ADSP-21061LKBZ-160 [ADI]

Commercial Grade SHARC DSP Microcomputer; 商业级SHARC DSP单片机
ADSP-21061LKBZ-160
型号: ADSP-21061LKBZ-160
厂家: ADI    ADI
描述:

Commercial Grade SHARC DSP Microcomputer
商业级SHARC DSP单片机

微控制器和处理器 外围集成电路 数字信号处理器 时钟
文件: 总52页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Commercial Grade  
SHARC DSP Microcomputer  
a
ADSP-21061/ADSP-21061L  
Dual data address generators with modulo and bit-reverse  
addressing  
Efficient program sequencing with zero-overhead looping:  
single-cycle loop setup  
IEEE JTAG Standard 1149.1 test access port and on-chip  
emulation  
32-bit single-precision and 40-bit extended-precision IEEE  
floating-point data formats or 32-bit fixed-point data  
format  
240-lead MQFP package, thermally enhanced MQFP, 225-ball  
plastic ball grid array (PBGA)  
Lead (Pb) free packages. For more information, see Ordering  
Guide on Page 52.  
SUMMARY  
High performance signal processor for communications,  
graphics, and imaging applications  
Super Harvard Architecture  
Four independent buses for dual data fetch, instruction  
fetch, and nonintrusive I/O  
32-bit IEEE floating-point computation units—multiplier,  
ALU, and shifter  
Dual-ported on-chip SRAM and integrated I/O peripherals—a  
complete system-on-a-chip  
Integrated multiprocessing features  
KEY FEATURES—PROCESSOR CORE  
50 MIPS, 20 ns instruction rate, single-cycle instruction  
execution  
120 MFLOPS peak, 80 MFLOPS sustained performance  
CORE PROCESSOR  
DUAL-PORTED SRAM  
INSTRUCTION  
TIMER  
JTAG  
TWO INDEPENDENT  
DUAL-PORTED BLOCKS  
7
CACHE  
TEST AND  
EMULATION  
32 ϫ 48-BIT  
PROCESSOR PORT  
ADDR DATA  
ADDR  
I/O PORT  
ADDR  
ADDR  
DATA  
DATA  
DATA  
DAG1  
DAG2  
PROGRAM  
SEQUENCER  
8 ϫ 4 ϫ 32 8 ϫ 4 ϫ 24  
EXTERNAL  
PORT  
IOD  
48  
IOA  
17  
24  
PM ADDRESS BUS  
32  
48  
ADDR BUS  
MUX  
DM ADDRESS BUS  
32  
MULTIPROCESSOR  
INTERFACE  
48  
40/32  
PM DATA BUS  
DM DATA BUS  
BUS  
CONNECT  
(PX)  
DATA BUS  
MUX  
HOST PORT  
S
DATA  
REGISTER  
FILE  
IOP  
4
DMA  
CONTROLLER  
REGISTERS  
(MEMORY  
MAPPED)  
6
6
BARREL  
SHIFTER  
16 ϫ 40-BIT  
MULT  
ALU  
CONTROL,  
STATUS AND  
DATA BUFFERS  
SERIAL PORTS  
(2)  
I/O PROCESSOR  
Figure 1. Functional Block Diagram  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. D Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
ADSP-21061/ADSP-21061L  
TABLE OF CONTENTS  
Summary ............................................................... 1  
Key Features—Processor Core ................................. 1  
General Description ................................................. 3  
SHARC Family Core Architecture ............................ 3  
Memory and I/O Interface Features ........................... 4  
ADSP-21061L Specifications ..................................... 17  
Operating Conditions (3.3 V) ................................. 17  
Electrical Characteristics (3.3 V) ............................. 17  
Internal Power Dissipation (3.3 V) .......................... 18  
External Power Dissipation (3.3 V) .......................... 19  
Absolute Maximum Ratings ................................... 20  
ESD Caution ...................................................... 20  
Package Marking Information ................................ 20  
Timing Specifications ........................................... 20  
Test Conditions .................................................. 43  
Environmental Conditions .................................... 46  
225-Ball PBGA Pin Configurations ............................. 47  
240-Lead MQFP Pin Configurations ........................... 49  
Outline Dimensions ................................................ 50  
Surface-Mount Design .......................................... 52  
Ordering Guide ..................................................... 52  
Porting Code From the ADSP-21060 or  
ADSP-21062 ..................................................... 7  
Development Tools ............................................... 7  
Additional Information .......................................... 8  
Related Signal Chains ............................................ 8  
Pin Function Descriptions ......................................... 9  
Target Board Connector For EZ-ICE Probe ............... 12  
ADSP-21061 Specifications ...................................... 14  
Operating Conditions (5 V) ................................... 14  
Electrical Characteristics (5 V) ............................... 14  
Internal Power Dissipation (5 V) ............................ 15  
External Power Dissipation (5 V) ............................ 16  
REVISION HISTORY  
5/13—Rev C to Rev D  
Updated Development Tools .......................................7  
Added Related Signal Chains .......................................8  
Removed the ADSP-21061LAS-176, ADSP-21061LKS-160, and  
ADSP-21061LKS-176 models from Ordering Guide ........ 52  
GENERAL NOTE  
This data sheet represents production released specifications for  
the ADSP-21061 (5 V) and ADSP-21061L (3.3 V) processors for  
33 MHz, 40 MHz, 44 MHz, and 50 MHz speed grades. The  
product name“ADSP-21061” is used throughout this data sheet  
to represent all devices, except where expressly noted.  
Rev. D  
| Page 2 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
GENERAL DESCRIPTION  
The ADSP-21061 SHARC—Super Harvard Architecture Com-  
puter—is a signal processing microcomputer that offers new  
capabilities and levels of performance. The ADSP-21061  
SHARC is a 32-bit processor optimized for high performance  
DSP applications. The ADSP-21061 builds on the ADSP-21000  
DSP core to form a complete system-on-a-chip, adding a dual-  
ported on-chip SRAM and integrated I/O peripherals supported  
by a dedicated I/O bus.  
• Serial ports  
• JTAG test access port  
ADSP-21061  
CS  
BMS  
CLKIN  
BOOT  
EPROM  
(OPTIONAL)  
1 ϫ CLOCK  
ADDR  
DATA  
EBOOT  
LBOOT  
IRQ2–0  
TO GND  
Fabricated in a high speed, low power CMOS process, the  
ADSP-21061 has a 20 ns instruction cycle time and operates at  
50 MIPS. With its on-chip instruction cache, the processor can  
execute every instruction in a single cycle. Table 1 shows perfor-  
mance benchmarks for the ADSP-21061/ADSP-21061L.  
3
4
ADDR31–0  
ADDR  
FLAG3–0  
TIMEXP  
MEMORY-  
MAPPED  
DEVICES  
DATA47–0  
RD  
DATA  
OE  
WE  
ACK  
WR  
ACK  
(OPTIONAL)  
TCLK0  
RCLK0  
TFS0  
RSF0  
DT0  
SERIAL  
DEVICE  
(OPTIONAL)  
The ADSP-21061 SHARC represents a new standard of integra-  
tion for signal computers, combining a high performance  
floating-point DSP core with integrated, on-chip system fea-  
tures including 1M bit SRAM memory, a host processor  
interface, a DMA controller, serial ports, and parallel bus con-  
nectivity for glueless DSP multiprocessing.  
CS  
MS3–0  
PAGE  
SW  
DMA DEVICE  
(OPTIONAL)  
DATA  
DR0  
SBTS  
ADRCLK  
DMAR1–2  
TCLK1  
RCLK1  
TFS1  
RSF1  
DT1  
SERIAL  
DEVICE  
(OPTIONAL)  
DMAG1–2  
CS  
HOST  
Table 1. Benchmarks (at 50 MHz)  
DR1  
HBR  
HBG  
PROCESSOR  
INTERFACE  
(OPTIONAL)  
REDY  
Benchmark Algorithm  
Speed  
Cycles  
BR1–6  
CPA  
RPBA  
ID2–0  
ADDR  
DATA  
1024 Point Complex FFT (Radix 4,  
with reversal)  
.37 ms  
18,221  
RESET JTAG  
7
FIR Filter (per tap)  
IIR Filter (per biquad)  
Divide (y/x)  
20 ns  
1
4
6
9
80 ns  
120 ns  
180 ns  
300M bps  
Figure 2. ADSP-21061/ADSP-21061L System Sample Configuration  
Inverse Square Root  
DMA Transfer Rate  
SHARC FAMILY CORE ARCHITECTURE  
The ADSP-21061 includes the following architectural features  
of the ADSP-21000 family core. The ADSP-21061 processors  
are code- and function-compatible with the ADSP-21020,  
ADSP-21060, and ADSP-21062 SHARC processors.  
The ADSP-21061 continues SHARC’s industry-leading stan-  
dards of integration for DSPs, combining a high performance  
32-bit DSP core with integrated, on-chip system features.  
The block diagram on Page 1, illustrates the following architec-  
tural features:  
Independent, Parallel Computation Units  
The arithmetic/logic unit (ALU), multiplier, and shifter all per-  
form single-cycle instructions. The three units are arranged in  
parallel, maximizing computational throughput. Single multi-  
function instructions execute parallel ALU and multiplier oper-  
ations. These computation units support IEEE 32-bit single-  
precision floating-point, extended-precision 40-bit floating-  
point, and 32-bit fixed-point data formats.  
• Computation units (ALU, multiplier, and shifter) with a  
shared data register file  
• Data address generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
• PM and DM buses capable of supporting four 32-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
Data Register File  
• Interval timer  
A general-purpose data register file is used for transferring data  
between the computation units and the data buses, and for stor-  
ing intermediate results. This 10-port, 32-register (16 primary,  
16 secondary) register file, combined with the ADSP-21000  
Harvard architecture, allows unconstrained data flow between  
computation units and internal memory.  
• On-chip SRAM  
• External port for interfacing to off-chip memory and  
peripherals  
• Host port and multiprocessor interface  
• DMA controller  
Rev. D  
| Page 3 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
A 16-bit floating-point storage format is supported, which effec-  
tively doubles the amount of data that may be stored on-chip.  
Conversion between the 32-bit floating-point and 16-bit float-  
ing-point formats is done in a single instruction.  
Single-Cycle Fetch of Instruction and Two Operands  
The ADSP-21061 features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data and the pro-  
gram memory (PM) bus transfers both instructions and data  
(Figure 1 on Page 1). With its separate program and data mem-  
ory buses and on-chip instruction cache, the processor can  
simultaneously fetch two operands and an instruction (from the  
cache), all in a single cycle.  
While each memory block can store combinations of code and  
data, accesses are most efficient when one block stores data,  
using the DM bus for transfers, and the other block stores  
instructions and data, using the PM bus for transfers. Using the  
DM bus and PM bus in this way, with one dedicated to each  
memory block, assures single-cycle execution with two data  
transfers. In this case, the instruction must be available in the  
cache. Single-cycle execution is also maintained when one of the  
data operands is transferred to or from off-chip, via the  
ADSP-21061’s external port.  
Instruction Cache  
The ADSP-21061 includes an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and two  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
allows full-speed execution of core, looped operations such as  
digital filter multiply-accumulates and FFT butterfly processing.  
Off-Chip Memory and Peripherals Interface  
The ADSP-21061’s external port provides the processor’s inter-  
face to off-chip memory and peripherals. The 4-gigaword off-  
chip address space is included in the ADSP-21061’s unified  
address space. The separate on-chip buses—for program mem-  
ory, data memory, and I/O—are multiplexed at the external port  
to create an external system bus with a single 32-bit address bus  
and a single 48-bit (or 32-bit) data bus. The on-chip Super Har-  
vard Architecture provides three-bus performance, while the  
off-chip unified address space gives flexibility to the designer.  
Data Address Generators with Hardware Circular Buffers  
The ADSP-21061’s two data address generators (DAGs) imple-  
ment circular data buffers in hardware. Circular buffers allow  
efficient programming of delay lines and other data structures  
required in digital signal processing, and are commonly used in  
digital filters and Fourier transforms. The two DAGs of the  
ADSP-21061 contain sufficient registers to allow the creation of  
up to 32 circular buffers (16 primary register sets, 16 secondary).  
The DAGs automatically handle address pointer wraparound,  
reducing overhead, increasing performance and simplifying  
implementation. Circular buffers can start and end at any mem-  
ory location.  
Addressing of external memory devices is facilitated by on-chip  
decoding of high order address lines to generate memory bank  
select signals. Separate control lines are also generated for sim-  
plified addressing of page-mode DRAM. The ADSP-21061  
provides programmable memory wait states and external mem-  
ory acknowledge controls to allow interfacing to DRAM and  
peripherals with variable access, hold, and disable time  
requirements.  
Flexible Instruction Set  
The 48-bit instruction word accommodates a variety of parallel  
operations, for concise programming. For example, the  
ADSP-21061 can conditionally execute a multiply, an add, a  
subtract, and a branch, all in a single instruction.  
Host Processor Interface  
The ADSP-21061’s host interface allows easy connection to  
standard microprocessor buses, both 16-bit and 32-bit, with lit-  
tle additional hardware required. Asynchronous transfers at  
speeds up to the full clock rate of the processor are supported.  
The host interface is accessed through the ADSP-21061’s exter-  
nal port and is memory-mapped into the unified address space.  
Two channels of DMA are available for the host interface; code  
and data transfers are accomplished with low software  
overhead.  
MEMORY AND I/O INTERFACE FEATURES  
The ADSP-21061 processors add the following architectural  
features to the SHARC family core.  
Dual-Ported On-Chip Memory  
The ADSP-21061 contains one megabit of on-chip SRAM, orga-  
nized as two blocks of 0.5M bits each. Each bank has eight 16-bit  
columns with 4k 16-bit words per column. Each memory block  
is dual-ported for single-cycle, independent accesses by the core  
processor and I/O processor or DMA controller. The dual-  
ported memory and separate on-chip buses allow two data  
transfers from the core and one from I/O, all in a single cycle  
(see Figure 4 for the ADSP-21061 memory map).  
The host processor requests the ADSP-21061’s external bus  
with the host bus request (HBR), host bus grant (HBG), and  
ready (REDY) signals. The host can directly read and write the  
internal memory of the ADSP-21061, and can access the DMA  
channel setup and mailbox registers. Vector interrupt support is  
provided for efficient execution of host commands.  
On the ADSP-21061, the memory can be configured as a maxi-  
mum of 32k words of 32-bit data, 64k words for 16-bit data, 16k  
words of 48-bit instructions (and 40-bit data) or combinations  
of different word sizes up to 1 megabit. All the memory can be  
accessed as 16-bit, 32-bit, or 48-bit.  
DMA Controller  
The ADSP-21061’s on-chip DMA controller allows zero-  
overhead data transfers without processor intervention. The  
DMA controller operates independently and invisibly to the  
processor core, allowing DMA operations to occur while the  
core is simultaneously executing its program instructions.  
Rev. D  
| Page 4 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
ADSP-21061 #6  
ADSP-21061 #5  
ADSP-21061 #4  
ADSP-21061 #3  
ADDR31–0  
CLKIN  
DATA47–0  
RESET  
RPBA  
3
ID2–0  
CONTROL  
011  
5
BR1–2, BR4–6  
BR3  
ADSP-21061 #2  
ADDR31–0  
CLKIN  
RESET  
RPBA  
DATA47–0  
3
ID2–0  
CONTROL  
010  
CPA  
BR1, BR3–6  
BR2  
5
ADSP-21061 #1  
CLKIN  
RESET  
RPBA  
ADDR31–0  
ADDR  
DATA  
GLOBAL MEMORY  
AND  
PERIPHERAL (OPTIONAL)  
DATA47–0  
RDx  
WRx  
OE  
WE  
ACK  
CS  
3
ACK  
MS3–0  
ID2–0  
BMS  
PAGE  
CS  
001  
BOOT EPROM (OPTIONAL)  
ADDR  
SBTS  
DATA  
BUS  
PRIORITY  
CS  
HBR  
RESET  
CLOCK  
HBG  
HOST PROCESSOR  
INTERFACE (OPTIONAL)  
REDY  
ADDR  
DATA  
CPA  
BR2–6  
BR1  
5
Figure 3. Shared Memory Multiprocessing System  
DMA transfers can occur between the ADSP-21061’s internal  
memory and either external memory, external peripherals, or a  
host processor. DMA transfers can also occur between the  
ADSP-21061’s internal memory and its serial ports.  
DMA transfers between external memory and external periph-  
eral devices are another option. External bus packing to 16-,  
32-, or 48-bit words is performed during DMA transfers.  
Rev. D  
| Page 5 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Six channels of DMA are available on the ADSP-21061—four  
via the serial ports, and two via the processor’s external port (for  
either host processor, other ADSP-21061s, memory or I/O  
transfers). Programs can be downloaded to the ADSP-21061  
using DMA transfers. Asynchronous off-chip peripherals can  
control two DMA channels using DMA request/grant lines  
(DMAR1–2, DMAG1–2). Other DMA features include interrupt  
generation upon completion of DMA transfers and DMA  
chaining for automatic linked DMA transfers.  
The serial ports can operate with little-endian or big-endian  
transmission formats, with word lengths selectable from 3 bits  
to 32 bits. They offer selectable synchronization and transmit  
modes as well as optional μ-law or A-law companding. Serial  
port clocks and frame syncs can be internally or externally gen-  
erated. The serial ports also include keyword and key mask  
features to enhance interprocessor communication.  
Multiprocessing  
The ADSP-21061 offers powerful features tailored to multipro-  
cessor DSP systems. The unified address space (see Figure 4)  
allows direct interprocessor accesses of each ADSP-21061’s  
internal memory. Distributed bus arbitration logic is included  
on-chip for simple, glueless connection of systems containing  
up to six ADSP-21061s and a host processor. Master processor  
changeover incurs only one cycle of overhead. Bus arbitration is  
selectable as either fixed or rotating priority. Bus lock allows  
indivisible read-modify-write sequences for semaphores. A vec-  
tor interrupt is provided for interprocessor commands. Maxi-  
mum throughput for interprocessor data transfer is 500 Mbps  
over the external port. Broadcast writes allow simultaneous  
transmission of data to all ADSP-21061s and can be used to  
implement reflective semaphores.  
Serial Ports  
The ADSP-21061 features two synchronous serial ports that  
provide an inexpensive interface to a wide variety of digital and  
mixed-signal peripheral devices. The serial ports can operate at  
the full clock rate of the processor, providing each with a maxi-  
mum data rate of up to 50 Mbps. Independent transmit and  
receive functions provide greater flexibility for serial communi-  
cations. Serial port data can be automatically transferred to and  
from on-chip memory via DMA. Each of the serial ports offers  
TDM multichannel mode.  
ADDRESS  
ADDRESS  
0x0000 0000  
0x0002 0000  
0x0040 0000  
IOP REGISTERS  
INTERNAL  
MEMORY  
SPACE  
NORMAL WORD ADDRESSING  
(32-BIT DATA WORDS  
48-BIT INSTRUCTION WORDS)  
BANK 0  
MS0  
0x0004 0000  
SDRAM  
(OPTIONAL)  
SHORT WORD ADDRESSING  
(16-BIT DATA WORDS)  
0x0008 0000  
INTERNAL MEMORY SPACE  
BANK 1  
BANK 2  
MS1  
MS2  
WITH ID = 001  
0x0010 0000  
INTERNAL MEMORY SPACE  
WITH ID = 010  
0x0018 0000  
EXTERNAL  
MEMORY  
SPACE  
INTERNAL MEMORY SPACE  
MULTIPROCESSOR  
MEMORY  
SPACE  
WITH ID = 011  
0x0012 0000  
INTERNAL MEMORY SPACE  
WITH ID = 100  
0x0028 0000  
0x0030 0000  
0x0038 0000  
BANK  
3
MS3  
INTERNAL MEMORY SPACE  
WITH ID = 101  
INTERNAL MEMORY SPACE  
WITH ID = 110  
BROADCAST WRITE  
TO ALL ADSP-21061s  
NONBANKED  
0x003F FFFF  
0x0FFF FFFF  
NOTE: BANK SIZES ARE SELECTED BY  
MSIZE BITS OF THE SYSCON REGISTER  
Figure 4. Memory Map  
Rev. D  
|
Page 6 of 52  
|
May 2013  
ADSP-21061/ADSP-21061L  
The newest IDE, CrossCore Embedded Studio, is based on the  
EclipseTM framework. Supporting most Analog Devices proces-  
sor families, it is the IDE of choice for future processors,  
including multicore devices. CrossCore Embedded Studio  
seamlessly integrates available software add-ins to support real  
time operating systems, file systems, TCP/IP stacks, USB stacks,  
algorithmic software modules, and evaluation hardware board  
support packages. For more information visit  
Program Booting  
The internal memory of the ADSP-21061 can be booted at sys-  
tem power-up from either an 8-bit EPROM, or a host processor.  
Selection of the boot source is controlled by the BMS (boot  
memory select), EBOOT (EPROM boot), and LBOOT (host  
boot) pins. 32-bit and 16-bit host processors can be used for  
booting.  
www.analog.com/cces.  
PORTING CODE FROM THE ADSP-21060 OR  
ADSP-21062  
The other Analog Devices IDE, VisualDSP++, supports proces-  
sor families introduced prior to the release of CrossCore  
Embedded Studio. This IDE includes the Analog Devices VDK  
real time operating system and an open source TCP/IP stack.  
For more information visit www.analog.com/visualdsp. Note  
that VisualDSP++ will not support future Analog Devices  
processors.  
The ADSP-21061 is pin compatible with the ADSP-21060/  
ADSP-21061/ADSP-21062 processors. The ADSP-21061 pins  
that correspond to the link port pins of the ADSP-21060/  
ADSP-21062 are no-connects.  
The ADSP-21061 is object code compatible with the  
ADSP-21060/ADSP-21062 processors except for the following  
functional elements:  
EZ-KIT Lite Evaluation Board  
For processor evaluation, Analog Devices provides wide range  
of EZ-KIT Lite® evaluation boards. Including the processor and  
key peripherals, the evaluation board also supports on-chip  
emulation capabilities and other evaluation and development  
features. Also available are various EZ-Extenders®, which are  
daughter cards delivering additional specialized functionality,  
including audio and video processing. For more information  
visit www.analog.com and search on “ezkit” or “ezextender”.  
• The ADSP-21061 memory is organized into two blocks  
with eight columns that are 4k deep per block. The  
ADSP-21060/ADSP-21062 memory has 16 columns per  
block.  
• Link port functions are not available.  
• Handshake external port DMA pins DMAR2 and DMAG2  
are assigned to external port DMA Channel 6 instead of  
Channel 8.  
EZ-KIT Lite Evaluation Kits  
• 2-D DMA capability of the SPORT is not available.  
For a cost-effective way to learn more about developing with  
Analog Devices processors, Analog Devices offer a range of EZ-  
KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT  
Lite evaluation board, directions for downloading an evaluation  
version of the available IDE(s), a USB cable, and a power supply.  
The USB controller on the EZ-KIT Lite board connects to the  
USB port of the user’s PC, enabling the chosen IDE evaluation  
suite to emulate the on-board processor in-circuit. This permits  
the customer to download, execute, and debug programs for the  
EZ-KIT Lite system. It also supports in-circuit programming of  
the on-board Flash device to store user-specific boot code,  
enabling standalone operation. With the full version of Cross-  
Core Embedded Studio or VisualDSP++ installed (sold  
separately), engineers can develop software for supported EZ-  
KITs or any custom system utilizing supported Analog Devices  
processors.  
• The modify registers in SPORT DMA are not  
programmable.  
On the ADSP-21061, Block 0 starts at the beginning of internal  
memory, normal word address 0x0002 0000. Block 1 starts at  
the end of Block 0, with contiguous addresses. The remaining  
addresses in internal memory are divided into blocks that alias  
into Block 1. This allows any code or data stored in Block 1 on  
the ADSP-21062 to retain the same addresses on the  
ADSP- 21061—these addresses will alias into the actual Block 1  
of each processor.  
If you develop your application using the ADSP-21062, but will  
migrate to the ADSP-21061, use only the first eight columns of  
each memory bank. Limit your application to 8k of instructions  
or up to 16k of data in each bank of the ADSP-21062, or any  
combination of instructions or data that does not exceed the  
memory bank.  
Software Add-Ins for CrossCore Embedded Studio  
DEVELOPMENT TOOLS  
Analog Devices offers software add-ins which seamlessly inte-  
grate with CrossCore Embedded Studio to extend its capabilities  
and reduce development time. Add-ins include board support  
packages for evaluation hardware, various middleware pack-  
ages, and algorithmic modules. Documentation, help,  
configuration dialogs, and coding examples present in these  
add-ins are viewable through the CrossCore Embedded Studio  
IDE once the add-in is installed.  
Analog Devices supports its processors with a complete line of  
software and hardware development tools, including integrated  
development environments (which include CrossCore® Embed-  
ded Studio and/or VisualDSP++®), evaluation products,  
emulators, and a wide variety of software add-ins.  
Integrated Development Environments (IDEs)  
For C/C++ software writing and editing, code generation, and  
debug support, Analog Devices offers two IDEs.  
Rev. D  
| Page 7 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Board Support Packages for Evaluation Hardware  
RELATED SIGNAL CHAINS  
Software support for the EZ-KIT Lite evaluation boards and EZ-  
Extender daughter cards is provided by software add-ins called  
Board Support Packages (BSPs). The BSPs contain the required  
drivers, pertinent release notes, and select example code for the  
given evaluation hardware. A download link for a specific BSP is  
located on the web page for the associated EZ-KIT or EZ-  
Extender product. The link is found in the Product Download  
area of the product web page.  
A signal chain is a series of signal conditioning electronic com-  
ponents that receive input (data acquired from sampling either  
real-time phenomena or from stored data) in tandem, with the  
output of one portion of the chain supplying input to the next.  
Signal chains are often used in signal processing applications to  
gather and process data or to apply system controls based on  
analysis of real-time phenomena. For more information about  
this term and related topics, see the “signal chain” entry in the  
Glossary of EE Terms on the Analog Devices website.  
Middleware Packages  
Analog Devices eases signal processing system development by  
providing signal processing components that are designed to  
work together well. A tool for viewing relationships between  
specific applications and related components is available on the  
www.analog.com website.  
Analog Devices separately offers middleware add-ins such as  
real time operating systems, file systems, USB stacks, and  
TCP/IP stacks. For more information see the following web  
pages:  
www.analog.com/ucos3  
www.analog.com/ucfs  
www.analog.com/ucusbd  
www.analog.com/lwip  
TM  
The Circuits from the Lab site (www.analog.com/signal  
chains) provides:  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
• Drill down links for components in each chain to selection  
guides and application information  
Algorithmic Modules  
To speed development, Analog Devices offers add-ins that per-  
form popular audio and video processing algorithms. These are  
available for use with both CrossCore Embedded Studio and  
VisualDSP++. For more information visit www.analog.com and  
search on “Blackfin software modules” or “SHARC software  
modules”.  
• Reference designs applying best practice design techniques  
Designing an Emulator-Compatible DSP Board (Target)  
For embedded system test and debug, Analog Devices provides  
a family of emulators. On each JTAG DSP, Analog Devices sup-  
plies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit  
emulation is facilitated by use of this JTAG interface. The emu-  
lator accesses the processor’s internal features via the  
processor’s TAP, allowing the developer to load code, set break-  
points, and view variables, memory, and registers. The  
processor must be halted to send data and commands, but once  
an operation is completed by the emulator, the DSP system is set  
to run at full speed with no impact on system timing. The emu-  
lators require the target board to include a header that supports  
connection of the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see the EE-68: Analog Devices  
JTAG Emulation Technical Reference on the Analog Devices  
website (www.analog.com)—use site search on “EE-68.” This  
document is updated regularly to keep pace with improvements  
to emulator support.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the ADSP-21061  
architecture and functionality. For detailed information on the  
ADSP-21000 Family core architecture and instruction set, refer  
to the ADSP- 2106x SHARC User’s Manual.  
Rev. D  
| Page 8 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
PIN FUNCTION DESCRIPTIONS  
ADSP-21061 pin definitions are listed below. All pins are identi-  
cal on the ADSP-21061 and ADSP-21061L. Inputs identified as  
synchronous (S) must meet timing requirements with respect to  
CLKIN (or with respect to TCK for TMS, TDI). Inputs identi-  
fied as asynchronous (A) can be asserted asynchronously to  
CLKIN (or to TCK for TRST).  
Unused inputs should be tied or pulled to VDD or GND, except  
for ADDR31-0, DATA47-0, FLAG3-0, SW, and inputs that have  
internal pull-up or pull-down resistors (CPA, ACK, DTx, DRx,  
TCLKx, RCLKx, TMS, and TDI)—these pins can be left float-  
ing. These pins have a logic-level hold circuit that prevents the  
input from floating internally.  
Table 2. Pin Descriptions  
Pin  
Type  
Function  
ADDR31–0  
I/O/T  
External Bus Address. The ADSP-21061 outputs addresses for external memory and peripherals on these  
pins. In a multiprocessor system the bus master outputs addresses for read/write of the internal memory or  
IOP registers of other ADSP-21061s. The ADSP-21061 inputs addresses when a host processor or multipro-  
cessing bus master is reading or writing its internal memory or IOP registers.  
DATA47–0  
I/O/T  
O/T  
External Bus Data. The ADSP-21061 inputs and outputs data and instructions on these pins. 32-bit single-  
precision floating-point data and 32-bit fixed-point data is transferred over Bits 47 to 16 of the bus. 40-bit  
extended-precision floating-point data is transferred over Bits 47 to 8 of the bus. 16-bit short word data is  
transferred over Bits 31 to 16 of the bus. In PROM boot mode, 8-bit data is transferred over Bits 23 to 16. Pull-  
up resistors on unused DATA pins are not necessary.  
MS3–0  
Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks of external  
memory. Memory bank size must be defined in the ADSP-21061’s system control register (SYSCON). The  
MS3–0 lines are decoded memory address lines that change at the same time as the other address lines.  
When no external memory access is occurring the MS3–0 lines are inactive; they are active however when a  
conditional memory access instruction is executed, whether or not the condition is true. MS0 can be used  
with the PAGE signal to implement a bank of DRAM memory (Bank 0). In a multiprocessing system the MS3–0  
lines are output by the bus master.  
RD  
I/O/T  
I/O/T  
O/T  
Memory Read Strobe. This pin is asserted (low) when the ADSP-21061 reads from external memory devices  
or from the internal memory of other ADSP-21061s. External devices (including other ADSP-21061s) must  
assert RD to read from the ADSP-21061’s internal memory. In a multiprocessing system RD is output by the  
bus master and is input by all other ADSP-21061s.  
WR  
Memory Write Strobe. This pin is asserted (low) when the ADSP-21061 writes to external memory devices  
or to the internal memory of other ADSP-21061s. External devices must assert WR to write to the  
ADSP-21061’s internal memory. In a multiprocessing system WR is output by the bus master and is input by  
all other ADSP-21061s.  
PAGE  
DRAM Page Boundary. The ADSP-21061 asserts this pin to signal that an external DRAM page boundary  
has been crossed. DRAM page size must be defined in the ADSP-21061’s memory control register (WAIT).  
DRAM can only be implemented in external memory Bank 0; the PAGE signal can only be activated for  
Bank 0 accesses. In a multiprocessing system PAGE is output by the bus master.  
ADRCLK  
SW  
O/T  
Clock Output Reference. In a multiprocessing system ADRCLK is output by the bus master.  
I/O/T  
Synchronous Write Select. This signal is used to interface theADSP-21061 to synchronousmemory devices  
(including other ADSP-21061s). The ADSP-21061 asserts SW (low) to provide an early indication of an  
impending write cycle, which can be aborted if WR is not later asserted (e.g., in a conditional write  
instruction). In a multiprocessing system, SW is output by the bus master and is input by all other  
ADSP-21061s to determine if the multiprocessor memory access is a read or write. SWis asserted at the same  
time as the address output. A host processor using synchronous writes must assert this pin when writing to  
the ADSP-21061(s).  
A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open-Drain,  
T = Three-State (when SBTS is asserted, or when the ADSP-21061 is a bus slave)  
Rev. D  
| Page 9 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Table 2. Pin Descriptions (Continued)  
Pin  
Type  
Function  
ACK  
I/O/S  
Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external memory  
access. ACK is used by I/O devices, memory controllers, or other peripherals to hold off completion of an  
external memory access. The ADSP-21061 deasserts ACK as an output to add wait states to a synchronous  
access of its internal memory. In a multiprocessing system, a slave ADSP-21061 deasserts the bus master’s  
ACK input to add wait state(s) to an access of its internal memory. The bus master has a keeper latch on its  
ACK pin that maintains the input at the level to which it was last driven.  
SBTS  
I/S  
Suspend Bus Three-State. External devices can assert SBTS (low) to place the external bus address, data,  
selects, and strobes in a high impedance state for the following cycle. If the ADSP-21061 attempts to access  
external memory while SBTS is asserted, the processor halts and the memory access is not complete until  
SBTS is deasserted. SBTS should only be used to recover from host processor/ADSP-21061 deadlock, or used  
with a DRAM controller.  
IRQ2–0  
I/A  
Interrupt Request Lines. May be either edge-triggered or level-sensitive.  
FLAG3–0  
I/O/A  
Flag Pins. Each is configured via control bits as either an input or output. As an input, they can be tested as  
a condition. As an output, they can be used to signal external peripherals.  
TIMEXP  
HBR  
O
Timer Expired. Asserted for four cycles when the timer is enabled and TCOUNT decrements to zero.  
I/A  
Host Bus Request. This pin must be asserted by a host processor to request control of the ADSP-21061’s  
external bus. When HBR is asserted in a multiprocessing system, the ADSP-21061 that is bus master will  
relinquish the bus and assert HBG. To relinquish the bus, the ADSP-21061 places the address, data, select,  
and strobe lines in a high impedance state. HBR has priority over all ADSP-21061 bus requests BR6–1 in a  
multiprocessing system.  
HBG  
I/O  
Host Bus Grant. Acknowledges a bus request, indicating that the host processor may take control of the  
externalbus. HBGisasserted(heldlow)bytheADSP-21061untilHBR isreleased. Inamultiprocessingsystem,  
HBG is output by the ADSP-21061 bus master and is monitored by all others.  
CS  
I/A  
Chip Select. Asserted by host processor to select the ADSP-21061.  
REDY  
O (O/D)  
HostBusAcknowledge. TheADSP-21061deassertsREDY(low)toaddwaitstatestoanasynchronousaccess  
of its internal memory or IOP registers by a host. This pin is an open-drain output (O/D) by default; it can be  
programmed in the ADREDY bit of the SYSCON register to be active drive (A/D). REDY will only be output if  
the CS and HBR inputs are asserted.  
DMAR2–1  
DMAG2–1  
BR6–1  
I/A  
DMA Request 1 (DMA Channel 7) and DMA Request 2 (DMA Channel 6).  
DMA Grant 1 (DMA Channel 7) and DMA Grant 2 (DMA Channel 6).  
O/T  
I/O/S  
Multiprocessing Bus Requests. Used by multiprocessing ADSP-21061 processors to arbitrate for bus  
mastership. An ADSP-21061 only drives its own BRx line (corresponding to the value of its ID2-0 inputs) and  
monitors all others. In a multiprocessor system with less than six ADSP-21061s, the unused BRx pins should  
be pulled high; the processor’s own BRx line must not be pulled high or low because it is an output.  
ID2–0  
RPBA  
O (O/D)  
I/S  
Multiprocessing ID. Determines which multiprocessing bus request (BR1– BR6) is used by ADSP-21061.  
ID = 001 corresponds to BR1, ID = 010 corresponds to BR2, etc., ID = 000 in single-processor systems. These  
lines are a system configuration selection which should be hardwired or changed at reset only.  
Rotating Priority Bus Arbitration Select. When RPBA is high, rotating priority for multiprocessor bus  
arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system configuration  
selection which must be set to the same value on every ADSP-21061. If the value of RPBA is changed during  
system operation, it must be changed in the same CLKIN cycle on every ADSP-21061.  
CPA  
I/O (O/D)  
CorePriority Access. AssertingitsCPApinallows the coreprocessor of anADSP-21061bus slaveto interrupt  
background DMA transfers and gain access to the external bus. CPA is an open-drain output that is  
connected to all ADSP-21061s in the system. The CPA pin has an internal 5 kpull-up resistor. If core access  
priority is not required in a system, the CPA pin should be left unconnected.  
DTx  
O
Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 kinternal pull-up resistor.  
Data Receive (Serial Ports 0, 1). Each DR pin has a 50 kinternal pull-up resistor.  
Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 kinternal pull-up resistor.  
Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 kinternal pull-up resistor.  
DRx  
I
TCLKx  
RCLKx  
I/O  
I/O  
A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open-Drain,  
T = Three-State (when SBTS is asserted, or when the ADSP-21061 is a bus slave)  
Rev. D  
| Page 10 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Table 2. Pin Descriptions (Continued)  
Pin  
Type  
I/O  
I/O  
I
Function  
TFSx  
RFSx  
EBOOT  
Transmit Frame Sync (Serial Ports 0, 1).  
Receive Frame Sync (Serial Ports 0, 1).  
EPROM Boot Select. When EBOOT is high, the ADSP-21061 is configured for booting from an 8-bit EPROM.  
When EBOOT is low, the LBOOT and BMS inputs determine booting mode. See the table in the BMS pin  
description below. This signal is a system configuration selection that should be hardwired.  
LBOOT  
BMS  
I
Link Boot. Must be tied to GND.  
I/O/T*  
Boot Memory Select. Output: Used as chip select for boot EPROM devices (when EBOOT = 1,  
LBOOT = 0). In a multiprocessor system, BMS is output by the bus master. Input: When low, indicates that no  
booting will occur and that ADSP-21061 will begin executing instructions from external memory. See table  
below. This input is a system configuration selection that should be hardwired. *Three-statable only in  
EPROM boot mode (when BMS is an output).  
EBOOT  
LBOOT  
BMS  
Booting Mode  
1
0
0
0
0
0
Output  
1(Input)  
0 (Input)  
EPROM (Connect BMS to EPROM chip select.)  
Host Processor.  
No Booting. Processor executes from external memory.  
CLKIN  
RESET  
I
Clock In. External clock input to the ADSP-21061. The instruction cycle rate is equal to CLKIN. CLKIN may  
not be halted, changed, or operated below the minimum specified frequency.  
I/A  
Processor Reset. Resets the ADSP-21061 to a known state and begins program execution at the program  
memory location specified by the hardware reset vector address. This input must be asserted (low) at  
power-up.  
TCK  
TMS  
TDI  
I
Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.  
I/S  
I/S  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a 20 kinternal pull-up resistor.  
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 20 kinternal pull-up  
resistor.  
TDO  
TRST  
O
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
I/A  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-up or held  
low for proper operation of the ADSP-21061. TRST has a 20 kinternal pull-up resistor.  
EMU  
O
Emulation Status. Must be connected to the ADSP-21061 EZ-ICE target board connector only. EMU has a  
50 kinternal pull-up resistor.  
ICSA  
VDD  
GND  
NC  
O
P
Reserved. Leave unconnected.  
Power Supply. (30 pins). See Operating Conditions (5 V) and Operating Conditions (3.3 V).  
Power Supply Return. (30 pins)  
G
Do Not Connect. Reserved pins which must be left open and unconnected.  
A = Asynchronous, G = Ground, I = Input, O = Output, P = Power Supply, S = Synchronous, (A/D) = Active Drive, (O/D) = Open-Drain,  
T = Three-State (when SBTS is asserted, or when the ADSP-21061 is a bus slave)  
Rev. D  
| Page 11 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
TARGET BOARD CONNECTOR FOR EZ-ICE PROBE  
The JTAG signals are terminated on the EZ-ICE probe as shown  
in Table 3.  
The ADSP-2106x EZ-ICE Emulator uses the IEEE 1149.1 JTAG  
test access port of the ADSP-2106x to monitor and control the  
target board processor during emulation. The EZ-ICE probe  
requires the ADSP-2106x’s CLKIN, TMS, TCK, TDI, TDO, and  
GND signals be made accessible on the target system via a  
14-pin connector (a 2-row, 7-pin strip header) such as that  
shown in Figure 5. The EZ-ICE probe plugs directly onto this  
connector for chip-on-board emulation. You must add this con-  
nector to your target board design if you intend to use the  
ADSP-2106x EZ-ICE. The total trace length between the EZ-  
ICE connector and the farthest device sharing the EZ-ICE JTAG  
pin should be limited to 15 inches maximum for guaranteed  
operation. This length restriction must include EZ-ICE JTAG  
signals that are routed to one or more ADSP-2106x devices, or a  
combination of ADSP-2106x devices and other JTAG devices  
on the chain.  
Table 3. Core Instruction Rate/CLKIN Ratio Selection  
Signal  
TMS  
Termination  
Driven Through 22 Resistor (16 mA Driver)  
TCK  
Driven at 10 MHz Through 22 Resistor (16 mA  
Driver)  
TRST1  
Active Low Driven Through 22 Resistor (16 mA  
Driver) (Pulled Up by On-Chip 20 kResistor)  
TDI  
Driven by 22 Resistor (16 mA Driver)  
One TTL Load, Split Termination (160/220)  
One TTL Load, Split Termination (160/220)  
TDO  
CLKIN  
EMU  
Active Low, 4.7 kPull-Up Resistor, One TTL Load  
(Open-Drain Output from the DSP)  
1 TRSTis driven low until the EZ-ICE probe is turned on by the emulator at software  
startup. After software startup, is driven high.  
1
3
5
2
4
6
Figure 6 shows JTAG scan path connections for systems that  
contain multiple ADSP-2106x processors.  
EMU  
GND  
TMS  
GND  
Connecting CLKIN to Pin 4 of the EZ-ICE header is optional.  
The emulator only uses CLKIN when directed to perform oper-  
ations such as starting, stopping, and single-stepping multiple  
ADSP-2106xs in a synchronous manner. If you do not need  
these operations to occur synchronously on the multiple proces-  
sors, simply tie Pin 4 of the EZ-ICE header to ground.  
KEY (NO PIN)  
BTMS  
7
9
8
BTCK  
TCK  
10  
12  
BTRST  
TRST  
If synchronous multiprocessor operations are needed and  
CLKIN is connected, clock skew between the multiple  
ADSP-21061 processors and the CLKIN pin on the EZ-ICE  
header must be minimal. If the skew is too large, synchronous  
operations may be off by one or more cycles between proces-  
sors. For synchronous multiprocessor operation TCK, TMS,  
CLKIN, and EMU should be treated as critical signals in terms  
of skew, and should be laid out as short as possible on your  
board. If TCK, TMS, and CLKIN are driving a large number of  
ADSP-21061s (more than eight) in your system, then treat them  
as a “clock tree” using multiple drivers to minimize skew. (See  
Figure 7 below and “JTAG Clock Tree” and “Clock Distribu-  
tion” in the “High Frequency Design Considerations” section of  
the ADSP-2106x SHARC User’s Manual.)  
9
11  
BTDI  
GND  
TDI  
13  
14  
TDO  
TOP VIEW  
Figure 5. Target Board Connector For ADSP-2106x EZ-ICE Emulator  
(Jumpers in Place)  
The 14-pin, 2-row pin strip header is keyed at the Pin 3 loca-  
tion—Pin 3 must be removed from the header. The pins must be  
0.025 inch square and at least 0.20 inches in length. Pin spacing  
should be 0.1 0.1 inches. Pin strip headers are available from  
vendors such as 3M, McKenzie, and Samtec. The BTMS, BTCK,  
BTRST, and BTDI signals are provided so that the test access  
port can also be used for board-level testing.  
If synchronous multiprocessor operations are not needed (i.e.,  
CLKIN is not connected), just use appropriate parallel termina-  
tion on TCK and TMS. TDI, TDO, EMU, and TRST are not  
critical signals in terms of skew.  
When the connector is not being used for emulation, place  
jumpers between the Bxxx pins and the xxx pins as shown in  
Figure 5. If you are not going to use the test access port for  
board testing, tie BTRST to GND and tie or pull up BTCK to  
VDD. The TRST pin must be asserted (pulsed low) after power-  
up (through BTRST on the connector) or held low for proper  
operation of the ADSP-2106x. None of the Bxxx pins (Pins 5, 7,  
9, and 11) are connected on the EZ-ICE probe.  
Rev. D  
| Page 12 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
JTAG  
DEVICE  
(OPTIONAL)  
ADSP-2106x  
ADSP-2106x  
n
#1  
TDI  
TDO  
TDO  
TDO  
TDI  
TDI  
TDI  
EZ-ICE  
JTAG  
CONNECTOR  
OTHER  
JTAG  
CONTROLLER  
TCK  
TMS  
EMU  
TRST  
TDO  
CLKIN  
OPTIONAL  
Figure 6. JTAG Scan Path Connections for Multiple ADSP-2106x Systems  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
5k  
*
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
5k⍀  
*
EMU  
TCK  
TMS  
TRST  
TDO  
SYSTEM  
CLKIN  
CLKIN  
EMU  
*OPEN-DRAIN DRIVER OR EQUIVALENT, i.e,  
Figure 7. JTAG Clock Tree for Multiple ADSP-2106x Systems  
Rev. D  
| Page 13 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
ADSP-21061 SPECIFICATIONS  
OPERATING CONDITIONS (5 V)  
K Grade  
Parameter  
Description  
Min  
Nom  
5.0  
Max  
Unit  
VDD  
Supply Voltage  
4.75  
0
5.25  
V
TCASE  
VIH11  
VIH22  
Case Operating Temperature  
High Level Input Voltage @ VDD = Max  
High Level Input Voltage @ VDD = Max  
Low Level Input Voltage @ VDD = Min  
85  
C  
V
2.0  
2.2  
–0.5  
VDD + 0.5  
VDD + 0.5  
+0.8  
V
1, 2  
VIL  
V
1 Applies to input and bidirectional pins: DATA47–0, ADDR31–0, RD, WR, SW, ACK, SBTS, IRQ2–0, FLAG3–0, HGB, CS, DMAR1, DMAR2, BR6–1, ID2–0, RPBA, CPA, TFS0,  
TFS1, RFS0, RFS1, EBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1.  
2 Applies to input pins: CLKIN, RESET, TRST.  
ELECTRICAL CHARACTERISTICS (5 V)  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
1, 2  
VOH  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Current  
Low Level Input Current  
@ VDD = Min, IOH = –2.0 mA  
@ VDD = Min, IOL = 4.0 mA  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
4.1  
V
1, 2  
VOL  
0.4  
10  
V
3, 4  
IIH  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
mA  
μA  
pF  
3
IIL  
10  
4
IILP  
Low Level Input Current  
@ VDD = Max, VIN = 0 V  
150  
10  
5, 6, 7, 8  
IOZH  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Input Capacitance  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
5
IOZL  
10  
IOZHP  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
350  
1.5  
350  
4.2  
150  
4.7  
7
IOZLC  
9
IOZLA  
@ VDD = Max, VIN = 1.5 V  
@ VDD = Max, VIN = 0 V  
8
IOZLAR  
6
IOZLS  
@ VDD = Max, VIN = 0 V  
10, 11  
CIN  
fIN = 1 MHz, TCASE = 25°C, VIN = 2.5 V  
1 Applies to output and bidirectional pins: DATA47-0, ADDR31-0, 3-0, MS3–0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, TIMEXP, HBG, REDY, DMAG1, DMAG2,  
BR6–1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BMS, TDO, EMU, ICSA.  
2 See “Output Drive Currents” on Page 44 for typical drive current capabilities.  
3 Applies to input pins: ACK, SBTS, IRQ2–0, HBR, CS, DMAR1, DMAR2, ID2–0, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK.  
4 Applies to input pins with internal pull-ups:DR0, DR1, TRST, TMS, TDI, EMU.  
5 Applies to three-statable pins: DATA47–0, ADDR31–0, MS3–0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3–0, HBG, REDY, DMAG1, DMAG2, BMS, BR6–1, TFSx, RFSx,  
TDO, EMU. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-21061 is not requesting bus  
mastership.)  
6 Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.  
7 Applies to CPA pin.  
8 Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-21061L  
is not requesting bus mastership).  
9 Applies to ACK pin when keeper latch enabled.  
10Applies to all signal pins.  
11Guaranteed but not tested.  
Rev. D  
| Page 14 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
a complete discussion of the code used to measure power dissi-  
pation, see the technical note “SHARC Power Dissipation  
Measurements.”  
INTERNAL POWER DISSIPATION (5 V)  
These specifications apply to the internal power portion of VDD  
only. See the Power Dissipation section of this data sheet for cal-  
culation of external supply current and total supply current. For  
Specifications are based on the operating scenarios:  
Operation  
Peak Activity (IDDINPEAK  
)
High Activity (IDDINHIGH  
)
Low Activity (IDDINLOW  
Single Function  
Internal Memory  
None  
)
Instruction Type  
Instruction Fetch  
Core Memory Access  
Internal Memory DMA  
Multifunction  
Cache  
Multifunction  
Internal Memory  
1 per Cycle (DM)  
1 per 2 Cycles  
2 per Cycle (DM and PM)  
1 per Cycle  
1 per 2 Cycles  
To estimate power consumption for a specific application, use  
the following equation where % is the amount of time your pro-  
gram spends in that state:  
%PEAK IDDINPEAK + %HIGH IDDINHIGH + %LOW IDDINLOW  
%IDLE IDDIDLE = power consumption  
+
Parameter  
Test Conditions  
Max  
Unit  
I
I
I
I
DDINPEAK Supply Current (Internal)1  
DDINHIGH Supply Current (Internal)2  
DDINLOW Supply Current (Internal)3  
DDIDLE Supply Current (Idle)4  
tCK = 30 ns, VDD = Max  
tCK = 25 ns, VDD = Max  
tCK = 20 ns, VDD = Max  
595  
680  
850  
mA  
mA  
tCK = 30 ns, VDD = Max  
tCK = 25 ns, VDD = Max  
tCK = 20 ns, VDD = Max  
460  
540  
670  
mA  
mA  
tCK = 30 ns, VDD = Max  
tCK = 25 ns, VDD = Max  
tCK = 20 ns, VDD = Max  
270  
320  
390  
mA  
mA  
VDD = Max  
VDD = Max  
200  
55  
mA  
mA  
IDDIDLE Supply Current (Idle16)5  
1 The test program used to measure IDDINPEAK represents worst-case processor operation and is not sustainable under normal application conditions. Actual internal power  
measurements made using typical applications are less than specified.  
2 IDDINHIGH is a composite average based on a range of high activity code. IDDINLOW is a composite average based on a range of low activity code.  
3 IDDINLOW is a composite average based on a range of low activity code.  
4 Idle denotes ADSP-21061L state during execution of IDLE instruction.  
5 Idle16 denotes ADSP-2106x state during execution of IDLE16 instruction.  
Rev. D  
| Page 15 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
EXTERNAL POWER DISSIPATION (5 V)  
The load capacitance should include the processor’s package  
capacitance (CIN). The switching frequency includes driving  
the load high and then back low. Address and data pins can  
drive high and low at a maximum rate of 1/(2tCK). The write  
strobe can switch every cycle at a frequency of 1/tCK. Select pins  
switch at 1/(2tCK), but selects can switch on each cycle.  
Total power dissipation has two components, one due to inter-  
nal circuitry and one due to the switching of external output  
drivers. Internal power dissipation is dependent on the instruc-  
tion execution sequence and the data operands involved.  
Internal power dissipation is calculated in the following way:  
PINT = IDDIN VDD  
Example: Estimate PEXT with the following assumptions:  
• A system with one bank of external data memory RAM  
(32-bit)  
The external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
• Four 128k 8 RAM chips are used, each with a load of  
10 pF  
—the number of output pins that switch during each cycle  
(O)  
• External data memory writes occur every other cycle, a rate  
of 1/(4tCK), with 50% of the pins switching  
—the maximum frequency at which they can switch (f)  
—their load capacitance (C)  
• The instruction cycle rate is 40 MHz (tCK = 25 ns)  
—their voltage swing (VDD  
and is calculated by:  
)
The PEXT equation is calculated for each class of pins that can  
drive:  
PEXT = O C VDD2 f  
Table 4. External Power Calculations  
2
Pin Type  
Address  
MS0  
No. of Pins % Switching  
C  
f  
VDD  
25 V  
25 V  
25 V  
25 V  
25 V  
= PEXT  
15  
1
50  
0
44.7 pF  
44.7 pF  
44.7 pF  
14.7 pF  
4.7 pF  
10 MHz  
10 MHz  
20 MHz  
10 MHz  
20 MHz  
= 0.084 W  
= 0.000 W  
= 0.022 W  
= 0.059 W  
= 0.002 W  
WR  
1
50  
Data  
32  
1
ADDRCLK  
P
EXT = 0.167 W  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation:  
PTOTAL = PEXT + (IDDIN2 5.0 V)  
Note that the conditions causing a worst-case PEXT are different  
from those causing a worst-case PINT. Maximum PINT cannot  
occur while 100% of the output pins are switching from all ones  
to all zeros. Note also that it is not common for an application to  
have 100% or even 50% of the outputs switching  
simultaneously.  
Rev. D  
| Page 16 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
ADSP-21061L SPECIFICATIONS  
OPERATING CONDITIONS (3.3 V)  
A Grade  
K Grade  
Parameter Description  
Min  
Nom  
3.3  
Max  
Min  
Nom  
Max  
Unit  
VDD  
Supply Voltage  
3.15  
–40  
2.0  
3.45  
3.15  
0
3.3  
3.45  
V
TCASE  
VIH11  
VIH22  
Case Operating Temperature  
High Level Input Voltage @ VDD = Max  
High Level Input Voltage @ VDD = Max  
Low Level Input Voltage @ VDD = Min  
+85  
+85  
C  
V
VDD + 0.5  
VDD + 0.5  
+0.8  
2.0  
2.2  
–0.5  
VDD + 0.5  
VDD + 0.5  
+0.8  
2.2  
V
1, 2  
VIL  
–0.5  
V
1 Applies to input and bidirectional pins: DATA47–0, ADDR31–0, RD, WR, SW, ACK, SBTS, IRQ2–0, FLAG3–0, HGB, CS, DMAR1, DMAR2, BR6–1, ID2–0, RPBA, CPA, TFS0,  
TFS1, RFS0, RFS1, EBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1  
2 Applies to input pins: CLKIN, RESET, TRST  
ELECTRICAL CHARACTERISTICS (3.3 V)  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
1,2  
VOH  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Current  
Low Level Input Current  
@ VDD = Min, IOH = –2.0 mA  
@ VDD = Min, IOL = 4.0 mA  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
2.4  
V
1, 2  
VOL  
0.4  
10  
V
3, 4  
IIH  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
mA  
μA  
pF  
3
IIL  
10  
4
IILP  
Low Level Input Current  
@ VDD = Max, VIN = 0 V  
150  
10  
5, 6, 7, 8  
IOZH  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current  
Input Capacitance  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
5
IOZL  
10  
IOZHP  
@ VDD = Max, VIN = VDD Max  
@ VDD = Max, VIN = 0 V  
350  
1.5  
350  
4.2  
150  
4.7  
7
IOZLC  
9
IOZLA  
@ VDD = Max, VIN = 1.5 V  
@ VDD = Max, VIN = 0 V  
8
IOZLAR  
6
IOZLS  
@ VDD = Max, VIN = 0 V  
10, 11  
CIN  
fIN = 1 MHz, TCASE = 25°C, VIN = 2.5 V  
1 Applies to output and bidirectional pins: DATA47–0, ADDR31–0, 3-0, MS3–0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, TIMEXP, HBG, REDY, DMAG1, DMAG2,  
BR6–1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BMS, TDO, EMU, ICSA.  
2 See “Output Drive Currents” on Page 45 for typical drive current capabilities.  
3 Applies to input pins: ACK, SBTS, IRQ2–0, HBR, CS, DMAR1, DMAR2, ID2–0, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK.  
4 Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI, EMU.  
5 Applies to three-statable pins: DATA47–0, ADDR31–0, MS3–0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3–0, HBG, REDY, DMAG1, DMAG2, BMS, BR6–1, TFSx, RFSx,  
TDO, EMU. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-21061 is not requesting bus  
mastership.)  
6 Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.  
7 Applies to CPA pin.  
8 Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-21061L  
is not requesting bus mastership).  
9 Applies to ACK pin when keeper latch enabled.  
10Applies to all signal pins.  
11Guaranteed but not tested.  
Rev. D  
| Page 17 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
INTERNAL POWER DISSIPATION (3.3 V)  
a complete discussion of the code used to measure power dissi-  
pation, see the technical note “SHARC Power Dissipation  
Measurements.”  
These specifications apply to the internal power portion of VDD  
only. See the Power Dissipation section of this data sheet for cal-  
culation of external supply current and total supply current. For  
Specifications are based on the operating scenarios:  
Operation  
Peak Activity (IDDINPEAK  
)
High Activity (IDDINHIGH  
)
Low Activity (IDDINLOW  
Single Function  
Internal Memory  
None  
)
Instruction Type  
Instruction Fetch  
Core memory Access  
Internal Memory DMA  
Multifunction  
Cache  
Multifunction  
Internal Memory  
1 per Cycle (DM)  
1 per 2 Cycles  
2 per Cycle (DM and PM)  
1 per Cycle  
1 per 2 Cycles  
To estimate power consumption for a specific application, use  
the following equation where % is the amount of time your pro-  
gram spends in that state:  
%PEAK IDDINPEAK + %HIGH IDDINHIGH + %LOW IDDINLOW + %IDLE  
IDDIDLE = power consumption  
Parameter  
DDINPEAK Supply Current (Internal)1  
Test Conditions  
Max  
Unit  
I
tCK = 25 ns, VDD = Max  
tCK = 22.5 ns, VDD = Max  
480  
535  
mA  
mA  
IDDINHIGH Supply Current (Internal)2  
tCK = 25 ns, VDD = Max  
tCK = 22.5 ns, VDD = Max  
380  
425  
mA  
mA  
I
I
DDINLOW Supply Current (Internal)3  
DDIDLE Supply Current (Idle)4  
tCK = 25 ns, VDD = Max  
tCK = 22.5 ns, VDD = Max  
220  
245  
mA  
mA  
VDD = Max  
VDD = Max  
180  
50  
mA  
mA  
IDDIDLE Supply Current (Idle)5  
1 The test program used to measure IDDINPEAK represents worst-case processor operation and is not sustainable under normal application conditions. Actual internal power  
measurements made using typical applications are less than specified.  
2 IDDINHIGH is a composite average based on a range of high activity code. IDDINLOW is a composite average based on a range of low activity code.  
3
IDDINLOW is a composite average based on a range of low activity code.  
4 Idle denotes ADSP-21061L state during execution of IDLE instruction.  
5 Idle16 denotes ADSP-21061L state during execution of IDLE16 instruction.  
Rev. D  
| Page 18 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
The load capacitance should include the processor’s package  
capacitance (CIN). The switching frequency includes driving  
the load high and then back low. Address and data pins can  
drive high and low at a maximum rate of 1/(2tCK). The write  
strobe can switch every cycle at a frequency of 1/tCK. Select pins  
switch at 1/(2tCK), but selects can switch on each cycle.  
EXTERNAL POWER DISSIPATION (3.3 V)  
Total power dissipation has two components, one due to inter-  
nal circuitry and one due to the switching of external output  
drivers. Internal power dissipation is dependent on the instruc-  
tion execution sequence and the data operands involved.  
Internal power dissipation is calculated in the following way:  
PINT = IDDIN VDD  
Example: Estimate PEXT with the following assumptions:  
• A system with one bank of external data memory RAM  
(32-bit)  
The external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
• Four 128k 8 RAM chips are used, each with a load of  
10 pF  
—the number of output pins that switch during each cycle  
(O)  
• External data memory writes occur every other cycle, a rate  
of 1/(4tCK), with 50% of the pins switching  
—the maximum frequency at which they can switch (f)  
—their load capacitance (C)  
• The instruction cycle rate is 40 MHz (tCK = 25 ns)  
—their voltage swing (VDD  
and is calculated by:  
)
The PEXT equation is calculated for each class of pins that can  
drive:  
PEXT = O C VDD2 f  
Table 5. External Power Calculations  
2
Pin Type  
Address  
MS0  
No. of Pins  
% Switching  
C  
f  
VDD  
= PEXT  
15  
1
50  
0
44.7 pF  
44.7 pF  
44.7 pF  
14.7 pF  
4.7 pF  
10 MHz  
10 MHz  
20 MHz  
10 MHz  
20 MHz  
10.9 V  
10.9 V  
10.9 V  
10.9 V  
10.9 V  
= 0.037 W  
= 0.000 W  
= 0.010 W  
= 0.026 W  
= 0.001 W  
WR  
1
50  
Data  
32  
1
ADDRCLK  
P
EXT = 0.074 W  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation:  
PTOTAL = PEXT + (IDDIN2 3.3 V)  
Note that the conditions causing a worst-case PEXT are different  
from those causing a worst-case PINT. Maximum PINT cannot  
occur while 100% of the output pins are switching from all ones  
to all zeros. Note also that it is not common for an application to  
have 100% or even 50% of the outputs switching  
simultaneously.  
Rev. D  
| Page 19 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed below may cause permanent  
damage to the device. These are stress ratings only; functional  
operation of the device at these or any other conditions greater  
than those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Parameter  
5 V  
3.3 V  
Supply Voltage (VDD)  
Input Voltage  
–0.3 V to +7.0 V  
–0.5 V to VDD +0.5 V  
–0.5 V to VDD +0.5 V  
200 pF  
–0.3 V to +4.6 V  
–0.5 V to VDD +0.5 V  
–0.5 V to VDD +0.5 V  
200 pF  
Output Voltage Swing  
Load Capacitance  
Storage Temperature Range  
Lead Temperature (5 seconds)  
Junction Temperature Under Bias  
–65C to +150C  
280C  
130C  
–65C to +150C  
280C  
130C  
ESD CAUTION  
TIMING SPECIFICATIONS  
The timing specifications shown are based on a CLKIN fre-  
quency of 50 MHz (tCK = 20 ns). The DT derating enables the  
calculation of timing specifications within the min to max range  
of the tCK specification (see Table 7). DT is the difference  
between the derated CLKIN period (tCK) and a CLKIN period of  
25 ns:  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
DT = tCK – 20 ns  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, you  
cannot meaningfully add parameters to derive longer times.  
PACKAGE MARKING INFORMATION  
The information presented in Figure 8 provides details about  
the package branding for the ADSP-21061 processor. For a  
complete listing of product availability, see Ordering Guide on  
Page 52.  
For voltage reference levels, see Figure 29 under Test  
Conditions.  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices. (O/D) = Open Drain,  
(A/D) = Active Drive.  
a
ADSP-21061  
tppZccc  
vvvvvv.x n.n  
Switching Characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
yyww country_of_origin  
S
Figure 8. Typical Package Marking (Actual Marking Format May Vary)  
Table 6. Package Brand Information  
Brand Key  
Field Description  
Temperature Range  
Package Type  
t
pp  
Z
Lead Free Option  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
Date Code  
ccc  
vvvvvv.x  
n.n  
yyww  
Rev. D  
| Page 20 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Clock Input  
Table 7. Clock Input  
ADSP-21061/  
ADSP-21061L  
ADSP-21061  
50 MHz, 5 V  
ADSP-21061L  
44 MHz, 3.3 V  
40 MHz,  
5 V and 3.3 V  
ADSP-21061  
33 MHz, 5 V  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tCK  
CLKIN Period  
20  
7
100  
22.5  
7
100  
25  
7
100  
30  
7
100  
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V to 2.0 V)  
5
5
5
5
3
3
3
3
tCK  
CLKIN  
tCKH  
tCKL  
Figure 9. Clock Input  
Reset  
Table 8. Reset  
5 V and 3.3 V  
Max  
Unit  
Parameter  
Min  
Timing Requirements  
tWRST  
tSRST  
RESET Pulse Width Low1  
RESET Setup Before CLKIN High2  
4tCK  
ns  
ns  
14 + DT/2  
tCK  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 μs while RESET is low, assuming stable  
VDD and CLKIN (not including startup time of external clock oscillator).  
2 Only required if multiple ADSP-21061s must come out of reset synchronous to CLKIN with program counters (PC) equal. Not required for multiple ADSP-21061s commu-  
nicating over the shared bus (through the external port), because the bus arbitration logic automatically synchronizes itself after reset.  
CLKIN  
tSRST  
tWRST  
RESET  
Figure 10. Reset  
Rev. D  
| Page 21 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Interrupts  
Table 9. Interrupts  
5 V and 3.3 V  
Max  
Unit  
Parameter  
Min  
Timing Requirements  
tSIR  
tHIR  
tIPW  
IRQ2–0 Setup Before CLKIN High1  
IRQ2–0 Hold Before CLKIN High1  
IRQ2–0 Pulsewidth2  
18 + 3DT/4  
2+tCK  
ns  
ns  
ns  
12 + 3DT/4  
1 Only required for IRQx recognition in the following cycle.  
2 Applies only if tSIR and tHIR requirements are not met.  
CLKIN  
tSIR  
tHIR  
IRQ2–0  
tIPW  
Figure 11. Interrupts  
Timer  
Table 10. Timer  
5 V and 3.3 V  
Max  
Unit  
Parameter  
Min  
Switching Characteristic  
tDTEX  
CLKIN High to TIMEXP  
15  
ns  
CLKIN  
tDTEX  
tDTEX  
TIMEXP  
Figure 12. Timer  
Rev. D  
|
Page 22 of 52  
|
May 2013  
ADSP-21061/ADSP-21061L  
Flags  
Table 11. Flags  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSFI  
FLAG3–0 IN Setup Before CLKIN High1  
8 + 5DT/16  
0 – 5DT/16  
ns  
ns  
ns  
ns  
tHFI  
FLAG3–0 IN Hold After CLKIN High1  
FLAG3–0 IN Delay After RD/WR Low1  
FLAG3–0 IN Hold After RD/WR Deasserted1  
tDWRFI  
tHFIWR  
5 + 7DT/16  
0
Switching Characteristics  
tDFO  
FLAG3–0 OUT Delay After CLKIN High  
16  
14  
ns  
ns  
ns  
ns  
tHFO  
FLAG3–0 OUT Hold After CLKIN High  
CLKIN High to FLAG3–0 OUT Enable  
CLKIN High to FLAG3–0 OUT Disable  
4
3
tDFOE  
tDFOD  
1 Flag inputs meeting these setup and hold times for Instruction Cycle N will affect conditional instructions in Instruction Cycle N+2.  
CLKIN  
tDFO  
tDFOE  
tDFO  
tDFOD  
tHFO  
FLAG3–0 OUT  
FLAG OUTPUT  
CLKIN  
tSFI  
tHFI  
FLAG3–0 IN  
tDWRFI  
tHFIWR  
RD WR  
FLAG INPUT  
Figure 13. Flags  
Rev. D  
| Page 23 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
bus master accessing external memory space in asynchronous  
access mode. Note that timing for ACK, DATA, RD, WR, and  
DMAGx strobe timing parameters only applies to asynchronous  
access mode.  
Memory Read—Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the ADSP-21061 is the  
Table 12. Memory Read—Bus Master  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tDAD  
Address, Selects Delay to Data Valid1, 2  
RD Low to Data Valid1  
Data Hold from Address, Selects3  
Data Hold from RD High3  
ACK Delay from Address, Selects2, 4  
ACK Delay from RD Low4  
18 + DT+W  
ns  
ns  
ns  
ns  
ns  
ns  
tDRLD  
tHDA  
12 + 5DT/8 + W  
0.5  
2.0  
tHDRH  
tDAAK  
tDSAK  
15 + 7DT/8 + W  
8 + DT/2 + W  
Switching Characteristics  
tDRHA  
tDARL  
tRW  
Address, Selects Hold After RD High  
Address, Selects to RD Low2  
0+H  
ns  
ns  
ns  
ns  
ns  
2 + 3DT/8  
RD Pulse Width  
12.5 + 5DT/8 + W  
8 + 3DT/8 + HI  
0 + DT/4  
tRWR  
RD High to WR, RD, DMAGx Low  
Address, Selects Setup Before ADRCLK High2  
tSADADC  
W = (number of wait states specified in WAIT register) 
؋
 tCK  
.
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
H = tCK (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).  
1 Data delay/setup: user must meet tDAD or tDRLD or synchronous spec tSSDATI  
.
2 The falling edge of MSx, SW, BMS is referenced.  
3 Data hold: user must meet tHDA or tHDRH or synchronous spec tHSDATI. See Example System Hold Time Calculation on Page 43 for the calculation of hold times given capacitive  
and dc loads.  
4 ACK delay/setup: user must meet tDAAK or tDSAK or synchronous specification tSACKC (Table 13 on Page 25) for deassertion of ACK (Low), all three specifications must be met  
for assertion of ACK (High).  
ADDRESS  
MSX, SW  
BMS  
tDRHA  
tDARL  
tRW  
RD  
tHDA  
tHDRH  
tDRLD  
tDAD  
DATA  
tDSAK  
tRWR  
tDAAK  
ACK  
WR, DMAG  
tSADADC  
ADDRCLK  
(OUT)  
Figure 14. Memory Read—Bus Master  
Rev. D  
| Page 24 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
bus master accessing external memory space in asynchronous  
access mode. Note that timing for ACK, DATA, RD, WR, and  
DMAGx strobe timing parameters only applies to asynchronous  
access mode.  
Memory Write—Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the ADSP-21061 is the  
Table 13. Memory Write—Bus Master  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tDAAK  
tDSAK  
ACK Delay from Address, Selects1, 2  
ACK Delay from WR Low1  
15 + 7DT/8 + W  
8 + DT/2 + W  
ns  
ns  
Switching Characteristics  
tDAWH  
tDAWL  
tWW  
Address, Selects to WR Deasserted2  
Address, Selects to WR Low2  
17 + 15DT/16 + W  
3 + 3DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR Pulse Width  
13 + 9DT/16 + W  
7 + DT/2 + W  
1 + DT/16 + H  
1 + DT/16 +H  
8 + 7DT/16 + H  
5 + 3DT/8 + I  
–1 + DT/16  
tDDWH  
Data Setup Before WR High  
Address Hold After WR Deasserted  
tDWHA  
tDATRWH Data Disable After WR Deasserted3  
6 + DT/16+H  
tWWR  
tDDWR  
tWDE  
WR High to WR, RD, DMAGx Low  
Data Disable Before WR or RD Low  
WR Low to Data Enabled  
tSADADC Address, Selects to ADRCLK High2  
0 + DT/4  
W = (number of wait states specified in WAIT register) × tCK  
.
H = tCK (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).  
I = tCK (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).  
1 ACK delay/setup: User must meet tDAAK or tDSAK or synchronous specification tSAKC for deassertion of ACK (low), all three specifications must be met for assertion of ACK  
(high).  
2 The falling edge of MSx, SW, BMS is referenced.  
3 For more information, see Example System Hold Time Calculation on Page 43 for calculation of hold times given capacitive and dc loads.  
ADDRESS  
MSX, SW  
BMS  
tDWHA  
tDAWH  
tWW  
tDAWL  
WR  
tWWR  
tDDWR  
tDDWH  
tWDE  
tDATRWH  
DATA  
tDSAK  
tDAAK  
ACK  
RD, DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 15. Memory Write—Bus Master  
Rev. D  
| Page 25 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Bus Master on Page 25). When accessing a slave ADSP-21061,  
these switching characteristics must meet the slave’s timing  
requirements for synchronous read/writes (see Synchronous  
Read/Write—Bus Slave on Page 28). The slave ADSP-21061  
must also meet these (bus master) timing requirements for data  
and acknowledge setup and hold times.  
Synchronous Read/Write—Bus Master  
Use these specifications for interfacing to external memory sys-  
tems that require CLKIN—relative timing or for accessing a  
slave ADSP-21061 (in multiprocessor memory space). These  
synchronous switching characteristics are also valid during  
asynchronous memory reads and writes except where noted (see  
Memory Read—Bus Master on Page 24 and Memory Write—  
Table 14. Synchronous Read/Write—Bus Master  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSSDATI  
Data Setup Before CLKIN  
(50 MHz, tCK = 20 ns)1  
2 + DT/8  
1.5 + DT/8  
ns  
tHSDATI  
tDAAK  
tSACKC  
tHACK  
Data Hold After CLKIN  
3.5 – DT/8  
ns  
ns  
ns  
ns  
ACK Delay After Address, Selects2, 3  
ACK Setup Before CLKIN3  
ACK Hold After CLKIN  
15 + 7DT/8 + W  
6.5 – DT/8  
6.5+DT/4  
–1 – DT/4  
Switching Characteristics  
tDADRO  
tHADRO  
tDPGC  
Address, MSx, BMS, SW Delay After CLKIN2  
ns  
ns  
ns  
ns  
ns  
Address, MSx, BMS, SW Hold After CLKIN  
PAGE Delay After CLKIN  
–1 – DT/8  
9 + DT/8  
16 + DT/8  
4 – DT/8  
tDRDO  
tDWRO  
RD High Delay After CLKIN  
–1.5 – DT/8  
WR High Delay After CLKIN  
(50 MHz, tCK = 20 ns)  
–2.5 – 3DT/16  
–1.5 – 3DT/16  
4 – 3DT/16  
4 – 3DT/16  
tDRWL  
RD/WR Low Delay After CLKIN  
Data Delay After CLKIN  
Data Disable After CLKIN4  
ADRCLK Delay After CLKIN  
ADRCLK Period  
8 + DT/4  
12 + DT/4  
19 + 5DT/16  
7 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSDDATO  
tDATTR  
0 – DT/8  
4 + DT/8  
tCK  
tDADCCK  
tADRCK  
tADRCKH  
tADRCKL  
10 + DT/8  
ADRCLK Width High  
(tCK /2 – 2)  
ADRCLK Width Low  
(tCK /2 – 2)  
1 This specification applies to the ADSP-21061KS-200 (5 V, 50 MHz) operating at tCK < 25 ns. For all other devices, use the preceding timing specification of the same name.  
2 The falling edge of MSx, SW, BMS is referenced.  
3 ACK delay/setup: User must meet tDAAK or tDSAK or synchronous specification tSAKC for deassertion of ACK (low), all three specifications must be met for assertion of ACK  
(high).  
4 See Example System Hold Time Calculation on Page 43 for calculation of hold times given capacitive and dc loads.  
Rev. D  
| Page 26 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
CLKIN  
tADRCK  
tADRCKH  
tDADCCK  
tADRCKL  
ADDRCLK  
tDADRO  
tDAAK  
tHADRO  
ADDRESS, BMS,  
SW, MSx  
tDPGC  
PAGE  
tHACK  
tSACKC  
ACK  
(IN)  
READ CYCLE  
tDRWL  
tDRDO  
RD  
tHSDATI  
tSSDATI  
DATA (IN)  
WRITE CYCLE  
tDWRO  
tDRWL  
WR  
tDATTR  
tSDDATO  
DATA  
(OUT)  
Figure 16. Synchronous Read/Write—Bus Master  
Rev. D  
| Page 27 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Synchronous Read/Write—Bus Slave  
Use these specifications for ADSP-21061 bus master accesses of  
a slave’s IOP registers or internal memory (in multiprocessor  
memory space). The bus master must meet these (bus slave)  
timing requirements.  
Table 15. Synchronous Read/Write—Bus Slave  
5 V and 3.3 V  
Max  
Unit  
Parameter  
Min  
Timing Requirements  
tSADRI  
tHADRI  
tSRWLI  
tHRWLI  
Address, SW Setup Before CLKIN  
Address, SW Hold After CLKIN  
RD/WR Low Setup Before CLKIN1  
14 + DT/2  
ns  
ns  
ns  
ns  
5 + DT/2  
8.5 + 5DT/16  
RD/WR Low Hold After CLKIN  
44 MHz/50 MHz2  
–4 – 5DT/16  
–3.5 – 5DT/16  
8 + 7DT/16  
8 + 7DT/16  
tRWHPI  
RD/WR Pulse High  
3
3
1
ns  
ns  
ns  
tSDATWH  
tHDATWH  
Switching Characteristics  
tSDDATO Data Delay After CLKIN  
tDATTR  
tDACKAD  
tACKTR  
Data Setup Before WR High  
Data Hold After WR High  
19 + 5DT/16  
7 – DT/8  
8
ns  
ns  
ns  
ns  
Data Disable After CLKIN3  
ACK Delay After Address, SW4  
ACK Disable After CLKIN2  
0 – DT/8  
–1 – DT/8  
6 – DT/8  
1 tSRWLI (min) = 9.5 + 5DT/16 when multiprocessor memory space wait state (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled, tSRWLI (min)= 4 + DT/8.  
2 This specification applies to the ADSP-21061LKS-176 (3.3 V, 44 MHz) and the ADSP-21061KS-200 (5 V, 50 MHz), operating at tCK < 25 ns. For all other devices, use the  
preceding timing specification of the same name.  
3 See Example System Hold Time Calculation on Page 43 for calculation of hold times given capacitive and dc loads.  
4 tDACKAD is true only if the address and SW inputs have setup times (before CLKIN) greater than 10 + DT/8 and less than 19 + 3DT/4. If the address and inputs have setup  
times greater than 19 + 3DT/4, then ACK is valid 14 + DT/4 (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK regardless of  
the state of MMSWS or strobes. A slave will three-state ACK every cycle with tACKTR  
.
Rev. D  
| Page 28 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
CLKIN  
tSADRI  
tHADRI  
ADDRESS, SW  
tACKTR  
tDACKAD  
ACK  
tSRWLI  
tHRWLI  
tRWHPI  
READ ACCESS  
RD  
tDATTR  
tSDDATO  
DATA  
(OUT)  
WRITE ACCESS  
tHRWLI  
tRWHPI  
tSRWLI  
WR  
DATA  
(IN)  
tHDATWH  
tSDATWH  
Figure 17. Synchronous Read/Write—Bus Slave  
Rev. D  
| Page 29 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Multiprocessor Bus Request and Host Bus Request  
Use these specifications for passing of bus mastership between  
multiprocessing ADSP-21061s (BRx) or a host processor, both  
synchronous and asynchronous (HBR, HBG).  
Table 16. Multiprocessor Bus Request and Host Bus Request  
5 V and 3.3 V  
Max  
Unit  
Parameter  
Min  
Timing Requirements  
tHBGRCSV  
tSHBRI  
tHHBRI  
tSHBGI  
tHHBGI  
tSBRI  
HBG Low to RD/WR/CS Valid1  
HBR Setup Before CLKIN2  
HBR Hold After CLKIN2  
20 + 5DT/4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20 + 3DT/4  
13 + DT/2  
13 + DT/2  
20 + 3DT/4  
14 + 3DT/4  
6 + DT/2  
HBG Setup Before CLKIN  
HBG Hold After CLKIN High  
BRx, CPA Setup Before CLKIN3  
BRx, CPA Hold After CLKIN High  
RPBA Setup Before CLKIN  
RPBA Hold After CLKIN  
tHBRI  
6 + DT/2  
tSRPBAI  
tHRPBAI  
Switching Characteristics  
12 + 3DT/4  
7 – DT/8  
tDHBGO  
tHHBGO  
tDBRO  
HBG Delay After CLKIN  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HBG Hold After CLKIN  
–2 – DT/8  
BRx Delay After CLKIN  
5.5 – DT/8  
tHBRO  
BRx Hold After CLKIN  
CPA Low Delay After CLKIN4  
–2 – DT/8  
tDCPAO  
tTRCPA  
6.5 – DT/8  
4.5 – DT/8  
8
CPA Disable After CLKIN  
–2 – DT/8  
tDRDYCS  
tTRDYHG  
tARDYTR  
REDY (O/D) or (A/D) Low from CS and HBR Low5, 6  
REDY (O/D) Disable or REDY (A/D) High from HBG5, 7  
REDY (A/D) Disable from CS or HBR High5  
44 + 27DT/16  
10  
1 For first asynchronous access after HBR and CS asserted, ADDR31-0 must be a non-MMS value 1/2 tCK before RD or WR goes low or by tHBGRCSV after HBG goes low. This is  
easily accomplished by driving an upper address signal high when HBG is asserted. See the “Host Processor Control of the ADSP-21061” section in the ADSP-2106x SHARC  
User’s Manual.  
2 Only required for recognition in the current cycle.  
3 CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.  
4 For the ADSP-21061L (3.3 V), this specification is 8.5 – DT/8 ns max.  
5 (O/D) = open drain, (A/D) = active drive.  
6 For the ADSP-21061L (3.3 V), this specification is 12 ns max.  
7 For the ADSP-21061L (3.3 V), this specification is 40 + 23DT/16 ns min.  
Rev. D  
| Page 30 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
CLKIN  
tSHBRI  
tHHBRI  
HBR  
tDHBGO  
tHHBGO  
HBG (OUT)  
tDBRO  
tHBRO  
BRx (OUT)  
tTRCPA  
tDCPAO  
CP A (OUT, O/D)  
tSHBGI  
tHHBGI  
HBG (IN)  
tSBRI  
tHBRI  
BRx, CPA (IN, O/D)  
tSRPBAI  
tHRPBAI  
RPBA  
HBR  
CS  
tTRDYHG  
tDRDYCS  
REDY  
(O/D)  
tARDYTR  
REDY  
(A/D)  
tHBGRCSV  
HBG (OUT)  
RD  
WR  
CS  
O/D = OPEN-DRAIN, A/D = ACTIVEDRIVE  
Figure 18. Multiprocessor Bus Request and Host Bus Request  
Rev. D  
| Page 31 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Asynchronous Read/Write—Host to ADSP-21061  
Use these specifications for asynchronous host processor  
accesses of an ADSP-21061, after the host has asserted CS and  
HBR (low). After HBG is returned by the ADSP-21061, the host  
can drive the RD and WR pins to access the ADSP-21061’s  
internal memory or IOP registers. HBR and HBG are assumed  
low for this timing.  
Table 17. Read Cycle  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSADRDL  
tHADRDH  
tWRWH  
Address Setup/CS Low Before RD Low1  
Address Hold/CS Hold Low After RD  
RD/WR High Width  
0
0
6
0
0
ns  
ns  
ns  
ns  
ns  
tDRDHRDY  
tDRDHRDY  
Switching Characteristics  
RD High Delay After REDY (O/D) Disable  
RD High Delay After REDY (A/D) Disable  
tSDATRDY  
tDRDYRDL  
tRDYPRD  
Data Valid Before REDY Disable from Low  
2
ns  
ns  
ns  
ns  
REDY (O/D) or (A/D) Low Delay After RD Low2  
REDY (O/D) or (A/D) Low Pulsewidth for Read  
Data Disable After RD High  
10  
8
45 + DT  
2
tHDARWH  
1 Not required if RD and address are valid tHBGRCSV after HBG goes low. For first access after HBR asserted, ADDR31-0 must be a non-MMS value 1/2 tCLK before RD or WR goes  
low or by tHBGRCSV after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the “Host Processor Control of the  
ADSP-21061” section in the ADSP-2106x SHARC User’s Manual.  
2 For the ADSP-21061L (3.3 V), this specification is 13.5 ns max.  
Table 18. Write Cycle  
5 V and 3.3 V  
Unit  
Parameter  
Timing Requirements  
tSCSWRL  
Min  
Max  
CS Low Setup Before WR Low  
CS Low Hold After WR High  
Address Setup Before WR High  
Address Hold After WR High  
WR Low Width  
0
0
5
2
8
6
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHCSWRH  
tSADWRH  
tHADWRH  
tWWRL  
tWRWH  
RD/WR High Width  
tDWRHRDY  
tSDATWH  
WR High Delay After REDY (O/D) or (A/D) Disable  
Data Setup Before WR High  
50 MHz, tCK = 20 ns1  
3
2.5  
tHDATWH  
Data Hold After WR High  
1
ns  
Switching Characteristics  
tDRDYWRL  
tRDYPWR  
tSRDYCK  
REDY (O/D) or (A/D) Low Delay After WR/CS Low2  
11  
ns  
ns  
REDY (O/D) or (A/D) Low Pulsewidth for Write  
REDY (O/D) or (A/D) Disable to CLKIN  
15  
1 + 7DT/16  
8 + 7DT/16 ns  
1 This specification applies to the ADSP-21061KS-200 (5 V, 50 MHz) operating at tCK < 25 ns. For all other devices, use the preceding timing specification of the same name.  
2 For the ADSP-21061L (3.3 V), this specification is 13.5 ns max.  
Rev. D  
| Page 32 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
CLKIN  
tSRDYCK  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN-DRAIN, A/D = ACTIVE DRIVE  
Figure 19. Synchronous REDY Timing  
READ CYCLE  
ADDRESS/CS  
tHADRDH  
tW RWH  
tSADRDL  
RD  
tHDARWH  
DATA (OUT)  
tS DATR D Y  
tRDYPRD  
tDRDHRDY  
tDRDYRDL  
REDY (O/D)  
REDY (A/D)  
WRITE CYCLE  
ADDRESS  
tHADWRH  
tSADW RH  
tSCS WRL  
tHCSW RH  
CS  
tWW RL  
tW RW H  
WR  
tHDATWH  
tSDATWH  
DATA (IN)  
tDRDY WRL  
tRDY PW R  
tDWRHRDY  
RE DY (O/D)  
REDY (A/D)  
O/D = OPEN-DRAIN, A/D = ACTIVE DRIVE  
Figure 20. Asynchronous Read/Write—Host to ADSP-21061  
Rev. D  
| Page 33 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Three-State Timing—Bus Master, Bus Slave, HBR, SBTS  
These specifications show how the memory interface is disabled  
(stops driving) or enabled (resumes driving) relative to CLKIN  
and the SBTS pin. This timing is applicable to bus master transi-  
tion cycles (BTC) and host transition cycles (HTC) as well as the  
SBTS pin.  
Table 19. Three-State Timing—Bus Master, Bus Slave  
5 V and 3.3 V  
Max  
Unit  
Parameter  
Min  
Timing Requirements  
tSTSCK  
tHTSCK  
SBTS Setup Before CLKIN  
SBTS Hold Before CLKIN  
12 + DT/2  
ns  
ns  
6 + DT/2  
Switching Characteristics  
tMIENA Address/Select Enable After CLKIN  
tMIENS  
tMIENHG  
tMITRA  
–1 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Strobes Enable After CLKIN1  
HBG Enable After CLKIN  
–1.5 – DT/8  
–1.5 – DT/8  
Address/Select Disable After CLKIN  
Strobes Disable After CLKIN1  
HBG Disable After CLKIN  
0 – DT/4  
tMITRS  
1.5 – DT/4  
2.0 – DT/4  
tMITRHG  
tDATEN  
tDATTR  
tACKEN  
tACKTR  
tADCEN  
tADCTR  
tMTRHBG  
tMENHBG  
Data Enable After CLKIN2  
Data Disable After CLKIN2  
ACK Enable After CLKIN2  
ACK Disable After CLKIN2  
9 + 5DT/16  
0 – DT/8  
7 – DT/8  
6 – DT/8  
8 – DT/4  
7.5 + DT/4  
–1 – DT/8  
–2 – DT/8  
ADRCLK Enable After CLKIN  
ADRCLK Disable After CLKIN  
Memory Interface Disable Before HBG Low3  
Memory Interface Enable After HBG High3  
0 + DT/8  
19 + DT  
1 Strobes = RD, WR, PAGE, DMAGx, MSx, BMS, SW.  
2 In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write.  
3 Memory Interface = Address, RD, WR, MSx, SW, PAGE, DMAGx, and BMS (in EPROM boot mode).  
CLKIN  
tSTSCK  
tHTSCK  
SBTS  
tMIENA, tMIENS, tMIENHG  
tMITRA, tMITRS, tMITRHG  
MEMORY  
INTERFACE  
tDATTR  
tDATEN  
DATA  
tACKTR  
tACKEN  
ACK  
tADCEN  
tADCTR  
CLKOUT  
Figure 21. Three-State Timing (Bus Transition Cycle, SBTS Assertion)  
Rev. D  
| Page 34 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
HBG  
tMTRHBG  
tMENHBG  
MEMORY  
INTERFACE  
MEMORY INTERFACE = ADDRESS, RD, WR, MSx, SW, PAGE, DMAGx. BMS (IN EPROM BOOT MODE)  
Figure 22. Three-State Timing (Bus Transition Cycle, SBTS Assertion)  
Rev. D  
| Page 35 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
ACK, and DMAGx signals. For Paced Master mode, the data  
transfer is controlled by ADDR31–0, RD, WR, MS3–0, and  
ACK (not DMAG). For Paced Master mode, the Memory Read-  
Bus Master, Memory Write-Bus Master, and Synchronous  
Read/Write-Bus Master timing specifications for ADDR31–0,  
RD, WR, MS3–0, SW, PAGE, DATA47–0, and ACK also apply.  
DMA Handshake  
These specifications describe the three DMA handshake modes.  
In all three modes, DMARx is used to initiate transfers. For  
Handshake mode, DMAGx controls the latching or enabling of  
data externally. For External Handshake mode, the data transfer  
is controlled by the ADDR31–0, RD, WR, SW, PAGE, MS3–0,  
Table 20. DMA Handshake  
5 V and 3.3 V  
Unit  
Parameter  
Min  
Max  
Timing Requirements  
tSDRLC  
DMARx Low Setup Before CLKIN1  
DMARx High Setup Before CLKIN1  
DMARx Width Low (Nonsynchronous)  
Data Setup After DMAGx Low2  
Data Hold After DMAGx High  
Data Valid After DMARx High2  
DMARx Low Edge to Low Edge3  
DMARx Width High  
5
5
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSDRHC  
tWDR  
tSDATDGL  
tHDATIDG  
tDATDRH  
tDMARLL  
tDMARH  
10 + 5DT/8  
16 + 7DT/8  
2
23 + 7DT/8  
6
Switching Characteristics  
tDDGL  
tWDGH  
tWDGL  
tHDGC  
DMAGx Low Delay After CLKIN  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
8 + 9DT/16  
0
15 + DT/4  
6 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DMAGx High Width  
DMAGx Low Width  
DMAGx High Delay After CLKIN  
tVDATDGH Data Valid Before DMAGx High4  
tDATRDGH  
tDGWRL  
tDGWRH  
tDGWRR  
tDGRDL  
tDRDGH  
tDGRDR  
tDGWR  
Data Disable After DMAGx High5  
7
2
WR Low Before DMAGx Low  
0
DMAGx Low Before WR High  
10 + 5DT/8 +W  
1 + DT/16  
0
WR High Before DMAGx High  
RD Low Before DMAGx Low  
3 + DT/16  
2
RD Low Before DMAGx High  
11 + 9DT/16 + W  
0
RD High Before DMAGx High  
DMAGx High to WR, RD, DMAGx Low  
Address/Select Valid to DMAGx High  
Address/Select Hold after DMAGx High6  
3
5 + 3DT/8 + HI  
17 + DT  
–0.5  
tDADGH  
tDDGHA  
W = (number of wait states specified in WAIT register) 
؋
 tCK  
.
HI = tCK (if data bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
1 Only required for recognition in the current cycle.  
2 tSDATDGL is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the data can  
be driven tDATDRH after DMARx is brought high.  
3 For the ADSP-21061L (3.3 V), this specification is 23.5 + 7DT/8 ns min.  
4 tVDATDGH is valid if DMARx is not being used to hold off completion of a read. If DMARx is used to prolong the read, then tVDATDGH = tCK – .25tCCLK – 8 + (n × tCK) where n equals  
the number of extra cycles that the access is prolonged.  
5 See Example System Hold Time Calculation on Page 43 for calculation of hold times given capacitive and dc loads.  
6 For the ADSP-21061L (3.3 V), this specification is –1.0 ns min.  
Rev. D  
| Page 36 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
CLKIN  
tSDRLC  
tDMARLL  
tSDRHC  
tWDR  
tDMARH  
DMARx  
DMAGx  
tHDGC  
tDDGL  
tWDGL  
tWDGH  
TRANSFERS BETWEEN ADSP-2106x  
INTERNAL MEMORY AND EXTERNAL DEVICE  
tDATRDGH  
tVDATDGH  
DATA  
DATA  
(FROM ADSP-2106x TO EXTERNAL DEVICE)  
tDATDRH  
tSDATDGL  
tHDATIDG  
(FROM EXTERNAL DEVICE TO ADSP-2106x)  
TRANSFERS BETWEEN EXTERNAL DEVICE AND  
EXTERNAL MEMORY* (EXTERNAL HANDSHAKE MODE)  
tDGWRL  
tDGWRR  
tDGWRH  
WR  
(EXTERNAL DEVICE TO EXTERNAL MEMORY)  
tDGRDR  
tDGRDL  
RD  
(EXTERNAL MEMORY TO EXTERNAL DEVICE)  
tDRDGH  
tDADGH  
tDDGHA  
ADDR  
MSx, SW  
*MEMORY READ BUS MASTER, MEMORY WRITE BUS MASTER, OR SYNCHRONOUS READ/WRITE BUS MASTER  
TIMING SPECIFICATIONS FOR ADDR31–0, RD, WR, SW MS3–0, AND ACK ALSO APPLY HERE.  
Figure 23. DMA Handshake  
Rev. D  
| Page 37 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Serial Ports  
To determine whether communication is possible between two  
devices at clock speed n, the following specifications must be  
confirmed: 1) frame sync delay and frame sync setup and hold,  
2) data delay and data setup and hold, and 3) SCLK width.  
Table 21. Serial Ports—External Clock  
5 V and 3.3 V  
Max  
Parameter  
Unit  
Min  
Timing Requirements  
tSFSE  
TFS/RFS Setup Before TCLK/RCLK1  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
TCLK/RCLK Width  
3.5  
4
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
tSDRE  
tHDRE  
tSCLKW  
tSCLK  
1.5  
4
9
TCLK/RCLK Period  
tCK  
1 Referenced to sample edge.  
2 RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.  
Table 22. Serial Ports—Internal Clock  
5 V and 3.3 V  
Parameter  
Unit  
Min  
Max  
Timing Requirements  
tSFSI  
tHFSI  
tSDRI  
tHDRI  
TFS Setup Before TCLK1; RFS Setup Before RCLK1  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
8
1
3
3
ns  
ns  
ns  
ns  
1 Referenced to sample edge.  
2 RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.  
Table 23. Serial Ports—External or Internal Clock  
5 V and 3.3 V  
Parameter  
Unit  
Min  
Max  
Switching Characteristics  
tDFSE  
RFS Delay After RCLK (Internally Generated RFS)1  
RFS Hold After RCLK (Internally Generated RFS)1  
13  
ns  
ns  
tHOFSE  
3
1 Referenced to drive edge.  
Table 24. Serial Ports—External Clock  
5 V and 3.3 V  
Max  
Parameter  
Unit  
Min  
Switching Characteristics  
tDFSE  
TFS Delay After TCLK (Internally Generated TFS)1  
TFS Hold After TCLK (Internally Generated TFS)1  
Transmit Data Delay After TCLK1  
13  
16  
ns  
ns  
ns  
ns  
tHOFSE  
3
5
tDDTE  
tHODTE  
Transmit Data Hold After TCLK1  
1 Referenced to drive edge.  
Rev. D  
| Page 38 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Table 25. Serial Ports—Internal Clock  
5 V and 3.3 V  
Parameter  
Unit  
Min  
Max  
Switching Characteristics  
tDFSI  
TFS Delay After TCLK (Internally Generated TFS)1  
4.5  
ns  
ns  
ns  
ns  
ns  
tHOFSI  
TFS Hold After TCLK (Internally Generated TFS)1  
Transmit Data Delay After TCLK1  
Transmit Data Hold After TCLK1  
TCLK/RCLK Width  
–1.5  
tDDTI  
7.5  
tHDTI  
0
tSCLKIW  
tSCLK/2 –1.5  
tSCLK/2+1.5  
1 Referenced to drive edge.  
Table 26. Serial Ports—Enable and Three-State  
5 V and 3.3 V  
Parameter  
Unit  
Min  
4.5  
0
Max  
Switching Characteristics  
tDDTEN  
Data Enable from External TCLK1, 2  
Data Disable from External TCLK1  
Data Enable from Internal TCLK1  
Data Disable from Internal TCLK1  
TCLK/RCLK Delay from CLKIN  
SPORT Disable After CLKIN  
ns  
ns  
ns  
ns  
ns  
ns  
tDDTTE  
10.5  
tDDTIN  
tDDTTI  
3
tDCLK  
22 + 3DT/8  
17  
tDPTR  
1 Referenced to drive edge.  
2 For the ADSP-21061L (3.3 V), this specification is 3.5 ns min.  
Table 27. Serial Ports—External Late Frame Sync  
5 V and 3.3 V  
Parameter  
Unit  
Min  
Max  
Switching Characteristics  
tDDTLFSE  
tDDTENFS  
Data Delay from Late External TFS or External RFS with MCE = 1, MFD = 01  
Data Enable from Late FS or MCE = 1, MFD = 01  
12  
ns  
ns  
3.5  
1 MCE = 1, TFS enable and TFS valid follow tDDTLFSE and tDDTENFS  
.
Rev. D  
| Page 39 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
DATA RECEIVE— INTERNAL CLOCK  
DATA RECEIVE— EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKW  
tSCLKIW  
RCLK  
RCLK  
tDFSE  
tDFSE  
tHOFSE  
tHFSE  
tSFSI  
tHFSI  
tSFSE  
tHOFSE  
RFS  
RFS  
tSDRI  
tSDRE  
tHDRI  
tHDRE  
DR  
DR  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT— INTERNAL CLOCK  
DATA TRANSMIT— EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
TCLK  
TCLK  
tDFSE  
tDFSI  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
TFS  
TFS  
tDDTI  
tDDTE  
tHDTE  
tHDTI  
DT  
DT  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE EDGE DRIVE EDGE  
TCLK/RCLK  
TCLK  
(EXT)  
tDDTTE  
tDDTEN  
DT  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK/RCLK  
TCLK  
(INT)  
tDDTIN  
tDDTTI  
DT  
CLKIN  
CLKIN  
tHTFSCK  
tDPTR  
SPORT ENABLE AND  
THREE-STATE  
LATENCY  
TCLK, RCLK  
tSTFSCK  
SPORT DISABLE DELAY  
FROM INSTRUCTION  
TFS (EXT)  
TFS, RFS, DT  
IS TWO CYCLES  
tDCLK  
TCLK (INT)  
RCLK (INT)  
NOTE: APPLIES ONLY TO GATED SERIAL CLOCK MODE WITH  
EXTERNAL TFS, AS USED IN THE SERIAL PORT SYSTEM I/O  
FOR MESH MULTIPROCESSING.  
LOW TO HIGH ONLY  
Figure 24. Serial Ports  
Rev. D  
| Page 40 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
EXTERNAL RFS WITH MCE = 1, MFD = 0  
SAMPLE DRIVE  
DRIVE  
RCLK  
RFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tHDTE/I  
tDDTENFS  
DT  
1ST BIT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TFS  
DRIVE  
SAMPLE  
DRIVE  
TCLK  
tHOFSE/I  
tSFSE/I  
TFS  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DT  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 25. Serial Ports—External Late Frame Sync  
Rev. D  
| Page 41 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
JTAG Test Access Port and Emulation  
For JTAG Test Access Port and Emulation, see Table 28 and  
Figure 26.  
Table 28. JTAG Test Access Port and Emulation  
5 V and 3.3 V  
Max  
Parameter  
Unit  
Min  
Timing Requirements  
tTCK  
TCK Period  
tCK  
tCK  
6
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
tTRSTW  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK Low1  
System Inputs Hold After TCK Low1  
TRST Pulse Width  
7
18  
4tCK  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
tDSYS  
System Outputs Delay After TCK Low2  
13  
ns  
ns  
18.5  
1 System Inputs = DATA47–0, ADDR31–0, RD, WR, ACK, SBTS, HBR, HBG, CS, DMAR1, DMAR2, BR6–1, ID2–0, RPBA, IRQ2–0, FLAG3–0, CPA, DR0, DR1, TCLK0,  
TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, EBOOT, LBOOT, BMS, CLKIN, RESET.  
2 System Outputs = DATA47–0, ADDR31–0, MS3–0, RD, WR, SW, ACK, ADRCLK, CLKOUT, HBG, REDY, DMAG1, DMAG2, BR6–1, CPA, FLAG3–0, TIMEXP, DT0, DT1,  
TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BMS.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 26. JTAG Test Access Port and Emulation  
Rev. D  
| Page 42 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
TEST CONDITIONS  
IOL  
Output Disable Time  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from their  
output high or low voltage. The time for the voltage on the bus  
to decay by V is dependent on the capacitive load, CL, and the  
load current, IL. This decay time can be approximated by the  
following equation:  
TO  
OUTPUT  
PIN  
1.5V  
50pF  
C V  
IL  
L
--------------  
PEXT  
=
IOH  
The output disable time tDIS is the difference between  
MEASURED and tDECAY as shown in Figure 27. The time tMEASUREDis  
Figure 28. Equivalent Device Loading for AC Measurements (Includes All  
Fixtures)  
t
the interval from when the reference signal switches to when the  
output voltage decays V from the measured output high or  
output low voltage. tDECAY is calculated with test loads CL and IL,  
and with V equal to 0.5 V.  
INPUT  
OR  
OUTPUT  
1.5V  
1.5V  
Output Enable Time  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to when they start driv-  
ing. The output enable time tENA is the interval from when a  
reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram (Figure 27). If multiple  
pins (such as the data bus) are enabled, the measurement value  
is that of the first pin to start driving.  
Figure 29. Voltage Reference Levels for AC Measurements (Except Output  
Enable/Disable)  
Output Drive Characteristics  
Figure 30 through Figure 37 show typical characteristics for the  
output drivers of the ADSP-21061 (5 V) and ADSP-21061L  
(3 V). The curves represent the current drive capability and  
switching behavior of the output drivers as a function of  
resistive and capacitive loading.  
Example System Hold Time Calculation  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the ADSP-21061’s output voltage  
and the input threshold for the device requiring the hold time. A  
typical V will be 0.4 V. CL is the total bus capacitance (per data  
line), and IL is the total leakage or three-state current (per data  
line). The hold time will be tDECAY plus the minimum disable  
time (i.e., tDATRWH for the write cycle).  
Capacitive Loading  
Output delays and holds are based on standard capacitive loads:  
50 pF on all pins (see Figure 28). The delay and hold specifica-  
tions given should be derated by a factor of 1.5 ns/50 pF for  
loads other than the nominal value of 50 pF. Figure 31,  
Figure 32, Figure 35, and Figure 36 show how output rise time  
varies with capacitance. Figure 33 and Figure 37 show graphi-  
cally how output delays and holds vary with load capacitance.  
(Note that this graph or derating does not apply to output dis-  
able delays; see the previous section Output Disable Time under  
Test Conditions.) The graphs of Figure 31, Figure 32, Figure 35,  
and Figure 36 may not be linear outside the ranges shown.  
REFERENCE  
SIGNAL  
tMEASURED  
tENA  
tDIS  
VOH (MEASURED)  
VOH (MEASURED)  
V
OH (MEASURED) - V  
2.0V  
1.0V  
VOL (MEASURED) + V  
VOL (MEASURED)  
VOL (MEASURED)  
tDECAY  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE TO BE  
APPROXIMATELY 1.5V.  
Figure 27. Output Enable/Disable  
Rev. D  
| Page 43 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Output Characteristics (5 V)  
3.5  
3.0  
2.5  
2.0  
1.5  
75  
50  
25  
RISE TIME  
Y = 0.009x + 1.1  
5.25V, -40°C  
5.0V, +25°C  
0
4.75V, +100°C  
-
-
-
25  
FALL TIME  
1.0  
4.75V,+ 100°C  
50  
75  
Y = 0.005x + 0.6  
5.0V, +25°C  
0.5  
0
5.25V, -40°C  
-
-
-
100  
0
20  
40  
60  
80  
100 120 140 160 180 200  
LOAD CAPACITANCE (pF)  
125  
150  
Figure 32. Typical Output Rise Time (0.8 V to 2.0 V) vs. Load Capacitance  
(VDD = 5 V)  
0
0.75  
1.50  
2.25  
3.00  
3.75  
4.50  
5.25  
SOURCE VOLTAGE (V)  
Figure 30. Typical Output Drive Currents (VDD = 5 V)  
5
4
3
16.0  
14.0  
12.0  
10.0  
8.0  
Y = 0.03X  
- 1.45  
2
1
RISE TIME  
Y = 0.005x + 3.7  
FALL TIME  
6.0  
NOMINAL  
4.0  
-
1
25  
50  
75  
100  
125  
150  
175  
200  
2.0  
0
Y = 0.0031x + 1.1  
LOAD CAPACITANCE (pF)  
0
20  
40  
60  
80  
100 120 140 160 180 200  
Figure 33. Typical Output Delay or Hold vs. Load Capacitance (at Maximum  
Case Temperature) (VDD = 5 V)  
LOAD CAPACITANCE (pF)  
Figure 31. Typical Output Rise Time (10% to 90% VDD) vs. Load Capacitance  
(VDD = 5 V)  
Rev. D  
| Page 44 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
Input/Output Characteristics (3.3 V)  
9
8
7
6
120  
100  
3.3V, +25°C  
80  
60  
40  
Y = 0.0391x + 0.36  
3.6V, -40°C  
5
4
3.0V, +85°C  
VOH  
20  
0
RISE TIME  
Y = 0.0305x + 0.24  
3
2
1
0
3.0V, +85°C  
-
20  
40  
60  
3.3V, +25°C  
FALL TIME  
-
3.6V, -40°C  
-
-
80  
VOL  
-
100  
120  
0
20  
40  
60  
80 100 120 140 160 180 200  
-
LOAD CAPACITANCE (pF)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
Figure 36. Typical Output Rise Time (0.8 V to 2.0 V) vs. Load Capacitance  
(VDD = 3.3 V)  
Figure 34. Typical Drive Currents (VDD = 3.3 V)  
5
18  
4
3
2
1
Y = 0.0329x - 1.65  
16  
14  
12  
10  
8
Y = 0.0796x + 1.17  
RISETIME  
6
4
2
0
Y = 0.0467x + 0.55  
FALL TIME  
NOMINAL  
-1  
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE (pF)  
0
20  
40  
60  
80 100 120 140 160 180 200  
LOAD CAPACITANCE (pF)  
Figure 37. Typical Output Delay or Hold vs. Load Capacitance (at Maximum  
Case Temperature) (VDD = 3.3 V)  
Figure 35. Typical Output Rise Time (10% to 90% VDD) vs. Load Capacitance  
(VDD = 3.3 V)  
Rev. D  
| Page 45 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
ENVIRONMENTAL CONDITIONS  
Thermal Characteristics  
The ADSP-21061 is available in 240-lead thermally enhanced  
MQFP package. The top surface of the thermally enhanced  
MQFP contains a metal slug from which most of the die heat is  
dissipated. The slug is flush with the top surface of the package.  
Note that the metal slug is internally connected to GND  
through the device substrate.  
The ADSP-21061L is available in 240-lead MQFP and 225-ball  
plastic BGA packages.  
All packages are specified for a case temperature (TCASE). To  
ensure that the TCASE is not exceeded, a heatsink and/or an air-  
flow source may be used. A heat sink should be attached with a  
thermal adhesive.  
TCASE = TAMB + (PD CA)  
TCASE = Case temperature (measured on top surface of package)  
TAMB = Ambient temperature C  
PD =Power dissipation in W (this value depends upon the spe-  
cific application; a method for calculating PD is shown under  
Power Dissipation).  
CA =Value from tables below.  
Table 29. ADSP-21061 (5 V Thermally Enhanced ED/MQFP  
Package)  
Parameter Condition (Linear Ft./Min.) Typical Unit  
CA  
Airflow = 0  
10  
9
8
7
6
°C/W  
Airflow = 100  
Airflow = 200  
Airflow = 400  
Airflow = 600  
Table 30. ADSP-21061L (3.3 V MQFP Package)  
Parameter Condition (Linear Ft./Min.) Typical Unit  
CA  
Airflow = 0  
19.6  
17.6  
15.6  
13.9  
12.2  
°C/W  
Airflow = 100  
Airflow = 200  
Airflow = 400  
Airflow = 600  
Table 31. ADSP-21061L (3.3 V PBGA Package)  
Parameter Condition (Linear Ft./Min.) Typical Unit  
CA  
Airflow = 0  
Airflow = 200  
Airflow = 400  
19.0  
13.6  
11.2  
°C/W  
Rev. D  
| Page 46 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
225-BALL PBGA PIN CONFIGURATIONS  
Table 32. ADSP-21061L 225-Lead Metric PBGA (B-225-2) Pin Assignments  
Pin  
Name  
PBGA  
Pin Number Name  
A01 ADDR25 D01  
ADDR26 D02  
MS2 D03  
ADDR29 D04  
Pin  
PBGA  
Pin Number Name  
ADDR14 G01  
ADDR15 G02  
Pin  
PBGA  
Pin Number Name  
Pin  
PBGA  
Pin Number Name  
Pin  
PBGA  
Pin Number  
BMS  
ADDR6  
ADDR5  
ADDR3  
ADDR0  
ICSA  
K01  
K02  
K03  
K04  
K05  
K06  
K07  
K08  
K09  
K10  
K11  
K12  
K13  
K14  
K15  
L01  
L02  
L03  
L04  
L05  
L06  
L07  
L08  
L09  
L10  
L11  
L12  
L13  
L14  
L15  
M01  
M02  
M03  
M04  
EMU  
TDO  
IRQ0  
IRQ1  
ID2  
NC  
N01  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
N10  
N11  
N12  
N13  
N14  
N15  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
R01  
R02  
R03  
R04  
R05  
R06  
R07  
R08  
R09  
R10  
R11  
R12  
ADDR30 A02  
DMAR2  
DT1  
A03  
A04  
A05  
A06  
A07  
ADDR16 G03  
ADDR19 G04  
RCLK1  
TCLK0  
RCLK0  
DMAR1  
TFS1  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
GND  
G05  
G06  
G07  
G08  
G09  
G10  
G11  
G12  
G13  
G14  
G15  
VDD  
GND  
CPA  
VDD  
VDD  
NC  
ADRCLK A08  
HBG  
VDD  
VDD  
NC  
CS  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
B01  
B02  
DMAG2  
BR5  
VDD  
VDD  
NC  
CLKIN  
PAGE  
BR3  
VDD  
GND  
NC  
BR1  
GND  
GND  
NC  
DATA40  
DATA37  
DATA35  
DATA34  
DATA22  
DATA25  
DATA24  
DATA23  
DATA8  
DATA11  
DATA13  
DATA14  
ADDR2  
ADDR1  
FLAG0  
FLAG3  
RPBA  
NC  
DATA47  
DATA44  
DATA42  
MS0  
NC  
DATA1  
DATA3  
TRST  
TMS  
EBOOT  
ID0  
NC  
ADDR21 E01  
ADDR22 E02  
ADDR24 E03  
ADDR27 E04  
ADDR12 H01  
ADDR11 H02  
ADDR13 H03  
ADDR10 H04  
SW  
ADDR31 B03  
HBR  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
C01  
C02  
DR1  
GND  
E05  
E06  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E15  
GND  
H05  
H06  
H07  
H08  
H09  
H10  
H11  
H12  
H13  
H14  
H15  
J01  
J02  
J03  
J04  
J05  
J06  
J07  
J08  
J09  
J10  
J11  
J12  
DT0  
GND  
VDD  
GND  
NC  
DR0  
GND  
VDD  
GND  
NC  
REDY  
RD  
GND  
VDD  
GND  
NC  
GND  
VDD  
GND  
NC  
ACK  
GND  
VDD  
GND  
NC  
BR6  
NC  
GND  
NC  
NC  
BR2  
DATA33  
DATA30  
DATA32  
DATA31  
DATA18  
DATA19  
DATA21  
DATA20  
ADDR9  
ADDR8  
ADDR7  
ADDR4  
GND  
DATA4  
DATA7  
DATA9  
DATA10  
FLAG1  
FLAG2  
TIMEXP  
TDI  
NC  
DATA45  
DATA43  
DATA39  
MS3  
NC  
NC  
DATA0  
TCK  
IRQ2  
RESET  
ID1  
NC  
ADDR17 F01  
ADDR18 F02  
ADDR20 F03  
ADDR23 F04  
MS1  
ADDR28 C03  
SBTS  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
TCLK1  
RFS1  
TFS0  
GND  
GND  
VDD  
F05  
F06  
F07  
F08  
F09  
F10  
F11  
F12  
LBOOT (GND) M05  
VDD  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
M06  
M07  
M08  
M09  
M10  
M11  
M12  
NC  
VDD  
NC  
RFS0  
WR  
VDD  
VDD  
NC  
VDD  
VDD  
NC  
DMAG1  
BR4  
GND  
GND  
DATA29  
VDD  
NC  
GND  
NC  
DATA46  
DATA12  
NC  
Rev. D  
|
Page 47 of 52  
|
May 2013  
ADSP-21061/ADSP-21061L  
Table 32. ADSP-21061L 225-Lead Metric PBGA (B-225-2) Pin Assignments (Continued)  
Pin  
PBGA  
Pin  
PBGA  
Pin  
PBGA  
Pin  
PBGA  
Pin  
PBGA  
Name  
Pin Number Name  
Pin Number Name  
Pin Number Name  
Pin Number Name  
Pin Number  
DATA41  
DATA38  
DATA36  
C13  
C14  
C15  
DATA26  
DATA28  
DATA27  
F13  
F14  
F15  
DATA15  
DATA16  
DATA17  
J13  
J14  
J15  
DATA2  
DATA5  
DATA6  
M13  
M14  
M15  
NC  
NC  
NC  
R13  
R14  
R15  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
BR3  
CS  
DMAR2  
BMS  
A
B
C
DATA42 DATA44 DATA47  
PAGE  
CLKIN  
ADRCLK RCLK0  
TCLK0  
RCLK1  
DT1  
ADDR30  
BR2  
BR6  
RD  
WR  
HBR  
SBTS  
SW  
MS0  
MS3  
DATA39 DATA43 DATA45  
ACK  
DMAG1  
BR5  
REDY  
DR0  
DT0  
RFS1  
TFS1  
GND  
GND  
DR1  
ADDR31  
BR4  
BR1  
NC  
MS1  
DATA36 DATA38 DATA41 DATA46  
DATA34 DATA35 DATA37 DATA40  
DATA31 DATA32 DATA30 DATA33  
RFS0  
TFS0  
TCLK1  
ADDR28  
DMAG2  
GND  
HBG  
CPA  
DMAR1  
MS2  
ADDR29  
ADDR26 ADDR25  
D
E
F
GND  
GND  
GND  
GND  
ADDR27 ADDR24 ADDR22 ADDR21  
DATA27 DATA28 DATA26 DATA29  
DATA23 DATA24 DATA25 DATA22  
GND  
GND  
GND  
V
V
V
GND  
GND  
ADDR23 ADDR20 ADDR18 ADDR17  
ADDR19 ADDR16 ADDR15 ADDR14  
DD  
DD  
DD  
V
V
V
V
V
G
H
J
DD  
DD  
DD  
DD  
DD  
DATA20 DATA21 DATA19 DATA18  
DATA17 DATA16 DATA15 DATA12  
GND  
V
V
V
V
V
GND  
ADDR10 ADDR13 ADDR11 ADDR12  
DD  
DD  
DD  
DD  
DD  
GND  
GND  
NC  
V
V
V
V
V
GND  
ICSA  
RPBA  
ADDR4  
ADDR0  
FLAG3  
ADDR7  
ADDR3  
FLAG0  
ADDR8  
ADDR5  
ADDR1  
ADDR9  
ADDR6  
ADDR2  
DD  
DD  
DD  
DD  
DD  
DATA14 DATA13 DATA11  
DATA8  
DATA4  
GND  
GND  
V
V
V
GND  
GND  
K
L
DD  
DD  
DD  
DATA10  
DATA6  
DATA9  
DATA5  
DATA7  
DATA2  
GND  
NC  
GND  
NC  
GND  
NC  
LBOOT  
(GND)  
NC  
NC  
NC  
NC  
TDI  
IRQ1  
ID0  
TIMEXP  
FLAG2  
FLAG1  
EMU  
M
N
P
R
IRQ0  
DATA3  
DATA0  
NC  
DATA1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
ID2  
NC  
NC  
TDO  
TMS  
IRQ2  
TRST  
TCK  
EBOOT  
RESET  
NC  
ID1  
NC = NO CONNECT  
Figure 38. BGA Pin Assignments (Top View, Summary)  
Rev. D  
| Page 48 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
240-LEAD MQFP PIN CONFIGURATIONS  
Table 33. ADSP-21061 MQFP/ED (SP-240); ADSP-21061L MQFP (S-240) Pin Assignments  
Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name  
Pin No.  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
TDI  
1
ADDR20  
ADDR21  
GND  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
TCLK0  
TFS0  
DR0  
81  
DATA41  
DATA40  
DATA39  
VDD  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
DATA14  
DATA13  
DATA12  
GND  
DATA11  
DATA10  
DATA9  
VDD  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
NC  
NC  
NC  
NC  
VDD  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
VDD  
GND  
VDD  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
ID2  
ID1  
ID0  
TRST  
2
82  
VDD  
3
83  
TDO  
4
ADDR22  
ADDR23  
ADDR24  
VDD  
RCLK0  
RFS0  
VDD  
84  
TIMEXP  
EMU  
5
85  
DATA38  
DATA37  
DATA36  
GND  
6
86  
ICSA  
7
VDD  
87  
FLAG3  
FLAG2  
FLAG1  
FLAG0  
GND  
8
GND  
GND  
ADRCLK  
REDY  
HBG  
88  
9
VDD  
89  
NC  
DATA8  
DATA7  
DATA6  
GND  
DATA5  
DATA4  
DATA3  
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
ADDR25  
ADDR26  
ADDR27  
GND  
90  
DATA35  
DATA34  
DATA33  
VDD  
91  
CS  
92  
ADDR0  
ADDR1  
VDD  
RD  
93  
MS3  
WR  
94  
VDD  
MS2  
GND  
VDD  
95  
GND  
ADDR2  
ADDR3  
ADDR4  
GND  
MS1  
96  
DATA32  
DATA31  
DATA30  
GND  
MS0  
GND  
CLKIN  
ACK  
97  
DATA2  
DATA1  
DATA0  
GND  
GND  
NC  
SW  
98  
BMS  
99  
ADDR5  
ADDR6  
ADDR7  
VDD  
ADDR28  
GND  
DMAG2  
DMAG1  
PAGE  
VDD  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
DATA29  
DATA28  
DATA27  
VDD  
VDD  
VDD  
NC  
ADDR8  
ADDR9  
ADDR10  
GND  
ADDR29  
ADDR30  
ADDR31  
GND  
BR6  
VDD  
NC  
BR5  
DATA26  
DATA25  
DATA24  
GND  
NC  
BR4  
NC  
BR3  
NC  
ADDR11  
ADDR12  
ADDR13  
VDD  
SBTS  
BR2  
VDD  
DMAR2  
DMAR1  
HBR  
BR1  
DATA23  
DATA22  
DATA21  
VDD  
NC  
GND  
VDD  
NC  
NC  
ADDR14  
ADDR15  
GND  
DT1  
GND  
DATA47  
DATA46  
DATA45  
VDD  
NC  
LBOOT (GND) 232  
TCLK1  
TFS1  
DATA20  
DATA19  
DATA18  
GND  
NC  
RPBA  
RESET  
EBOOT  
IRQ2  
IRQ1  
IRQ0  
TCK  
233  
234  
235  
236  
237  
238  
239  
240  
NC  
ADDR16  
ADDR17  
ADDR18  
VDD  
DR1  
GND  
GND  
VDD  
RCLK1  
RFS1  
DATA44  
DATA43  
DATA42  
GND  
DATA17  
DATA16  
DATA15  
VDD  
GND  
NC  
VDD  
CPA  
NC  
ADDR19  
DT0  
NC  
TMS  
Rev. D  
| Page 49 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
OUTLINE DIMENSIONS  
34.60 BSC  
SQ  
29.50 REF  
SQ  
4.10  
3.78  
3.55  
0.66  
0.56  
0.46  
181  
180  
240  
1
SEATING  
PLANE  
PIN 1  
24.00 REF  
SQ  
HEAT SLUG  
TOP VIEW  
(PINS DOWN)  
32.00 BSC  
SQ  
121  
120  
60  
3.50  
3.40  
3.30  
61  
3.92 × 45°  
0.20  
0.09  
(4 PLACES)  
VIEW A  
0.27 MAX  
0.17 MIN  
0.50  
BSC  
0.38  
0.25  
COPLANARITY  
7°  
0°  
LEAD PITCH  
0.076  
VIEW A  
ROTATED 90° CCW  
Figure 39. 240-Lead Metric Quad Flat Package, Thermally Enhanced [MQFP/ED] (SP-240-2)  
Rev. D  
| Page 50 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
34.85  
34.60 SQ  
34.35  
4.10  
MAX  
32.00 BSC  
SQ  
0.75  
0.60  
0.45  
240  
181  
180  
1
SEATING  
PLANE  
PIN 1  
0.50  
BSC  
29.50  
REF  
SQ  
0.27  
0.17  
60  
121  
120  
0.08 MAX  
COPLANARITY  
61  
0.50  
0.25  
3.50  
3.40  
3.20  
Figure 40. 240-Lead Metric Quad Flat Package, [MQFP] (S-240)  
23.20  
23.00 SQ  
22.80  
A1 CORNER  
INDEX AREA  
15 13 11  
14 12 10  
9
7
5
3
1
8
6
4
2
A
B
C
D
E
F
BALL A1  
INDICATOR  
18.00  
20.10  
20.00 SQ  
19.90  
BSC SQ  
G
H
J
TOP VIEW  
DETAIL A  
K
L
1.27  
BSC  
M
N
P
R
0.50 R  
BOTTOM VIEW  
3 PLACES  
2.70 MAX  
1.30  
1.20  
1.10  
DETAIL A  
0.70  
0.60  
0.50  
0.15 MAX  
COPLANARITY  
SEATING  
PLANE  
0.90  
0.75  
0.60  
BALL DIAMETER  
Figure 41. 225-Ball Plastic Ball Grid Array [PBGA] (B-225-2)  
Rev. D  
| Page 51 of 52 | May 2013  
ADSP-21061/ADSP-21061L  
SURFACE-MOUNT DESIGN  
Table 34 is provided as an aide to PCB design. For industry-standard design recommendations, refer to IPC-7351, Generic Requirements  
for Surface-Mount Design and Land Pattern Standard.  
Table 34. BGA Data for Use with Surface-Mount Design  
Package  
Ball Attach Type  
Solder Mask Opening  
Ball Pad Size  
225-Ball Grid Array (PBGA)  
Solder Mask Defined  
0.63 mm diameter  
0.73 mm diameter  
ORDERING GUIDE  
Temperature  
Range  
Instruction On-Chip Operating  
Package  
Option  
Model  
Notes  
Rate  
SRAM  
1M Bit  
1M Bit  
1M Bit  
1M Bit  
1M Bit  
1M Bit  
1M Bit  
1M Bit  
1M Bit  
1M Bit  
1M Bit  
Voltage  
Package Description  
ADSP-21061KS-133  
ADSP-21061KSZ-133  
ADSP-21061KS-160  
ADSP-21061KSZ-160  
ADSP-21061KS-200  
ADSP-21061KSZ-200  
ADSP-21061LKB-160  
ADSP-21061LKBZ-160  
ADSP-21061LKSZ-160  
ADSP-21061LASZ-176  
ADSP-21061LKSZ-176  
1 Z = RoHS Compliant Part.  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
0C to 85C  
33 MHz  
33 MHz  
40 MHz  
40 MHz  
50 MHz  
50 MHz  
40 MHz  
40 MHz  
40 MHz  
5 V  
240-Lead MQFP_ED  
240-Lead MQFP_ED  
240-Lead MQFP_ED  
240-Lead MQFP_ED  
240-Lead MQFP_ED  
240-Lead MQFP_ED  
225-Ball PBGA  
SP-240-2  
SP-240-2  
SP-240-2  
SP-240-2  
SP-240-2  
SP-240-2  
B-225-2  
B-225-2  
S-240  
1
5 V  
5 V  
1
1
5 V  
5 V  
5 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
1
1
1
1
225-Ball PBGA  
240-Lead MQFP  
–40C to +85C 44 MHz  
0C to 85C 44 MHz  
240-Lead MQFP  
S-240  
240-Lead MQFP  
S-240  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00170-0-5/13(D)  
Rev. D  
| Page 52 of 52 | May 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY