sheet  
When using a trace to connect power to a particular domain,  
ensure that this trace is surrounded by ground.  
Signals with Second Routing Priority  
Power supply quality has a direct impact on overall system  
performance. To achieve optimal performance, follow  
recommendations regarding ADRV9009 power supply routing.  
The following recommendations outline how to route different  
power domains that can be connected together directly and that  
can be tied to the same supply, but are separated by a 0 ꢀ  
placeholder resistor or ferrite bead (FB).  
Figure 436 shows an example of such traces routed on Layer 12  
of the ADRV9009-W/PCBZ. Each trace is separated from any  
other signal by the ground plane and vias. Separating the traces  
from other signals is essential to providing necessary isolation  
between the ADRV9009 power domains.  
Figure 436. Layout Example of Power Supply Domains Routed with Ground Shielding (Layer 12 to Power)  
Rev. B | Page 106 of 127  
 
Data Sheet  
ADRV9009  
Each power supply pin requires a 0.1 μF bypass capacitor near  
the pin at a minimum. Place the ground side of the bypass  
capacitor in a way so that ground currents flow away from other  
power pins and the bypass capacitors.  
recommended to connect an FB between a power plane and the  
ADRV9009 at a distance away from the device (see Figure 438  
for specific distances) The FB and the reservoir capacitor  
provide stable voltage for the ADRV9009 during operation by  
isolating the pin or pins that the network is connected to from  
the power plane. Then, shield that trace with ground and  
provide power to the power pins on the ADRV9009. Place a  
100 nF capacitor near the power supply pin with the ground  
side of the bypass capacitor placed in a way so that ground  
currents flow away from other power pins and the bypass  
capacitors.  
For the domains shown in Figure 437, like the domains  
powered through a 0 ꢀ placeholder resistor or FB, place the 0 ꢀ  
placeholder resistors or FBs further away from the device. Space  
0 ꢀ placeholder resistors or FBs apart from each other to ensure  
that the electric fields on the FBs do not influence each other.  
Figure 438 shows an example of how the FBs, reservoir  
capacitors, and decoupling capacitors are placed. It is  
TRACE THROUGH 0Ω RES. TO 1.3V ANALOG PLANE (AP)  
MAINTAIN LOWEST POSSIBLE IMPEDANCE  
TRACE THROUGH 0.1Ω RESISTOR TO AP  
TRACE THROUGH 0Ω TO AP  
VSSA  
ORX2_IN+  
VSSA  
ORX2_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
ORX1_IN+  
ORX1_IN–  
VSSA  
TRACE THROUGH  
0Ω TO AP  
VDDA1P3_  
RX_RF  
VSSA  
VSSA  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TRACE THROUGH  
0Ω TO AP  
TRACE THROUGH FB  
TO 3.3V PLANE  
VDDA1P3_  
RF_VCO_LDO RF_VCO_LDO  
VDDA1P3_  
VDDA1P3_  
AUX_VCO_  
LDO  
GPIO_3p3_0  
GPIO_3p3_1  
GPIO_3p3_2  
VSSA  
GPIO_3p3_3  
GPIO_3p3_4  
GPIO_3p3_5  
VSSA  
VDDA1P3_  
RX_TX  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
VSSA  
VDDA_3P3  
GPIO_3p3_9  
GPIO_3p3_8  
GPIO_3p3_7  
VSSA  
RBIAS  
VSSA  
GPIO_3p3_6  
AUXADC_0  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TEST  
VSSA  
VSSA  
VDDA1P1_  
AUX_VCO  
VSSA  
VSSA  
GPIO_3p3_10  
GPIO_3p3_11  
VSSA  
TRACE THROUGH  
0Ω TO 1.8V PLANE  
TRACE THROUGH  
0Ω TO 1.8V PLANE  
VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+ REF_CLK_IN–  
AUX_  
SYNTH_OUT  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_TX  
TRACE THROUGH  
0Ω TO AP  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TRACE THROUGH  
0Ω TO AP  
TRACE THROUGH  
0Ω TO AP  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
VDDA1P3_  
AUX_SYNTH  
VSSA  
VSSA  
VSSA  
RF_SYNTH_  
VTUNE  
VSSA  
VSSA  
VSSA  
TRACE THROUGH  
1Ω RESISTOR TO AP  
TX2_OUT–  
TX2_OUT+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_2  
GPIO_3  
VSSD  
VSSA  
GPIO_1  
GPIO_0  
VSSA  
SDIO  
SCLK  
VSSA  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
SERDIN1+  
SERDIN3–  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
TX1_OUT+  
TX1_OUT–  
VSSA  
VSSA  
GPIO_18  
RESET  
GP_  
INTERRUPT  
SDO  
VSSA  
VSSA  
SYSREF_IN+  
SYNCIN1–  
SYNCIN0–  
SERDOUT3–  
VSSA  
SYSREF_IN–  
SYNCIN1+  
SYNCIN0+  
SERDOUT3+  
SERDOUT1–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
CS  
VSSA  
WIDE TRACE TO  
1.3V DIGITAL SUPPLY  
HIGH CURRENT  
VSSA  
VSSA  
VDDD1P3_  
DIG  
VDDD1P3_  
DIG  
VSSD  
GPIO_8  
SYNCOUT1–  
SYNCOUT0–  
SERDIN0+  
SERDIN2–  
SYNCOUT1+  
SYNCOUT0+  
VSSA  
TRACE THROUGH  
FB TO INTERFACE SUPPLY  
VDDA1P1_  
VSSA  
ORX1_  
ENABLE  
TX1_  
ENABLE  
ORX2_  
ENABLE  
TX2_  
ENABLE  
VSSA  
GPIO_17  
SERDIN1–  
VSSA  
VDD_  
INTERFACE  
CLOCK_VCO  
TRACE THROUGH 0Ω  
VDDA1P3_  
CLOCK_  
VCO_ LDO  
TO 1.3V JESD204B SUPPLY  
VSSA  
SERDOUT2–  
SERDOUT1+  
SERDOUT2+  
SERDOUT0–  
VSSA  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN0–  
SERDIN3+  
TRACE THROUGH  
0Ω TO AP  
AUX_SYNTH_  
VTUNE  
VSSA  
SERDOUT0+  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN2+  
TRACE THROUGH FB  
TO 1.3V JESD204B SUPPLY  
Figure 437. Power Supply Domains Interconnection Guidelines  
Rev. B | Page 107 of 127  
 
ADRV9009  
Data Sheet  
0Ω RESISTOR  
PLACEHOLDERS  
FOR FERRITE BEADS  
RESERVOIR  
CAPACITORS  
DUT  
1µ + 100nF bypass  
CAPS ORIENTED SUCH  
THAT CURRENTS FLOW  
AWAY FROM OTHER  
POWER PINS  
0Ω RESISTOR  
PLACEHOLDERS  
FOR FERRITE BEADS  
Figure 438. Placement Example of 0 Ω Resistor Placeholders for FBs, Reservoir Capacitors, and Bypass Capacitors on the ADRV9009-W/PCBZ (Layer 12 to Power Layer and  
Bottom Layer)  
Rev. B | Page 108 of 127  
 
Data Sheet  
ADRV9009  
When routing analog signals, such as GPIO_3P3_x/Auxiliary  
DAC x or AUXADC_x, it is recommended to route them away  
from the digital section (Row H through Row P). Do not cross  
the analog section of the ADRV9009, highlighted by a red  
dotted line in Figure 439, by any digital signal routing.  
Signals with Lowest Routing Priority  
As a last step while designing the PCB layout, route signals  
shown in Figure 439. The following list outlines the  
recommended order of signal routing:  
1. Use ceramic 1 μF bypass capacitors at the VDDA1P1_  
RF_VCO pin, VDDA1P1_AUX_VCO pin, and  
VDDA1P1_CLOCK_VCO pin. Place them as close as  
possible to the ADRV9009 device with the ground side of the  
bypass capacitor placed in a way so that ground currents  
flow away from other power pins and the bypass  
capacitors, if possible.  
When routing digital signals from Row H and below, it is  
important to route them away from the analog section (Row A  
through Row G). Do not cross the analog section of the  
ADRV9009, highlighted by a red dotted line in Figure 439, by any  
digital signal routing.  
2. Connect a 14.3 kΩ resistor to the RBIAS pin (C14). This  
resistor must have a 1% tolerance.  
3. Pull the TEST pin (J6) to ground for normal operation.  
The device has support for JTAG boundary scan, and this  
pin is used to access that function. Refer to the JTAG  
Boundary Scan section for JTAG boundary scan information.  
RESET  
4. Pull the  
pin (J4) high with a 10 kΩ resistor to VDD_  
INTERFACE for normal operation. To reset the device,  
RESET  
drive the  
pin low.  
VSSA  
ORX2_IN+  
VSSA  
ORX2_IN–  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
ORX1_IN+  
VSSA  
ORX1_IN–  
VSSA  
VSSA  
VSSA  
1µF CAPACITOR  
14.3kΩ RESISTOR  
1µF CAPACITOR  
VDDA1P3_  
RX_RF  
VSSA  
VSSA  
RF_EXT_  
LO_I/O–  
RF_EXT_  
LO_I/O+  
VDDA1P3_  
RF_VCO_LDO RF_VCO_LDO  
VDDA1P3_  
VDDA1P3_  
AUX_VCO_  
LDO  
GPIO_3p3_0  
GPIO_3p3_1  
GPIO_3p3_2  
VSSA  
GPIO_3p3_3  
GPIO_3p3_4  
GPIO_3p3_5  
VSSA  
VDDA1P3_  
RX_TX  
VDDA1P1_  
RF_VCO  
VDDA1P3_  
RF_LO  
VSSA  
VDDA_3P3  
GPIO_3p3_9  
GPIO_3p3_8  
GPIO_3p3_7  
VSSA  
RBIAS  
VSSA  
GPIO_3p3_6  
AUXADC_0  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
TEST  
VSSA  
VSSA  
VDDA1P1_  
AUX_VCO  
VSSA  
VSSA  
GPIO_3p3_10  
GPIO_3p3_11  
VSSA  
VDDA1P8_BB VDDA1P3_BB  
REF_CLK_IN+ REF_CLK_IN–  
AUX_  
SYNTH_OUT  
AUXADC_3  
AUXADC_2  
VSSA  
VDDA1P8_TX  
AUXADC_1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VDDA1P3_  
CLOCK_  
SYNTH  
VDDA1P3_  
RF_SYNTH  
VDDA1P3_  
AUX_SYNTH  
VSSA  
VSSA  
VSSA  
RF_SYNTH_  
VTUNE  
VSSA  
VSSA  
VSSA  
ALL DIGITAL  
GPIO SIGNALS  
ROUTED BELOW  
THE RED LINE  
TX2_OUT–  
TX2_OUT+  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
GPIO_2  
GPIO_3  
VSSD  
VSSA  
GPIO_1  
GPIO_0  
VSSA  
SDIO  
SCLK  
VSS
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
SERDIN1+  
SERDIN3–  
GPIO_11  
GPIO_10  
GPIO_9  
VSSA  
TX1_OUT+  
TX1_OUT–  
VSSA  
VSSA  
GPIO_18  
RESET  
GP_  
INTERRUPT  
SDO  
VSSA  
VSSA  
SYSREF_IN+  
SYNCIN1–  
SYNCIN0–  
SERDOUT3–  
VSSA  
SYSREF_IN–  
SYNCIN1+  
SYNCIN0+  
SERDOUT3+  
SERDOUT1–  
GPIO_5  
GPIO_6  
GPIO_4  
GPIO_7  
CS  
VSSA  
VSSA  
VSSA  
VDDD1P3_  
DIG  
VDDD1P3_  
DIG  
VSSD  
GPIO_8  
SYNCOUT1–  
SYNCOUT0–  
SERDIN0+  
SERDIN2–  
SYNCOUT1+  
SYNCOUT0+  
VSSA  
VDDA1P1_  
VSSA  
ORX1_  
ENABLE  
TX1_  
ENABLE  
ORX2_  
ENABLE  
TX2_  
ENABLE  
VSSA  
GPIO_17  
SERDIN1–  
VSSA  
VDD_  
INTERFACE  
1µF CAPACITOR  
CLOCK_VCO  
VDDA1P3_  
CLOCK_  
VCO_ LDO  
VSSA  
SERDOUT2–  
SERDOUT1+  
SERDOUT2+  
SERDOUT0–  
VSSA  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN0–  
SERDIN3+  
AUX_SYNTH_  
VTUNE  
VSSA  
SERDOUT0+  
VDDA1P3_  
SER  
VDDA1P3_  
DES  
SERDIN2+  
Figure 439. Auxiliary ADC, Analog, and Digital GPIO Signals Routing Guidelines  
Rev. B | Page 109 of 127  
 
ADRV9009  
Data Sheet  
end is dc biased internally, so the differential side of the balun is  
ac-coupled. The system designer can optimize the RF  
performance with a proper selection of the balun, matching  
components, and ac coupling capacitors. The external LO traces  
and the REF_CLK_IN traces may require matching components  
as well to ensure optimal performance.  
RF AND JESD204B TRANSMISSION LINE LAYOUT  
RF Routing Guidelines  
The ADRV9009-W/PCBZ uses microstrip type lines for  
receiver, observation receiver, and transmitter RF traces. In  
general, it is not recommended to use any number of vias to  
route RF traces unless a direct line route is not possible.  
Differential lines from the balun to the receiver pins, observation  
receiver pins, and transmitter pins must be as short as possible.  
Also, make the length of the single-ended transmission line short  
to minimize the effects of parasitic coupling. These traces are  
the most critical when optimizing performance and are, therefore,  
routed before any other routing. These traces have the highest  
priority if trade-offs are needed.  
All the RF signals mentioned previously must have a solid  
ground reference under each trace. Do not run any of the  
critical traces over a section of the reference plane that is  
discontinuous. The ground flood on the reference layer must  
extend all the way to the edge of the board. This flood length  
ensures signal integrity for the SMA launch when an edge  
launch connector is used.  
Refer to the RF Port Interface Information section for more  
information on RF matching recommendations for the device.  
Figure 440 and Figure 441 show pi matching networks on the  
single-ended side of the baluns. The observation receiver front  
Figure 440. Pi Network Matching Components Available on Transmitter and Receiver  
Rev. B | Page 110 of 127  
 
 
 
Data Sheet  
ADRV9009  
Figure 441. Pi Network Matching Components Available on Observation Receiver Inputs  
Rev. B | Page 111 of 127  
 
ADRV9009  
Data Sheet  
operate. To reduce switching transients when attenuation  
Transmitter Balun DC Feed Supplies  
settings change, power the balun dc feed or transmitter output  
chokes directly by the 1.8 V plane. Design the geometry of the  
1.8 V plane so that each balun supply or each set of two chokes  
is isolated from the other. This geometry can affect transmitter  
to transmitter isolation. Figure 442 shows the layout configuration  
used on the ADRV9009-W/PCBZ.  
Each transmitter requires approximately 200 mA supplied  
through an external connection. On the ADRV9008-2 and  
ADRV9009 evaluation boards, bias voltages are supplied at the  
dc feed of the baluns. Layout of both boards allows the use of  
external chokes to provide a 1.8 V power domain to the  
ADRV9009 outputs. This configuration is useful in scenarios  
where a balun used at the transmitter output is not capable of  
conducting the current necessary for the transmitter outputs to  
Tx OUTPUT / BALUN  
1.8V SUPPLY FEED  
Figure 442. Transmitter Power Supply Planes (VDDA1P8_TX) on the ADRV9009-W/PCBZ  
Rev. B | Page 112 of 127  
 
 
Data Sheet  
ADRV9009  
Both the positive and negative transmitter pins must be biased  
with 1.8 V. This biasing is accomplished on the evaluation board  
through chokes and decoupling capacitors, as shown in  
Figure 443. Match both chokes and their layout to avoid  
potential current spikes. A difference in parameters between  
both chokes can cause unwanted emission at transmitter  
outputs. Place the decoupling capacitors that are near the  
transmitter balun as close as possible to the dc feed of the balun  
or the ground pin. Make orientation of the capacitor  
perpendicular to the device so that the return current forms as  
small a loop as possible with the ground pins surrounding the  
transmitter input. A combination network of capacitors provides  
a wideband and low impedance ground path, eliminates  
transmitter spectrum spurs, and dampens the transients.  
Routing Recommendations  
Route the differential pairs on a single plane using a solid ground  
plane as a reference on the layers above and below these traces.  
All JESD204B lane traces must be impedance controlled to  
achieve 50 Ω to ground. It is recommended that the differential pair  
be coplanar and loosely coupled. An example of a typical  
configuration is a 5 mil trace width and 15 mil edge to edge  
spacing, with the trace width maximized, as shown in  
Figure 444.  
Match trace widths with pin and ball widths while maintaining  
impedance control. If possible, use 1 oz. copper trace widths of  
at least 8 mil (200 μm). The coupling capacitor pad size must  
match JESD204B lane trace widths. If the trace width does not  
match the pad size, use a smooth transition between different  
widths.  
ADRV9009TXOUTPUT  
The pad area for all connector and passive component choices  
must be minimized due to a capacitive plate effect that leads to  
problems with signal integrity.  
DC FEED  
CHOKES  
DECOUPLING  
CAPACITORS  
Reference planes for impedance controlled signals must not be  
segmented or broken for the entire length of a trace.  
1.8V TX POWER  
DOMAIN FEED  
The REF_CLK_IN signal trace and the SYSREF signal trace  
are impedance controlled for characteristic impedance (ZO) =  
50 Ω.  
CONDUCTING  
RESISTORS  
BALUN  
Stripline Transmission Lines vs. Microstrip Transmission  
Lines  
BALUN  
DECOUPLING  
CAPACITORS  
Stripline transmission lines have less signal loss and emit less  
electromagnetic interference than microstrip transmission lines.  
However, stripline transmission lines require the use of vias that  
add line inductance, increasing the difficulty of controlling the  
impedance.  
Microstrip transmission lines are easier to implement if the  
component placement and density allow routing on the top  
layer. Microstrip transmission lines make controlling the  
impedance easier.  
If the top layer of the PCB is used by other circuits or signals, or  
if the advantages of stripline transmission lines are more  
desirable than the advantages of microstrip transmission lines,  
implement the following recommendations:  
Figure 443. Transmitter DC Chokes and Balun Feed Supply  
JESD204B Trace Routing Recommendations  
Minimize the number of vias.  
The ADRV9009 transceiver uses the JESD204B, high speed  
serial interface. To ensure optimal performance of this interface,  
keep the differential traces as short as possible by placing the  
ADRV9009 as close as possible to the FPGA or BBP, and route  
the traces directly between the devices. Use a PCB material with  
a low dielectric constant (<4) to minimize loss. For distances  
greater than 6 inches, use a premium PCB material such as  
RO4350B or RO4003C.  
Use blind vias where possible to eliminate via stub effects,  
and use microvias to minimize via inductance.  
When using standard vias, use a maximum via length to  
minimize the stub size. For example, on an 8-layer board,  
use Layer 7 for the stripline pair.  
Place a pair of ground vias in proximity to each via pair to  
minimize the impedance discontinuity.  
Rev. B | Page 113 of 127  
 
 
ADRV9009  
Data Sheet  
Route the JESD204B lines on the top side of the evaluation board as  
a differential 100 Ω pair (microstrip). For the ADRV9009-  
W/PCBZ, the JESD204B differential signals are routed on the  
inner layers of the board (Layer 5 and Layer 10) as differential  
100 Ω pairs (stripline). To minimize potential coupling, these  
signals are placed on an inner layer using a via embedded in the  
component footprint pad where the ball connects to the PCB.  
The ac coupling capacitors (100 nF) on these signals are placed  
near the connector and away from the chip to minimize  
coupling. The JESD204B interface can operate at frequencies of  
up to 12 GHz. Ensure that signal integrity from the chip to the  
connector is maintained.  
ISOLATION TECHNIQUES USED ON THE  
ADRV9009-W/PCBZ  
Isolation Goals  
Significant isolation challenges were overcome in designing the  
ADRV9009-W/PCBZ. The following isolation requirements  
accurately evaluate the ADRV9009 transceiver performance:  
Transmitter to transmitter: 75 dB out to 6 GHz  
Transmitter to receiver: 65 dB out to 6 GHz  
Receiver to receiver: 65 dB out to 6 GHz  
Transmitter to observation receiver: 65 dB out to 6 GHz  
To meet these isolation goals with significant margin, isolation  
structures are introduced.  
Figure 445 shows the isolation structures used on the ADRV9009-  
W/PCBZ. These structures consist of a combination of slots and  
square apertures. These structures are present on every copper  
layer of the PCB stack. The advantage of using square apertures  
is that signals can be routed between the openings without  
affecting the isolation benefits of the array of apertures. When  
using these isolation structures, make sure to place ground vias  
around the slots and apertures.  
Tx  
Tx  
Tx  
Tx  
DIFFERENTIAL A  
DIFFERENTIAL B  
DIFFERENTIAL A  
DIFFERENTIAL B  
TIGHTLY COUPLED  
DIFFERENTIAL Tx LINES  
LOOSELY COUPLED  
DIFFERENTIAL Tx LINES  
Figure 444. Routing JESD204B, Differential A and Differential B Correspond to Differential Positive Signals or Negative Signals (One Differential Pair)  
Figure 445. Isolation Structures on the ADRV9009-W/PCBZ  
Rev. B | Page 114 of 127  
 
 
 
Data Sheet  
ADRV9009  
Figure 446. Current Steering Vias Placed Next to Isolation Structures  
Figure 446 outlines the methodology used on the ADRV9009-  
W/PCBZ. When using slots, ground vias must be placed at the  
ends of the slots and along the sides of the slots. When using  
square apertures, at least one single ground via must be placed  
adjacent to each square. These vias must be through-hole vias  
from the top layer to the bottom layer. The function of these vias is  
to steer return current to the ground planes near the apertures.  
use isolation techniques to prevent crosstalk between different  
JESD204B lane pairs.  
Figure 447 shows a technique used on the ADRV9009-W/PCBZ  
that involves via fencing. Placing ground vias around each  
JESD204B pair provides isolation and decreases crosstalk. The  
spacing between vias is 1.24 mm.  
Figure 447 shows the rule provided in Equation 1. JESD204B  
lines are routed on Layer 5 and Layer 10 so that the lines use  
stripline structures. The dielectric material used in the inner  
layers of the ADRV9009-W/PCBZ PCB is FR4-370HR.  
For accurate slot spacing and square apertures layout, use  
simulation software when designing a PCB for the ADRV9009  
transceiver. Spacing between square apertures must be no more  
than 1/10 of a wavelength.  
For accurate spacing of the JESD204B fencing vias, use layout  
simulation software. Input the following data into Equation 1 to  
calculate the wavelength and square aperture spacing:  
Calculate the wavelength using Equation 1:  
300  
(1)  
Wavelength(m)   
Frequency(MHz) ER  
The maximum JESD204B signal frequency is  
approximately 12 GHz.  
where ER is the dielectric constant of the isolator material. For  
RO4003C material, microstrip structure (+ air), ER = 2.8. For FR4-  
370HR material, stripline structure, ER = 4.1.  
For FR4-370HR material, stripline structure, ER = 4.1, the  
minimum wavelength is approximately 12.4 mm.  
To follow the 1/10 wavelength spacing rule, spacing between  
vias must be 1.24 mm or less. The minimum spacing  
recommendation according to transmission line theory  
is 1/4 wavelength.  
For example, if the maximum RF signal frequency is 6 GHz,  
and ER = 2.8 for RO4003C material, microstrip structure (+ air),  
the minimum wavelength is approximately 29.8 mm.  
To follow the 1/10 wavelength spacing rule, square aperture  
spacing must be 2.98 mm or less.  
Isolation Between JESD204B Lines  
The JESD204B interface uses eight line pairs that can operate at  
speeds of up to 12 GHz. When configuring the PCB layout, ensure  
that these lines are routed according to the rules outlined in the  
JESD204B Trace Routing Recommendations section. In addition,  
Rev. B | Page 115 of 127  
 
 
ADRV9009  
Data Sheet  
1.24mm  
Figure 447. Via Fencing Around JESD204B Lines, PCB Layer 10  
RF Port Impedance Data  
RF PORT INTERFACE INFORMATION  
This section provides the port impedance data for all transmitters  
and receivers in the ADRV9009 integrated transceiver. Note the  
following:  
This section details the RF transmitter and receiver interfaces  
for optimal device performance. This section also includes data  
for the ADRV9009 RF port impedance values (see Figure 448  
and Figure 449 for impedance values) and examples of impedance  
matching networks used in the evaluation platform. This section  
also provides information on board layout techniques and balun  
selection guidelines.  
ZO is defined as 50 Ω.  
The ADRV9009 ball pads are the reference plane for this data.  
Single-ended mode port impedance data is not available.  
However, a rough assessment is possible by taking the  
differential mode port impedance data and dividing both  
the real and imaginary components by 2.  
The ADRV9009 is a highly integrated transceiver with transmit,  
receive, and observation (DPD) receive signal chains. External  
impedance matching networks are required on the transmitter  
and receiver ports to achieve the performance levels indicated  
in this data sheet.  
Contact Analog Devices applications engineering for the  
impedance data in Touchstone format.  
It is recommended to use simulation tools in the design and  
optimization of impedance matching networks. To achieve the  
closest match between computer simulated results and measured  
results, accurate models of the board environment, surface-mount  
device (SMD) components (including baluns and filters), and  
ADRV9009 port impedances are required.  
Rev. B | Page 116 of 127  
 
 
Data Sheet  
ADRV9009  
1.0  
2.0  
0.5  
m21  
m26  
FREQUENCY = 100MHz  
M28  
FREQUENCY = 3GHz  
S(1,1) = 0.368/150.626  
S(1,1) = 0.143/–7.865  
IMPEDANCE = 66.439 – j2.654  
M27  
IMPEDANCE = 24.355 + j10.153  
M29  
0.2  
m22  
5.0  
m27  
FREQUENCY = 300MHz  
S(1,1) = 0.141/–25.589  
IMPEDANCE = 64.063 – j7.987  
FREQUENCY = 4GHz  
S(1,1) = 0.484/107.379  
IMPEDANCE = 25.118 + j30.329  
M26  
m23  
m28  
FREQUENCY = 500MHz  
S(1,1) = 0.145/–42.661  
IMPEDANCE = 60.623 – j12.201  
M21  
M23  
FREQUENCY = 5GHz  
S(1,1) = 0.569/70.352  
IMPEDANCE = 35.932 + j56.936  
0
M22  
M24  
M25  
m24  
m29  
FREQUENCY = 1GHz  
S(1,1) = 0.164/–84.046  
IMPEDANCE = 49.000 + j16.447  
FREQUENCY = 6GHz  
S(1,1) = 0.614/36.074  
IMPEDANCE = 81.032 + j94.014  
–0.2  
–5.0  
m25  
FREQUENCY = 2GHz  
S(1,1) = 0.247/–155.186  
IMPEDANCE = 31.131 – j6.860  
–0.5  
–2.0  
–1.0  
FREQUENCY (0.000Hz TO 6.000Hz)  
Figure 448. Transmitter 1 and Transmitter 2 SEDZ and Parallel Equivalent Differential Impedance (PEDZ) Data  
1.0  
2.0  
0.5  
m15  
FREQUENCY = 100MHz  
S(1,1) = 0.390/–1.819  
IMPEDANCE = 113.933 – j3.331  
m20  
FREQUENCY = 3GHz  
S(1,1) = 0.267/–64.650  
IMPEDANCE = 55.102 – j28.685  
0.2  
m16  
5.0  
FREQUENCY = 300MHz  
S(1,1) = 0.390/–5.495  
IMPEDANCE = 112.803 – j9.931  
m21  
M23  
FREQUENCY = 4GHz  
S(1,1) = 0.186/–104.336  
IMPEDANCE = 42.821 – j16.026  
m17  
M15  
M16  
M17  
M22  
FREQUENCY = 500MHz  
S(1,1) = 0.388/–9.198  
IMPEDANCE = 110.398 – j16.107  
0
m22  
M21  
M20  
FREQUENCY = 5GHz  
S(1,1) = 0.164/–173.106  
IMPEDANCE = 35.977 – j1.455  
m18  
M19  
M18  
FREQUENCY = 1GHz  
S(1,1) = 0.377–18.643  
IMPEDANCE = 100.377 – j28.250  
m23  
FREQUENCY = 6GHz  
S(1,1) = 0.266/130.063  
IMPEDANCE = 32.890 + j14.399  
–0.2  
–5.0  
m19  
FREQUENCY = 2GHz  
S(1,1) = 0.336/–39.123  
IMPEDANCE = 74.966 – j35.800  
–0.5  
–2.0  
–1.0  
FREQUENCY (0Hz TO 6GHz)  
Figure 449. Receiver 1 and Receiver 2 SEDZ and PEDZ Data  
Rev. B | Page 117 of 127  
 
 
ADRV9009  
Data Sheet  
1.0  
2.0  
0.5  
m15  
FREQUENCY = 100MHz  
S(1,1) = 0.391/–1.848  
m20  
IMPEDANCE = 114.099 – j3.397  
FREQUENCY = 3GHz  
S(1,1) = 0.104/–66.720  
0.2  
M23  
m16  
5.0  
FREQUENCY = 300MHz  
S(1,1) = 0.389/–5.601  
IMPEDANCE = 112.639 – j10.091  
IMPEDANCE = 53.262 – j10.292  
M22  
M21  
M20  
m21  
FREQUENCY = 4GHz  
S(1,1) = 0.116/104.276  
IMPEDANCE = 46.060 + j10.522  
m17  
FREQUENCY = 500MHz  
S(1,1) = 0.385/–9.396  
IMPEDANCE = 109.556 – j16.156  
M15  
M16  
M17  
M18  
0
m22  
M19  
FREQUENCY = 5GHz  
S(1,1) = 0.342/75.761  
IMPEDANCE = 46.551 + j34.914  
m18  
FREQUENCY = 1GHz  
S(1,1) = 0.362–19.087  
IMPEDANCE = 97.259 – j26.513  
m23  
FREQUENCY = 6GHz  
S(1,1) = 0.525/53.007  
IMPEDANCE = 56.249 + j65.146  
–0.2  
–5.0  
m19  
FREQUENCY = 2GHz  
S(1,1) = 0.267/–39.928  
IMPEDANCE = 70.789 – j25.940  
–0.5  
–2.0  
–1.0  
FREQUENCY (0Hz TO 6GHz)  
Figure 450. Observation Receiver 1 and Observation Receiver 2 SEDZ and PEDZ Data  
1.0  
2.0  
0.5  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
350  
m1  
FREQUENCY = 100MHz  
S(1,1) = 0.018/–149.643  
IMPEDANCE = 48.491 – j0.866  
R_PEDZ  
L_OR_C_PE  
X_STATUS  
M5  
300  
250  
200  
150  
100  
50  
M6  
0.2  
m2  
5.0  
m7  
FREQUENCY = 750MHz  
S(1,1) = 0.074/–123.043  
IMPEDANCE = 45.753 – j5.744  
FREQUENCY = 5GHz  
L_OR_C_PE = 1.336  
m8  
FREQUENCY = 5GHz  
R_PEDZ = 31.172  
m9  
FREQUENCY = 5GHz  
X_STATUS = 1  
m3  
M4  
FREQUENCY = 1.5GHz  
S(1,1) = 0.147/–138.745  
IMPEDANCE = 39.362 – j7.804  
M1  
0
M2  
M3  
m4  
FREQUENCY = 3GHz  
S(1,1) = 0.292/–175.424  
IMPEDANCE = 5.273 – j547.733  
–0.2  
–5.0  
m5  
FREQUENCY = 6GHz  
S(1,1) = 0.538/123.271  
IMPEDANCE = 18.885 – j23.935  
m6  
FREQUENCY = 12GHz  
S(1,1) = 0.757/46.679  
IMPEDANCE = 40.002 – j103.036  
0
–0.5  
–2.0  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
–1.0  
FREQUENCY (100MHz TO 12GHz)  
Figure 451. RF_EXT_LO_I/O SEDZ and PEDZ Data  
Rev. B | Page 118 of 127  
Data Sheet  
ADRV9009  
1.0  
2.0  
0.5  
1.0  
13E+5  
1.2E+5  
1.1E+5  
1.0E+5  
9.0E+4  
8.0E+4  
7.0E+4  
6.0E+4  
5.0E+4  
4.0E+4  
m1  
FREQUENCY = 100MHz  
S(1,1) = 0.999/–1.396  
IMPEDANCE = 159.977 – j4.099E3  
R_PEDZ  
L_OR_C_PE  
X_STATUS  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.2  
m2  
5.0  
m7  
FREQUENCY = 250MHz  
S(1,1) = 0.999/–3.480  
IMPEDANCE = 30.567 – j1.645E3  
FREQUENCY = 1GHz  
L_OR_C_PE = 0.389  
m8  
FREQUENCY = 1GHz  
R_PEDZ = 4.761E4  
m9  
FREQUENCY = 1GHz  
X_STATUS = 0  
m3  
FREQUENCY = 500MHz  
M1  
0
S(1,1) = 0.999/–6.952  
M2  
M3  
M4  
M5  
IMPEDANCE = 9.723 – j823.070  
m4  
FREQUENCY = 750MHz  
S(1,1) = 0.998/–10.431  
IMPEDANCE = 5.273 – j547.733  
–0.2  
–5.0  
m5  
FREQUENCY = 1GHz  
S(1,1) = 0.999/–13.925  
IMPEDANCE = 3.521 – j409.400  
–0.5  
–2.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
FREQUENCY (GHz)  
–1.0  
FREQUENCY (0.000Hz TO 1.100GHz)  
Figure 452. REF_CLK_IN SEDZ and PEDZ Data, On Average, the Real Part of the Parallel Equivalent Differential Impedance (RP) = Approximately 70 kΩ  
Rev. B | Page 119 of 127  
ADRV9009  
Data Sheet  
1. The DataAccessComponent block reads the rf port.s1p  
file. This file is the device RF port reflection coefficient.  
2. The two equations convert the RF port reflection coefficient to  
a complex impedance. The result is the RX_SEDZ variable.  
3. The RF port calculated complex impedance (RX_SEDZ)  
defines the Term 2 impedance.  
Advanced Design System (ADS) Setup Using the  
DataAccessComponent and SEDZ File  
Analog Devices supplies the port impedance as an .s1p file that  
can be downloaded from the ADRV9009 product page. This  
format allows simple interfacing to the ADS by using the  
DataAccessComponent. In Figure 453, Term 1 is the single-  
ended input or output, and Term 2 is the differential input or  
output RF port on the ADRV9009. The pi on the single-ended  
side and the differential pi configuration on the differential side  
allow maximum flexibility in designing matching circuits. The  
pi configuration is suggested for all design layouts because the  
pi configuration can step the impedance up or down as needed  
with appropriate component population.  
4. Term 2 is used in a differential mode, and Term 1 is used in  
a single-ended mode.  
Setting up the simulation this way allows the user to measure  
the input reflection (S11), output reflection (S22), and through  
reflection (S21) of the three-port system without complex math  
operations within the display page.  
For the highest accuracy, the electromagnetic momentum (EM)  
modeling result of the PCB artwork, S11, S22, and S21 of the  
matching components and balun must be used in the simulations.  
Take the following steps to set up a simulation for impedance  
measurement and impedance matching:  
Figure 453. Simulation Setup in ADS with SEDZ .s1p Files and DataAccessComponent  
Table 11. Sample Wire Wound DC Bias Choke Resistance vs. Size vs. Inductance  
Inductance (nH)  
Resistance (Size: 0603) (Ω)  
Resistance (Size: 1206) (Ω)  
100  
200  
300  
400  
500  
600  
0.10  
0.15  
0.16  
0.28  
0.45  
0.52  
0.08  
0.10  
0.12  
0.14  
0.15  
0.20  
Rev. B | Page 120 of 127  
 
 
Data Sheet  
ADRV9009  
because small chokes exhibit the greatest resistance. For example,  
the voltage drop of a 500 nH 0603 choke at 100 mA is roughly  
50 mV.  
Transmitter Bias and Port Interface  
This section considers the dc biasing of the ADRV9009 transmitter  
outputs and how to interface to each transmitter port. The  
ADRV9009 transmitters operate over a range of frequencies. At  
full output power, each differential output side draws approxi-  
mately 100 mA of dc bias current. The transmitter outputs are dc  
biased to a 1.8 V supply voltage using either RF chokes (wire  
wound inductors) or a transformer center tap connection.  
V
= 1.8V  
DC  
C
L
C
L
B
C
R
R
DCR  
DCR  
TX1_OUT+/  
TX2_OUT+  
ΔV  
+
ΔV  
+
I
= ~100mA  
BIAS  
V
V
= 1.8 – ΔV  
= 1.8 – ΔV  
Tx1 OR Tx2  
OUTPUT  
STAGE  
BIAS  
Careful design of the dc bias network is required to ensure  
optimal RF performance levels. When designing the dc bias  
network, select components with low dc resistance (RDCR) to  
minimize the voltage drop across the series parasitic resistance  
element with either of the suggested dc bias schemes suggested  
in Figure 454. The RDCR resistors indicate the parasitic elements. As  
the impedance of the parasitics increases, the voltage drop (ΔV)  
across the parasitic element increases, which causes the transmitter  
RF performance (PO,1dB and PO,MAX, for example) to degrade. The  
choke inductance (LC) must be at least 3× higher than the load  
impedance at the lowest desired frequency so that the LC does  
not degrade the output power (see Table 11).  
BIAS  
1.8V  
TX1_OUT–/  
TX2_OUT–  
I
= ~100mA  
BIAS  
Figure 454. RF DC Bias Configurations Showing Parasitic Losses Due to Wire  
Wound Chokes  
TX1_OUT+/  
TX2_OUT+  
I
= ~100mA  
= ~100mA  
ΔV +  
BIAS  
R
1.8V  
DCR  
Tx1 OR Tx2  
OUTPUT  
STAGE  
R
I
DCR  
C
BIAS  
B
TX1_OUT–/  
TX2_OUT–  
ΔV +  
Figure 455. RF DC Bias Configurations Showing Parasitic Losses Due to  
Center Tapped Transformers  
The recommended dc bias network is shown in Figure 455. This  
network has fewer parasitics and fewer total components.  
TX1_OUT+/  
TX2_OUT+  
Figure 456 through Figure 459 show four basic differential  
transmitter output configurations. Except for cases in which  
impedance is already matched, impedance matching networks  
(balun single-ended port) are required to achieve optimum  
device performance from the device. In applications where the  
transmitter is not connected to another circuit that requires or  
can tolerate dc bias on the transmitter outputs, the transmitter  
outputs must be ac-coupled because of the dc bias voltage  
applied to the differential output lines of the transmitter.  
1.8V  
Tx1 OR Tx2  
OUTPUT  
STAGE  
C
B
TX1_OUT–/  
TX2_OUT–  
Figure 456. Using a Center Tapped Transformer  
1.8V  
C
L
L
B
C
C
TX1_OUT+/  
TX2_OUT+  
C
C
C
1.8V  
The recommended RF transmitter interface, shown in Figure 454  
to Figure 459, features a center tapped balun. This configuration  
offers the lowest component count of the options presented.  
Tx1 OR Tx2  
OUTPUT  
STAGE  
C
1.8V  
TX1_OUT–/  
TX2_OUT–  
Descriptions of the transmitter port interface schemes are as  
follows:  
Figure 457. Using Bias Chokes and a Transmission Line Balun  
1.8V  
In Figure 456, the center tapped transformer passes the  
bias voltage directly to the transmitter outputs.  
In Figure 457, RF chokes bias the differential transmitter  
output lines. Additional coupling capacitors (CC) are added  
in the creation of a transmission line balun.  
In Figure 458, RF chokes bias the differential transmitter  
output lines and connect to a transformer.  
In Figure 459, RF chokes bias the differential output lines  
that are ac-coupled to the input of a driver amplifier.  
C
L
L
B
C
C
TX1_OUT+/  
TX2_OUT+  
1.8V  
1.8V  
Tx1 OR Tx2  
OUTPUT  
STAGE  
TX1_OUT/  
TX2_OUT–  
Figure 458. Using Bias Chokes and a Transformer  
1.8V  
C
L
L
B
C
If a transmitter balun that requires a set of external dc bias chokes is  
selected, careful planning is required. It is necessary to find the  
optimum compromise between the choke physical size, choke  
dc resistance, and the balun low frequency insertion loss. In  
commercially available dc bias chokes, resistance decreases as size  
increases. As choke inductance increases, resistance increases. It is  
undesirable to use physically small chokes with high inductance  
C
TX1_OUT+/  
TX2_OUT+  
C
C
1.8V  
1.8V  
Tx1 OR Tx2  
OUTPUT  
STAGE  
DRIVER  
AMPLIFIER  
C
C
TX1_OUT–/  
TX2_OUT–  
Figure 459. Using a Differential to Single-Ended Driver Amplifier  
Rev. B | Page 121 of 127  
 
 
ADRV9009  
Data Sheet  
RX1_IN–  
RX1_IN+  
General Receiver Path Interface  
RECEIVER  
INPUT  
The ADRV9009 has the following two types of receivers:  
receiver and observation receiver. These receivers include two  
main receive pathways (Receiver 1 and Receiver 2) and two  
observation or DPD receivers (Observation Receiver 1 and  
Observation Receiver 2). The receivers can support up to  
200 MHz bandwidth, and the observation receivers can support  
up to 450 MHz bandwidth. The receiver channels and  
observation receiver channels are designed for differential use.  
STAGE  
(
MIXER OR LNA)  
Figure 460. Differential Receiver Interface Using a Transformer  
C
C
RX1_IN–  
RECEIVER  
INPUT  
STAGE  
C
(
MIXER OR LNA)  
C
RX1_IN+  
The ADRV9009 receivers support a wide range of operation  
frequencies. In the case of the receiver channels and observation  
receiver channels, the differential signals interface to an integrated  
mixer. The mixer input pins have a dc bias of approximately  
0.7 V and may need to be ac-coupled, depending on the  
common-mode voltage level of the external circuit.  
Figure 461. Differential Receiver Interface Using a Transmission Line Balun  
Impedance Matching Network Examples  
Impedance matching networks are required to achieve the  
ADRV9009 data sheet performance levels. This section provides  
example topologies and components used on the ADRV9009-  
W/PCBZ.  
Important considerations for the receiver port interface are as  
follows:  
Device models, board models, and balun and SMD component  
models are required to build an accurate system level simulation.  
The board layout model can be obtained from an EM simulator.  
The balun and SMD component models can be obtained from  
the device vendors or built locally. Contact Analog Devices  
applications engineering for ADRV9009 modeling details.  
The device to be interfaced (filter, balun, transmit receive  
(T/R) switch, external low noise amplifier (LNA), and  
external PA, for example).  
The receiver and observation receiver maximum safe input  
power is 23 dBm (peak).  
The receiver and observation receiver optimum dc bias  
voltage is 0.7 V bias to ground.  
The board design (reference planes, transmission lines, and  
impedance matching, for example).  
The impedance matching networks provided in this section are  
not evaluated in terms of mean time to failure (MTTF) in high  
volume production. Consult with component vendors for long-  
term reliability concerns. Consult with balun vendors to  
determine appropriate conditions for dc biasing.  
Figure 460 and Figure 461 show possible differential receiver  
port interface circuits. The options in Figure 460 and Figure 461  
are valid for all receiver inputs operating in differential mode,  
though only the Receiver 1 signal names are indicated. Impedance  
matching may be necessary to obtain the performance levels  
described in this data sheet.  
Figure 464 shows three elements in parallel marked do not  
install (DNI). However, only one set of SMD component pads is  
placed on the board. For example, R202, L202, and C202  
components only have one set of SMD pads for one SMD  
component. Figure 464 shows that in a generic port impedance  
matching network, the shunt or series elements can be resistors,  
inductors, or capacitors.  
Given wide RF bandwidth applications, SMD balun devices  
function well. Decent loss and differential balance are available  
in a relatively small (0603, 0805) package.  
Rev. B | Page 122 of 127  
Data Sheet  
ADRV9009  
Figure 462. Impedance Matching Topology  
Rev. B | Page 123 of 127  
ADRV9009  
Data Sheet  
TX1  
C307  
0.1µF  
VDCA1P8_TX  
AGND  
C323  
DNI  
L323  
DNI  
L307  
43nH  
AGND  
R307  
0Ω  
TX1_OUT+  
TX1_BAL+  
T302  
TCM1-83X+  
J303  
1
C337  
18pF  
R309  
0Ω  
5
4
3
2
C339  
DNI  
C338  
DNI  
RFO_1  
C312  
DNI  
C314  
DNI  
5
4 3 2  
R308  
0Ω  
TX1_OUT–  
TX1_BAL–  
AGND  
AGND  
NC  
1
6
AGND  
L308  
43nH  
C325  
DNI  
C344  
L325  
DNI  
51pF  
C345  
AGND  
C308  
0.1µF  
VDCA1P8_TX  
75pF  
C346  
AGND  
10pF  
C347  
27pF  
AGND  
TX2  
C315  
0.1µF  
VDDA1P8_TX  
AGND  
C327  
DNI  
L327  
DNI  
L315  
43nH  
AGND  
R310  
0Ω  
TX2_OUT+  
TX2_BAL+  
T303  
TCM1-83X+  
J304  
C336  
18pF  
R312  
0Ω  
5
4
3
2
1
C342  
DNI  
C341  
DNI  
RFO_2  
C320  
DNI  
C322  
DNI  
5
4 3 2  
R311  
0Ω  
TX2_OUT–  
TX2_BAL–  
AGND  
AGND  
NC  
1
6
AGND  
L316  
43nH  
C329  
DNI  
C348  
L329  
DNI  
10pF  
C349  
AGND  
C316  
0.1µF  
VDDA1P8_TX  
27pF  
C350  
AGND  
51pF  
C351  
75pF  
AGND  
Figure 463. Transmitter 1 and Transmitter 2 Generic Matching Network Topology  
Rev. B | Page 124 of 127  
 
Data Sheet  
ADRV9009  
L205  
C205  
DNI  
DNI  
DNI  
L202  
C202  
RX1  
DNI  
DNI  
DNI  
0805 FOOTPRINT  
RX1_IN+  
RX1_BAL+  
3
4
J201  
1
BAL_OUT1  
BAL_OUT2  
RX1_UNBAL  
1
T201  
DNI  
R205  
UNBAL_IN  
R202  
NC_6 GND GND_DC_FEED_RFGND  
2
3 4 5  
L204  
DNI  
L207  
DNI  
C207  
DNI  
C204  
DNI  
6
5
2
L201  
DNI  
C201  
DNI  
L203  
DNI  
C203  
DNI  
RX1_DC  
L206  
C206  
DNI  
DNI  
R230  
DNI  
C230  
DNI  
RX1_IN–  
AGND  
RX1_BAL–  
R206  
DNI  
AGND  
AGND  
OVERLAP PADS  
AGND  
L212  
C212  
DNI  
DNI  
DNI  
L209  
C209  
RX2  
DNI  
DNI  
DNI  
0805 FOOTPRINT  
RX2_IN+  
RX2_IN–  
RX2_BAL+  
3
4
J202  
BAL_OUT1  
BAL_OUT2  
RX2_UNBAL  
1
1
T202  
DNI  
R212  
UNBAL_IN  
R209  
NC_6 GND GND_DC_FEED_RFGND  
2
3
4 5  
L211  
DNI  
L214  
DNI  
C214  
DNI  
C211  
DNI  
6
5
2
L208  
DNI  
C208  
DNI  
L210  
DNI  
C210  
DNI  
RX2_DC  
L213  
C213  
DNI  
DNI  
R231  
DNI  
C231  
DNI  
AGND  
RX2_BAL–  
R213  
DNI  
AGND  
AGND  
OVERLAP PADS  
AGND  
Figure 464. Receiver 1 and Receiver 2 Generic Matching Network Topology  
T205  
TCM1-83X+  
ORX1  
J203  
C250  
18pF  
ORX1_UNBAL  
ORX1_IN–  
ORX1_BAL–  
R219  
R216  
0Ω  
3
2
5
4
1
0Ω  
2
3 4 5  
C215  
DNI  
C217  
DNI  
C218  
DNI  
C221  
DNI  
NC  
1
AGND  
6
ORX1_IN+  
R220  
0Ω  
AGND  
AGND  
ORX1_BAL+  
C244  
10pF  
DNI  
C245  
27pF  
AGND  
ORX2  
T207  
TCM1-83X+  
J204  
C251  
18pF  
ORX2_UNBAL  
ORX2_IN–  
R223  
0Ω  
R226  
ORX2_BAL–  
3
2
5
1
4
0Ω  
2
3 4 5  
C222  
DNI  
C224  
DNI  
C228  
DNI  
C225  
DNI  
NC  
1
AGND  
6
AGND  
AGND  
ORX2_IN+  
R227  
0Ω  
C247  
27pF  
ORX2_BAL+  
C246  
10pF  
DNI  
AGND  
Figure 465. Observation Receiver 1 and Observation Receiver 2 Generic Matching Network Topology  
Rev. B | Page 125 of 127  
 
 
ADRV9009  
Data Sheet  
Table 12 through Table 17 show the selected balun and component  
values used for three matching network sets. Refer to Figure 463  
or Figure 465 for a wideband matching example that operates  
across the entire device frequency range with reduced  
performance.  
The RF matching used in the ADRV9009-W/PCBZ allows the  
ADRV9009 to operate across the entire chip frequency range  
with slightly reduced performance. Components C, R, and L can  
be used in all frequency bands.  
Table 12. Receiver 1 Evaluation Board Matching Components  
Frequency Band  
201  
22 nH  
DNI  
202  
203  
62 nH  
DNI  
204  
205, 206  
39 pF  
1.3 nH  
0.4 pF  
207  
T201  
625 MHz to 2815 MHz  
3400 MHz to 4800 MHz  
5300 MHz to 5900 MHz  
12 pF  
0 Ω  
0.6 nH  
180 nH  
18 nH  
DNI  
91 nH  
0.4 pF  
4.3 nH  
Johanson 1720BL15A0100  
Anaren BD3150L50100AHF  
Johanson 5400BL15B200  
DNI  
DNI  
Table 13. Receiver 2 Evaluation Board Matching Components  
Frequency Band  
208  
22 nH  
DNI  
209  
210  
62 nH  
DNI  
211  
212, 213  
39 pF  
1.3 nH  
0.4 pF  
214  
T202  
625 MHz to 2815 MHz  
3400 MHz to 4800 MHz  
5300 MHz to 5900 MHz  
12 pF  
0 Ω  
0.6 nH  
180 nH  
18 nH  
DNI  
91 nH  
0.4 pF  
4.3 nH  
Johanson 1720BL15A0100  
Anaren BD3150L50100AHF  
Johanson 5400BL15B200  
DNI  
DNI  
Table 14. Observation Receiver 1 Evaluation Board Matching Components  
Frequency Band  
215  
216  
217  
218  
219, 220  
221  
T205  
625 MHz to 2815 MHz  
3400 MHz to 4800 MHz  
5300 MHz to 5900 MHz  
DNI  
0.3 pF  
100 nH  
0 Ω  
1.6 pF  
6.8 pF  
DNI  
2 nH  
5.6 nH  
56 nH  
6.8 nH  
DNI  
5.6 pF  
1.7 nH  
0.8 pF  
180 nH  
220 nH  
1.5 nH  
Johanson 1720BL15A0100  
Anaren BD3150L50100AHF  
Johanson 5400BL15B200  
Table 15. Observation Receiver 2 Evaluation Board Matching Components  
Frequency Band  
222  
223  
224  
225  
226, 227 228  
T207  
625 MHz to 2815 MHz  
3400 MHz to 4800 MHz  
5300 MHz to 5900 MHz  
DNI  
0.3 pF  
100 nH  
0 Ω  
1.6 pF  
6.8 pF  
Do not install  
2 nH  
5.6 nH  
56 nH  
6.8 nH  
DNI  
5.6 pF  
1.7 nH  
0.8 pF  
180 nH  
220 nH  
1.5 nH  
Johanson 1720BL15A0100  
Anaren BD3150L50100AHF  
Johanson 5400BL15B200  
Table 16. Transmitter 1 Evaluation Board Matching Components1  
T302 Pin 2, Bypass  
Capacitor C332  
C307, C308,  
L307, L308  
Frequency Band  
314  
313  
312  
309, 310 311  
T302  
625 MHz to 2815 MHz  
22 nH 4.7 pF 43 nH 0 Ω  
0.2 pF Johanson 1720BL15B0050  
33 pF  
DNI  
3400 MHz to 4800 MHz DNI  
5300 MHz to 5900 MHz DNI  
0 Ω  
0 Ω  
DNI  
DNI  
2.7 nH  
0.9 nH  
0.2 pF Anaren BD3150L50100AHF 3.9 pF  
8.2 nH Johanson 5400BL14B100 1.8 pF  
DNI  
DNI  
1 These matches provide VDDA1P8_TX to the TXx_OUT pins through the balun.  
Table 17. Transmitter 2 Evaluation Board Matching Components1,  
T303 Pin 2, Bypass C315, C316,  
Frequency Band  
322  
321  
320  
317, 318 319  
T303  
Capacitor C335  
L315, L316  
625 MHz to 2815 MHz  
3400 MHz to 4800 MHz DNI  
5300 MHz to 5900 MHz DNI  
22 nH 4.7 pF 43 nH 0 Ω  
0.2 pF Johanson 1720BL15B0050  
0.2 pF Anaren BD3150L50100AHF  
8.2 nH Johanson 5400BL14B100  
33 pF  
3.9 pF  
1.8 pF  
DNI  
DNI  
DNI  
0 Ω  
0 Ω  
DNI  
DNI  
2.7 nH  
0.9 nH  
1 These matches provide VDDA1P8_TX to the TXx_OUT pins through the balun.  
Rev. B | Page 126 of 127  
 
 
ADRV9009  
Data Sheet  
OUTLINE DIMENSIONS  
12.10  
12.00 SQ  
11.90  
A1 BALL  
PAD CORNER  
A1 BALL  
CORNER  
14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
PIN A1  
INDICATOR  
10.40 SQ  
7.755 REF  
K
L
0.80  
M
N
P
TOP VIEW  
BOTTOM VIEW  
0.80 REF  
8.090 REF  
DETAIL A  
1.27  
1.18  
1.09  
0.91  
0.84  
0.77  
DETAIL A  
0.39  
0.34  
0.29  
0.44 REF  
0.50  
0.45  
0.40  
SEATING  
PLANE  
COPLANARITY  
0.12  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-GGAB-1.  
Figure 466. 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-196-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range2  
Package Description  
Package Option  
ADRV9009BBCZ  
ADRV9009BBCZ-REEL  
ADRV9009-W/PCBZ  
−40°C to +85°C  
−40°C to +85°C  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Pb-Free Evaluation Board, 75 MHz to 6000 MHz  
BC-196-13  
BC-196-13  
1 Z = RoHS Compliant Part.  
2 See the Thermal Management section.  
©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16499-0-5/19(B)  
Rev. B | Page 127 of 127  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY