ADSP-21062LCS-160 [ADI]

ADSP-2106x SHARC DSP Microcomputer Family; ADSP- 2106x SHARC DSP单片机系列
ADSP-21062LCS-160
型号: ADSP-21062LCS-160
厂家: ADI    ADI
描述:

ADSP-2106x SHARC DSP Microcomputer Family
ADSP- 2106x SHARC DSP单片机系列

微控制器和处理器 外围集成电路 数字信号处理器 时钟
文件: 总48页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
ADSP-2106x SHARC  
a
DSP Microcomputer Family  
ADSP-21062/ADSP-21062L  
SUMMARY  
IEEE JTAG Standard 1149.1 Test Access Port and  
On-Chip Emulation  
High Performance Signal Processor for Communica-  
tions, Graphics and Imaging Applications  
Super Harvard Architecture  
Four Independent Buses for Dual Data Fetch,  
Instruction Fetch and Nonintrusive I/O  
32-Bit IEEE Floating-Point Computation Units—  
Multiplier, ALU, and Shifter  
Dual-Ported On-Chip SRAM and Integrated I/O  
Peripherals—A Complete System-On-A-Chip  
Integrated Multiprocessing Features  
240-Lead Thermally Enhanced MQFP Package  
225-Ball Plastic Ball Grid Array (PBGA)  
32-Bit Single-Precision and 40-Bit Extended-Precision  
IEEE Floating-Point Data Formats or 32-Bit Fixed-  
Point Data Format  
Parallel Computations  
Single-Cycle Multiply and ALU Operations in Parallel with  
Dual Memory Read/Writes and Instruction Fetch  
Multiply with Add and Subtract for Accelerated FFT  
Butterfly Computation  
KEY FEATURES  
40 MIPS, 25 ns Instruction Rate, Single-Cycle Instruction  
Execution  
120 MFLOPS Peak, 80 MFLOPS Sustained Performance  
Dual Data Address Generators with Modulo and Bit-  
Reverse Addressing  
2 Mbit On-Chip SRAM  
Dual-Ported for Independent Access by Core Processor  
and DMA  
Off-Chip Memory Interfacing  
4 Gigawords Addressable  
Programmable Wait State Generation, Page-Mode  
DRAM Support  
Efficient Program Sequencing with Zero-Overhead  
Looping: Single-Cycle Loop Setup  
DUAL-PORTED SRAM  
CORE PROCESSOR  
INSTRUCTION  
TIMER  
JTAG  
TWO INDEPENDENT  
7
CACHE  
DUAL-PORTED BLOCKS  
32 x 48-BIT  
TEST &  
EMULATION  
PROCESSOR PORT  
I/O PORT  
DATA  
ADDR  
DATA  
ADDR  
DATA  
ADDR  
ADDR  
DATA  
DAG2  
DAG1  
PROGRAM  
SEQUENCER  
8 x 4 x 24  
8 x 4 x 32  
EXTERNAL  
PORT  
IOD  
48  
IOA  
17  
PM ADDRESS BUS  
24  
32  
32  
48  
ADDR BUS  
MUX  
DM ADDRESS BUS  
MULTIPROCESSOR  
INTERFACE  
PM DATA BUS  
DM DATA BUS  
48  
BUS  
CONNECT  
(PX)  
DATA BUS  
MUX  
40/32  
HOST PORT  
4
6
DMA  
DATA  
REGISTER  
FILE  
IOP  
REGISTERS  
MEMORY MAPPED)  
CONTROLLER  
(
SERIAL PORTS  
(2)  
16 x 40-BIT  
BARREL  
SHIFTER  
6
ALU  
MULTIPLIER  
CONTROL,  
STATUS &  
DATA BUFFERS  
36  
LINK PORTS  
(6)  
I/O PROCESSOR  
Figure 1. ADSP-21062/ADSP-21062L Block Diagram  
SHARC is a registered trademark of Analog Devices, Inc.  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADSP-21062/ADSP-21062L  
DMA Controller  
Multiprocessing  
10 DMA Channels for Transfers Between ADSP-21062  
Internal Memory and External Memory, External  
Peripherals, Host Processor, Serial Ports, or Link  
Ports  
Background DMA Transfers at 40 MHz, in Parallel with  
Full-Speed Processor Execution  
Glueless Connection for Scalable DSP Multiprocessing  
Architecture  
Distributed On-Chip Bus Arbitration for Parallel Bus  
Connect of Up to Six ADSP-21062s Plus Host  
Six Link Ports for Point-to-Point Connectivity and Array  
Multiprocessing  
240 Mbytes/s Transfer Rate Over Parallel Bus  
240 Mbytes/s Transfer Rate Over Link Ports  
Host Processor Interface to 16- and 32-Bit Microprocessors  
Host Can Directly Read/Write ADSP-21062 Internal  
Memory  
Serial Ports  
Two 40 Mbit/s Synchronous Serial Ports with Com-  
panding Hardware  
Independent Transmit and Receive Functions  
Figure 7. JTAG Clocktree for Multiple ADSP-2106x  
TABLE OF CONTENTS  
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 8. Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 9. Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 12. Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 13. Memory Read—Bus Master . . . . . . . . . . . . . . . . 20  
Figure 14. Memory Write—Bus Master . . . . . . . . . . . . . . . 21  
Figure 15. Synchronous Read/Write—Bus Master . . . . . . . 23  
Figure 16. Synchronous Read/Write—Bus Slave . . . . . . . . . 25  
Figure 17. Multiprocessor Bus Request and Host Bus  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . 3  
ADSP-21000 FAMILY CORE ARCHITECTURE . . . . . . . 4  
ADSP-21062/ADSP-21062L FEATURES . . . . . . . . . . . . . . 4  
DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . 8  
TARGET BOARD CONNECTOR FOR EZ-ICE®  
PROBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
RECOMMENDED OPERATING CONDITIONS . . . . . . 13  
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . 13  
TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 17  
Memory Read—Bus Master . . . . . . . . . . . . . . . . . . . . . . . 20  
Memory Write—Bus Master . . . . . . . . . . . . . . . . . . . . . . 21  
Synchronous Read/Write—Bus Master . . . . . . . . . . . . . . 22  
Synchronous Read/Write—Bus Slave . . . . . . . . . . . . . . . . 24  
Multiprocessor Bus Request and Host Bus Request . . . . . 26  
Asynchronous Read/Write—Host to ADSP-21062 . . . . . . 28  
Three-State Timing—Bus Master, Bus Slave,  
HBR, SBTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DMA Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Link Ports: 1 × CLK Speed Operation . . . . . . . . . . . . . . 33  
Link Ports: 2 × CLK Speed Operation . . . . . . . . . . . . . . 34  
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
JTAG Test Access Port and Emulation . . . . . . . . . . . . . . . 39  
OUTPUT DRIVE CURRENTS . . . . . . . . . . . . . . . . . . . . . 40  
POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
TEST CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
ENVIRONMENTAL CONDITIONS . . . . . . . . . . . . . . . . 43  
225 Ball Plastic Ball Grid Array (PBGA)  
Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 18a. Synchronous REDY Timing . . . . . . . . . . . . . . 28  
Figure 18b. Asynchronous Read/Write—Host to  
ADSP-21062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 19a. Three-State Timing (Bus Transition Cycle,  
SBTS Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 19b. Three-State Timing (Host Transition Cycle) . . 30  
Figure 20. DMA Handshake Timing . . . . . . . . . . . . . . . . . 32  
Figure 21. Link Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 22. Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 23. External Late Frame Sync . . . . . . . . . . . . . . . . . 38  
Figure 24. IEEE 11499.1 JTAG Test Access Port . . . . . . . 39  
Figure 25. Output Enable/Disable . . . . . . . . . . . . . . . . . . . 41  
Figure 26. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 27. Voltage Reference Levels for AC Measurements  
(Except Output Enable/Disable) . . . . . . . . . . . . . . . . . . . 41  
Figure 28. ADSP-21062 Typical Drive Currents  
Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 44  
225 Ball Plastic Ball Grid Array (PBGA)  
(VDD = 5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 29. Typical Output Rise Time (10%–90% VDD  
)
Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
PACKAGE DIMENSIONS, 225-Ball PBGA . . . . . . . . . . . 46  
240-LEAD METRIC MQFP PIN CONFIGURATIONS . . 47  
PACKAGE DIMENSIONS, 240-Lead Metric MQFP . . . 48  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
vs. Load Capacitance (VDD = 5 V) . . . . . . . . . . . . . . . . . . 42  
Figure 30. Typical Output Rise Time (0.8 V–2.0 V) vs. Load  
Capacitance (VDD = 5 V) . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 31. Typical Output Delay or Hold vs. Load Capacitance  
(at Maximum Case Temperature) (VDD = 5 V) . . . . . . . . 42  
Figure 32. ADSP-21062 Typical Drive Currents  
Figures  
Figure 1. ADSP-21062/ADSP-21062L Block Diagram . . . . 1  
Figure 2. ADSP-21062 System . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. Shared Memory Multiprocessing System . . . . . . . . 6  
Figure 4. ADSP-21062/ADSP-21062L Memory Map . . . . . 7  
Figure 5. Target Board Connector For ADSP-2106x  
EZ-ICE Emulator (Jumpers in Place) . . . . . . . . . . . . . . . 11  
Figure 6. JTAG Scan Path Connections for Multiple  
ADSP-2106x Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
(VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 33. Typical Output Rise Time (10%–90% VDD  
)
vs. Load Capacitance (VDD = 3.3 V) . . . . . . . . . . . . . . . . 42  
Figure 34. Typical Output Rise Time (0.8 V–2.0 V) vs. Load  
Capacitance (VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 35. Typical Output Delay or Hold vs. Load Capacitance  
(at Maximum Case Temperature) (VDD = 3.3 V) . . . . . . . 43  
EZ-ICE is a registered trademark of Analog Devices, Inc.  
REV. C  
–2–  
ADSP-21062/ADSP-21062L  
including a 2 Mbit SRAM memory (4 Mbit on the ADSP-21060),  
host processor interface, DMA controller, serial ports and  
link port and parallel bus connectivity for glueless DSP  
multiprocessing.  
Figure 1 shows a block diagram of the ADSP-21062, illustrating  
the following architectural features:  
S
GENERAL NOTE  
This data sheet represents production released specifications for  
the ADSP-21062 (5 V) and ADSP-21062L (3.3 V) processors,  
for both 33 MHz and 40 MHz speed grades. The product name  
“ADSP-21062” is used throughout this data sheet to represent  
all devices, except where expressly noted.  
Computation Units (ALU, Multiplier and Shifter) with a  
Shared Data Register File  
Data Address Generators (DAG1, DAG2)  
Program Sequencer with Instruction Cache  
Interval Timer  
On-Chip SRAM  
External Port for Interfacing to Off-Chip Memory and  
Peripherals  
Host Port and Multiprocessor Interface  
DMA Controller  
Serial Ports and Link Ports  
JTAG Test Access Port  
Figure 2 shows a typical single-processor system. A multi-  
processing system is shown in Figure 3.  
GENERAL DESCRIPTION  
The ADSP-21062 SHARC—Super Harvard Architecture  
Computer—is a signal processing microcomputer that offers new  
capabilities and levels of performance. The ADSP-21062  
SHARCs are 32-bit processors optimized for high performance  
DSP applications. The ADSP-21062 builds on the ADSP-21000  
DSP core to form a complete system-on-a-chip, adding a dual-  
ported on-chip SRAM and integrated I/O peripherals supported  
by a dedicated I/O bus.  
Table I. ADSP-21062/ADSP-21062L Benchmarks (@ 40 MHz)  
1024-Pt. Complex FFT  
0.46 ms  
18,221 cycles  
(Radix 4, with Digit Reverse)  
FIR Filter (per Tap)  
IIR Filter (per Biquad)  
Divide (y/x)  
25 ns  
1 cycle  
4 cycles  
6 cycles  
9 cycles  
100 ns  
150 ns  
Fabricated in a high speed, low power CMOS process, the  
ADSP-21062 has a 25 ns instruction cycle time and operates  
at 40 MIPS. With its on-chip instruction cache, the processor  
can execute every instruction in a single cycle. Table I shows  
performance benchmarks for the ADSP-21062.  
Inverse Square Root (1/x)  
DMA Transfer Rate  
225 ns  
240 Mbytes/s  
The ADSP-21062 SHARC represents a new standard of inte-  
gration for signal computers, combining a high performance  
floating-point DSP core with integrated, on-chip system features  
REV. C  
–3–  
ADSP-21062/ADSP-21062L  
ADSP-21000 FAMILY CORE ARCHITECTURE  
Instruction Cache  
The ADSP-21062 includes the following architectural features  
of the ADSP-21000 family core. The ADSP-21062 processors  
are code- and function-compatible with the ADSP-21020.  
The ADSP-21062 includes an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and two  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
allows full-speed execution of core, looped operations such as  
digital filter multiply-accumulates and FFT butterfly processing.  
Independent, Parallel Computation Units  
The arithmetic/logic unit (ALU), multiplier and shifter all per-  
form single-cycle instructions. The three units are arranged in  
parallel, maximizing computational throughput. Single multi-  
function instructions execute parallel ALU and multiplier opera-  
tions. These computation units support IEEE 32-bit single-  
precision floating-point, extended precision 40-bit floating-  
point, and 32-bit fixed-point data formats.  
Data Address Generators with Hardware Circular Buffers  
The ADSP-21062’s two data address generators (DAGs) imple-  
ment circular data buffers in hardware. Circular buffers allow  
efficient programming of delay lines and other data structures  
required in digital signal processing, and are commonly used in  
digital filters and Fourier transforms. The two DAGs of the  
ADSP-21062 contain sufficient registers to allow the creation of  
up to 32 circular buffers (16 primary register sets, 16 secondary).  
The DAGs automatically handle address pointer wraparound,  
reducing overhead, increasing performance and simplifying  
implementation. Circular buffers can start and end at any  
memory location.  
ADSP-2106x  
BMS  
1x CLOCK  
3
CLKIN  
EBOOT  
LBOOT  
CS  
BOOT  
EPROM  
(OPTIONAL)  
ADDR  
DATA  
IRQ  
2-0  
FLAG  
3-0  
TIMEXP  
4
ADDR  
ADDR  
DATA  
31-0  
MEMORY  
AND  
PERIPHERALS  
(OPTIONAL)  
DATA  
47-0  
Flexible Instruction Set  
LINK  
DEVICES  
(6 MAXIMUM)  
(OPTIONAL)  
LxCLK  
LxACK  
LxDAT  
3-0  
RD  
WR  
OE  
WE  
The 48-bit instruction word accommodates a variety of parallel  
operations, for concise programming. For example, the ADSP-  
21062 can conditionally execute a multiply, an add, a subtract  
and a branch, all in a single instruction.  
ACK  
ACK  
CS  
MS  
3-0  
TCLK0  
RCLK0  
TFS0  
RSF0  
DT0  
PAGE  
SBTS  
SW  
SERIAL  
DEVICE  
(OPTIONAL)  
DMA DEVICE  
(OPTIONAL)  
DATA  
ADSP-21062/ADSP-21062L FEATURES  
Augmenting the ADSP-21000 family core, the ADSP-21062  
adds the following architectural features:  
ADRCLK  
DMAR1-2  
DMAG1-2  
DR0  
TCLK1  
RCLK1  
TFS1  
RFS1  
DT1  
CS  
HBR  
Dual-Ported On-Chip Memory  
SERIAL  
DEVICE  
(OPTIONAL)  
HOST  
PROCESSOR  
INTERFACE  
(OPTIONAL)  
The ADSP-21062 contains two megabits of on-chip SRAM,  
organized as two blocks of 1 Mbits each, which can be config-  
ured for different combinations of code and data storage. Each  
memory block is dual-ported for single-cycle, independent ac-  
cesses by the core processor and I/O processor or DMA control-  
ler. The dual-ported memory and separate on-chip buses allow  
two data transfers from the core and one from I/O, all in a single  
cycle.  
HBG  
REDY  
DR1  
BR  
1-6  
ADDR  
DATA  
RPBA  
CPA  
JTAG  
ID  
2-0  
RESET  
7
Figure 2. ADSP-21062 System  
Data Register File  
On the ADSP-21062, the memory can be configured as a maxi-  
mum of 64K words of 32-bit data, 128K words of 16-bit data,  
40K words of 48-bit instructions (or 40-bit data), or combina-  
tions of different word sizes up to two megabits. All of the  
memory can be accessed as 16-bit, 32-bit or 48-bit words.  
A general purpose data register file is used for transferring data  
between the computation units and the data buses, and for  
storing intermediate results. This 10-port, 32-register (16 pri-  
mary, 16 secondary) register file, combined with the ADSP-  
21000 Harvard architecture, allows unconstrained data flow  
between computation units and internal memory.  
A 16-bit floating-point storage format is supported, which effec-  
tively doubles the amount of data that may be stored on-chip.  
Conversion between the 32-bit floating-point and 16-bit floating-  
point formats is done in a single instruction.  
Single-Cycle Fetch of Instruction and Two Operands  
The ADSP-21062 features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data and the pro-  
gram memory (PM) bus transfers both instructions and data  
(see Figure 1). With its separate program and data memory  
buses and on-chip instruction cache, the processor can simulta-  
neously fetch two operands and an instruction (from the cache),  
all in a single cycle.  
While each memory block can store combinations of code and  
data, accesses are most efficient when one block stores data,  
using the DM bus for transfers, and the other block stores  
instructions and data, using the PM bus for transfers. Using the  
DM bus and PM bus in this way, with one dedicated to each  
memory block, assures single-cycle execution with two data  
transfers. In this case, the instruction must be available in the  
cache. Single-cycle execution is also maintained when one of the  
data operands is transferred to or from off-chip, via the ADSP-  
21062’s external port.  
REV. C  
–4–  
ADSP-21062/ADSP-21062L  
include interrupt generation upon completion of DMA trans-  
fers and DMA chaining for automatic linked DMA transfers.  
Off-Chip Memory and Peripherals Interface  
The ADSP-21062’s external port provides the processor’s inter-  
face to off-chip memory and peripherals. The 4-gigaword off-  
chip address space is included in the ADSP-21062’s unified  
address space. The separate on-chip buses—for PM addresses,  
PM data, DM addresses, DM data, I/O addresses and I/O  
data—are multiplexed at the external port to create an external  
system bus with a single 32-bit address bus and a single 48-bit  
(or 32-bit) data bus.  
Serial Ports  
The ADSP-21062 features two synchronous serial ports that  
provide an inexpensive interface to a wide variety of digital and  
mixed-signal peripheral devices. The serial ports can operate at  
the full clock rate of the processor, providing each with a maxi-  
mum data rate of 40 Mbit/s. Independent transmit and receive  
functions provide greater flexibility for serial communications.  
Serial port data can be automatically transferred to and from  
on-chip memory via DMA. Each of the serial ports offers TDM  
multichannel mode.  
Addressing of external memory devices is facilitated by on-chip  
decoding of high-order address lines to generate memory bank  
select signals. Separate control lines are also generated for sim-  
plified addressing of page-mode DRAM. The ADSP-21062  
provides programmable memory wait states and external  
memory acknowledge controls to allow interfacing to DRAM  
and peripherals with variable access, hold and disable time  
requirements.  
The serial ports can operate with little-endian or big-endian  
transmission formats, with word lengths selectable from 3 bits to  
32 bits. They offer selectable synchronization and transmit  
modes as well as optional µ-law or A-law companding. Serial  
port clocks and frame syncs can be internally or externally  
generated.  
Host Processor Interface  
The ADSP-21062’s host interface allows easy connection to  
standard microprocessor buses, both 16-bit and 32-bit, with  
little additional hardware required. Asynchronous transfers at  
speeds up to the full clock rate of the processor are supported.  
The host interface is accessed through the ADSP-21062’s exter-  
nal port and is memory-mapped into the unified address space.  
Four channels of DMA are available for the host interface; code  
and data transfers are accomplished with low software overhead.  
Multiprocessing  
The ADSP-21062 offers powerful features tailored to multi-  
processor DSP systems. The unified address space (see  
Figure 4) allows direct interprocessor accesses of each ADSP-  
21062’s internal memory. Distributed bus arbitration logic is  
included on-chip for simple, glueless connection of systems  
containing up to six ADSP-21062s and a host processor. Master  
processor changeover incurs only one cycle of overhead. Bus  
arbitration is selectable as either fixed or rotating priority. Bus lock  
allows indivisible read-modify-write sequences for semaphores. A  
vector interrupt is provided for interprocessor commands. Maxi-  
mum throughput for interprocessor data transfer is 240 Mbytes/s  
over the link ports or external port. Broadcast writes allow simulta-  
neous transmission of data to all ADSP-21062s and can be used  
to implement reflective semaphores.  
The host processor requests the ADSP-21062’s external bus  
with the host bus request (HBR), host bus grant (HBG), and  
ready (REDY) signals. The host can directly read and write the  
internal memory of the ADSP-21062, and can access the DMA  
channel setup and mailbox registers. Vector interrupt support is  
provided for efficient execution of host commands.  
DMA Controller  
Link Ports  
The ADSP-21062’s on-chip DMA controller allows zero-  
overhead data transfers without processor intervention. The  
DMA controller operates independently and invisibly to the  
processor core, allowing DMA operations to occur while the  
core is simultaneously executing its program instructions.  
The ADSP-21062 features six 4-bit link ports that provide addi-  
tional I/O capabilities. The link ports can be clocked twice per  
cycle, allowing each to transfer eight bits of data per cycle. Link  
port I/O is especially useful for point-to-point interprocessor  
communication in multiprocessing systems.  
DMA transfers can occur between the ADSP-21062’s internal  
memory and either external memory, external peripherals or a  
host processor. DMA transfers can also occur between the  
ADSP-21062’s internal memory and its serial ports or link  
ports. DMA transfers between external memory and external  
peripheral devices are another option. External bus packing to  
16-, 32-, or 48-bit words is performed during DMA transfers.  
The link ports can operate independently and simultaneously,  
with a maximum data throughput of 240 Mbytes/s. Link port  
data is packed into 32- or 48-bit words, and can be directly read  
by the core processor or DMA-transferred to on-chip memory.  
Each link port has its own double-buffered input and output  
registers. Clock/acknowledge handshaking controls link port  
transfers. Transfers are programmable as either transmit or  
receive.  
Ten channels of DMA are available on the ADSP-21062—two  
via the link ports, four via the serial ports, and four via the  
processor’s external port (for either host processor, other  
ADSP-21062s, memory or I/O transfers). Four additional  
link port DMA channels are shared with serial port 1 and the  
external port. Programs can be downloaded to the ADSP-  
21062 using DMA transfers. Asynchronous off-chip peripher-  
als can control two DMA channels using DMA Request/  
Grant lines (DMAR1-2, DMAG1-2). Other DMA features  
Program Booting  
The internal memory of the ADSP-21062 can be booted at  
system power-up from either an 8-bit EPROM, a host proces-  
sor, or through one of the link ports. Selection of the boot  
source is controlled by the BMS (Boot Memory Select),  
EBOOT (EPROM Boot), and LBOOT (Link/Host Boot) pins.  
32-bit and 16-bit host processors can be used for booting.  
REV. C  
–5–  
ADSP-21062/ADSP-21062L  
ADSP-2106x #6  
ADSP-2106x #5  
ADSP-2106x #4  
ADSP-2106x #3  
ADDR  
CLKIN  
31-0  
DATA  
47-0  
RESET  
RPBA  
3
011  
ID  
2-0  
CONTROL  
CPA  
BR , BR  
5
1-2  
4-6  
BR  
3
ADSP-2106x #2  
ADDR  
CLKIN  
RESET  
RPBA  
31-0  
47-0  
DATA  
3
010  
ID  
2-0  
CONTROL  
CPA  
BR , BR  
5
1
3-6  
BR  
2
ADSP-2106x #1  
1x  
CLOCK  
CLKIN  
ADDR  
DATA  
ADDR  
DATA  
31-0  
GLOBAL  
MEMORY  
RESET  
RESET  
47-0  
AND  
PERIPHERALS  
(OPTIONAL)  
OE  
RD  
WR  
ACK  
RPBA  
WE  
ACK  
CS  
3
001  
ID  
2-0  
MS  
3-0  
CS  
BMS  
PAGE  
SBTS  
SW  
BOOT  
EPROM  
(OPTIONAL)  
ADDR  
CONTROL  
DATA  
ADRCLK  
CS  
HBR  
HBG  
REDY  
HOST  
PROCESSOR  
INTERFACE  
(OPTIONAL)  
ADDR  
DATA  
CPA  
5
BR  
2-6  
BR  
1
Figure 3. Shared Memory Multiprocessing System  
REV. C  
–6–  
ADSP-21062/ADSP-21062L  
0x0040 0000  
0x0000 0000  
0x0002 0000  
IOP REGISTERS  
BANK 0  
INTERNAL  
MEMORY  
SPACE  
MS  
MS  
MS  
0
1
2
NORMAL WORD ADDRESSING  
SHORT WORD ADDRESSING  
DRAM  
(OPTIONAL)  
0x0004 0000  
0x0008 0000  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
BANK 1  
BANK 2  
WITH ID=001  
0x0010 0000  
0x0018 0000  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=010  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=011  
EXTERNAL  
MEMORY  
SPACE  
0x0020 0000  
0x0028 0000  
MULTIPROCESSOR  
MEMORY SPACE  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=100  
MS  
BANK 3  
3
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=101  
BANK SIZE IS  
0x0030 0000  
0x0038 0000  
SELECTED BY  
MSIZE BIT FIELD OF  
SYSCON  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=110  
REGISTER.  
BROADCAST WRITE  
TO ALL  
NONBANKED  
ADSP-2106xs  
0x003F FFFF  
NORMAL WORD ADDRESSING: 32-BIT DATA WORDS  
48-BIT INSTRUCTION WORDS  
SHORT WORD ADDRESSING: 16-BIT DATA WORDS  
0xFFFF FFFF  
Figure 4. ADSP-21062/ADSP-21062L Memory Map  
DEVELOPMENT TOOLS  
dimensioned arrays. The ADSP-21000 Family Development  
Software is available for both the PC and Sun platforms.  
The ADSP-21062 is supported with a complete set of software  
and hardware development tools, including an EZ-ICE In-  
Circuit Emulator, EZ-LAB® development board, EZ-KIT, and  
development software. The EZ-LAB contains an evaluation board  
with an ADSP-21062 (5 V) processor and provides a serial connec-  
tion to your PC. The SHARC EZ-KIT combines the ADSP-  
21000 Family Development Software for the PC and the  
EZ-LAB ADSP-21062’s Development Board in one package.  
The EZ-KIT contains in addition to the EZ-LAB development  
board, an optimizing compiler, assembler, instruction level simu-  
lator, run-time libraries, diagnostic utilities and a complete set  
of example programs.  
The ADSP-21062 EZ-ICE Emulator uses the IEEE 1149.1  
JTAG test access port of the ADSP-21062 processor to monitor  
and control the target board processor during emulation. The  
EZ-ICE provides full-speed emulation, allowing inspection and  
modification of memory, registers, and processor stacks. Nonintru-  
sive in-circuit emulation is assured by the use of the processor’s  
JTAG interface—the emulator does not affect target system  
loading or timing.  
Further details and ordering information are available in the  
ADSP-21000 Family Hardware & Software Development Tools  
data sheet (ADDS-210xx-TOOLS). This data sheet can be  
requested from any Analog Devices sales office, distributor or  
the Literature Center.  
The same EZ-ICE hardware can be used for the ADSP-21060/  
ADSP-21061, to fully emulate the ADSP-21062, with the excep-  
tion of displaying and modifying the two new SPORTS registers.  
The emulator will not display these two registers, but your  
code can use them.  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the SHARC processor family. Hard-  
ware tools include SHARC PC plug-in cards, multiprocessor  
SHARC VME boards, and daughter card modules with multiple  
SHARCs and additional memory. These modules are based on  
the SHARCPAC™ module specification. Third party software  
tools include an Ada compiler, DSP libraries, operating systems,  
and block diagram design tools.  
Analog Devices’ ADSP-21000 Family Development Software  
includes an easy to use Assembler based on an algebraic syntax,  
an Assembly Library/Librarian, a Linker, an Instruction-level  
Simulator, an ANSI C optimizing Compiler, the CBug™ C  
Source-Level Debugger, and a C Runtime Library including  
DSP and mathematical functions. The Optimizing Compiler  
includes Numerical C extensions based on the work of the  
ANSI Numerical C Extensions Group. Numerical C provides  
extensions to the C language for array selection, vector math  
operations, complex data types, circular pointers, and variably  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the ADSP-21062  
architecture and functionality. For detailed information on the  
ADSP-21000 Family core architecture and instruction set, refer  
to the ADSP-21062 SHARC User’s Manual, Second Edition.  
CBug and SHARCPAC are trademarks of Analog Devices, Inc.  
EZ-LAB is a registered trademark of Analog Devices, Inc.  
REV. C  
–7–  
ADSP-21062/ADSP-21062L  
PIN FUNCTION DESCRIPTIONS  
DRx, TCLKx, RCLKx, LxDAT3-0, LxCLK, LxACK, TMS  
and TDI)—these pins can be left floating. These pins have a  
logic-level hold circuit that prevents the input from floating  
internally.  
ADSP-21062 pin definitions are listed below. All pins are iden-  
tical on the ADSP-21062 and ADSP-21062L. Inputs identified  
as synchronous (S) must meet timing requirements with respect  
to CLKIN (or with respect to TCK for TMS, TDI). Inputs  
identified as asynchronous (A) can be asserted asynchronously  
to CLKIN (or to TCK for TRST).  
A = Asynchronous  
O = Output  
G = Ground  
P = Power Supply  
(O/D) = Open Drain  
I = Input  
S = Synchronous  
(A/D) = Active Drive  
Unused inputs should be tied or pulled to VDD or GND,  
except for ADDR31-0, DATA47-0, FLAG3-0, SW, and inputs that  
have internal pull-up or pull-down resistors (CPA, ACK, DTx,  
T = Three-State (when SBTS is asserted, or when the  
ADSP-21062 is a bus slave)  
Pin  
Type  
Function  
ADDR31-0  
I/O/T  
External Bus Address. The ADSP-21062 outputs addresses for external memory and peripherals on  
these pins. In a multiprocessor system the bus master outputs addresses for read/writes of the internal  
memory or IOP registers of other ADSP-21062s. The ADSP-21062 inputs addresses when a host  
processor or multiprocessing bus master is reading or writing its internal memory or IOP registers.  
DATA47-0  
I/O/T  
O/T  
External Bus Data. The ADSP-21062 inputs and outputs data and instructions on these pins. 32-bit  
single-precision floating-point data and 32-bit fixed-point data is transferred over bits 47–16 of the  
bus. 40-bit extended-precision floating-point data is transferred over bits 47–8 of the bus. 16-bit short  
word data is transferred over bits 31–16 of the bus. In PROM boot mode, 8-bit data is transferred over  
bits 23–16. Pull-up resistors on unused DATA pins are not necessary.  
MS3-0  
Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks of  
external memory. Memory bank size must be defined in the ADSP-21062’s system control register  
(SYSCON). The MS3-0 lines are decoded memory address lines that change at the same time as the  
other address lines. When no external memory access is occurring the MS3-0 lines are inactive; they are  
active however when a conditional memory access instruction is executed, whether or not the condi-  
tion is true. MS0 can be used with the PAGE signal to implement a bank of DRAM memory (Bank 0).  
In a multiprocessing system the MS3-0 lines are output by the bus master.  
RD  
I/O/T  
I/O/T  
O/T  
Memory Read Strobe. This pin is asserted (low) when the ADSP-21062 reads from external  
memory devices or from the internal memory of other ADSP-21062s. External devices (including  
other ADSP-21062s) must assert RD to read from the ADSP-21062’s internal memory. In a multipro-  
cessing system RD is output by the bus master and is input by all other ADSP-21062s.  
WR  
Memory Write Strobe. This pin is asserted (low) when the ADSP-21062 writes to external memory  
devices or to the internal memory of other ADSP-21062s. External devices must assert WR to write to  
the ADSP-21062’s internal memory. In a multiprocessing system WR is output by the bus master and  
is input by all other ADSP-21062s.  
PAGE  
DRAM Page Boundary. The ADSP-21062 asserts this pin to signal that an external DRAM page  
boundary has been crossed. DRAM page size must be defined in the ADSP-21062’s memory control  
register (WAIT). DRAM can only be implemented in external memory Bank 0; the PAGE signal can  
only be activated for Bank 0 accesses. In a multiprocessing system PAGE is output by the bus master.  
ADRCLK  
O/T  
Clock Output Reference. In a multiprocessing system ADRCLK is output by the bus master.  
SW  
I/O/T  
Synchronous Write Select. This signal is used to interface the ADSP-21062 to synchronous  
memory devices (including other ADSP-21062s). The ADSP-21062 asserts SW (low) to provide an  
early indication of an impending write cycle, which can be aborted if WR is not later asserted (e.g., in  
a conditional write instruction). In a multiprocessing system, SW is output by the bus master and is  
input by all other ADSP-21062s to determine if the multiprocessor memory access is a read or write.  
SW is asserted at the same time as the address output. A host processor using synchronous writes  
must assert this pin when writing to the ADSP-21062(s).  
ACK  
I/O/S  
Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external  
memory access. ACK is used by I/O devices, memory controllers, or other peripherals to hold off  
completion of an external memory access. The ADSP-21062 deasserts ACK as an output to add wait  
states to a synchronous access of its internal memory. In a multiprocessing system, a slave ADSP-  
21062 deasserts the bus master’s ACK input to add wait state(s) to an access of its internal memory.  
The bus master has a keeper latch on its ACK pin that maintains the input at the level to which it  
was last driven.  
REV. C  
–8–  
ADSP-21062/ADSP-21062L  
Pin  
Type  
Function  
SBTS  
I/S  
Suspend Bus Three-State. External devices can assert SBTS (low) to place the external bus address,  
data, selects and strobes in a high impedance state for the following cycle. If the ADSP-21062  
attempts to access external memory while SBTS is asserted, the processor will halt and the memory  
access will not be completed until SBTS is deasserted. SBTS should only be used to recover from host  
processor/ADSP-21062 deadlock, or used with a DRAM controller.  
IRQ2-0  
I/A  
Interrupt Request Lines. May be either edge-triggered or level-sensitive.  
FLAG3-0  
I/O/A  
Flag Pins. Each is configured via control bits as either an input or output. As an input, they can be  
tested as a condition. As an output, they can be used to signal external peripherals.  
TIMEXP  
O
Timer Expired. Asserted for four cycles when the timer is enabled and TCOUNT decrements to  
zero.  
HBR  
I/A  
Host Bus Request. This pin must be asserted by a host processor to request control of the  
ADSP-21062’s external bus. When HBR is asserted in a multiprocessing system, the ADSP-21062  
that is bus master will relinquish the bus and assert HBG. To relinquish the bus, the ADSP-21062  
places the address, data, select and strobe lines in a high impedance state. HBR has priority over all  
ADSP-21062 bus requests (BR6-1) in a multiprocessing system.  
HBG  
CS  
I/O  
I/A  
Host Bus Grant. Acknowledges an HBR bus request, indicating that the host processor may take  
control of the external bus. HBG is asserted (held low) by the ADSP-21062 until HBR is released. In  
a multiprocessing system, HBG is output by the ADSP-21062 bus master and is monitored by all others.  
Chip Select. Asserted by host processor to select the ADSP-21062.  
REDY (O/D) O  
Host Bus Acknowledge. The ADSP-21062 deasserts REDY (low) to add wait states to an asynchro-  
nous access of its internal memory or IOP registers by a host. This pin is an open drain output (O/D)  
by default; it can be programmed in the ADREDY bit of the SYSCON register to be active drive  
(A/D). REDY will only be output if the CS and HBR inputs are asserted.  
DMAR1  
DMAR2  
DMAG1  
DMAG2  
BR6-1  
I/A  
DMA Request 1 (DMA Channel 7).  
DMA Request 2 (DMA Channel 8).  
DMA Grant 1 (DMA Channel 7).  
DMA Grant 2 (DMA Channel 8).  
I/A  
O/T  
O/T  
I/O/S  
Multiprocessing Bus Requests. Used by multiprocessing ADSP-21062s to arbitrate for bus master-  
ship. An ADSP-21062 only drives its own BRx line (corresponding to the value of its ID2-0 inputs) and  
monitors all others. In a multiprocessor system with less than six ADSP-21062s, the unused BRx pins  
should be pulled high; the processor’s own BRx line must not be pulled high or low because it is an  
output.  
ID2-0  
I
Multiprocessing ID. Determines which multiprocessing bus request (BR1 BR6) is used by ADSP-  
21062. ID = 001 corresponds to BR1, ID = 010 corresponds to BR2, etc. ID = 000 in single-processor  
systems. These lines are a system configuration selection which should be hardwired or changed at  
reset only.  
RPBA  
I/S  
I/O  
Rotating Priority Bus Arbitration Select. When RPBA is high, rotating priority for multiprocessor  
bus arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system con-  
figuration selection which must be set to the same value on every ADSP-21062. If the value of RPBA is  
changed during system operation, it must be changed in the same CLKIN cycle on every ADSP-21062.  
CPA (O/D)  
Core Priority Access. Asserting its CPA pin allows the core processor of an ADSP-21062 bus slave  
to interrupt background DMA transfers and gain access to the external bus. CPA is an open drain  
output that is connected to all ADSP-21062s in the system. The CPA pin has an internal 5 kpull-up  
resistor. If core access priority is not required in a system, the CPA pin should be left unconnected.  
DTx  
O
Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 kinternal pull-up resistor.  
Data Receive (Serial Ports 0, 1). Each DR pin has a 50 kinternal pull-up resistor.  
Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 kinternal pull-up resistor.  
Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 kinternal pull-up resistor.  
DRx  
I
TCLKx  
RCLKx  
I/O  
I/O  
REV. C  
–9–  
ADSP-21062/ADSP-21062L  
Pin  
Type  
I/O  
Function  
TFSx  
Transmit Frame Sync (Serial Ports 0, 1).  
Receive Frame Sync (Serial Ports 0, 1).  
RFSx  
I/O  
LxDAT3-0  
I/O  
Link Port Data (Link Ports 0–5). Each LxDAT pin has a 50 kinternal pull-down resistor that is  
enabled or disabled by the LPDRD bit of the LCOM register.  
LxCLK  
LxACK  
EBOOT  
I/O  
I/O  
I
Link Port Clock (Link Ports 0–5). Each LxCLK pin has a 50 kinternal pull-down resistor that is  
enabled or disabled by the LPDRD bit of the LCOM register.  
Link Port Acknowledge (Link Ports 0–5). Each LxACK pin has a 50 kinternal pull-down resistor  
that is enabled or disabled by the LPDRD bit of the LCOM register.  
EPROM Boot Select. When EBOOT is high, the ADSP-21062 is configured for booting from an 8-  
bit EPROM. When EBOOT is low, the LBOOT and BMS inputs determine booting mode. See table  
below. This signal is a system configuration selection that should be hardwired.  
LBOOT  
I
Link Boot. When LBOOT is high, the ADSP-21062 is configured for link port booting. When  
LBOOT is low, the ADSP-21062 is configured for host processor booting or no booting. See table  
below. This signal is a system configuration selection that should be hardwired.  
BMS  
I/O/T*  
Boot Memory Select. Output: Used as chip select for boot EPROM devices (when EBOOT = 1,  
LBOOT = 0). In a multiprocessor system, BMS is output by the bus master. Input: When low, indi-  
cates that no booting will occur and that ADSP-21062 will begin executing instructions from external  
memory. See table below. This input is a system configuration selection that should be hardwired.  
*Three-statable only in EPROM boot mode (when BMS is an output).  
EBOOT  
LBOOT  
BMS  
Booting Mode  
1
0
0
0
0
1
0
0
1
0
1
1
Output  
EPROM (Connect BMS to EPROM chip select.)  
Host Processor  
Link Port  
No Booting. Processor executes from external memory.  
Reserved  
Reserved  
1 (Input)  
1 (Input)  
0 (Input)  
0 (Input)  
x (Input)  
CLKIN  
I
Clock In. External clock input to the ADSP-21062. The instruction cycle rate is equal to CLKIN.  
CLKIN may not be halted, changed, or operated below the minimum specified frequency.  
RESET  
I/A  
Processor Reset. Resets the ADSP-21062 to a known state and begins program execution at the  
program memory location specified by the hardware reset vector address. This input must be asserted  
(low) at power-up.  
TCK  
TMS  
I
Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.  
I/S  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a 20 kinternal pull-up  
resistor.  
TDI  
I/S  
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 20 kinternal  
pull-up resistor.  
TDO  
O
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
TRST  
I/A  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-  
up or held low for proper operation of the ADSP-21062. TRST has a 20 kinternal pull-up resistor.  
EMU  
ICSA  
VDD  
GND  
NC  
O
O
P
Emulation Status. Must be connected to the ADSP-21062 EZ-ICE target board connector only.  
Reserved, leave unconnected.  
Power Supply; nominally +5.0 V dc for 5 V devices or +3.3 V dc for 3.3 V devices. (30 pins)  
Power Supply Return. (30 pins)  
G
Do Not Connect. Reserved pins which must be left open and unconnected.  
REV. C  
–10–  
ADSP-21062/ADSP-21062L  
The 14-pin, 2-row pin strip header is keyed at the Pin 3 location —  
Pin 3 must be removed from the header. The pins must be  
0.025 inch square and at least 0.20 inch in length. Pin spacing  
should be 0.1 × 0.1 inches. Pin strip headers are available from  
vendors such as 3M, McKenzie, and Samtec.  
TARGET BOARD CONNECTOR FOR EZ-ICE PROBE  
The ADSP-2106x EZ-ICE Emulator uses the IEEE 1149.1  
JTAG test access port of the ADSP-2106x to monitor and  
control the target board processor during emulation. The EZ-  
ICE probe requires the ADSP-2106x’s CLKIN, TMS, TCK,  
TRST, TDI, TDO, EMU, and GND signals be made acces-  
sible on the target system via a 14-pin connector (a 2 row × 7  
pin strip header) such as that shown in Figure 5. The EZ-ICE  
probe plugs directly onto this connector for chip-on-board  
emulation. You must add this connector to your target board  
design if you intend to use the ADSP-2106x EZ-ICE. The total  
trace length between the EZ-ICE connector and the furthest  
device sharing the EZ-ICE JTAG pin should be limited to 15  
inches maximum for guaranteed operation. This length restric-  
tion must include EZ-ICE JTAG signals that are routed to one  
or more ADSP-2106x devices, or a combination of ADSP-  
2106x devices and other JTAG devices on the chain.  
The BTMS, BTCK, BTRST, and BTDI signals are provided so  
that the test access port can also be used for board-level testing.  
When the connector is not being used for emulation, place  
jumpers between the BXXX pins and the XXX pins as shown in  
Figure 5. If you are not going to use the test access port for  
board testing, tie BTRST to GND and tie or pull up BTCK to  
VDD. The TRST pin must be asserted after power-up (through  
BTRST on the connector) or held low for proper operation of  
the ADSP-2106x. None of the BXXX pins (Pins 5, 7, 9, 11) are  
connected on the EZ-ICE probe.  
The JTAG signals are terminated on the EZ-ICE probe as follows:  
Signal Termination  
1
3
5
2
4
6
TMS  
TCK  
Driven through 22 Resistor (16 mA Driver)  
Driven at 10 MHz through 22 Resistor (16 mA  
Driver)  
EMU  
GND  
KEY (NO PIN)  
CLKIN (OPTIONAL)  
TMS  
TRST* Active Low Driven through 22 Resistor (16 mA  
Driver) (Pulled Up by On-Chip 20 kResistor)  
BTMS  
TDI  
TDO  
Driven by 22 Resistor (16 mA Driver)  
7
9
8
One TTL Load, Split Termination (160/220)  
TCK  
BTCK  
CLKIN One TTL Load, Split Termination (160/220)  
EMU  
10  
12  
Active Low 4.7 kPull-Up Resistor, One TTL Load  
(Open-Drain Output from the DSP)  
BTRST  
TRST  
11  
*TRST is driven low until the EZ-ICE probe is turned on by the emulator at  
software start-up. After software start-up, TRST is driven high.  
BTDI  
GND  
TDI  
13  
14  
TDO  
TOP VIEW  
Figure 5. Target Board Connector For ADSP-2106x  
EZ-ICE Emulator (Jumpers in Place)  
JTAG  
ADSP-2106x  
ADSP-2106x  
#1  
DEVICE  
n
(OPTIONAL)  
TDI  
TDO  
TDO  
TDO  
TDI  
TDI  
TDI  
EZ-ICE  
JTAG  
CONNECTOR  
OTHER  
JTAG  
CONTROLLER  
TCK  
TMS  
EMU  
TRST  
TDO  
CLKIN  
OPTIONAL  
Figure 6. JTAG Scan Path Connections for Multiple ADSP-2106x Systems  
REV. C  
–11–  
ADSP-21062/ADSP-21062L  
Figure 6 shows JTAG scan path connections for systems that  
contain multiple ADSP-2106x processors.  
EMU should be treated as critical signals in terms of skew,  
and should be laid out as short as possible on your board. If  
TCK, TMS, and CLKIN are driving a large number of ADSP-  
21062s (more than eight) in your system, then treat them as a  
“clock tree” using multiple drivers to minimize skew. (See  
Figure 7 “JTAG Clock Tree” and “Clock Distribution” in the  
“High Frequency Design Considerations” section of the ADSP-  
2106x User’s Manual, Second Edition.)  
Connecting CLKIN to Pin 4 of the EZ-ICE header is optional.  
The emulator only uses CLKIN when directed to perform  
operations such as starting, stopping, and single-stepping mul-  
tiple ADSP-2106xs in a synchronous manner. If you do not need  
these operations to occur synchronously on the multiple proces-  
sors, simply tie Pin 4 of the EZ-ICE header to ground.  
If synchronous multiprocessor operations are not needed (i.e.,  
CLKIN is not connected), just use appropriate parallel termi-  
nation on TCK and TMS. TDI, TDO, EMU and TRST are  
not critical signals in terms of skew.  
If synchronous multiprocessor operations are needed and  
CLKIN is connected, clock skew between the multiple ADSP-  
21062 processors and the CLKIN pin on the EZ-ICE header  
must be minimal. If the skew is too large, synchronous operations  
may be off by one or more cycles between processors. For syn-  
chronous multiprocessor operation TCK, TMS, CLKIN and  
For complete information on the SHARC EZ-ICE, see the  
ADSP-21000 Family JTAG EZ-ICE User's Guide and Reference.  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
5k  
*
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
5k⍀  
*
EMU  
TCK  
TMS  
TRST  
TDO  
SYSTEM  
CLKIN  
CLKIN  
EMU  
*OPEN DRAIN DRIVER OR EQUIVALENT, i.e.,  
Figure 7. JTAG Clocktree for Multiple ADSP-2106x Systems  
REV. C  
–12–  
ADSP-21062/ADSP-21062L  
ADSP-21062–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS (5 V)  
A Grade  
C Grade  
K Grade  
Parameter  
Test Conditions Min Max  
Min Max  
Min Max  
Units  
VDD  
Supply Voltage  
4.75 5.25  
4.75 5.25  
4.75 5.25  
V
TCASE Case Operating Temperature  
–40  
2.0  
2.2  
+85  
–40  
+100  
VDD + 0.5  
VDD + 0.5  
0
2.0  
2.2  
+85  
VDD + 0.5  
VDD + 0.5  
°C  
VIH1  
VIH2  
VIL  
High Level Input Voltage1  
High Level Input Voltage2  
Low Level Input Voltage1, 2  
@ VDD = max  
@ VDD = max  
@ VDD = min  
VDD + 0.5 2.0  
VDD + 0.5 2.2  
V
V
V
–0.5 0.8  
–0.5 0.8  
–0.5 0.8  
NOTES  
1Applies to input and bidirectional pins: DATA47-0, ADDR31-0, RD, WR, SW, ACK, SBTS, IRQ2-0, FLAG3-0, HBG, CS, DMAR1, DMAR2, BR6-1, ID2-0, RPBA,  
CPA, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, EBOOT, LBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1.  
2Applies to input pins: CLKIN, RESET, TRST.  
ELECTRICAL CHARACTERISTICS (5 V)  
Parameter  
Test Conditions  
Min  
Max  
Units  
VOH  
VOL  
IIH  
IIL  
IILP  
IOZH  
IOZL  
IOZHP  
IOZLC  
IOZLA  
IOZLAR  
IOZLS  
CIN  
High Level Output Voltage1  
Low Level Output Voltage1  
High Level Input Current3, 4  
Low Level Input Current3  
@ VDD = min, IOH = –2.0 mA2  
@ VDD = min, IOL = 4.0 mA2  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 1.5 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
4.1  
V
V
0.4  
10  
10  
150  
10  
10  
350  
1.5  
350  
4.2  
150  
4.7  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
µA  
mA  
µA  
pF  
Low Level Input Current4  
Three-State Leakage Current5, 6, 7, 8  
Three-State Leakage Current5, 9  
Three-State Leakage Current9  
Three-State Leakage Current7  
Three-State Leakage Current10  
Three-State Leakage Current8  
Three-State Leakage Current6  
Input Capacitance11, 12  
fIN = 1 MHz, TCASE = 25°C, VIN = 2.5 V  
NOTES  
11Applies to output and bidirectional pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, TIMEXP, HBG, REDY, DMAG1,  
DMAG2, BR6-1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, BMS, TDO, EMU, ICSA.  
12See “Output Drive Currents” for typical drive current capabilities.  
13Applies to input pins: ACK SBTS, IRQ2-0, HBR, CS, DMAR1, DMAR2, ID2-0, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK.  
14Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.  
15Applies to three-statable pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, REDY, HBG, DMAG1, DMAG2, BMS, BR6–1  
,
TFSX, RFSX, TDO, EMU. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another ADSP-21062 is  
not requesting bus mastership.)  
16Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.  
17Applies to CPA pin.  
18Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another  
ADSP-21062L is not requesting bus mastership).  
19Applies to three-statable pins with internal pull-downs: LxDAT3-0, LxCLK, LxACK.  
10Applies to ACK pin when keeper latch enabled.  
11Applies to all signal pins.  
12Guaranteed but not tested.  
Specifications subject to change without notice.  
–13–  
REV. C  
ADSP-21062/ADSP-21062L  
POWER DISSIPATION ADSP-21062 (5 V)  
These specifications apply to the internal power portion of VDD only. See the Power Dissipation section of this data sheet for calcula-  
tion of external supply current and total supply current. For a complete discussion of the code used to measure power dissipation, see  
the technical note “SHARC Power Dissipation Measurements.”  
Specifications are based on the following operating scenarios:  
Operation  
Peak Activity (IDDINPEAK  
)
High Activity (IDDINHIGH  
)
Low Activity (IDDINLOW)  
Instruction Type  
Multifunction  
Multifunction  
Single Function  
Instruction Fetch  
Cache  
Internal Memory  
1 per Cycle (DM)  
1 per 2 Cycles  
Internal Memory  
None  
Core Memory Access  
Internal Memory DMA  
2 per Cycle (DM and PM)  
1 per Cycle  
1 per 2 Cycles  
To estimate power consumption for a specific application, use the following equation where % is the amount of time your program  
spends in that state:  
%PEAK × IDDINPEAK + %HIGH × IDDINHIGH + %LOW × IDDINLOW + %IDLE × IDDIDLE = power consumption  
Parameter  
Test Conditions  
Max  
Units  
IDDINPEAK  
Supply Current (Internal)1  
Supply Current (Internal)2  
Supply Current (Internal)2  
Supply Current (Idle)3  
tCK = 30 ns, VDD = max  
745  
850  
575  
670  
340  
390  
200  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
t
CK = 25 ns, VDD = max  
IDDINHIGH  
IDDINLOW  
tCK = 30 ns, VDD = max  
tCK = 25 ns, VDD = max  
tCK = 30 ns, VDD = max  
t
CK = 25 ns, VDD = max  
IDDIDLE  
VDD = max  
NOTES  
1The test program used to measure IDDINPEAK represents worst case processor operation and is not sustainable under normal application conditions. Actual internal  
power measurements made using typical applications are less than specified.  
2IDDINHIGH is a composite average based on a range of high activity code. IDDINLOW is a composite average based on a range of low activity code.  
3Idle denotes ADSP-21062L state during execution of IDLE instruction.  
REV. C  
–14–  
ADSP-21062/ADSP-21062L  
ADSP-21062L–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS (3.3 V)  
A Grade  
C Grade  
K Grade  
Parameter  
Test Conditions Min Max  
Min Max  
Min Max  
Units  
VDD  
Supply Voltage  
3.15 3.45  
3.15 3.45  
3.15 3.45  
V
TCASE Case Operating Temperature  
–40  
2.0  
2.2  
+85  
–40  
+100  
VDD + 0.5  
VDD + 0.5  
0
2.0  
2.2  
–0.5 0.8  
+85  
VDD + 0.5  
VDD + 0.5  
°C  
VIH1  
VIH2  
VIL  
High Level Input Voltage1  
High Level Input Voltage2  
Low Level Input Voltage1, 2  
@ VDD = max  
@ VDD = max  
@ VDD = min  
VDD + 0.5 2.0  
VDD + 0.5 2.2  
V
V
V
–0.5 0.8  
–0.5 0.8  
NOTES  
1Applies to input and bidirectional pins: DATA47-0, ADDR31-0, RD, WR, SW, ACK, SBTS, IRQ2-0, FLAG3-0, HBG, CS, DMAR1, DMAR2, BR6-1, ID2-0, RPBA,  
CPA, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, EBOOT, LBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1.  
2Applies to input pins: CLKIN, RESET, TRST.  
ELECTRICAL CHARACTERISTICS (3.3 V)  
Parameter  
Test Conditions  
Min  
Max  
Units  
VOH  
VOL  
IIH  
IIL  
IILP  
IOZH  
IOZL  
IOZHP  
IOZLC  
IOZLA  
IOZLAR  
IOZLS  
CIN  
High Level Output Voltage1  
Low Level Output Voltage1  
High Level Input Current3, 4  
Low Level Input Current3  
@ VDD = min, IOH = –2.0 mA2  
@ VDD = min, IOL = 4.0 mA2  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 1.5 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
2.4  
V
V
0.4  
10  
10  
150  
10  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
µA  
mA  
µA  
pF  
Low Level Input Current4  
Three-State Leakage Current5, 6, 7, 8  
Three-State Leakage Current5, 9  
Three-State Leakage Current9  
Three-State Leakage Current7  
Three-State Leakage Current10  
Three-State Leakage Current8  
Three-State Leakage Current6  
Input Capacitance11, 12  
10  
350  
1.5  
350  
4.2  
150  
4.7  
fIN = 1 MHz, TCASE = 25°C, VIN = 2.5 V  
NOTES  
11Applies to output and bidirectional pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, TIMEXP, HBG, REDY, DMAG1,  
DMAG2, BR6-1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, BMS, TDO, EMU, ICSA.  
12See “Output Drive Currents” for typical drive current capabilities.  
13Applies to input pins: ACK SBTS, IRQ2-0, HBR, CS, DMAR1, DMAR2, ID2-0, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK.  
14Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.  
15Applies to three-statable pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, REDY, HBG, DMAG1, DMAG2, BMS, BR6–1  
,
TFSX, RFSX, TDO, EMU. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another ADSP-21062 is  
not requesting bus mastership.)  
16Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.  
17Applies to CPA pin.  
18Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another  
ADSP-21062L is not requesting bus mastership).  
19Applies to three-statable pins with internal pull-downs: LxDAT3-0, LxCLK, LxACK.  
10Applies to ACK pin when keeper latch enabled.  
11Applies to all signal pins.  
12Guaranteed but not tested.  
Specifications subject to change without notice.  
REV. C  
–15–  
ADSP-21062/ADSP-21062L  
POWER DISSIPATION ADSP-21062L (3.3 V)  
These specifications apply to the internal power portion of VDD only. See the Power Dissipation section of this data sheet for calcula-  
tion of external supply current and total supply current. For a complete discussion of the code used to measure power dissipation,  
see the technical note “SHARC Power Dissipation Measurements.”  
Specifications are based on the following operating scenarios:  
Operation  
Peak Activity (IDDINPEAK  
)
High Activity (IDDINHIGH  
)
Low Activity (IDDINLOW)  
Instruction Type  
Multifunction  
Multifunction  
Single Function  
Instruction Fetch  
Cache  
Internal Memory  
1 per Cycle (DM)  
1 per 2 Cycles  
Internal Memory  
None  
Core Memory Access  
Internal Memory DMA  
2 per Cycle (DM and PM)  
1 per Cycle  
1 per 2 Cycles  
To estimate power consumption for a specific application, use the following equation where % is the amount of time your program  
spends in that state:  
%PEAK × IDDINPEAK + %HIGH × IDDINHIGH + %LOW × IDDINLOW + %IDLE × IDDIDLE = power consumption  
Parameter  
Test Conditions  
Max  
Units  
IDDINPEAK  
Supply Current (Internal)1  
Supply Current (Internal)2  
Supply Current (Internal)2  
Supply Current (Idle)3  
tCK = 30 ns, VDD = max  
540  
600  
425  
475  
250  
275  
180  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
t
CK = 25 ns, VDD = max  
IDDINHIGH  
IDDINLOW  
tCK = 30 ns, VDD = max  
tCK = 25 ns, VDD = max  
tCK = 30 ns, VDD = max  
t
CK = 25 ns, VDD = max  
IDDIDLE  
VDD = max  
NOTES  
1The test program used to measure IDDINPEAK represents worst case processor operation and is not sustainable under normal application conditions. Actual internal  
power measurements made using typical applications are less than specified.  
2IDDINHIGH is a composite average based on a range of high activity code. IDDINLOW is a composite average based on a range of low activity code.  
3Idle denotes ADSP-21062L state during execution of IDLE instruction.  
REV. C  
–16–  
ADSP-21062/ADSP-21062L  
ABSOLUTE MAXIMUM RATINGS (5 V DEVICE)*  
ABSOLUTE MAXIMUM RATINGS (3.3 V DEVICE)*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Output Voltage Swing . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 pF  
Junction Temperature Under Bias . . . . . . . . . . . . . . . . 130°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (5 seconds) . . . . . . . . . . . . . . . . . +280°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +4.6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Output Voltage Swing . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 pF  
Junction Temperature Under Bias . . . . . . . . . . . . . . . . 130°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (5 seconds) . . . . . . . . . . . . . . . . . +280°C  
*Stresses greater than those listed above may cause permanent damage to the  
device. These are stress ratings only; functional operation of the device at these or  
any other conditions greater than those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
*Stresses greater than those listed above may cause permanent damage to the  
device. These are stress ratings only; functional operation of the device at these or  
any other conditions greater than those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
ESD SENSITIVITY  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-21062 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
TIMING SPECIFICATIONS  
GENERAL NOTES  
Switching Characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
Two speed grades of the ADSP-21062 will be offered, 40 MHz  
and 33.3 MHz. The specifications shown are based on a  
CLKIN frequency of 40 MHz (tCK = 25 ns). The DT derating  
allows specifications at other CLKIN frequencies (within the  
min–max range of the tCK specification; see Clock Input below).  
DT is the difference between the actual CLKIN period and a  
CLKIN period of 25 ns:  
DT = tCK – 25 ns  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a  
read operation. Timing requirements guarantee that the proces-  
sor operates correctly with other devices.  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add parameters to derive longer times.  
(O/D) = Open Drain  
(A/D) = Active Drive  
For voltage reference levels, see Figure 27 under Test Conditions.  
REV. C  
–17–  
ADSP-21062/ADSP-21062L  
ADSP-21062  
40 MHz 33 MHz  
ADSP-21062L  
40 MHz 33 MHz  
Min Max Units  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Clock Input  
Timing Requirements:  
tCK  
CLKIN Period  
25  
7
5
100  
3
30  
7
5
100  
3
25  
8.75  
5
100  
3
30  
8.75  
5
100  
3
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V–2.0 V)  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 8. Clock Input  
ADSP-21062  
ADSP-21062L  
Min Max  
Parameter  
Reset  
Min  
Max  
Units  
Timing Requirements:  
tWRST  
RESET Pulsewidth Low1  
tSRST  
RESET Setup Before CLKIN High2  
4tCK  
14 + DT/2  
4tCK  
14 + DT/2 tCK  
ns  
ns  
tCK  
NOTES  
1Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 2000 CLKIN cycles while RESET  
is low, assuming stable VDD and CLKIN (not including start-up time of external clock oscillator).  
2Only required if multiple ADSP-21062s must come out of reset synchronous to CLKIN with program counters (PC) equal (i.e., for a SIMD system). Not required  
for multiple ADSP-21062s communicating over the shared bus (through the external port), because the bus arbitration logic synchronizes itself automatically after reset.  
CLKIN  
tSRST  
tWRST  
RESET  
Figure 9. Reset  
ADSP-21062  
ADSP-21062L  
Parameter  
Min  
Max  
Min  
Max  
Units  
Interrupts  
Timing Requirements:  
tSIR  
tHIR  
tIPW  
IRQ2-0 Setup Before CLKIN High1  
18 + 3DT/4  
2 + tCK  
18 + 3DT/4  
2 + tCK  
ns  
ns  
ns  
IRQ2-0 Hold Before CLKIN High1  
IRQ2-0 Pulsewidth2  
12 + 3DT/4  
12 + 3DT/4  
NOTES  
1Only required for IRQx recognition in the following cycle.  
2Applies only if tSIR and tHIR requirements are not met.  
CLKIN  
IRQ2-0  
tSIR  
tHIR  
tIPW  
Figure 10. Interrupts  
REV. C  
–18–  
ADSP-21062/ADSP-21062L  
ADSP-21062  
ADSP-21062L  
Parameter  
Min  
Max  
Min  
Max  
Units  
Timer  
Switching Characteristic:  
tDTEX  
CLKIN High to TIMEXP  
15  
15  
ns  
CLKIN  
tDTEX  
tDTEX  
TIMEXP  
Figure 11. Timer  
ADSP-21062  
Parameter  
Flags  
Min  
Max  
Units  
Timing Requirements:  
tSFI  
tHFI  
tDWRFI  
FLAG3-0IN Setup Before CLKIN High1  
FLAG3-0IN Hold After CLKIN High1  
FLAG3-0IN Delay After RD/WR Low1  
FLAG3-0IN Hold After RD/WR Deasserted1  
8 + 5DT/16  
0 – 5DT/16  
8 + 5DT/16  
0 – 5DT/16  
ns  
ns  
ns  
ns  
5 + 7DT/16  
5 + 7DT/16  
tHFIWR  
0
0
Switching Characteristics:  
tDFO  
FLAG3-0OUT Delay After CLKIN High  
16  
14  
16  
14  
ns  
ns  
ns  
ns  
tHFO  
tDFOE  
tDFOD  
FLAG3-0OUT Hold After CLKIN High  
CLKIN High to FLAG3-0OUT Enable  
CLKIN High to FLAG3-0OUT Disable  
4
3
4
3
NOTE  
1Flag inputs meeting these setup and hold times will affect conditional instructions in the following instruction cycle.  
CLKIN  
tDFOE  
tDFO  
tDFO  
tDFOD  
tHFO  
FLAG3-0  
OUT  
FLAG OUTPUT  
CLKIN  
tHFI  
tSFI  
FLAG3-0  
IN  
tHFIWR  
tDWRFI  
RD, WR  
FLAG INPUT  
Figure 12. Flags  
REV. C  
–19–  
ADSP-21062/ADSP-21062L  
Memory Read—Bus Master  
characteristics also apply for bus master synchronous read/write  
timing (see Synchronous Read/Write – Bus Master below). If  
these timing requirements are met, the synchronous read/write  
timing can be ignored (and vice versa).  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the ADSP-21062 is  
the bus master accessing external memory space. These switching  
ADSP-21062  
ADSP-21062L  
Max  
Parameter  
Min  
Max  
Min  
Units  
Timing Requirements:  
tDAD  
tDRLD  
tHDA  
Address, Selects Delay to Data Valid1, 4  
18 + DT + W  
12 + 5DT/8 + W  
18 + DT + W  
12 + 5DT/8 + W ns  
ns  
RD Low to Data Valid1  
Data Hold from Address, Selects2  
Data Hold from RD High2  
0.5  
2.0  
0.5  
2.0  
ns  
ns  
tHDRH  
tDAAK  
tDSAK  
ACK Delay from Address, Selects3, 4  
ACK Delay from RD Low3  
14 + 7DT/8 + W  
8 + DT/2 + W  
14 + 7DT/8 + W ns  
8 + DT/2 + W  
ns  
Switching Characteristics:  
tDRHA  
tDARL  
tRW  
Address, Selects Hold After RD High  
0 + H  
2 + 3DT/8  
12.5 + 5DT/8 + W  
8 + 3DT/8 + HI  
0 + H  
2 + 3DT/8  
12.5 + 5DT/8 + W  
8 + 3DT/8 + HI  
ns  
ns  
ns  
ns  
Address, Selects to RD Low4  
RD Pulsewidth  
tRWR  
RD High to WR, RD, DMAGx Low  
tSADADC Address, Selects Setup Before  
ADRCLK High4  
0 + DT/4  
0 + DT/4  
ns  
W = (number of wait states specified in WAIT register) × tCK.  
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
H = tCK (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).  
NOTES  
1Data Delay/Setup: User must meet tDAD or tDRLD or synchronous spec tSSDATI  
.
2Data Hold: User must meet tHDA or tHDRH or synchronous spec tHSDATI. See System Hold Time Calculation under Test Conditions for the calculation of hold times  
given capacitive and dc loads.  
3ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC for deassertion of ACK (Low), all three specifications must be met for asser-  
tion of ACK (High).  
4The falling edge of MSx, SW, BMS is referenced.  
ADDRESS  
MSx, SW  
BMS  
tDRHA  
tDARL  
tRW  
RD  
tHDA  
tHDRH  
tDRLD  
tDAD  
DATA  
tDSAK  
tRWR  
tDAAK  
ACK  
WR, DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 13. Memory Read—Bus Master  
REV. C  
–20–  
ADSP-21062/ADSP-21062L  
Memory Write—Bus Master  
characteristics also apply for bus master synchronous read/write  
timing (see Synchronous Read/Write–Bus Master). If these  
timing requirements are met, the synchronous read/write timing  
can be ignored (and vice versa).  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the ADSP-21062 is  
the bus master accessing external memory space. These switching  
ADSP-21062  
ADSP-21062L  
Max  
Parameter  
Min  
Max  
Min  
Units  
Timing Requirements:  
tDAAK  
tDSAK  
ACK Delay from Address, Selects1, 2  
14 + 7DT/8 + W  
8 + DT/2 + W  
14 + 7DT/8 + W ns  
ACK Delay from WR Low1  
8 + DT/2 + W  
ns  
Switching Characteristics:  
tDAWH  
tDAWL  
tWW  
tDDWH  
tDWHA  
Address, Selects to WR Deasserted2  
17 + 15DT/16 + W  
3 + 3DT/8  
17 + 15DT/16 + W  
3 + 3DT/8  
ns  
ns  
ns  
ns  
ns  
Address, Selects to WR Low2  
WR Pulsewidth  
12 + 9DT/16 + W  
7 + DT/2 + W  
0.5 + DT/16 + H  
1 + DT/16 + H  
8 + 7DT/16 + H  
5 + 3DT/8 + I  
–1 + DT/16  
12 + 9DT/16 + W  
7 + DT/2 + W  
0.5 + DT/16 + H  
1 + DT/16 + H  
8 + 7DT/16 + H  
5 + 3DT/8 + I  
–1 + DT/16  
Data Setup Before WR High  
Address Hold After WR Deasserted  
tDATRWH Data Disable After WR Deasserted3  
6 + DT/16 + H  
6 + DT/16 + H ns  
tWWR  
tDDWR  
tWDE  
WR High to WR, RD, DMAGx Low  
Data Disable Before WR or RD Low  
WR Low to Data Enabled  
ns  
ns  
ns  
ns  
tSADADC Address, Selects to ADRCLK High2  
0 + DT/4  
0 + DT/4  
W = (number of wait states specified in WAIT register) × tCK  
.
H = tCK (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).  
I = tCK (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).  
NOTES  
1ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC for deassertion of ACK (Low), all three specifications must be met for asser-  
tion of ACK (High).  
2The falling edge of MSx, SW, BMS is referenced.  
3See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
ADDRESS  
MSx , SW  
BMS  
tDWHA  
tDAWH  
tWW  
tDAWL  
WR  
tWWR  
tDDWR  
tDDWH  
tWDE  
tDATRWH  
DATA  
tDSAK  
tDAAK  
ACK  
RD , DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 14. Memory Write—Bus Master  
REV. C  
–21–  
ADSP-21062/ADSP-21062L  
Synchronous Read/Write—Bus Master  
When accessing a slave ADSP-21062, these switching character-  
istics must meet the slave’s timing requirements for synchronous  
read/writes (see Synchronous Read/Write—Bus Slave). The  
slave ADSP-21062 must also meet these (bus master) timing  
requirements for data and acknowledge setup and hold times.  
Use these specifications for interfacing to external memory  
systems that require CLKIN—relative timing or for accessing a  
slave ADSP-21062 (in multiprocessor memory space). These  
synchronous switching characteristics are also valid during asyn-  
chronous memory reads and writes (see Memory Read—Bus  
Master and Memory Write—Bus Master).  
ADSP-21062  
ADSP-21062L  
Parameter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tSSDATI Data Setup Before CLKIN  
tHSDATI Data Hold After CLKIN  
3 + DT/8  
3.5 – DT/8  
3 + DT/8  
3.5 – DT/8  
ns  
ns  
tDAAK  
ACK Delay After Address, MSx,  
SW, BMS1, 2  
14 + 7 DT/8 + W  
14 + 7 DT/8 + W  
ns  
ns  
ns  
tSACKC ACK Setup Before CLKIN2  
tHACK  
6.5 + DT/4  
–1 – DT/4  
6.5 + DT/4  
–1 – DT/4  
ACK Hold After CLKIN  
Switching Characteristics:  
tDADRO Address, MSx, BMS, SW Delay  
After CLKIN1  
7 – DT/8  
7 – DT/8  
ns  
tHADRO Address, MSx, BMS, SW Hold  
After CLKIN  
–1 – DT/8  
9 + DT/8  
–2 – DT/8  
–3 – 3DT/16 4 – 3DT/16  
8 + DT/4  
–1 – DT/8  
9 + DT/8  
–2 – DT/8  
–3 – 3DT/16 4 – 3DT/16  
8 + DT/4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDPGC  
tDRDO  
PAGE Delay After CLKIN  
RD High Delay After CLKIN  
16 + DT/8  
4 – DT/8  
16 + DT/8  
4 – DT/8  
tDWRO WR High Delay After CLKIN  
tDRWL RD/WR Low Delay After CLKIN  
tSDDATO Data Delay After CLKIN  
tDATTR Data Disable After CLKIN3  
tDADCCK ADRCLK Delay After CLKIN  
tADRCK ADRCLK Period  
12.5 + DT/4  
19 + 5DT/16  
7 – DT/8  
12.5 + DT/4  
19 + 5DT/16  
7 – DT/8  
0 – DT/8  
4 + DT/8  
tCK  
(tCK/2 – 2)  
(tCK/2 – 2)  
0 – DT/8  
4 + DT/8  
tCK  
(tCK/2 – 2)  
(tCK/2 – 2)  
10 + DT/8  
10 + DT/8  
tADRCKH ADRCLK Width High  
tADRCKL ADRCLK Width Low  
W = (number of Wait states specified in WAIT register) × tCK  
.
NOTES  
1The falling edge of MSx, SW, BMS is referenced.  
2ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC for deassertion of ACK (Low), all three specifications must be met for assertion  
of ACK (High).  
3See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
REV. C  
–22–  
ADSP-21062/ADSP-21062L  
CLKIN  
tADRCK  
tADRCKL  
tADRCKH  
tDADCCK  
ADRCLK  
tHADRO  
tDAAK  
tDADRO  
ADDRESS  
MSx, SW  
tDPGC  
PAGE  
tHACK  
tSACKC  
ACK  
(IN)  
READ CYCLE  
tDRWL  
tDRDO  
RD  
tHSDATI  
tSSDATI  
DATA  
(IN)  
WRITE CYCLE  
tDWRO  
tDRWL  
WR  
tDATTR  
tSDDATO  
DATA  
(OUT)  
Figure 15. Synchronous Read/Write—Bus Master  
REV. C  
–23–  
ADSP-21062/ADSP-21062L  
Synchronous Read/Write—Bus Slave  
memory space). The bus master must meet these (bus slave)  
timing requirements.  
Use these specifications for ADSP-21062 bus master accesses of  
a slave’s IOP registers or internal memory (in multiprocessor  
ADSP-21062  
ADSP-21062L  
Parameter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tSADRI  
tHADRI  
tSRWLI  
tHRWLI  
tRWHPI  
tSDATWH  
tHDATWH  
Address, SW Setup Before CLKIN  
15 + DT/2  
15 + DT/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, SW Hold Before CLKIN  
RD/WR Low Setup Before CLKIN1  
RD/WR Low Hold After CLKIN  
RD/WR Pulse High  
5 + DT/2  
5 + DT/2  
9.5 + 5DT/16  
–4 – 5DT/16  
3
5
1
9.5 + 5DT/16  
–4 – 5DT/16  
3
5
1
8 + 7DT/16  
8 + 7DT/16  
Data Setup Before WR High  
Data Hold After WR High  
Switching Characteristics:  
tSDDATO  
tDATTR  
tDACKAD  
tACKTR  
Data Delay After CLKIN  
19 + 5DT/16  
7 – DT/8  
9
19 + 5DT/16 ns  
Data Disable After CLKIN2  
ACK Delay After Address, SW3  
ACK Disable After CLKIN3  
0 – DT/8  
0 – DT/8  
7 – DT/8  
9
ns  
ns  
ns  
–1 – DT/8  
6 – DT/8  
–1 – DT/8  
6 – DT/8  
NOTES  
1tSRWLI (min) = 9.5 + 5DT/16 when Multiprocessor Memory Space Wait State (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled, t SRWLI (min)  
= 4 + DT/8.  
2See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
3tDACKAD is true only if the address and SW inputs have setup times (before CLKIN) greater than 10 + DT/8 and less than 19 + 3DT/4. If the address and SW inputs have  
setup times greater than 19 + 3DT/4, then ACK is valid 14 + DT/4 (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK  
regardless of the state of MMSWS or strobes. A slave will three-state ACK every cycle with tACKTR  
.
REV. C  
–24–  
ADSP-21062/ADSP-21062L  
CLKIN  
tSADRI  
tHADRI  
ADDRESS  
SW  
tDACKAD  
tACKTR  
ACK  
READ ACCESS  
tSRWLI  
tHRWLI  
tRWHPI  
RD  
tSDDATO  
tDATTR  
DATA  
(OUT)  
WRITE ACCESS  
tRWHPI  
tSRWLI  
tHRWLI  
WR  
tHDATWH  
tSDATWH  
DATA  
(IN)  
Figure 16. Synchronous Read/Write—Bus Slave  
REV. C  
–25–  
ADSP-21062/ADSP-21062L  
Multiprocessor Bus Request and Host Bus Request  
Use these specifications for passing of bus mastership between  
multiprocessing ADSP-21062s (BRx) or a host processor  
(HBR, HBG).  
ADSP-21062  
Max  
ADSP-21062L  
Max  
Parameter  
Min  
Min  
Units  
Timing Requirements:  
tHBGRCSV  
tSHBRI  
tHHBRI  
tSHBGI  
tHHBGI  
tSBRI  
HBG Low to RD/WR/CS Valid1  
20 + 5DT/4  
14 + 3DT/4  
6 + DT/2  
20 + 5DT/4  
14 + 3DT/4  
6 + DT/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HBR Setup Before CLKIN2  
20 + 3DT/4  
13 + DT/2  
13 + DT/2  
21 + 3DT/4  
20 + 3DT/4  
13 + DT/2  
13 + DT/2  
21 + 3DT/4  
HBR Hold Before CLKIN2  
HBG Setup Before CLKIN  
HBG Hold Before CLKIN High  
BRx, CPA Setup Before CLKIN3  
BRx, CPA Hold Before CLKIN High  
RPBA Setup Before CLKIN  
RPBA Hold Before CLKIN  
tHBRI  
tSRPBAI  
tHRPBAI  
6 + DT/2  
6 + DT/2  
12 + 3DT/4  
12 + 3DT/4  
Switching Characteristics:  
tDHBGO  
tHHBGO  
tDBRO  
HBG Delay After CLKIN  
7 – DT/8  
7 – DT/8  
7 – DT/8  
7 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
HBG Hold After CLKIN  
BRx Delay After CLKIN  
BRx Hold After CLKIN  
CPA Low Delay After CLKIN  
CPA Disable After CLKIN  
REDY (O/D) or (A/D) Low from CS  
and HBR Low4  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
tHBRO  
tDCPAO  
tTRCPA  
tDRDYCS  
8 – DT/8  
4.5 – DT/8  
8 – DT/8  
4.5 – DT/8  
8.5  
10  
8.75  
10  
ns  
ns  
ns  
tTRDYHG  
tARDYTR  
REDY (O/D) Disable or REDY (A/D)  
High from HBG4  
44 + 23DT/16  
44 + 23DT/16  
REDY (A/D) Disable from CS or  
HBR High4  
NOTES  
1For first asynchronous access after HBR and CS asserted, ADDR31-0 must be a non-MMS value 1/2 tCK before RD or WR goes low or by tHBGRCSV after HBG goes  
low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the “Host Processor Control of the ADSP-21062” section in the  
ADSP-21062 SHARC User’s Manual, Second Edition.  
2Only required for recognition in the current cycle.  
3CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.  
4(O/D) = open drain, (A/D) = active drive.  
REV. C  
–26–  
ADSP-21062/ADSP-21062L  
CLKIN  
tSHBRI  
tHHBRI  
HBR  
tDHBGO  
tHHBGO  
HBG  
(OUT)  
tDBRO  
tHBRO  
BRx  
(OUT)  
tTRCPA  
tDCPAO  
CPA (OUT)  
(O/D)  
tSHBGI  
tHHBGI  
HBG (IN)  
tSBRI  
tHBRI  
BRx (IN)  
CPA (IN) (O/D)  
tSRPBAI  
tHRPBAI  
RPBA  
HBR AND CS  
tTRDYHG  
tDRDYCS  
REDY (O/D)  
tARDYTR  
REDY (A/D)  
tHBGRCSV  
HBG (OUT)  
RD  
WR  
CS  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 17. Multiprocessor Bus Request and Host Bus Request  
REV. C  
–27–  
ADSP-21062/ADSP-21062L  
Asynchronous Read/Write—Host to ADSP-21062  
drive the RD and WR pins to access the ADSP-21062’s internal  
memory or IOP registers. HBR and HBG are assumed low for  
this timing.  
Use these specifications for asynchronous host processor accesses  
of an ADSP-21062, after the host has asserted CS and HBR  
(low). After HBG is returned by the ADSP-21062, the host can  
ADSP-21062  
Max  
ADSP-21062L  
Max  
Parameter  
Min  
Min  
Units  
Read Cycle  
Timing Requirements:  
tSADRDL  
tHADRDH  
tWRWH  
tDRDHRDY  
tDRDHRDY  
Address Setup/CS Low Before RD Low1  
Address Hold/CS Hold Low After RD  
RD/WR High Width  
RD High Delay After REDY (O/D) Disable  
RD High Delay After REDY (A/D) Disable  
0
0
6
0
0
0
0
6
0
0
ns  
ns  
ns  
ns  
ns  
Switching Characteristics:  
tSDATRDY  
tDRDYRDL  
tRDYPRD  
Data Valid Before REDY Disable from Low  
2
2
ns  
ns  
REDY (O/D) or (A/D) Low Delay After RD Low  
REDY (O/D) or (A/D) Low Pulse  
Width for Read  
10  
8
10  
8
45 + 21DT/16  
2
45 + 21DT/16  
2
ns  
ns  
tHDARWH  
Data Disable After RD High  
Write Cycle  
Timing Requirements:  
tSCSWRL  
tHCSWRH  
tSADWRH  
tHADWRH  
tWWRL  
CS Low Setup Before WR low  
0
0
5
2
7
6
0
0
5
2
7
6
ns  
ns  
ns  
ns  
ns  
ns  
CS Low Hold After WR high  
Address Setup Before WR High  
Address Hold After WR High  
WR Low Width  
tWRWH  
RD/WR High Width  
tDWRHRDY  
WR High Delay After REDY  
(O/D) or (A/D) Disable  
0
5
1
0
5
1
ns  
ns  
ns  
tSDATWH  
tHDATWH  
Data Setup Before WR High  
Data Hold After WR High  
Switching Characteristics:  
tDRDYWRL REDY (O/D) or (A/D) Low Delay  
After WR/CS Low  
REDY (O/D) or (A/D) Low Pulse  
Width for Write  
10  
10  
ns  
ns  
tRDYPWR  
15 + 7DT/16  
1 + 7DT/16  
15 + 7DT/16  
tSRDYCK  
REDY (O/D) or (A/D) Disable to CLKIN  
8 + 7DT/16 1 + 7DT/16  
8 + 7DT/16 ns  
NOTE  
1Not required if RD and address are valid tHBGRCSV after HBG goes low. For first access after HBR asserted, ADDR31-0 must be a non-MMS value 1/2 tCLK before RD  
or WR goes low or by tHBGRCSV after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the “Host Proces-  
sor Control of the ADSP-21062” section in the ADSP-21062 SHARC User’s Manual, Second Edition.  
CLKIN  
tSRDYCK  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 18a. Synchronous REDY Timing  
REV. C  
–28–  
ADSP-21062/ADSP-21062L  
READ CYCLE  
ADDRESS/CS  
tHADRDH  
tSADRDL  
tWRWH  
RD  
tHDARWH  
DATA (OUT)  
tDRDHRDY  
tSDATRDY  
tRDYPRD  
tDRDYRDL  
REDY (O/D)  
REDY (A/D)  
WRITE CYCLE  
ADDRESS  
tHADWRH  
tSADWRH  
tHCSWRH  
tSCSWRL  
CS  
tWWRL  
tWRWH  
WR  
tHDATWH  
tSDATWH  
DATA (IN)  
tDWRHRDY  
tDRDYWRL  
tRDYPWR  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 18b. Asynchronous Read/Write—Host to ADSP-21062  
REV. C  
–29–  
ADSP-21062/ADSP-21062L  
Three-State Timing—Bus Master, Bus Slave, HBR, SBTS  
These specifications show how the memory interface is disabled  
(stops driving) or enabled (resumes driving) relative to CLKIN  
and the SBTS pin. This timing is applicable to bus master tran-  
sition cycles (BTC) and host transition cycles (HTC) as well as  
the SBTS pin.  
ADSP-21062  
ADSP-21062L  
Parameter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tSTSCK  
tHTSCK  
SBTS Setup Before CLKIN  
SBTS Hold Before CLKIN  
12 + DT/2  
12 + DT/2  
ns  
ns  
6 + DT/2  
6 + DT/2  
Switching Characteristics:  
tMIENA Address/Select Enable After CLKIN  
tMIENS  
Strobes Enable After CLKIN1  
tMIENHG HBG Enable After CLKIN  
tMITRA Address/Select Disable After CLKIN  
tMITRS  
Strobes Disable After CLKIN1  
tMITRHG HBG Disable After CLKIN  
tDATEN  
tDATTR  
tACKEN  
tACKTR  
tADCEN  
tADCTR  
–1 – DT/8  
–1.5 – DT/8  
–1.5 – DT/8  
–1.25 – DT/8  
–1.5 – DT/8  
–1.5 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0 – DT/4  
1.5 – DT/4  
2.0 – DT/4  
0 – DT/4  
1.5 – DT/4  
2.0 – DT/4  
Data Enable After CLKIN2  
Data Disable After CLKIN2  
ACK Enable After CLKIN2  
ACK Disable After CLKIN2  
ADRCLK Enable After CLKIN  
ADRCLK Disable After CLKIN  
9 + 5DT/16  
0 – DT/8  
7.5 + DT/4  
–1 – DT/8  
–2 – DT/8  
9 + 5DT/16  
–0.5 – DT/8  
7.5 + DT/4  
–1 – DT/8  
–2 – DT/8  
7 – DT/8  
6 – DT/8  
8 – DT/4  
7 – DT/8  
6 – DT/8  
8 – DT/4  
tMTRHBG Memory Interface Disable Before  
HBG Low3  
tMENHBG Memory Interface Enable After  
HBG High3  
0 + DT/8  
19 + DT  
0 + DT/8  
19 + DT  
ns  
ns  
NOTES  
1Strobes = RD, WR, SW, PAGE, DMAG.  
2In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write.  
3Memory Interface = Address, RD, WR, MSx, SW, PAGE, DMAGx, BMS (in EPROM boot mode).  
CLKIN  
tSTSCK  
tHTSCK  
SBTS  
tMITRA, tMITRS, tMITRHG  
tMIENA, tMIENS, tMIENHG  
MEMORY  
INTERFACE  
tDATTR  
tDATEN  
DATA  
tACKTR  
tACKEN  
ACK  
tADCEN  
tADCTR  
ADRCLK  
Figure 19a. Three-State Timing (Bus Transition Cycle, SBTS Assertion)  
HBG  
tMTRHBG  
tMENHBG  
MEMORY  
INTERFACE  
MEMORY INTERFACE = ADDRESS, RD, WR, MSx, SW, PAGE, DMAGx. BMS (IN EPROM BOOT MODE)  
Figure 19b. Three-State Timing (Host Transition Cycle)  
REV. C  
–30–  
ADSP-21062/ADSP-21062L  
DMA Handshake  
transfer is controlled by ADDR31-0, RD, WR, MS3-0, and ACK  
(not DMAG). For Paced Master mode, the Memory Read–Bus  
Master, Memory Write–Bus Master, and Synchronous Read/  
Write–Bus Master timing specifications for ADDR31-0, RD, WR,  
MS3-0, SW, PAGE, DATA47-0, and ACK also apply.  
These specifications describe the three DMA handshake modes.  
In all three modes DMAR is used to initiate transfers. For hand-  
shake mode, DMAG controls the latching or enabling of data  
externally. For external handshake mode, the data transfer is  
controlled by the ADDR31-0, RD, WR, SW, PAGE, MS3-0  
,
ACK, and DMAG signals. For Paced Master mode, the data  
ADSP-21062  
ADSP-21062L  
Max  
Parameter  
Min  
Max  
Min  
Units  
Timing Requirements:  
tSDRLC  
tSDRHC  
tWDR  
DMARx Low Setup Before CLKIN1  
5
5
5
5
ns  
ns  
DMARx High Setup Before CLKIN1  
DMARx Width Low  
(Nonsynchronous)  
6
2
6
2
ns  
ns  
ns  
ns  
ns  
ns  
tSDATDGL Data Setup After DMAGx Low2  
tHDATIDG Data Hold After DMAGx High  
tDATDRH Data Valid After DMARx High2  
tDMARLL DMARx Low Edge to Low Edge  
10 + 5DT/8  
16 + 7DT/8  
10 + 5DT/8  
16 + 7DT/8  
23 + 7DT/8  
6
23 + 7DT/8  
6
tDMARH  
DMARx Width High  
Switching Characteristics:  
tDDGL  
tWDGH  
tWDGL  
tHDGC  
DMAGx Low Delay After CLKIN  
DMAGx High Width  
DMAGx Low Width  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
8 + 9DT/16  
0
15 + DT/4  
6 – DT/8  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
8 + 9DT/16  
0
15 + DT/4  
6 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DMAGx High Delay After CLKIN  
tVDATDGH Data Valid Before DMAGx High3  
tDATRDGH Data Disable After DMAGx High4  
7
2
7
2
tDGWRL  
tDGWRH  
tDGWRR  
tDGRDL  
tDRDGH  
tDGRDR  
tDGWR  
WR Low Before DMAGx Low  
DMAGx Low Before WR High  
WR High Before DMAGx High  
RD Low Before DMAGx Low  
RD Low Before DMAGx High  
RD High Before DMAGx High  
DMAGx High to WR, RD, DMAGx  
Low  
–0.25  
–0.25  
10 + 5DT/8 + W  
1 + DT/16  
0
11 + 9DT/16 + W  
0
10 + 5DT/8 + W  
1 + DT/16  
0
11 + 9DT/16 + W  
0
3 + DT/16  
2
3 + DT/16  
2
3
3
5 + 3DT/8 + HI  
5 + 3DT/8 + HI  
17 + DT  
ns  
ns  
tDADGH  
tDDGHA  
Address/Select Valid to DMAGx High 17 + DT  
Address/Select Hold after DMAGx  
High  
–0.5  
–1  
ns  
W = (number of wait states specified in WAIT register) × tCK  
.
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
NOTES  
1Only required for recognition in the current cycle.  
2tSDATDGL is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the  
data can be driven tDATDRH after DMARx is brought high.  
3tVDATDGH is valid if DMARx is not being used to hold off completion of a read. If DMARx is used to prolong the read, then tVDATDGH = 8 + 9DT/16 + (n × tCK) where  
n equals the number of extra cycles that the access is prolonged.  
4See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
REV. C  
–31–  
ADSP-21062/ADSP-21062L  
CLKIN  
tSDRLC  
tDMARLL  
tSDRHC  
tWDR  
tDMARH  
DMARx  
DMAGx  
tHDGC  
tDDGL  
tWDGL  
tWDGH  
TRANSFERS BETWEEN ADSP-2106x INTERNAL MEMORY AND EXTERNAL DEVICE  
tDATRDGH  
tVDATDGH  
DATA (FROM  
ADSP-2106x TO  
EXTERNAL DRIVE)  
tDATDRH  
tHDATIDG  
tSDATDGL  
DATA (FROM  
EXTERNAL DRIVE  
TO ADSP-2106x)  
TRANSFERS BETWEEN EXTERNAL DEVICE AND EXTERNAL MEMORY* (EXTERNAL HANDSHAKE MODE)  
tDGWRL  
WR  
tDGWRH  
tDGWRR  
(EXTERNAL DEVICE  
TO EXTERNAL  
MEMORY)  
tDGRDR  
tDGRDL  
RD  
(EXTERNAL  
MEMORY TO  
EXTERNAL DEVICE)  
tDRDGH  
tDADGH  
tDDGHA  
ADDRESS  
MSx, SW  
*
MEMORY READ – BUS MASTER, MEMORY WRITE – BUS MASTER, AND SYNCHRONOUS READ/WRITE – BUS MASTER  
TIMING SPECIFICATIONS FOR ADDR  
, RD, WR, SW, MS AND ACK ALSO APPLY HERE.  
31-0  
3-0  
Figure 20. DMA Handshake Timing  
REV. C  
–32–  
ADSP-21062/ADSP-21062L  
Link Ports: 1 
؋
 CLK Speed Operation  
ADSP-21062  
Max  
ADSP-21062L  
Parameter  
Min  
Min  
Max  
Units  
Receive  
Timing Requirements:  
tSLDCL  
tHLDCL  
tLCLKIW  
Data Setup Before LCLK Low  
Data Hold After LCLK Low  
LCLK Period (1 × Operation)  
3
3
tCK  
6
5
3
3
tCK  
6
5
ns  
ns  
ns  
ns  
ns  
tLCLKRWL LCLK Width Low  
tLCLKRWH LCLK Width High  
Switching Characteristics:  
tDLAHC  
tDLALC  
tENDLK  
tTDLK  
LACK High Delay After CLKIN High  
18 + DT/2  
–3  
5 + DT/2  
28.5 + DT/2  
13  
18 + DT/2  
–3  
5 + DT/2  
28.5 + DT/2  
13  
ns  
ns  
ns  
ns  
LACK Low Delay After LCLK High1  
LACK Enable from CLKIN  
LACK Disable from CLKIN  
20 + DT/2  
20 + DT/2  
Transmit  
Timing Requirements:  
tSLACH LACK Setup Before LCLK High  
tHLACH LACK Hold After LCLK High  
18  
–7  
18  
–7  
ns  
ns  
Switching Characteristics:  
tDLCLK  
tDLDCH  
tHLDCH  
LCLK Delay After CLKIN (1 × operation)  
Data Delay After LCLK High  
Data Hold After LCLK High  
15.5  
2.5  
15.5  
2.5  
ns  
ns  
ns  
ns  
ns  
–3  
–3  
tLCLKTWL LCLK Width Low  
tLCLKTWH LCLK Width High  
(tCK/2) – 1  
(tCK/2) + 1.25 (tCK/2) – 1  
(tCK/2) – 1.5  
(tCK/2) + 1.5  
(tCK/2) + 1  
(tCK/2) – 1.25 (tCK/2) + 1  
tDLACLK  
tENDLK  
tTDLK  
LCLK Low Delay After LACK High  
LDAT, LCLK Enable After CLKIN  
LDAT, LCLK Disable After CLKIN  
(tCK/2) + 8.75 (3 × tCK/2) + 17 (tCK/2) + 8  
(3 × tCK/2) + 17 ns  
5 + DT/2  
5 + DT/2  
ns  
20 + DT/2  
20 + DT/2  
ns  
Link Port Service Request Interrupts: 1 × and  
2 × Speed Operations  
Timing Requirements:  
tSLCK  
tHLCK  
LACK/LCLK Setup Before CLKIN Low2 10  
10  
2
ns  
ns  
LACK/LCLK Hold After CLKIN Low2  
2
NOTES  
1LACK will go low with tDLALC relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver’s link buffer is not about to fill.  
2Only required for interrupt recognition in the current cycle.  
REV. C  
–33–  
ADSP-21062/ADSP-21062L  
Link Ports: 2 
؋
 CLK Speed Operation  
from 2 × speed specifications will result in unrealistically small  
skew times because they include multiple tester guardbands. The  
setup and hold skew times shown below are calculated to include  
only one tester guardband.  
Calculation of link receiver data setup and hold relative to link  
clock is required to determine the maximum allowable skew that  
can be introduced in the transmission path between LDATA  
and LCLK. Setup skew is the maximum delay that can be intro-  
duced in LDATA relative to LCLK, (setup skew = tLCLKTWH  
min – tDLDCH – tSLDCL). Hold skew is the maximum delay that  
can be introduced in LCLK relative to LDATA, (hold skew =  
tLCLKTWL min – tHLDCH – tHLDCL). Calculations made directly  
ADSP-21062 Setup Skew = 1.84 ns max  
ADSP-21062 Hold Skew  
= 2.78 ns max  
ADSP-21062L Setup Skew = 2.10 ns max  
ADSP-21062L Hold Skew = 1.87 ns max  
ADSP-21062  
ADSP-21062L  
Max  
Parameter  
Min  
Max  
Min  
Units  
Receive  
Timing Requirements:  
tSLDCL  
tHLDCL  
tLCLKIW  
Data Setup Before LCLK Low  
Data Hold After LCLK Low  
LCLK Period (2 × Operation)  
2.5  
2.25  
tCK/2  
4.5  
4
2.25  
2.25  
tCK/2  
5.25  
4
ns  
ns  
ns  
ns  
ns  
tLCLKRWL LCLK Width Low  
tLCLKRWH LCLK Width High  
Switching Characteristics:  
tDLAHC  
tDLALC  
LACK High Delay After CLKIN High  
18 + DT/2  
6
28.5 + DT/2  
16  
18 + DT/2  
6
29.5 + DT/2  
16  
ns  
ns  
LACK Low Delay After LCLK High1  
Transmit  
Timing Requirements:  
tSLACH LACK Setup Before LCLK High  
tHLACH LACK Hold After LCLK High  
19  
–6.75  
19  
–6.5  
ns  
ns  
Switching Characteristics:  
tDLCLK  
tDLDCH  
tHLDCH  
LCLK Delay After CLKIN  
Data Delay After LCLK High  
Data Hold After LCLK High  
8
2.25  
8
2.25  
ns  
ns  
ns  
ns  
ns  
–2.0  
(tCK/4) – 1  
–2.25  
(tCK/4) – 1  
tLCLKTWL LCLK Width Low  
tLCLKTWH LCLK Width High  
(tCK/4) + 1.25  
(tCK/4) – 1.25 (tCK/4) + 1  
(tCK/4) + 1.5  
(tCK/4) – 1.5 (tCK/4) + 1  
tDLACLK  
LCLK Low Delay After LACK High  
(tCK/4) + 9 (3 × tCK/4) + 16.5 (tCK/4) + 9  
(3 × tCK/4) + 16.5 ns  
NOTE  
1LACK will go low with tDLALC relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver’s link buffer is not about to fill.  
REV. C  
–34–  
ADSP-21062/ADSP-21062L  
TRANSMIT  
CLKIN  
tDLCLK  
tLCLKTWH  
tLCLKTWL  
LAST NIBBLE  
TRANSMITTED  
FIRST NIBBLE  
TRANSMITTED  
LCLK INACTIVE  
(HIGH)  
LCLK 1x  
OR  
LCLK 2x  
tDLDCH  
tHLDCH  
LDAT(3:0)  
LACK (IN)  
OUT  
tDLACLK  
tSLACH  
tHLACH  
THE tSLACH REQUIREMENT APPLIES TO THE RISING EDGE OF LCLK ONLY FOR THE FIRST NIBBLE TRANSMITTED.  
RECEIVE  
CLKIN  
tLCLKIW  
tLCLKRWH  
tLCLKRWL  
LCLK 1x  
OR  
LCLK 2x  
tHLDCL  
tSLDCL  
LDAT(3:0)  
IN  
tDLALC  
tDLAHC  
LACK (OUT)  
LINK PORT ENABLE/THREE-STATE DELAY FROM INSTRUCTION  
CLKIN  
tENDLK  
tTDLK  
LCLK  
LDAT(3:0)  
LACK  
LINK PORT ENABLE OR THREE-STATE TAKES EFFECT TWO CYCLES AFTER A WRITE TO A LINK PORT CONTROL REGISTER.  
LINK PORT INTERRUPT SETUP TIME  
CLKIN  
tHLCK  
tSLCK  
LCLK  
LACK  
Figure 21. Link Ports  
REV. C  
–35–  
ADSP-21062/ADSP-21062L  
Serial Ports  
ADSP-21062  
Max  
ADSP-21062L  
Max  
Parameter  
Min  
Min  
Units  
External Clock  
Timing Requirements:  
tSFSE  
TFS/RFS Setup Before TCLK/RCLK1  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
TCLK/RCLK Width  
3.5  
4
1.5  
4
9
tCK  
3.5  
4
1.5  
4
9
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
tSDRE  
tHDRE  
tSCLKW  
tSCLK  
TCLK/RCLK Period  
Internal Clock  
Timing Requirements:  
tSFSI  
TFS Setup Before TCLK1; RFS Setup  
Before RCLK1  
8
1
3
3
8
1
3
3
ns  
ns  
ns  
ns  
tHFSI  
tSDRI  
tHDRI  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
External or Internal Clock  
Switching Characteristics:  
tDFSE  
RFS Delay After RCLK (Internally  
Generated RFS)3  
13  
13  
ns  
ns  
tHOFSE  
RFS Hold After RCLK (Internally  
Generated RFS)3  
3
3
External Clock  
Switching Characteristics:  
tDFSE  
TFS Delay After TCLK (Internally  
Generated TFS)3  
13  
16  
13  
16  
ns  
tHOFSE  
TFS Hold After TCLK (Internally  
Generated TFS)3  
3
5
3
5
ns  
ns  
ns  
tDDTE  
tHDTE  
Transmit Data Delay After TCLK3  
Transmit Data Hold After TCLK3  
Internal Clock  
Switching Characteristics:  
tDFSI  
TFS Delay After TCLK (Internally  
Generated TFS)3  
4.5  
4.5  
7.5  
ns  
tHOFSI  
TFS Hold After TCLK (Internally  
Generated TFS)3  
–1.5  
–1.5  
0
ns  
ns  
ns  
ns  
tDDTI  
tHDTI  
tSCLKIW  
Transmit Data Delay After TCLK3  
Transmit Data Hold After TCLK3  
TCLK/RCLK Width  
7.5  
0
(tSCLK/2) – 2.5  
(tSCLK/2) + 2.5  
(tSCLK/2) – 2.5 (tSCLK/2) + 2.5  
Enable and Three-State  
Switching Characteristics:  
tDDTEN  
tDDTTE  
tDDTIN  
tDDTTI  
tDCLK  
Data Enable from External TCLK3  
4.25  
0
4
ns  
ns  
ns  
ns  
ns  
ns  
Data Disable from External TCLK3  
Data Enable from Internal TCLK3  
Data Disable from Internal TCLK3  
TCLK/RCLK Delay from CLKIN  
SPORT Disable After CLKIN  
10.5  
16  
0
3
7.5  
22 + 3DT/8  
17  
22 + 3DT/8  
17  
tDPTR  
Gated SCLK with External TFS  
(Mesh Multiprocessing)4  
Timing Requirements:  
tSTFSCK  
tHTFSCK  
TFS Setup Before CLKIN  
TFS Hold After CLKIN  
5
5
ns  
ns  
tCK/2  
tCK/2  
External Late Frame Sync  
Switching Characteristics:  
tDDTLFSE Data Delay from Late External TFS or  
External RFS with MCE = 1, MFD = 05  
tDDTENFS Data Enable from late FS or MCE = 1,  
MFD = 05  
12.75  
12.75  
ns  
ns  
3.5  
3.5  
To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame sync setup  
and hold, 2) data delay and data setup and hold, and 3) SCLK width.  
REV. C  
–36–  
ADSP-21062/ADSP-21062L  
NOTES  
1Referenced to sample edge.  
2RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0 ns minimum from drive edge.  
3Referenced to drive edge.  
4Applies only to gated serial clock mode used for serial port system I/O in mesh multiprocessing systems.  
5MCE = 1, TFS enable and TFS valid follow tDDTLFSE and tDDTENFS  
.
DATA RECEIVE– INTERNAL CLOCK  
DATA RECEIVE– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
RCLK  
RCLK  
tDFSE  
tHOFSE  
tDFSE  
tHOFSE  
tHFSE  
tSFSI  
tHFSI  
tSFSE  
RFS  
DR  
RFS  
DR  
tSDRE  
tHDRE  
tSDRI  
tHDRI  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT– INTERNAL CLOCK  
DATA TRANSMIT– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
TCLK  
TCLK  
tDFSI  
tHOFSI  
tDFSE  
tHOFSE  
tSFSI  
tHFSI  
tHFSE  
tSFSE  
TFS  
TFS  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DT  
DT  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK / RCLK  
TCLK (EXT)  
DT  
tDDTEN  
tDDTTE  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK / RCLK  
TCLK (INT)  
tDDTIN  
tDDTTI  
DT  
CLKIN  
CLKIN  
tHTFSCK  
tDPTR  
tSTFSCK  
SPORT ENABLE AND  
THREE-STATE  
LATENCY  
TCLK, RCLK  
SPORT DISABLE DELAY  
FROM INSTRUCTION  
TFS (EXT)  
TFS, RFS, DT  
IS TWO CYCLES  
tDCLK  
NOTE: APPLIES ONLY TO GATED SERIAL CLOCK MODE WITH  
EXTERNAL TFS, AS USED IN THE SERIAL PORT SYSTEM I/O FOR  
MESH MULTIPROCESSING.  
TCLK (INT)  
RCLK (INT)  
LOW TO HIGH ONLY  
Figure 22. Serial Ports  
–37–  
REV. C  
ADSP-21062/ADSP-21062L  
EXTERNAL RFS with MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
tHOFSE/I  
RCLK  
RFS  
(SEE NOTE 2  
ON PREVIOUS PAGE)  
tSFSE/I  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
DT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TFS  
DRIVE  
DRIVE  
SAMPLE  
TCLK  
TFS  
tHOFSE/I  
(SEE NOTE 2  
ON PREVIOUS PAGE)  
tSFSE/I  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
DT  
2ND BIT  
tDDTLFSE  
Figure 23. External Late Frame Sync  
REV. C  
–38–  
ADSP-21062/ADSP-21062L  
JTAG Test Access Port and Emulation  
ADSP-21062  
ADSP-21062L  
Parameter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tTCK  
TCK Period  
tCK  
5
6
7
18  
tCK  
5
6
7
18.5  
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
tTRSTW  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK Low1  
System Inputs Hold After TCK Low1  
TRST Pulsewidth  
4tCK  
4tCK  
Switching Characteristics:  
tDTDO TDO Delay from TCK Low  
tDSYS  
System Outputs Delay After TCK Low2  
13  
18.5  
13  
18.5  
ns  
ns  
NOTES  
1System Inputs = DATA47-0, ADDR31-0, RD, WR, ACK, SBTS, SW, HBR, HBG, CS, DMAR1, DMAR2, BR6-1, ID2-0, RPBA, IRQ2-0, FLAG3-0, DR0, DR1,  
TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, EBOOT, LBOOT, BMS, CLKIN, RESET.  
2System Outputs = DATA47-0, ADDR31-0, MS3-0, RD, WR, ACK, PAGE, ADRCLK, SW, HBG, REDY, DMAG1, DMAG2, BR6-1, CPA, FLAG3-0, TIMEXP, DT0,  
DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, BMS.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 24. IEEE 11499.1 JTAG Test Access Port  
REV. C  
–39–  
ADSP-21062/ADSP-21062L  
OUTPUT DRIVE CURRENTS  
Table III. External Power Calculations (3.3 V Device)  
Figure 28 shows typical I-V characteristics for the output drivers  
of the ADSP-21062. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
Pin  
Type  
# of  
%
2
Pins Switching 
؋
 C  
؋
 f  
؋
 VDD = PEXT  
Address  
MS0  
WR  
Data  
ADDRCLK  
15  
1
1
32  
1
50  
0
50  
× 44.7 pF × 10 MHz × 10.9 V = 0.037 W  
× 44.7 pF × 10 MHz × 10.9 V = 0.000 W  
× 44.7 pF × 20 MHz × 10.9 V = 0.010 W  
× 14.7 pF × 10 MHz × 10.9 V = 0.026 W  
× 4.7 pF × 20 MHz × 10.9 V = 0.001 W  
POWER DISSIPATION  
Total power dissipation has two components, one due to inter-  
nal circuitry and one due to the switching of external output  
drivers. Internal power dissipation is dependent on the instruc-  
tion execution sequence and the data operands involved. Inter-  
nal power dissipation is calculated in the following way:  
P
EXT = 0.074 W  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation:  
P
INT = IDDIN × VDD  
The external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
P
TOTAL = PEXT + (IDDIN2 × 5.0 V )  
Note that the conditions causing a worst-case PEXT are different  
from those causing a worst-case PINT. Maximum PINT cannot  
occur while 100% of the output pins are switching from all ones  
to all zeros. Note also that it is not common for an application to  
have 100% or even 50% of the outputs switching simultaneously.  
– the number of output pins that switch during each cycle (O)  
– the maximum frequency at which they can switch (f)  
– their load capacitance (C)  
– their voltage swing (VDD  
)
and is calculated by:  
TEST CONDITIONS  
Output Disable Time  
P
EXT = O × C × VDD2 × f  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from  
their output high or low voltage. The time for the voltage on the  
bus to decay by V is dependent on the capacitive load, CL and  
the load current, IL. This decay time can be approximated by  
the following equation:  
The load capacitance should include the processor’s package  
capacitance (CIN). The switching frequency includes driving the  
load high and then back low. Address and data pins can drive  
high and low at a maximum rate of 1/(2tCK). The write strobe  
can switch every cycle at a frequency of 1/tCK. Select pins switch  
at 1/(2tCK), but selects can switch on each cycle.  
C
V  
Example:  
L
t
=
DECAY  
I
L
Estimate PEXT with the following assumptions:  
The output disable time tDIS is the difference between tMEASURED  
and tDECAY as shown in Figure 25. The time tMEASURED is the  
interval from when the reference signal switches to when the  
output voltage decays V from the measured output high or  
output low voltage. tDECAY is calculated with test loads CL and  
IL, and with V equal to 0.5 V.  
–A system with one bank of external data memory RAM (32-bit)  
–Four 128K × 8 RAM chips are used, each with a load of 10 pF  
–External data memory writes occur every other cycle, a rate  
of 1/(4tCK), with 50% of the pins switching  
–The instruction cycle rate is 40 MHz (tCK = 25 ns).  
The PEXT equation is calculated for each class of pins that can  
drive:  
Output Enable Time  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to when they start  
driving. The output enable time tENA is the interval from when a  
reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram (Figure 25). If multiple  
pins (such as the data bus) are enabled, the measurement value  
is that of the first pin to start driving.  
Table II. External Power Calculations (5 V Device)  
Pin  
Type  
# of  
%
2
Pins Switching 
؋
 C  
؋
 f  
؋
 VDD = PEXT  
Address  
MS0  
15  
1
1
32  
1
50  
0
50  
× 44.7 pF × 10 MHz × 25 V = 0.084 W  
× 44.7 pF × 10 MHz × 25 V = 0.000 W  
× 44.7 pF × 20 MHz × 25 V = 0.022 W  
× 14.7 pF × 10 MHz × 25 V = 0.059 W  
× 4.7 pF × 20 MHz × 25 V = 0.002 W  
WR  
Data  
ADDRCLK  
PEXT = 0.167 W  
REV. C  
–40–  
ADSP-21062/ADSP-21062L  
Example System Hold Time Calculation  
I
OL  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the ADSP-21062’s output voltage  
and the input threshold for the device requiring the hold time. A  
typical V will be 0.4 V. CL is the total bus capacitance (per  
data line), and IL is the total leakage or three-state current (per  
data line). The hold time will be tDECAY plus the minimum  
disable time (i.e., tDATRWH for the write cycle).  
TO  
OUTPUT  
PIN  
+1.5V  
50pF  
I
OH  
REFERENCE  
SIGNAL  
Figure 26. Equivalent Device Loading for AC Measure-  
ments (Includes All Fixtures)  
tMEASURED  
tENA  
tDIS  
Capacitive Loading  
V
V
OH (MEASURED)  
Output delays and holds are based on standard capacitive loads:  
50 pF on all pins (see Figure 26). The delay and hold specifica-  
tions given should be derated by a factor of 1.5 ns/50 pF for  
loads other than the nominal value of 50 pF. Figures 29–30,  
33–34 show how output rise time varies with capacitance. Fig-  
ures 31, 35 show graphically how output delays and holds vary  
with load capacitance. (Note that this graph or derating does  
not apply to output disable delays; see the previous section  
Output Disable Time under Test Conditions.) The graphs of  
Figures 29, 30 and 31 may not be linear outside the ranges  
shown.  
V
V
OH (MEASURED)  
OL (MEASURED)  
V
V
V  
+ V  
2.0V  
1.0V  
OH (MEASURED)  
OL (MEASURED)  
OL (MEASURED)  
tDECAY  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE TO BE  
APPROXIMATELY 1.5V  
Figure 25. Output Enable/Disable  
INPUT OR  
OUTPUT  
1.5V  
1.5V  
Figure 27. Voltage Reference Levels for AC Measure-  
ments (Except Output Enable/Disable)  
REV. C  
–41–  
ADSP-21062/ADSP-21062L  
5
4
3
2
1
100  
75  
50  
25  
5.25V, 40؇C  
0
5.0V, +25°C  
Y = 0.03X 1.45  
4.75V, +85°C  
25  
50  
4.75V, +85  
°C  
75  
100  
125  
5.0V, +25  
°
C
5.25V, 40°C  
150  
175  
200  
NOMINAL  
1  
25  
50  
75  
100  
125  
150  
175  
200  
0
0.75  
1.50  
2.25  
3.00  
3.75  
4.50  
5.25  
LOAD CAPACITANCE pF  
SOURCE VOLTAGE V  
Figure 31. Typical Output Delay or Hold vs. Load Capaci-  
tance (at Maximum Case Temperature) (VDD = 5 V)  
Figure 28. ADSP-21062 Typical Drive Currents (VDD = 5 V)  
120  
100  
16.0  
14.0  
12.0  
3.3V, +25°C  
80  
60  
40  
3.6V, 40°C  
RISE TIME  
3.0V, +85؇C  
10.0  
V
20  
0
OH  
Y = 0.005X + 3.7  
8.0  
6.0  
4.0  
20  
40  
60  
FALL TIME  
3.0V, +85°C  
3.3V, +25°C  
3.6V, 40°C  
80  
100  
120  
2.0  
0
Y = 0.0031X + 1.1  
V
OL  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
20  
40  
60  
80  
100 120 140 160 180 200  
SOURCE VOLTAGE V  
LOAD CAPACITANCE pF  
Figure 32. ADSP-21062 Typical Drive Currents (VDD = 3.3 V)  
Figure 29. Typical Output Rise Time (10%–90% VDD) vs.  
Load Capacitance (VDD = 5 V)  
18  
16  
3.5  
3.0  
2.5  
14  
Y = 0.0796X + 1.17  
12  
RISE TIME  
10  
2.0  
Y = 0.009X + 1.1  
RISE TIME  
8
1.5  
6
4
2
0
Y = 0.0467X + 0.55  
FALL TIME  
1.0  
FALL TIME  
Y = 0.005X + 0.6  
0.5  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
LOAD CAPACITANCE pF  
LOAD CAPACITANCE pF  
Figure 33. Typical Output Rise Time (10%–90% VDD) vs.  
Load Capacitance (VDD = 3.3 V)  
Figure 30. Typical Output Rise Time (0.8 V–2.0 V) vs.  
Load Capacitance (VDD = 5 V)  
REV. C  
–42–  
ADSP-21062/ADSP-21062L  
ENVIRONMENTAL CONDITIONS  
9
8
Thermal Characteristics  
The ADSP-21062 is available in 240-lead thermally enhanced  
MQFP and 225-lead plastic ball grid array packages. The top  
surface of the thermally enhanced MQFP contains a copper slug  
from which most of the die heat is dissipated. The slug is flush  
with the top surface of the package. Note that the copper slug is  
internally connected to GND through the device substrate.  
7
6
Y = 0.0391X + 0.36  
5
4
RISE TIME  
Y = 0.0305X + 0.24  
Both packages are specified for a case temperature (TCASE). To  
ensure that the TCASE is not exceeded, a heatsink and/or an air  
flow source may be used. A heatsink should be attached with a  
thermal adhesive.  
3
2
1
0
FALL TIME  
T
CASE = TAMB + ( PD × θCA  
)
0
20  
40  
60  
80 100 120 140 160 180 200  
T
PD =  
CASE = Case temperature (measured on top surface of package)  
LOAD CAPACITANCE pF  
Power dissipation in W (this value depends upon the  
specific application; a method for calculating PD is  
shown under Power Dissipation).  
Figure 34. Typical Output Rise Time (0.8 V–2.0 V) vs.  
Load Capacitance (VDD = 3.3 V)  
θCA  
=
Value from table below.  
5
240 MQFP  
4
3
2
1
Y = 0.0329X 1.65  
JC = 0.3؇C/W  
Airflow  
(Linear Ft./Min.)  
0
100  
200  
400  
600  
θ
CA (°C/W)  
10  
9
8
7
6
NOTES  
This represents thermal resistance at total power of 5 W.  
With air flow, no variance is seen in θCA with power.  
θ
CA at 0 LFM varies with power: at 2W, θCA = 14°C/W, at 3W θCA = 11°C/W.  
NOMINAL  
225 PBGA  
1  
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE pF  
JC = 1.7؇C/W  
Airflow  
(Linear Ft./Min.)  
Figure 35. Typical Output Delay or Hold vs. Load Capaci-  
tance (at Maximum Case Temperature) (VDD = 3.3 V)  
0
200  
400  
θ
CA (°C/W)  
20.7  
15.3  
12.9  
NOTE  
No variance is seen in θCA with power.  
REV. C  
–43–  
ADSP-21062/ADSP-21062L  
225-Ball Plastic Ball Grid Array (PBGA) Package Descriptions  
Ball #  
Name  
Ball #  
Name  
Ball #  
Name  
Ball #  
Name  
Ball #  
Name  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
BMS  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
ADDR25  
ADDR26  
MS2  
ADDR29  
DMAR1  
TFS1  
CPA  
HBG  
DMAG2  
BR5  
BR1  
G01  
G02  
G03  
G04  
G05  
G06  
G07  
G08  
G09  
G10  
G11  
G12  
G13  
G14  
G15  
ADDR14  
ADDR15  
ADDR16  
ADDR19  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
K01  
K02  
K03  
K04  
K05  
K06  
K07  
K08  
K09  
K10  
K11  
K12  
K13  
K14  
K15  
ADDR6  
ADDR5  
ADDR3  
ADDR0  
ICSA  
GND  
VDD  
VDD  
VDD  
GND  
GND  
N01  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
N10  
N11  
N12  
N13  
N14  
N15  
EMU  
TDO  
IRQ0  
IRQ1  
ADDR30  
DMAR2  
DT1  
RCLK1  
TCLK0  
RCLK0  
ADRCLK  
CS  
CLKIN  
PAGE  
BR3  
DATA47  
DATA44  
DATA42  
ID2  
L5DAT1  
L4CLK  
L3CLK  
L3DAT3  
L2DAT0  
L1ACK  
L1DAT3  
L0DAT3  
DATA1  
DATA3  
DATA40  
DATA37  
DATA35  
DATA34  
DATA22  
DATA25  
DATA24  
DATA23  
DATA8  
DATA11  
DATA13  
DATA14  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
MS0  
SW  
ADDR31  
HBR  
DR1  
DT0  
DR0  
REDY  
RD  
ACK  
BR6  
BR2  
DATA45  
DATA43  
DATA39  
E01  
E02  
E03  
E04  
E05  
E06  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E15  
ADDR21  
ADDR22  
ADDR24  
ADDR27  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
DATA33  
DATA30  
DATA32  
DATA31  
H01  
H02  
H03  
H04  
H05  
H06  
H07  
H08  
H09  
H10  
H11  
H12  
H13  
H14  
H15  
ADDR12  
ADDR11  
ADDR13  
ADDR10  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
DATA18  
DATA19  
DATA21  
DATA20  
L01  
L02  
LA03  
L04  
L05  
L06  
L07  
L08  
L09  
L10  
L11  
L12  
L13  
L14  
L15  
ADDR2  
ADDR1  
FLAG0  
FLAG3  
RPBA  
GND  
GND  
GND  
GND  
GND  
NC  
DATA4  
DATA7  
DATA9  
DATA10  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
TRST  
TMS  
EBOOT  
ID0  
L5CLK  
L5DAT3  
L4DAT0  
L4DAT3  
L3DAT2  
L2CLK  
L2DAT2  
L1DAT0  
L0ACK  
L0DAT1  
DATA0  
C01  
C02  
C03  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
MS3  
MS1  
ADDR28  
SBTS  
TCLK1  
RFS1  
TFS0  
RFS0  
WR  
DMAG1  
BR4  
F01  
F02  
F03  
F04  
F05  
F06  
F07  
F08  
F09  
F10  
F11  
F12  
F13  
F14  
F15  
ADDR17  
ADDR18  
ADDR20  
ADDR23  
GND  
GND  
VDD  
VDD  
VDD  
GND  
GND  
J01  
J02  
J03  
J04  
J05  
J06  
J07  
J08  
J09  
J10  
J11  
J12  
J13  
J14  
J15  
ADDR9  
ADDR8  
ADDR7  
ADDR4  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
M01  
M02  
M03  
M04  
M05  
M06  
M07  
M08  
M09  
M10  
M11  
M12  
M13  
M14  
M15  
FLAG1  
FLAG2  
TIMEXP  
TDI  
R01  
R02  
R03  
R04  
R05  
R06  
R07  
R08  
R09  
R10  
R11  
R12  
R13  
R14  
R15  
TCK  
IRQ2  
RESET  
ID1  
LBOOT  
L5ACK  
L5DAT2  
L4DAT2  
L3DAT0  
L2DAT3  
L1DAT1  
L0DAT0  
DATA2  
DATA5  
DATA6  
L5DAT0  
L4ACK  
L4DAT1  
L3ACK  
L3DAT1  
L2ACK  
L2DAT1  
L1CLK  
L1DAT2  
L0CLK  
L0DAT2  
DATA46  
DATA41  
DATA38  
DATA36  
DATA29  
DATA26  
DATA28  
DATA27  
DATA12  
DATA15  
DATA16  
DATA17  
REV. C  
–44–  
ADSP-21062/ADSP-21062L  
225-Ball Plastic Ball Grid Array (PBGA) Package Pinout  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
DMAR2  
BMS  
DT1  
DATA42 DATA44 DATA47  
PAGE  
CLKIN  
ADRCLK RCLK0  
TCLK0  
RCLK1  
ADDR30  
BR3  
CS  
A
B
C
D
E
F
HBR  
MS0  
DATA39 DATA43 DATA45  
ACK  
REDY  
DR0  
DT0  
DR1  
ADDR31  
BR2  
BR6  
RD  
SW  
SBTS  
MS3  
DATA36 DATA38 DATA41 DATA46  
DATA34 DATA35 DATA37 DATA40  
RFS0  
TFS0  
RFS1  
TFS1  
TCLK1  
ADDR28  
BR4  
BR1  
DMAG1  
BR5  
WR  
MS1  
CPA  
DMAR1  
MS2  
ADDR29  
ADDR26 ADDR25  
DMAG2  
HBG  
DATA31 DATA32 DATA30 DATA33  
NC  
GND  
GND  
GND  
GND  
GND  
GND  
ADDR27 ADDR24 ADDR22 ADDR21  
DATA27 DATA28 DATA26 DATA29  
DATA23 DATA24 DATA25 DATA22  
GND  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
VDD  
GND  
GND  
ADDR23 ADDR20 ADDR18 ADDR17  
ADDR19 ADDR16 ADDR15 ADDR14  
G
H
J
DATA20 DATA21 DATA19 DATA18  
DATA17 DATA16 DATA15 DATA12  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
GND  
ADDR10 ADDR13 ADDR11 ADDR12  
ADDR4 ADDR7 ADDR8 ADDR9  
DATA14 DATA13 DATA11 DATA8  
GND  
NC  
GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
GND  
GND  
ICSA  
ADDR0 ADDR3 ADDR5 ADDR6  
K
L
DATA10 DATA9  
DATA7 DATA4  
RPBA  
FLAG3  
FLAG0 ADDR1 ADDR2  
DATA6  
DATA5  
DATA2 L0DAT0 L1DAT1 L2DAT3 L3DAT0 L4DAT2 L5DAT2 L5ACK LBOOT  
TDI  
TIMEXP FLAG2  
FLAG1  
M
N
P
R
IRQ1  
IRQ0  
EMU  
DATA3 DATA1 L0DAT3 L1DAT3 L1ACK L2DAT0 L3DAT3 L3CLK  
L4CLK L5DAT1  
ID2  
TDO  
TMS  
IRQ2  
TRST  
DATA0 L0DAT1 L0ACK L1DAT0 L2DAT2 L2CLK L3DAT2 L4DAT3 L4DAT0 L5DAT3 L5CLK  
L0DAT2 L0CLK L1DAT2 L1CLK L2DAT1 L2ACK L3DAT1 L3ACK L4DAT1 L4ACK L5DAT0  
ID0  
ID1  
EBOOT  
RESET  
TCK  
REV. C  
–45–  
ADSP-21062/ADSP-21062L  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
225-Ball PBGA  
0.913 (23.20)  
0.906 (23.00)  
0.898 (22.80)  
15141312 1110 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
0.700  
(17.78)  
0.791 (20.10)  
0.787 (20.00)  
0.783 (19.90)  
0.913 (23.20)  
0.906 (23.00)  
0.898 (22.80)  
BSC  
TOP VIEW  
0.050  
(1.27)  
BSC  
0.791 (20.10)  
0.787 (20.00)  
0.783 (19.90)  
0.050 (1.27) BSC  
0.700 (17.78) BSC  
DETAIL A  
DETAIL A  
0.051 (1.30)  
0.047 (1.20)  
0.043 (1.10)  
0.101 (2.57)  
0.091 (2.32)  
0.081 (2.06)  
0.026 (0.65)  
0.024 (0.61)  
0.022 (0.57)  
0.006 (0.15) MAX  
NOTES  
SEATING  
PLANE  
0.035 (0.90)  
0.030 (0.75)  
0.024 (0.60)  
1.THE ACTUAL POSITION OF THE BALL ARRAY IS WITHIN 0.12 (0.30)  
OF ITS IDEAL POSITION RELATIVE TO THE EDGE OF THE PACKAGE.  
2.THE ACTUAL POSITION OF ANY BALL IS WITHIN 0.004 (0.10)  
OF ITS IDEAL POSITION RELATIVE TO THE ARRAY OF BALLS.  
BALL DIAMETER  
REV. C  
–46–  
ADSP-21062/ADSP-21062L  
240-LEAD METRIC MQFP PIN CONFIGURATIONS  
240  
181  
1
180  
TOP VIEW  
HEAT  
SLUG  
GND  
60  
121  
61  
120  
THE 240-LEAD PACKAGE CONTAINS A COPPER HEAT SLUG FLUSH WITH ITS  
TOP SURFACE. THE SLUG IS EITHER CONNECTED TO GROUND OR FLOATING.  
Pin Pin  
No. Name  
Pin Pin  
No. Name  
Pin Pin  
No. Name  
Pin Pin  
No. Name  
Pin Pin  
No. Name  
Pin Pin  
No. Name  
1
2
3
4
5
6
7
8
TDI  
TRST  
VDD  
TDO  
TIMEXP  
EMU  
ICSA  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
ADDR20  
ADDR21  
GND  
ADDR22  
ADDR23  
ADDR24  
VDD  
GND  
VDD  
ADDR25  
ADDR26  
ADDR27  
GND  
MS3  
MS2  
MS1  
MS0  
SW  
BMS  
ADDR28  
GND  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
TCLK0  
TFS0  
DR0  
201 L2DAT0  
202 L2CLK  
203 L2ACK  
204 NC  
161 DATA14  
162 DATA13  
163 DATA12  
164 GND  
165 DATA11  
166 DATA10  
167 DATA9  
168 VDD  
169 DATA8  
170 DATA7  
171 DATA6  
172 GND  
173 DATA5  
174 DATA4  
175 DATA3  
176 VDD  
121 DATA41  
122 DATA40  
123 DATA39  
124 VDD  
125 DATA38  
126 DATA37  
127 DATA36  
128 GND  
RCLK0  
RFS0  
VDD  
VDD  
GND  
ADRCLK  
REDY  
HBG  
CS  
RD  
WR  
GND  
VDD  
GND  
CLKIN  
ACK  
205 VDD  
206 L3DAT3  
207 L3DAT2  
208 L3DAT1  
209 L3DAT0  
210 L3CLK  
211 L3ACK  
212 GND  
213 L4DAT3  
214 L4DAT2  
215 L4DAT1  
216 L4DAT0  
217 L4CLK  
218 L4ACK  
219 VDD  
FLAG3  
FLAG2  
FLAG1  
FLAG0  
GND  
ADDR0  
ADDR1  
VDD  
ADDR2  
ADDR3  
ADDR4  
GND  
ADDR5  
ADDR6  
ADDR7  
VDD  
ADDR8  
ADDR9  
ADDR10  
GND  
ADDR11  
ADDR12  
ADDR13  
VDD  
ADDR14  
ADDR15  
GND  
ADDR16  
ADDR17  
ADDR18  
VDD  
9
129 NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
130 DATA35  
131 DATA34  
132 DATA33  
133 VDD  
134 VDD  
135 GND  
136 DATA32  
137 DATA31  
138 DATA30  
139 GND  
140 DATA29  
141 DATA28  
142 DATA27  
143 VDD  
177 DATA2  
178 DATA1  
179 DATA0  
180 GND  
100 DMAG2  
101 DMAG1  
102 PAGE  
103 VDD  
104 BR6  
105 BR5  
106 BR4  
107 BR3  
108 BR2  
109 BR1  
110 GND  
111 VDD  
112 GND  
113 DATA47  
114 DATA46  
115 DATA45  
116 VDD  
117 DATA44  
118 DATA43  
119 DATA42  
120 GND  
220 GND  
221 VDD  
181 GND  
VDD  
VDD  
ADDR29  
ADDR30  
ADDR31  
GND  
222 L5DAT3  
223 L5DAT2  
224 L5DAT1  
225 L5DAT0  
226 L5CLK  
227 L5ACK  
228 GND  
229 ID2  
230 ID1  
231 ID0  
232 LBOOT  
233 RPBA  
234 RESET  
235 EBOOT  
236 IRQ2  
237 IRQ1  
238 IRQ0  
182 L0DAT3  
183 L0DAT2  
184 L0DAT1  
185 L0DAT0  
186 L0CLK  
187 L0ACK  
188 VDD  
189 L1DAT3  
190 L1DAT2  
191 L1DAT1  
192 L1DAT0  
193 L1CLK  
194 L1ACK  
195 GND  
144 VDD  
145 DATA26  
146 DATA25  
147 DATA24  
148 GND  
149 DATA23  
150 DATA22  
151 DATA21  
152 VDD  
153 DATA20  
154 DATA19  
155 DATA18  
156 GND  
157 DATA17  
158 DATA16  
159 DATA15  
160 VDD  
SBTS  
DMAR2  
DMAR1  
HBR  
DT1  
TCLK1  
TFS1  
DR1  
RCLK1  
RFS1  
GND  
CPA  
196 GND  
197 VDD  
198 L2DAT3  
199 L2DAT2  
200 L2DAT1  
VDD  
ADDR19  
239 TCK  
240 TMS  
DT0  
REV. C  
–47–  
ADSP-21062/ADSP-21062L  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
240-Lead Metric MQFP  
1.372 (34.85)  
1.362 (34.60) TYP SQ  
1.352 (34.35)  
1.264 (32.10)  
1.260 (32.00) TYP SQ  
1.256 (31.90)  
0.161 (4.10)  
MAX  
1.161 (29.50) BSC SQ  
0.030 (0.75)  
0.024 (0.60) TYP  
0.020 (0.50)  
240  
181  
180  
1
240 LEAD METRIC MQFP  
TOP VIEW (PINS DOWN)  
SEATING  
PLANE  
LEAD PITCH  
0.01969 (0.50)  
TYP  
HEAT  
SLUG  
LEAD WIDTH  
0.011 (0.27)  
0.009 (0.22) TYP  
0.007 (0.17)  
GND  
INCHES (MILLIMETERS)  
60  
121  
120  
0.003 (0.08)  
MAX  
61  
0.010 (0.25)  
MIN  
THE THERMALLY ENHANCED MQFP PACKAGE CONTAINS A  
COPPER HEAT SLUG FLUSH WITH ITS TOP SURFACE; THE  
SLUG IS EITHER CONNECTED TO GROUND OR FLOATING.  
0.138 (3.50)  
0.134 (3.40) TYP THE HEAT SLUG DIAMETER IS 24.1 (0.949) mm.  
0.130 (3.30)  
NOTE:  
THE ACTUAL POSITION OF EACH LEAD IS WITHIN (0.08)  
0.0032 FROM ITS IDEAL POSITION WHEN MEASURED IN THE  
LATERAL DIRECTION.  
CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.  
ORDERING GUIDE  
Case  
Instruction  
Rate  
On-Chip  
SRAM  
Operating  
Voltage  
Package  
Options  
Part Number  
Temperature Range  
ADSP-21062KS-133  
ADSP-21062KS-160  
ADSP-21062KB-160  
ADSP-21062CS-160  
ADSP-21062LKS-133  
ADSP-21062LKS-160  
ADSP-21062LKB-160  
ADSP-21062LAB-160  
ADSP-21062LCS-160  
0°C to +85°C  
0°C to +85°C  
0°C to +85°C  
–40°C to +100°C  
0°C to +85°C  
0°C to +85°C  
0°C to +85°C  
–40°C to +85°C  
–40°C to +100°C  
33 MHz  
40 MHz  
40 MHz  
40 MHz  
33 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
2 Mbit  
2 Mbit  
2 Mbit  
2 Mbit  
2 Mbit  
2 Mbit  
2 Mbit  
2 Mbit  
2 Mbit  
5 V  
5 V  
5 V  
5 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
MQFP  
MQFP  
PBGA  
MQFP  
MQFP  
MQFP  
PBGA  
PBGA  
MQFP  
REV. C  
–48–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY