ADSP-21065 [ADI]

DSP Microcomputer; 微电脑DSP
ADSP-21065
型号: ADSP-21065
厂家: ADI    ADI
描述:

DSP Microcomputer
微电脑DSP

电脑
文件: 总44页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
DSP Microcomputer  
ADSP-21065L  
SUMMARY  
SDRAM Controller for Glueless Interface to Low Cost  
External Memory (@ 66 MHz)  
High Performance Signal Computer for Communica-  
tions, Audio, Automotive, Instrumentation and  
Industrial Applications  
64M Words External Address Range  
12 Programmable I/O Pins and Two Timers with Event  
Capture Options  
Code-Compatible with ADSP-2106x Family  
208-Lead MQFP or 196-Ball Mini-BGA Package  
3.3 Volt Operation  
Super Harvard Architecture Computer (SHARC®)  
Four Independent Buses for Dual Data, Instruction,  
and I/O Fetch on a Single Cycle  
32-Bit Fixed-Point Arithmetic; 32-Bit and 40-Bit Floating-  
Point Arithmetic  
Flexible Data Formats and 40-Bit Extended Precision  
32-Bit Single-Precision and 40-Bit Extended-Precision IEEE  
Floating-Point Data Formats  
32-Bit Fixed-Point Data Format, Integer and Fractional,  
with Dual 80-Bit Accumulators  
544 Kbits On-Chip SRAM Memory and Integrated I/O  
Peripheral  
I2S Support, for Eight Simultaneous Receive and Trans-  
mit Channels  
KEY FEATURES  
66 MIPS, 198 MFLOPS Peak, 132 MFLOPS Sustained  
Performance  
User-Configurable 544 Kbits On-Chip SRAM Memory  
Two External Port, DMA Channels and Eight Serial  
Port, DMA Channels  
Parallel Computations  
Single-Cycle Multiply and ALU Operations in Parallel with  
Dual Memory Read/Writes and Instruction Fetch  
Multiply with Add and Subtract for Accelerated FFT But-  
terfly Computation  
1024-Point Complex FFT Benchmark: 0.274 ms (18,221  
Cycles)  
DUAL-PORTED SRAM  
CORE PROCESSOR  
JTAG  
7
INSTRUCTION  
CACHE  
32 
؋
 48 BIT  
TWO INDEPENDENT  
DUAL-PORTED BLOCKS  
TEST &  
EMULATION  
PROCESSOR PORT  
ADDR DATA  
ADDR DATA  
I/O PORT  
DATA ADDR  
ADDR  
DATA  
EXTERNAL  
PORT  
DAG1  
8 
؋
 4 
؋
 32  
DAG2  
8 
؋
 4 
؋
 24  
PROGRAM  
SEQUENCER  
SDRAM  
INTERFACE  
IOD  
48  
IOA  
17  
PM ADDRESS BUS  
DM ADDRESS BUS  
24  
32  
24  
32  
ADDR BUS  
MUX  
MULTIPROCESSOR  
INTERFACE  
PM DATA BUS  
48  
BUS  
CONNECT  
(PX)  
DATA BUS  
MUX  
40 DM DATA BUS  
HOST PORT  
4
DMA  
DATA  
IOP  
REGISTERS  
(MEMORY MAPPED)  
CONTROLLER  
REGISTER  
FILE  
(2 Rx, 2Tx)  
16 
؋
 40 BIT  
BARREL  
SHIFTER  
SPORT 0  
MULTIPLIER  
ALU  
CONTROL,  
STATUS, TIMER  
&
2
(I S)  
(2 Rx, 2Tx)  
DATA BUFFERS  
SPORT 1  
2
(I S)  
I/O PROCESSOR  
Figure 1. Functional Block Diagram  
SHARC is a registered trademark of Analog Devices, Inc.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADSP-21065L  
544 Kbits Configurable On-Chip SRAM  
Dual-Ported for Independent Access by Core Processor  
and DMA  
Host Processor Interface  
Efficient Interface to 8-, 16-, and 32-Bit Microprocessors  
Host Can Directly Read/Write ADSP-21065L IOP Registers  
Configurable in Combinations of 16-, 32-, 48-Bit Data and  
Program Words in Block 0 and Block 1  
Multiprocessing  
Distributed On-Chip Bus Arbitration for Glueless, Parallel  
Bus Connect Between Two ADSP-21065Ls Plus Host  
132 Mbytes/s Transfer Rate Over Parallel Bus  
DMA Controller  
Ten DMA Channels—Two Dedicated to the External Port  
and Eight Dedicated to the Serial Ports  
Background DMA Transfers at up to 66 MHz, in Parallel  
with Full Speed Processor Execution  
Performs Transfers Between:  
Internal RAM and Host  
Internal RAM and Serial Ports  
Internal RAM and Master or Slave SHARC  
Internal RAM and External Memory or I/O Devices  
External Memory and External Devices  
Serial Ports  
Independent Transmit and Receive Functions  
Programmable 3-Bit to 32-Bit Serial Word Width  
I2S Support Allowing Eight Transmit and Eight Receive  
Channels  
Glueless Interface to Industry Standard Codecs  
TDM Multichannel Mode with -Law/A-Law Hardware  
Companding  
Multichannel Signaling Protocol  
–2–  
REV. B  
ADSP-21065L  
GENERAL DESCRIPTION  
ADSP-21065L  
The ADSP-21065L is a powerful member of the SHARC  
family of 32-bit processors optimized for cost sensitive appli-  
cations. The SHARC—Super Harvard Architecture—offers the  
highest levels of performance and memory integration of any  
32-bit DSP in the industry—they are also the only DSP in the  
industry that offer both fixed and floating-point capabilities,  
without compromising precision or performance.  
#1  
CS  
CLOCK  
CLKIN  
BOOT  
EPROM  
(OPTIONAL)  
ADDR  
DATA  
RESET  
RESET  
01  
ID  
ADDR  
DATA  
1-0  
23-0  
HOST  
PROCESSOR  
(OPTIONAL)  
31-0  
SPORT0  
TX0_A  
TX0_B  
RX0_A  
RX0_B  
RD  
WR  
CS  
ADDR  
DATA  
Fabricated in a high speed, low power CMOS process, 0.35 µm  
technology, the ADSP-21065L offers the highest performance  
by a 32-bit DSP—66 MIPS (198 MFLOPS). With its on-chip  
instruction cache, the processor can execute every instruction in  
a single cycle. Table I lists the performance benchmarks for the  
ADSP-21065L.  
ACK  
MS  
3-0  
BMS  
ADDR  
DATA  
SPORT1  
SBTS  
SW  
CS  
TX1_A  
TX1_B  
RX1_A  
RX1_B  
HBR  
HBG  
CS  
SDRAM  
The ADSP-21065L SHARC combines a floating-point DSP  
core with integrated, on-chip system features, including a  
544 Kbit SRAM memory, host processor interface, DMA con-  
troller, SDRAM controller, and enhanced serial ports.  
(OPTIONAL)  
REDY  
CONTROL  
RAS  
RAS  
CAS  
CAS  
DQM  
WE  
DQM  
SDWE  
CLK  
CKE  
A10  
SDCLK  
SDCKE  
SDA10  
Figure 1 shows a block diagram of the ADSP-21065L, illustrat-  
ing the following architectural features:  
1-0  
Computation Units (ALU, Multiplier, and Shifter) with a  
Shared Data Register File  
Data Address Generators (DAG1, DAG2)  
Program Sequencer with Instruction Cache  
Timers with Event Capture Modes  
On-Chip, dual-ported SRAM  
External Port for Interfacing to Off-Chip Memory and  
Peripherals  
Host Port and SDRAM Interface  
DMA Controller  
CPA  
BR  
2
1
BR  
Figure 2. ADSP-21065L Single-Processor System  
Independent, Parallel Computation Units  
The arithmetic/logic unit (ALU), multiplier, and shifter all  
perform single-cycle instructions. The three units are arranged  
in parallel, maximizing computational throughput. Single multi-  
function instructions execute parallel ALU and multiplier  
operations. These computation units support IEEE 32-bit  
single-precision floating-point, extended precision 40-bit floating-  
point, and 32-bit fixed-point data formats.  
Enhanced Serial Ports  
JTAG Test Access Port  
Table I. Performance Benchmarks  
Data Register File  
A general-purpose data register file is used for transferring data  
between the computation units and the data buses, and for  
storing intermediate results. This 10-port, 32-register (16 pri-  
mary, 16 secondary) register file, combined with the ADSP-  
21000 Harvard architecture, allows unconstrained data flow  
between computation units and internal memory.  
Benchmark  
Timing  
Cycles  
Cycle Time  
1024-Pt. Complex FFT  
(Radix 4, with Digit Reverse)  
15.00 ns  
1
0.274 ns  
18221  
Matrix Multiply (Pipelined)  
[3 × 3] × [3 × 1]  
[4 × 4] × [4 × 1]  
FIR Filter (per Tap)  
IIR Filter (per Biquad)  
Divide Y/X  
Inverse Square Root (1/x)  
DMA Transfers  
135 ns  
240 ns  
15 ns  
60 ns  
90 ns  
9
16  
1
4
6
9
Single-Cycle Fetch of Instruction and Two Operands  
The ADSP-21065L features an enhanced Super Harvard Archi-  
tecture in which the data memory (DM) bus transfers data and  
the program memory (PM) bus transfers both instructions and  
data (see Figure 1). With its separate program and data memory  
buses, and on-chip instruction cache, the processor can simulta-  
neously fetch two operands and an instruction (from the cache),  
all in a single cycle.  
135 ns  
264 Mbytes/sec.  
Instruction Cache  
ADSP-21000 FAMILY CORE ARCHITECTURE  
The ADSP-21065L includes an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and two  
data values. The cache is selective—only the instructions that  
fetches conflict with PM bus data accesses are cached. This  
allows full-speed execution of core, looped operations such as  
digital filter multiply-accumulates and FFT butterfly processing.  
The ADSP-21065L is code and function compatible with the  
ADSP-21060/ADSP-21061/ADSP-21062. The ADSP-21065L  
includes the following architectural features of the SHARC  
family core.  
Data Address Generators with Hardware Circular Buffers  
The ADSP-21065L’s two data address generators (DAGs)  
implement circular data buffers in hardware. Circular buffers  
allow efficient programming of delay lines and other data  
REV. B  
–3–  
ADSP-21065L  
structures required in digital signal processing, and are com-  
monly used in digital filters and Fourier transforms. The  
ADSP-21065L’s two DAGs contain sufficient registers to allow  
the creation of up to 32 circular buffers (16 primary register  
sets, 16 secondary). The DAGs automatically handle address  
pointer wraparound, reducing overhead, increasing perfor-  
mance, and simplifying implementation. Circular buffers can  
start and end at any memory location.  
Off-Chip Memory and Peripherals Interface  
The ADSP-21065L’s external port provides the processor’s  
interface to off-chip memory and peripherals. The 64M words,  
off-chip address space is included in the ADSP-21065L’s uni-  
fied address space. The separate on-chip buses—for program  
memory, data memory and I/O—are multiplexed at the external  
port to create an external system bus with a single 24-bit ad-  
dress bus, four memory selects, and a single 32-bit data bus.  
The on-chip Super Harvard Architecture provides three bus  
performance, while the off-chip unified address space gives  
flexibility to the designer.  
Flexible Instruction Set  
The 48-bit instruction word accommodates a variety of parallel  
operations, for concise programming. For example, the ADSP-  
21065L can conditionally execute a multiply, an add, a subtract  
and a branch, all in a single instruction.  
SDRAM Interface  
The SDRAM interface enables the ADSP-21065L to transfer  
data to and from synchronous DRAM (SDRAM) at 2x clock  
frequency. The synchronous approach coupled with 2x clock  
frequency supports data transfer at a high throughput—up to  
220 Mbytes/sec.  
ADSP-21065L FEATURES  
The ADSP-21065L is designed to achieve the highest system  
throughput to enable maximum system performance. It can be  
clocked by either a crystal or a TTL-compatible clock signal.  
The ADSP-21065L uses an input clock with a frequency equal  
to half the instruction rate—a 33 MHz input clock yields a  
15 ns processor cycle (which is equivalent to 66 MHz). Inter-  
faces on the ADSP-21065L operate as shown below. Hereafter  
in this document, 1x = input clock frequency, and 2x = processor’s  
instruction rate.  
The SDRAM interface provides a glueless interface with stan-  
dard SDRAMs—16 Mb, 64 Mb, and 128 Mb—and includes  
options to support additional buffers between the ADSP-21065L  
and SDRAM. The SDRAM interface is extremely flexible and  
provides capability for connecting SDRAMs to any one of the  
ADSP-21065L’s four external memory banks.  
Systems with several SDRAM devices connected in parallel may  
require buffering to meet overall system timing requirements.  
The ADSP-21065L supports pipelining of the address and  
control signals to enable such buffering between itself and mul-  
tiple SDRAM devices.  
The following clock operation ratings are based on 1x = 33 MHz  
(instruction rate/core = 66 MHz):  
SDRAM  
External SRAM  
Serial Ports  
Multiprocessing  
Host (Asynchronous)  
66 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
Host Processor Interface  
The ADSP-21065L’s host interface provides easy connection to  
standard microprocessor buses—8-, 16-, and 32-bit—requiring  
little additional hardware. Supporting asynchronous transfers at  
speeds up to 1x clock frequency, the host interface is accessed  
through the ADSP-21065L’s external port. Two channels of  
DMA are available for the host interface; code and data trans-  
fers are accomplished with low software overhead.  
Augmenting the ADSP-21000 family core, the ADSP-21065L  
adds the following architectural features:  
Dual-Ported On-Chip Memory  
The ADSP-21065L contains 544 Kbits of on-chip SRAM,  
organized into two banks: Bank 0 has 288 Kbits, and Bank 1 has  
256 Kbits. Bank 0 is configured with 9 columns of 2K × 16 bits,  
and Bank 1 is configured with 8 columns of 2K × 16 bits. Each  
memory block is dual-ported for single-cycle, independent ac-  
cesses by the core processor and I/O processor or DMA control-  
ler. The dual-ported memory and separate on-chip buses allow  
two data transfers from the core and one from I/O, all in a  
single cycle (see Figure 4 for the ADSP-21065L Memory Map).  
The host processor requests the ADSP-21065L’s external bus  
with the host bus request (HBR), host bus grant (HBG), and  
ready (REDY) signals. The host can directly read and write the  
IOP registers of the ADSP-21065L and can access the DMA  
channel setup and mailbox registers. Vector interrupt support  
enables efficient execution of host commands.  
DMA Controller  
On the ADSP-21065L, the memory can be configured as a  
maximum of 16K words of 32-bit data, 34K words for 16-bit  
data, 10K words of 48-bit instructions (and 40-bit data) or  
combinations of different word sizes up to 544 Kbits. All the  
memory can be accessed as 16-bit, 32-bit or 48-bit.  
The ADSP-21065L’s on-chip DMA controller allows zero-  
overhead, nonintrusive data transfers without processor inter-  
vention. The DMA controller operates independently and  
invisibly to the processor core, allowing DMA operations to  
occur while the core is simultaneously executing its program  
instructions.  
While each memory block can store combinations of code and  
data, accesses are most efficient when one block stores data,  
using the DM bus for transfers, and the other block stores in-  
structions and data, using the PM bus for transfers. Using the  
DM and PM busses in this way, with one dedicated to each  
memory block, assures single-cycle execution with two data  
transfers. In this case, the instruction must be available in the  
cache. Single-cycle execution is also maintained when one of the  
data operands is transferred to or from off-chip, via the ADSP-  
21065L’s external port.  
DMA transfers can occur between the ADSP-21065L’s internal  
memory and either external memory, external peripherals, or a  
host processor. DMA transfers can also occur between the  
ADSP-21065L’s internal memory and its serial ports. DMA  
transfers between external memory and external peripheral  
devices are another option. External bus packing to 16-, 32-, or  
48-bit internal words is performed during DMA transfers.  
Ten channels of DMA are available on the ADSP-21065L—  
eight via the serial ports, and two via the processor’s external  
port (for either host processor, other ADSP-21065L, memory or  
–4–  
REV. B  
ADSP-21065L  
I/O transfers). Programs can be downloaded to the ADSP-  
21065L using DMA transfers. Asynchronous off-chip peripher-  
als can control two DMA channels using DMA Request/Grant  
lines (DMAR1-2, DMAG1-2). Other DMA features include inter-  
rupt generation on completion of DMA transfers and DMA  
chaining for automatically linked DMA transfers.  
DEVELOPMENT TOOLS  
The ADSP-21065L is supported with a complete set of software  
and hardware development tools, including the EZ-ICE® In-  
Circuit Emulator and development software.  
The same EZ-ICE hardware that you use for the ADSP-21060/  
ADSP-21062 also fully emulates the ADSP-21065L.  
Serial Ports  
Both the SHARC Development Tools family and the VisualDSP®  
integrated project management and debugging environment  
support the ADSP-21065L. The VisualDSP project manage-  
ment environment enables you to develop and debug an appli-  
cation from within a single integrated program.  
The ADSP-21065L features two synchronous serial ports that  
provide an inexpensive interface to a wide variety of digital and  
mixed-signal peripheral devices. The serial ports can operate at  
1x clock frequency, providing each with a maximum data rate of  
33 Mbit/s. Each serial port has a primary and a secondary set of  
transmit and receive channels. Independent transmit and receive  
functions provide greater flexibility for serial communications.  
Serial port data can be automatically transferred to and from  
on-chip memory via DMA. Each of the serial ports supports  
three operation modes: DSP serial port mode, I2S mode (an  
interface commonly used by audio codecs), and TDM (Time  
Division Multiplex) multichannel mode.  
The SHARC Development Tools include an easy to use Assem-  
bler that is based on an algebraic syntax; an Assembly library/  
librarian; a linker; a loader; a cycle-accurate, instruction-level  
simulator; a C compiler; and a C run-time library that includes  
DSP and mathematical functions.  
Debugging both C and Assembly programs with the Visual DSP  
debugger, you can:  
The serial ports can operate with little-endian or big-endian  
transmission formats, with selectable word lengths of 3 bits to  
32 bits. They offer selectable synchronization and transmit  
modes and optional µ-law or A-law companding. Serial port  
clocks and frame syncs can be internally or externally generated.  
The serial ports also include keyword and keymask features to  
enhance interprocessor communication.  
View Mixed C and Assembly Code  
Insert Break Points  
Set Watch Points  
Trace Bus Activity  
Profile Program Execution  
Fill and Dump Memory  
Create Custom Debugger Windows  
Programmable Timers and General Purpose I/O Ports  
The ADSP-21065L has two independent timer blocks, each of  
which performs two functions—Pulsewidth Generation and  
Pulse Count and Capture.  
The Visual IDE enables you to define and manage multiuser  
projects. Its dialog boxes and property pages enable you to  
configure and manage all of the SHARC Development Tools.  
This capability enables you to:  
In Pulsewidth Generation mode, the ADSP-21065L can gener-  
ate a modulated waveform with an arbitrary pulsewidth within  
a maximum period of 71.5 secs.  
Control how the development tools process inputs and gen-  
erate outputs.  
Maintain a one-to-one correspondence with the tool’s com-  
mand line switches.  
In Pulse Counter mode, the ADSP-21065L can measure either  
the high or low pulsewidth and the period of an input waveform.  
The EZ-ICE Emulator uses the IEEE 1149.1 JTAG test access  
port of the ADSP-21065L processor to monitor and control the  
target board processor during emulation. The EZ-ICE provides  
full-speed emulation, allowing inspection and modification of  
memory, registers, and processor stacks. Nonintrusive in-circuit  
emulation is assured by the use of the processor’s JTAG inter-  
face—the emulator does not affect target system loading or  
timing.  
The ADSP-21065L also contains twelve programmable, general  
purpose I/O pins that can function as either input or output. As  
output, these pins can signal peripheral devices; as input, these  
pins can provide the test for conditional branching.  
Program Booting  
The internal memory of the ADSP-21065L can be booted at  
system power-up from an 8-bit EPROM, a host processor, or  
external memory. Selection of the boot source is controlled by  
the BMS (Boot Memory Select) and BSEL (EPROM Boot)  
pins. Either 8-, 16-, or 32-bit host processors can be used for  
booting. For details, see the descriptions of the BMS and BSEL  
pins in the Pin Descriptions section of this data sheet.  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the SHARC processor family. Hard-  
ware tools include SHARC PC plug-in cards multiprocessor  
SHARC VME boards, and daughter and modules with multiple  
SHARCs and additional memory. These modules are based on  
the SHARCPAC™ module specification. Third Party software  
tools include an Ada compiler, DSP libraries, operating systems,  
and block diagram design tools.  
Multiprocessing  
The ADSP-21065L offers powerful features tailored to multi-  
processing DSP systems. The unified address space allows  
direct interprocessor accesses of both ADSP-21065L’s IOP  
registers. Distributed bus arbitration logic is included on-chip  
for simple, glueless connection of systems containing a maxi-  
mum of two ADSP-21065Ls and a host processor. Master pro-  
cessor changeover incurs only one cycle of overhead. Bus lock  
allows indivisible read-modify-write sequences for semaphores.  
A vector interrupt is provided for interprocessor commands.  
Maximum throughput for interprocessor data transfer is  
132 Mbytes/sec over the external port.  
Additional Information  
For detailed information on the ADSP-21065L instruction set  
and architecture, see the ADSP-21065L SHARC User’s Manual,  
Third Edition, and the ADSP-21065L SHARC Technical Reference.  
EZ-ICE and VisualDSP are registered trademarks of Analog Devices, Inc.  
SHARCPAC is a trademark of Analog Devices Inc.  
REV. B  
–5–  
ADSP-21065L  
ADSP-21065L  
#2  
CLKIN  
ADDR  
23-0  
DATA  
31-0  
RESET  
10  
ID  
1-0  
CONTROL  
SPORT0  
SPORT1  
CPA  
BR  
2
1
BR  
ADSP-21065L  
#1  
CS  
ADDR  
DATA  
CLOCK  
CLKIN  
BOOT  
EPROM  
(OPTIONAL)  
RESET  
RESET  
01  
ID  
1-0  
ADDR  
23-0  
HOST  
PROCESSOR  
(OPTIONAL)  
DATA  
31-0  
SPORT0  
RD  
CS  
WR  
ADDR  
DATA  
ACK  
MS  
3-0  
BMS  
ADDR  
DATA  
SPORT1  
SBTS  
SW  
CS  
HBR  
HBG  
REDY  
CS  
SDRAM  
(OPTIONAL)  
CONTROL  
RAS  
RAS  
CAS  
DQM  
CAS  
DQM  
WE  
SDWE  
SDCLK  
1-0  
SDCKE  
SDA10  
CLK  
CKE  
A10  
CPA  
BR  
BR  
2
1
Figure 3. Multiprocessing System  
–6–  
REV. B  
ADSP-21065L  
PIN DESCRIPTIONS  
ADSP-21065L pin definitions are listed below. Inputs identified as synchronous (S) must meet timing requirements with respect to  
CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as asynchronous (A) can be asserted asynchronously to CLKIN  
(or to TCK for TRST).  
Unused inputs should be tied or pulled to VDD or GND, except for ADDR23-0, DATA31-0, FLAG11-0, SW, and inputs that have  
internal pull-up or pull-down resistors (CPA, ACK, DTxX, DRxX, TCLKx, RCLKx, TMS, and TDI)—these pins can be left float-  
ing. These pins have a logic-level hold circuit that prevents the input from floating internally.  
I = Input  
O = Output  
S = Synchronous  
A = Asynchronous  
P = Power Supply  
G = Ground  
(O/D) = Open Drain  
(A/D) = Active Drive  
T = Three-state (when SBTS is asserted, or when the ADSP-2106x is a bus slave)  
Pin  
Type  
Function  
ADDR23-0  
I/O/T  
External Bus Address. The ADSP-21065L outputs addresses for external memory and pe-  
ripherals on these pins. In a multiprocessor system the bus master outputs addresses for read/  
writes of the IOP registers of the other ADSP-21065L. The ADSP-21065L inputs addresses  
when a host processor or multiprocessing bus master is reading or writing its IOP registers.  
DATA31-0  
I/O/T  
I/O/T  
External Bus Data. The ADSP-21065L inputs and outputs data and instructions on these  
pins. The external data bus transfers 32-bit single-precision floating-point data and 32-bit fixed-  
point data over bits 31-0. 16-bit short word data is transferred over bits 15-0 of the bus. Pull-up  
resistors on unused DATA pins are not necessary.  
MS3-0  
Memory Select Lines. These lines are asserted as chip selects for the corresponding banks of  
external memory. Internal ADDR25-24 are decoded into MS3-0. The MS3-0 lines are decoded  
memory address lines that change at the same time as the other address lines. When no external  
memory access is occurring the MS3-0 lines are inactive; they are active, however, when a condi-  
tional memory access instruction is executed, whether or not the condition is true. Additionally,  
an MS3-0 line which is mapped to SDRAM may be asserted even when no SDRAM access is  
active. In a multiprocessor system, the MS3-0 lines are output by the bus master.  
RD  
WR  
SW  
I/O/T  
I/O/T  
I/O/T  
Memory Read Strobe. This pin is asserted when the ADSP-21065L reads from external memory  
devices or from the IOP register of another ADSP-21065L. External devices (including another  
ADSP-21065L) must assert RD to read from the ADSP-21065L’s IOP registers. In a multipro-  
cessor system, RD is output by the bus master and is input by another ADSP-21065L.  
Memory Write Strobe. This pin is asserted when the ADSP-21065L writes to external memory  
devices or to the IOP register of another ADSP-21065L. External devices must assert WR to  
write to the ADSP-21065L’s IOP registers. In a multiprocessor system, WR is output by the bus  
master and is input by the other ADSP-21065L.  
Synchronous Write Select. This signal interfaces the ADSP-21065L to synchronous memory  
devices (including another ADSP-21065L). The ADSP-21065L asserts SW to provide an early  
indication of an impending write cycle, which can be aborted if WR is not later asserted (e.g., in  
a conditional write instruction). In a multiprocessor system, SW is output by the bus master and  
is input by the other ADSP-21065L to determine if the multiprocessor access is a read or write.  
SW is asserted at the same time as the address output.  
ACK  
I/O/S  
Memory Acknowledge. External devices can deassert ACK to add wait states to an external  
memory access. ACK is used by I/O devices, memory controllers, or other peripherals to hold  
off completion of an external memory access. The ADSP-21065L deasserts ACK as an output  
to add wait states to a synchronous access of its IOP registers. In a multiprocessor system, a  
slave ADSP-21065L deasserts the bus master’s ACK input to add wait state(s) to an access of  
its IOP registers. The bus master has a keeper latch on its ACK pin that maintains the input at  
the level to which it was last driven.  
SBTS  
I/S  
Suspend Bus Three-State. External devices can assert SBTS to place the external bus ad-  
dress, data, selects, and strobes—but not SDRAM control pins—in a high impedance state for  
the following cycle. If the ADSP-21065L attempts to access external memory while SBTS is  
asserted, the processor will halt and the memory access will not finish until SBTS is deasserted.  
SBTS should only be used to recover from host processor/ADSP-21065L deadlock.  
IRQ2-0  
I/A  
Interrupt Request Lines. May be either edge-triggered or level-sensitive.  
FLAG11-0  
I/O/A  
Flag Pins. Each is configured via control bits as either an input or an output. As an input, it can  
be tested as a condition. As an output, it can be used to signal external peripherals.  
REV. B  
–7–  
ADSP-21065L  
Pin  
Type  
Function  
HBR  
I/A  
Host Bus Request. Must be asserted by a host processor to request control of the ADSP-  
21065L’s external bus. When HBR is asserted in a multiprocessing system, the ADSP-21065L  
that is bus master will relinquish the bus and assert HBG. To relinquish the bus, the ADSP-  
21065L places the address, data, select, and strobe lines in a high impedance state. It does,  
however, continue to drive the SDRAM control pins. HBR has priority over all ADSP-21065L  
bus requests (BR2-1) in a multiprocessor system.  
HBG  
I/O  
Host Bus Grant. Acknowledges an HBR bus request, indicating that the host processor may  
take control of the external bus. HBG is asserted by the ADSP-21065L until HBR is released.  
In a multiprocessor system, HBG is output by the ADSP-21065L bus master.  
CS  
I/A  
O
Chip Select. Asserted by host processor to select the ADSP-21065L.  
REDY (O/D)  
Host Bus Acknowledge. The ADSP-21065L deasserts REDY to add wait states to an asyn-  
chronous access of its internal memory or IOP registers by a host. Open drain output (O/D) by  
default; can be programmed in ADREDY bit of SYSCON register to be active drive (A/D).  
REDY will only be output if the CS and HBR inputs are asserted.  
DMAR1  
DMAR2  
DMAG1  
DMAG2  
BR2-1  
I/A  
DMA Request 1 (DMA Channel 9).  
DMA Request 2 (DMA Channel 8).  
DMA Grant 1 (DMA Channel 9).  
DMA Grant 2 (DMA Channel 8).  
I/A  
O/T  
O/T  
I/O/S  
Multiprocessing Bus Requests. Used by multiprocessing ADSP-21065Ls to arbitrate for bus  
mastership. An ADSP-21065L drives its own BRx line (corresponding to the value of its ID2-0  
inputs) only and monitors all others. In a uniprocessor system, tie both BRx pins to VDD.  
ID1-0  
I
Multiprocessing ID. Determines which multiprocessor bus request (BR1BR2) is used by  
ADSP-21065L. ID = 01 corresponds to BR1, ID = 10 corresponds to BR2. ID = 00 in single-  
processor systems. These lines are a system configuration selection which should be hard-wired  
or changed only at reset.  
CPA (O/D)  
I/O  
Core Priority Access. Asserting its CPA pin allows the core processor of an ADSP-21065L  
bus slave to interrupt background DMA transfers and gain access to the external bus. CPA is an  
open drain output that is connected to both ADSP-21065Ls in the system. The CPA pin has an  
internal 5 kpull-up resistor. If core access priority is not required in a system, leave the CPA  
pin unconnected.  
DTxX  
DRxX  
O
I
Data Transmit (Serial Ports 0, 1; Channels A, B). Each DTxX pin has a 50 kinternal pull-  
up resistor.  
Data Receive (Serial Ports 0, 1; Channels A, B). Each DRxX pin has a 50 kinternal pull-up  
resistor.  
TCLKx  
RCLKx  
TFSx  
I/O  
I/O  
I/O  
I/O  
I
Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 kinternal pull-up resistor.  
Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 kinternal pull-up resistor.  
Transmit Frame Sync (Serial Ports 0, 1).  
RFSx  
Receive Frame Sync (Serial Ports 0, 1).  
BSEL  
EPROM Boot Select. When BSEL is high, the ADSP-21065L is configured for booting from  
an 8-bit EPROM. When BSEL is low, the BSEL and BMS inputs determine booting mode. See  
BMS for details. This signal is a system configuration selection which should be hard-wired.  
–8–  
REV. B  
ADSP-21065L  
Pin  
Type  
Function  
BMS  
I/O/T*  
Boot Memory Select. Output: used as chip select for boot EPROM devices (when BSEL = 1).  
In a multiprocessor system, BMS is output by the bus master. Input: When low, indicates that  
no booting will occur and that the ADSP-21065L will begin executing instructions from exter-  
nal memory. See following table. This input is a system configuration selection which should be  
hard-wired.  
*Three-statable only in EPROM boot mode (when BMS is an output).  
BSEL  
BMS  
Booting Mode  
1
0
0
Output  
1 (Input)  
0 (Input)  
EPROM (connect BMS to EPROM chip select).  
Host processor (HBW [SYSCON] bit selects host bus width).  
No booting. Processor executes from external memory.  
CLKIN  
I
Clock In. Used in conjunction with XTAL, configures the ADSP-21065L to use either its  
internal clock generator or an external clock source. The external crystal should be rated at 1x  
frequency.  
Connecting the necessary components to CLKIN and XTAL enables the internal clock genera-  
tor. The ADSP-21065L’s internal clock generator multiplies the 1x clock to generate 2x clock  
for its core and SDRAM. It drives 2x clock out on the SDCLKx pins for the SDRAM interface  
to use. See also SDCLKx.  
Connecting the 1x external clock to CLKIN while leaving XTAL unconnected configures the  
ADSP-21065L to use the external clock source. The instruction cycle rate is equal to 2x CLKIN.  
CLKIN may not be halted, changed, or operated below the specified frequency.  
RESET  
I/A  
Processor Reset. Resets the ADSP-21065L to a known state and begins execution at the  
program memory location specified by the hardware reset vector address. This input must be  
asserted at power-up.  
TCK  
TMS  
I
Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.  
I/S  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a 20 kinternal  
pull-up resistor.  
TDI  
I/S  
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 20 kΩ  
internal pull-up resistor.  
TDO  
O
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
TRST  
I/A  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after  
power-up or held low for proper operation of the ADSP-21065L. TRST has a 20 kinternal  
pull-up resistor.  
EMU (O/D)  
O
O
Emulation Status. Must be connected to the ADSP-21065L EZ-ICE target board connector  
only.  
BMSTR  
Bus Master Output. In a multiprocessor system, indicates whether the ADSP-21065L is cur-  
rent bus master of the shared external bus. The ADSP-21065L drives BMSTR high only while  
it is the bus master. In a single-processor system (ID = 00), the processor drives this pin high.  
CAS  
I/O/T  
SDRAM Column Access Strobe. Provides the column address. In conjunction with RAS,  
MSx, SDWE, SDCLKx, and sometimes SDA10, defines the operation for the SDRAM to per-  
form.  
RAS  
I/O/T  
I/O/T  
O/T  
SDRAM Row Access Strobe. Provides the row address. In conjunction with CAS, MSx,  
SDWE, SDCLKx, and sometimes SDA10, defines the operation for the SDRAM to perform.  
SDWE  
DQM  
SDRAM Write Enable. In conjunction with CAS, RAS, MSx, SDCLKx, and sometimes  
SDA10, defines the operation for the SDRAM to perform.  
SDRAM Data Mask. In write mode, DQM has a latency of zero and is used to block write  
operations.  
SDCLK1-0  
I/O/S/T  
SDRAM 2x Clock Output. In systems with multiple SDRAM devices connected in parallel,  
supports the corresponding increased clock load requirements, eliminating need of off-chip  
clock buffers. Either SDCLK1 or both SDCLKx pins can be three-stated.  
SDCKE  
I/O/T  
SDRAM Clock Enable. Enables and disables the CLK signal. For details, see the data sheet  
supplied with your SDRAM device.  
REV. B  
–9–  
ADSP-21065L  
Pin  
Type  
Function  
SDA10  
O/T  
O
SDRAM A10 Pin. Enables applications to refresh an SDRAM in parallel with a host access.  
XTAL  
Crystal Oscillator Terminal. Used in conjunction with CLKIN to enable the ADSP-21065L’s  
internal clock generator or to disable it to use an external clock source. See CLKIN.  
PWM_EVENT1-0  
I/O/A  
PWM Output/Event Capture. In PWMOUT mode, is an output pin and functions as a timer  
counter. In WIDTH_CNT mode, is an input pin and functions as a pulse counter/event capture.  
VDD  
GND  
NC  
P
Power Supply; nominally +3.3 V dc. (33 pins)  
G
Power Supply Return. (37 pins)  
Do Not Connect. Reserved pins that must be left open and unconnected. (7)  
CLOCK SIGNALS  
TARGET BOARD CONNECTOR FOR EZ-ICE PROBE  
The ADSP-21065L can use an external clock or a crystal. See  
CLKIN pin description. You can configure the ADSP-21065L  
to use its internal clock generator by connecting the necessary  
components to CLKIN and XTAL. You can use either a crystal  
operating in the fundamental mode or a crystal operating at an  
overtone. Figure 4 shows the component connections used for a  
crystal operating in fundamental mode, and Figure 5 shows  
the component connections used for a crystal operating at an  
overtone.  
The ADSP-2106x EZ-ICE emulator uses the IEEE 1149.1  
JTAG test access port of the ADSP-2106x to monitor and con-  
trol the target board processor during emulation. The EZ-ICE  
probe requires the ADSP-2106x’s CLKIN, TMS, TCK, TRST,  
TDI, TDO, EMU and GND signals be made accessible on the  
target system via a 14-pin connector (a 2 row x 7 pin strip header)  
such as that shown in Figure 6. The EZ-ICE probe plugs di-  
rectly onto this connector for chip-on-board emulation. You  
must add this connector to your target board design if you,  
intend to use the ADSP-2106x EZ-ICE.  
CLKIN  
XTAL  
The total trace length between the EZ-ICE connector and the  
furthest device sharing the EZ-ICE JTAG pins should be lim-  
ited to 15 inches maximum for guaranteed operation. This  
restriction on length must include EZ-ICE JTAG signals, which  
are routed to one or more 2106x devices or to a combination of  
2106xs and other JTAG devices on the chain.  
X1  
C2  
C1  
SUGGESTED COMPONENTS FOR 30 MHz OPERATION:  
ECLIPTEK EC2SM-33-30.000M (SURFACE MOUNT PACKAGE)  
ECLIPTEK EC-33-30.000M (THRU-HOLE PACKAGE)  
C1 = 33pF  
The 14-pin, 2-row pin strip header is keyed at the Pin 3 loca-  
tion—you must remove Pin 3 from the header. The pins must  
be 0.025 inch square and at least 0.20 inch in length. Pin spac-  
ing should be 0.1 × 0.1 inches. Pin strip headers are available  
from vendors such as 3M, McKenzie and Samtec.  
C2 = 27pF  
NOTE: C1 AND C2 ARE SPECIFIC TO CRYSTAL SPECIFIED FOR X1.  
CONTACT CRYSTAL MANUFACTURER FOR DETAILS.  
Figure 4. 30 MHz Operation (Fundamental Mode Crystal)  
1
3
5
2
4
6
CLKIN  
XTAL  
R
GND  
EMU  
S
X1  
KEY (NO PIN)  
CLKIN (OPTIONAL)  
C3  
C1  
C2  
L1  
BTMS  
BTCK  
TMS  
TCK  
7
9
8
SUGGESTED COMPONENTS FOR 30MHz OPERATION:  
ECLIPTEK EC2SM-T-30.000M (SURFACE MOUNT PACKAGE)  
10  
12  
ECLIPTEK ECT-30.000M (THRU-HOLE PACKAGE)  
C1 = 18pF  
C2 = 27pF  
C3 = 75pF  
BTRST  
TRST  
11  
L
= 3300nH  
= SEE NOTE.  
1
S
R
BTDI  
TDI  
NOTE: C1, C2, C3, R AND L ARE SPECIFIC TO CRYSTAL SPECIFIED  
S
1
FOR X1. CONTACT MANUFACTURER FOR DETAILS.  
13  
14  
GND  
TDO  
Figure 5. 30 MHz Operation (3rd Overtone Crystal)  
TOP VIEW  
Figure 6. Target Board Connector for ADSP-2106x EZ-ICE  
(JTAG Header)  
–10–  
REV. B  
ADSP-21065L  
The BTMS, BTCK, BTRST and BTDI signals are provided so  
that the test access port can also be used for board-level testing.  
When the connector is not being used for emulation, place  
jumpers between the Bxxx pins and the xxx pins. If you are not  
going to use the test access port for board testing, tie BTRST  
to GND and tie or pull-up BTCK to VDD. The TRST pin must  
be asserted after power-up (through BTRST on the connector)  
or held low for proper operation of the ADSP-2106x. None of  
the Bxxx pins (Pins 5, 7, 9, 11) are connected on the EZ-ICE  
probe.  
Connecting CLKIN to Pin 4 of the EZ-ICE header is optional.  
The emulator only uses CLKIN when directed to perform op-  
erations such as starting, stopping, and single-stepping two  
ADSP-21065Ls in a synchronous manner. If you do not need  
these operations to occur synchronously on the two processors,  
simply tie Pin 4 of the EZ-ICE header to ground.  
For systems which use the internal clock generator and an exter-  
nal discrete crystal, do not directly connect the CLKIN pin to  
the JTAG probe. This will load the oscillator circuit and possi-  
bly cause it to fail to oscillate. Instead the JTAG probe’s  
CLKIN can be driven by the XTAL pin through a high imped-  
ance buffer.  
The JTAG signals are terminated on the EZ-ICE probe as follows:  
Signal  
Termination  
If synchronous multiprocessor operations are needed and CLKIN  
is connected, clock skew between multiple ADSP-2106x proces-  
sors and the CLKIN pin on the EZ-ICE header must be mini-  
mal. If the skew is too large, synchronous operations may be off  
by one cycle between processors. For synchronous multiproces-  
sor operation TCK, TMS, CLKIN and EMU should be treated  
as critical signals in terms of skew, and should be laid out as  
short as possible on your board.  
TMS  
TCK  
Driven through 22 resistor (16 mA driver)  
Driven at 10 MHz through 22 resistor  
(16 mA driver)  
Driven through 22 resistor (16 mA driver)  
(pulled up by on-chip 20 kresistor)  
Driven by 22 resistor (16 mA driver)  
One TTL load, Split Termination (160/220)  
One TTL load, Split Termination (160/220).  
(Caution: Do not connect to CLKIN if  
internal XTAL oscillator is used.)  
TRST*  
TDI  
TDO  
CLKIN  
If synchronous multiprocessor operations are not needed (i.e.,  
CLKIN is not connected), just use appropriate parallel termina-  
tion on TCK and TMS. TDI, TDO, EMU and TRST are not  
critical signals in terms of skew.  
EMU  
Active Low 4.7 kpull-up resistor, one TTL  
load (open-drain output from ADSP-2106xs)  
For Complete information on the SHARC EZ-ICE, see the  
ADSP-21000 Family JTAG EZ-ICE User’s Guide and Reference.  
*TRST is driven low until the EZ-ICE probe is turned on by the emulator at  
software start-up. After software start-up, TRST is driven high.  
REV. B  
–11–  
ADSP-21065L–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
Test  
C Grade  
Max  
K Grade  
Parameter  
Conditions  
Min  
Min  
Max  
Units  
VDD  
TCASE  
Supply Voltage  
Case Operating Temperature  
3.13  
–40  
3.60  
+100  
3.13  
0
3.60  
+85  
V
°C  
VIH  
VIL1  
VIL2  
High Level Input Voltage  
Low Level Input Voltage1  
Low Level Input Voltage2  
@ VDD = max  
@ VDD = min  
@ VDD = min  
2.0  
–0.5  
–0.5  
VDD + 0.5  
0.8  
0.7  
2.0  
–0.5  
–0.5  
VDD + 0.5  
0.8  
0.7  
V
V
V
NOTE  
See Environmental Conditions for information on thermal specifications.  
ELECTRICAL CHARACTERISTICS  
C & K Grades  
Parameter  
Test Conditions  
Min  
Max  
Units  
VOH  
VOL  
IIH  
IIL  
IILP  
IOZH  
IOZL  
IOZLS  
IOZLA  
High Level Output Voltage3  
@ VDD = min, IOH = –2.0 mA4  
@ VDD = min, IOL = 4.0 mA4  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 1.5 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
2.4  
V
V
Low Level Output Voltage3  
High Level Input Current5  
Low Level Input Current5  
0.4  
10  
10  
150  
10  
8
150  
350  
4
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
pF  
Low Level Input Current6  
Three-State Leakage Current7, 8, 9, 10  
Three-State Leakage Current7  
Three-State Leakage Current8  
Three-State Leakage Current11  
IOZLAR Three-State Leakage Current10  
IOZLC  
CIN  
Three-State Leakage Current9  
Input Capacitance12, 13  
1.5  
8
fIN = 1 MHz, TCASE = 25°C, VIN = 2.5 V  
NOTES  
1 Applies to input and bidirectional pins: DATA31-0, ADDR23-0, BSEL, RD, WR, SW, ACK, SBTS, IRQ2-0, FLAG11-0, HBG, CS, DMAR1, DMAR2, BR2-1, ID2-0  
RPBA, CPA, TFS0, TFS1, RFS0, RFS1, BMS, TMS, TDI, TCK, HBR, DR0A, DR1A, DR0B, DR1B, TCLK0, TCLK1, RCLK0, RCLK1, RESET, TRST,  
PWM_EVENT0, PWM_EVENT1, RAS, CAS, SDWE, SDCKE.  
,
2 Applies to input pin CLKIN.  
3 Applies to output and bidirectional pins: DATA31-0, ADDR23-0, MS3-0, RD, WR, SW, ACK, FLAG11-0, HBG, REDY, DMAG1, DMAG2, BR2-1, CPA, TCLK0,  
TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, DT0A, DT1A, DT0B, DT1B, XTAL, BMS, TDO, EMU, BMSTR, PWM_EVENT0, PWM_EVENT1,  
RAS, CAS, DQM, SDWE, SDCLK0, SDCLK1, SDCKE, SDA10.  
4 See Output Drive Currents for typical drive current capabilities.  
5 Applies to input pins: ACK, SBTS, IRQ2-0, HBR, CS, DMAR1, DMAR2, ID1-0, BSEL, CLKIN, RESET, TCK (Note that ACK is pulled up internally with 2 kΩ  
during reset in a multiprocessor system, when ID1-0 = 01 and another ADSP-21065L is not requesting bus mastership.)  
6Applies to input pins with internal pull-ups: DR0A, DR1A, DR0B, DR1B, TRST, TMS, TDI.  
7Applies to three-statable pins: DATA31-0, ADDR23-0, MS3-0, RD, WR, SW, ACK, FLAG11-0, REDY, HBG, DMAG1, DMAG2, BMS, TDO, RAS, CAS, DQM,  
SDWE, SDCLK0, SDCLK1, SDCKE, SDA10 and EMU (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID1-0  
=
01 and another ADSP-21065L is not requesting bus mastership).  
8 Applies to three-statable pins with internal pull-ups: DT0A, DT1A, DT0B, DT1B, TCLK0, TCLK1, RCLK0, RCLK1.  
9Applies to CPA pin.  
10Applies to ACK pin when pulled up.  
11 Applies to ACK pin when keeper latch enabled.  
12 Guaranteed but not tested.  
13 Applies to all signal pins.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +4.6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Output Voltage Swing . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 pF  
Junction Temperature Under Bias . . . . . . . . . . . . . . . . . 130°C  
Lead Temperature (5 seconds) . . . . . . . . . . . . . . . . . . +280°C  
*Stresses greater than those listed above may cause permanent damage to the device.  
These are stress ratings only; functional operation of the device at these or any other  
conditions greater than those indicated in the operational sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
ESD SENSITIVITY  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-21065L features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–12–  
REV. B  
ADSP-21065L  
POWER DISSIPATION ADSP-21065L  
These specifications apply to the internal power portion of VDD only. See the Power Dissipation section of this data sheet for calcula-  
tion of external supply current and total supply current. For a complete discussion of the code used to measure power dissipation, see  
the technical note SHARC Power Dissipation Measurements.  
Specifications are based on the following operating scenarios:  
Table II. Internal Current Measurements  
Peak Activity  
(IDDINPEAK  
High Activity  
(IDDINHIGH  
Operation  
)
)
Low Activity (IDDINLOW)  
Instruction Type  
Instruction Fetch  
Core Memory Access  
Internal Memory DMA  
Multifunction  
Cache  
2 per Cycle (DM and PM)  
Multifunction  
Single Function  
Internal Memory  
None  
Internal Memory  
1 per Cycle (DM)  
1 per 2 Cycles  
1 per Cycle  
1 per 2 Cycles  
To estimate power consumption for a specific application, use the following equation where % is the amount of time your program  
spends in that state:  
%PEAK × IDDINPEAK + %HIGH × IDDINHIGH + %LOW × IDDINLOW + %IDLE16 × IDDIDLE16 = POWER CONSUMPTION  
Table III. Internal Current Measurement Scenarios  
Parameter  
Test Conditions  
Max  
Units  
IDDINPEAK  
Supply Current (Internal)1  
Supply Current (Internal)2  
Supply Current (Internal)3  
Supply Current (IDLE)4  
Supply Current (IDLE16)5  
tCK = 33 ns, VDD = max  
470  
510  
275  
300  
240  
260  
150  
155  
50  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
t
CK = 30 ns, VDD = max  
IDDINHIGH  
IDDINLOW  
IDDIDLE  
tCK = 33 ns, VDD = max  
tCK = 30 ns, VDD = max  
tCK = 33 ns, VDD = max  
t
CK = 30 ns, VDD = max  
tCK = 33 ns, VDD = max  
CK = 30 ns, VDD = max  
VDD = max  
t
IDDIDLE16  
NOTES  
1The test program used to measure IDDINPEAK represents worst case processor operation and is not sustainable under normal application conditions. Actual internal  
power measurements made using typical applications are less than specified.  
2IDDINHIGH is a composite average based on a range of high activity code.  
3IDDINLOW is a composite average based on a range of low activity code.  
4IDLE denotes ADSP-21065L state during execution of IDLE instruction.  
5IDLE16 denotes ADSP-21065L state during execution of IDLE16 instruction.  
TIMING SPECIFICATIONS  
General Notes  
Two speed grades of the ADSP-21065L are offered, 60 MHz and 66 MHz instruction rates. The specifications shown are based on a  
CLKIN frequency of 30 MHz (tCK = 33.3 ns). The DT derating allows specifications at other CLKIN frequencies (within the min–  
max range of the tCK specification; see Clock Input below). DT is the difference between the actual CLKIN period and a CLKIN  
period of 33.3 ns:  
DT = (tCK – 33.3)/32  
Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addi-  
tion or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical varia-  
tions and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.  
See Figure 27 in Equivalent Device Loading for AC Measurements (Includes All Fixtures) for voltage reference levels.  
REV. B  
–13–  
ADSP-21065L  
Switching Characteristics specify how the processor changes its signals. You have no control over this timing—circuitry external to the  
processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor  
will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device con-  
nected to the processor (such as memory) is satisfied.  
Timing Requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read opera-  
tion. Timing requirements guarantee that the processor operates correctly with other devices.  
(O/D) = Open Drain  
(A/D) = Active Drive  
66 MHz  
60 MHz  
Parameter  
Min  
Max  
Min  
Max  
Units  
Clock Input  
Timing Requirements:  
tCK  
CLKIN Period  
CLKIN Width Low  
30.00  
7.0  
5.0  
100  
3.0  
33.33  
7.0  
5.0  
100  
3.0  
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V–2.0 V)  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 7. Clock Input  
Parameter  
Reset  
Min  
Max  
Units  
Timing Requirements:  
tWRST  
RESET Pulsewidth Low1  
tSRST  
RESET Setup Before CLKIN High2  
2 tCK  
23.5 + 24 DT tCK  
ns  
ns  
NOTES  
1Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 3000 CLKIN cycles while RESET is  
low, assuming stable VDD and CLKIN (not including start-up time of external clock oscillator).  
2Only required if multiple ADSP-2106xs must come out of reset synchronous to CLKIN with program counters (PC) equal (i.e., for a SIMD system). Not required  
for multiple ADSP-2106xs communicating over the shared bus (through the external port), because the bus arbitration logic synchronizes itself automatically after  
reset.  
CLKIN  
tSRST  
tWRST  
RESET  
Figure 8. Reset  
Parameter  
Min  
Max  
Units  
Interrupts  
Timing Requirements:  
tSIR  
tHIR  
tIPW  
IRQ2-0 Setup Before CLKIN High or Low1  
11.0 + 12 DT  
2.0 + tCK/2  
ns  
ns  
ns  
IRQ2-0 Hold Before CLKIN High or Low1  
IRQ2-0 Pulsewidth2  
0.0 + 12 DT  
NOTES  
1Only required for IRQx recognition in the following cycle.  
2Applies only if tSIR and tHIR requirements are not met.  
–14–  
REV. B  
ADSP-21065L  
CLKIN  
tSIR  
tHIR  
IRQ  
2-0  
tIPW  
Figure 9. Interrupts  
Parameter  
Min  
Max  
Units  
Timer  
Timing Requirements:  
tSTI  
Timer Setup Before SDCLK High  
Timer Hold After SDCLK High  
0.0  
6.0  
ns  
ns  
tHTI  
Switching Characteristics:  
tDTEX Timer Delay After SDCLK High  
tHTEX Timer Hold After SDCLK High  
1.0  
ns  
ns  
–5.0  
Parameter  
Flags  
Min  
Max  
Units  
Timing Requirements:  
tSFI  
tHFI  
FLAG11-0IN Setup Before SDCLK High1  
FLAG11-0IN Hold After SDCLK High1  
–2.0  
6.0  
ns  
ns  
Switching Characteristics:  
tDFO  
FLAG11-0OUT Delay After SDCLK High  
1.0  
ns  
ns  
ns  
ns  
tHFO  
tDFOE  
tDFOD  
FLAG11-0OUT Hold After SDCLK High  
SDCLK High to FLAG11-0OUT Enable  
SDCLK High to FLAG11-0OUT Disable  
–4.0  
–4.0  
–1.75  
NOTE  
1Flag inputs meeting these setup and hold times will affect conditional instructions in the following instruction cycle.  
SDCLK  
tDFOE  
tDFO  
tDFO  
tDFOD  
tHFO  
FLAG  
OUT  
11–0  
FLAG OUTPUT  
SDCLK  
tHFI  
tSFI  
FLAG  
IN  
11–0  
Figure 10. Flags  
REV. B  
–15–  
ADSP-21065L  
Memory Read—Bus Master  
Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN.  
These specifications apply when the ADSP-21065L is the bus master when accessing external memory space. These switching char-  
acteristics also apply for bus master synchronous read/write timing (see Synchronous Read/Write—Bus Master below). If these tim-  
ing requirements are met, the synchronous read/write timing can be ignored (and vice versa). An exception to this is the ACK pin  
timing requirements as described in the note below.  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tDAD  
tDRLD  
tHDA  
Address, Selects Delay to Data Valid1, 2  
28.0 + 32 DT + W  
24.0 + 26 DT + W  
ns  
ns  
ns  
ns  
ns  
ns  
RD Low to Data Valid1  
Data Hold from Address Selects3  
Data Hold from RD High3  
0.0  
0.0  
tHDRH  
tDAAK  
tDSAK  
ACK Delay from Address, Selects2, 3  
ACK Delay from RD Low3  
24.0 + 30 DT + W  
19.5 + 24 DT + W  
Switching Characteristics:  
tDRHA  
tDARL  
tRW  
Address, Selects Hold After RD High  
–1.0 + H  
3.0 + 6 DT  
25.0 + 26 DT + W  
4.5 + 6 DT + HI  
11.0 +12 DT + HI  
ns  
ns  
ns  
ns  
ns  
Address, Selects to RD Low2  
RD Pulsewidth  
tRWR  
tRDGL  
RD High to WR, RD Low  
RD High to DMAGx Low  
W = (number of wait states specified in WAIT register) × tCK  
.
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
H = tCK (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).  
NOTES  
1Data Delay/Setup: User must meet tDAD or to tDRLD or synchronous specification tSSDATI  
.
2The falling edge of MSx, SW, BMS, are referenced.  
3ACK is not sampled on external memory accesses that use the Internal wait state mode. For the first CLKIN cycle of a new external memory access, ACK must be  
valid by tDAAK or tDSAK or synchronous specification tSACKC for wait state modes External, Either, or Both (Both, if the internal wait state is zero). For the second and  
subsequent cycles of a wait stated external memory access, synchronous specifications tSACKC and tHACKC must be met for wait state modes External, Either, or Both  
(Both, after internal wait states have completed).  
ADDRESS  
MSx , SW  
BMS  
tDRHA  
tRW  
tDARL  
RD  
tHDA  
tHDRH  
tDRLD  
tDAD  
DATA  
tDSAK  
tRWR  
tDAAK  
ACK  
WR  
DMAG  
tRDGL  
Figure 11. Memory Read—Bus Master  
–16–  
REV. B  
ADSP-21065L  
Memory Write—Bus Master  
Use these specifications for asynchronous interfacing to memories (and memory-mapped peripherals) without reference to CLKIN.  
These specifications apply when the ADSP-21065L is the bus master when accessing external memory space. These switching char-  
acteristics also apply for bus master synchronous read/write timing (see Synchronous Read/Write—Bus Master below). If these tim-  
ing requirements are met, the synchronous read/write timing can be ignored (and vice versa). An exception to this is the ACK pin  
timing requirements as described in the note below.  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tDAAK  
tDSAK  
ACK Delay from Address1, 2  
24.0 + 30 DT + W  
19.5 + 24 DT + W  
ns  
ns  
ACK Delay from WR Low1  
Switching Characteristics:  
tDAWH  
tDAWL  
tWW  
Address, Selects to WR Deasserted2  
29.0 + 31 DT + W  
3.5 + 6 DT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, Selects to WR Low2  
WR Pulsewidth  
24.5 + 25 DT + W  
15.5 + 19 DT + W  
0.0 + 1 DT + H  
1.0 + 1 DT + H  
4.5 + 7 DT + H  
11.0 + 13 DT + H  
3.5 + 6 DT + I  
4.5 + 6 DT  
tDDWH  
tDWHA  
tDATRWH  
tWWR  
Data Setup Before WR High  
Address Hold After WR Deasserted  
Data Disable After WR Deasserted3  
WR High to WR, RD Low  
WR High to DMAGx Low  
Data Disable Before WR or RD Low  
WR Low to Data Enabled  
4.0 + 1 DT + H  
tWRDGL  
tDDWR  
tWDE  
W = (number of wait states specified in WAIT register) × tCK  
.
H = tCK (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).  
I = tCK (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).  
NOTES  
1ACK is not sampled on external memory accesses that use the Internal wait state mode. For the first CLKIN cycle of a new external memory access, ACK must be  
valid by tDAAK or tDSAK or synchronous specification tSACKC for wait state modes External, Either, or Both (Both, if the internal wait state is zero). For the second and  
subsequent cycles of a wait stated external memory access, synchronous specifications tSACKC and tHACKC must be met for wait state modes External, Either, or Both  
(Both, after internal wait states have completed).  
2The falling edge of MSx, SW, and BMS is referenced.  
3See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
ADDRESS  
MSx , SW  
BMS  
tDWHA  
tDAWH  
tWW  
tDAWL  
WR  
tWWR  
tDDWR  
tDDWH  
tWDE  
tDATRWH  
DATA  
tDSAK  
tDAAK  
ACK  
RD  
DMAG  
tWRDGL  
Figure 12. Memory Write—Bus Master  
REV. B  
–17–  
ADSP-21065L  
Synchronous Read/Write—Bus Master  
Use these specifications for interfacing to external memory systems that require CLKIN-relative timing or for accessing a slave  
ADSP-21065L (in multiprocessor memory space). These synchronous switching characteristics are also valid during asynchronous  
memory reads and writes (see Memory Read—Bus Master and Memory Write—Bus Master).  
When accessing a slave ADSP-21065L, these switching characteristics must meet the slave’s timing requirements for synchronous  
read/writes (see Synchronous Read/Write—Bus Slave). The slave ADSP-21065L must also meet these (bus master) timing require-  
ments for data and acknowledge setup and hold times.  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tSSDATI  
tHSDATI  
tDAAK  
tSACKC  
tHACK  
Data Setup Before CLKIN  
0.25 + 2 DT  
4.0 – 2 DT  
ns  
ns  
ns  
ns  
ns  
Data Hold After CLKIN  
ACK Delay After Address, MSx, SW, BMS1, 2  
ACK Setup Before CLKIN1  
24.0 + 30 DT + W  
2.75 + 4 DT  
2.0 – 4 DT  
ACK Hold After CLKIN  
Switching Characteristics:  
tDADRO  
tHADRO  
tDRDO  
tDWRO  
tDRWL  
tDDATO  
tDATTR  
tDBM  
Address, MSx, BMS, SW Delay After CLKIN1  
7.0 – 2 DT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, MSx, BMS, SW Hold After CLKIN  
RD High Delay After CLKIN  
WR High Delay After CLKIN  
RD/WR Low Delay After CLKIN  
Data Delay After CLKIN  
0.5 – 2 DT  
0.5 – 2 DT  
0.0 – 3 DT  
7.5 + 4 DT  
6.0 – 2 DT  
6.0 – 3 DT  
11.75 + 4 DT  
22.0 + 10 DT  
7.0 – 2 DT  
3.0  
Data Disable After CLKIN3  
1.0 – 2 DT  
–4.0  
BMSTR Delay After CLKIN  
BMSTR Hold After CLKIN  
tHBM  
W = (number of wait states specified in WAIT register) × tCK  
.
NOTES  
1Data Hold: User must meet tHDA or tHDRH or synchronous specification tHDATI. See system hold time calculation under test conditions for the calculation of hold  
times given capacitive and dc loads.  
2ACK is not sampled on external memory accesses that use the Internal wait state mode. For the first CLKIN cycle of a new external memory access, ACK must be  
valid by tDAAK or tDSAK or synchronous specification tSACKC for wait state modes External, Either, or Both (Both, if the internal wait state is zero). For the second and  
subsequent cycles of a wait stated external memory access, synchronous specifications tSACKC and tHACKC must be met for wait state modes External, Either, or Both  
(Both, after internal wait states have completed).  
3See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
–18–  
REV. B  
ADSP-21065L  
CLKIN  
tHADRO  
tDAAK  
tDADRO  
ADDRESS  
SW  
tHACKC  
tSACKC  
ACK  
(IN)  
READ CYCLE  
tDRWL  
tDRDO  
RD  
tHSDATI  
tSSDATI  
DATA  
(IN)  
WRITE CYCLE  
tDWRO  
tDRWL  
WR  
tDATTR  
tDDATO  
DATA  
(OUT)  
Figure 13. Synchronous Read/Write—Bus Master  
REV. B  
–19–  
ADSP-21065L  
Synchronous Read/Write—Bus Slave  
Use these specifications for ADSP-21065L bus master accesses of a slave’s IOP registers or internal memory (in multiprocessor  
memory space). The bus master must meet these (bus slave) timing requirements.  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tSADRI  
Address, SW Setup Before CLKIN  
24.5 + 25 DT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHADRI  
tSRWLI  
tHRWLI  
tRWHPI  
tSDATWH  
tHDATWH  
Address, SW Hold Before CLKIN  
RD/WR Low Setup Before CLKIN1  
RD/WR Low Hold After CLKIN  
RD/WR Pulse High  
Data Setup Before WR High  
Data Hold After WR High  
4.0 + 8 DT  
7.5 + 7 DT  
21.0 + 21 DT  
–2.50 – 5 DT  
2.5  
4.5  
0.0  
Switching Characteristics:  
tSDDATO  
tDATTR  
tDACK  
Data Delay After CLKIN  
31.75 + 21 DT  
7.0 – 2 DT  
29.5 + 20 DT  
6.0 – 2 DT  
ns  
ns  
ns  
ns  
Data Disable After CLKIN2  
ACK Delay After CLKIN  
ACK Disable After CLKIN2  
1.0 – 2 DT  
1.0 – 2 DT  
tACKTR  
NOTES  
1tSRWLI is specified when Multiprocessor Memory Space Wait State (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled, tSRWLI (min) = 17.5 + 18 DT.  
2See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
For two ADSP-21065Ls to communicate synchronously as master and slave, certain master and slave specification combinations  
must be satisfied. Do not compare specification values directly to calculate master/slave clock skew margins for those specifications  
listed below. The following table shows the appropriate clock skew margin.  
Table IV. Bus Master to Slave Skew Margins  
Master Specification  
Slave Specification  
Skew Margin  
tSSDATI  
tSDDATO  
tCK = 33.3 ns + 2.25 ns  
t
CK = 30.0 ns + 1.50 ns  
tSACKC  
tDACK  
tCK = 33.3 ns + 3.00 ns  
tCK = 30.0 ns + 2.25 ns  
tCK = 33.3 ns N/A  
tDADRO  
tSADRI  
t
CK = 30.0 ns + 2.75 ns  
tCK = 33.3 ns + 1.50 ns  
CK = 30.0 ns + 1.25 ns  
tDRWL (Max)  
tSRWLI  
t
t
DRDO (Max)  
tHRWLI (Max)  
tHRWLI (Max)  
tCK = 33.3 ns N/A  
tCK = 30.0 ns 3.00 ns  
tCK = 33.3 ns N/A  
tCK = 30.0 ns 3.75 ns  
tDWRO (Max)  
–20–  
REV. B  
ADSP-21065L  
CLKIN  
tSADRI  
tHADRI  
ADDRESS  
SW  
tDACK  
tACKTR  
ACK  
READ ACCESS  
tSRWLI  
tHRWLI  
tRWHPI  
RD  
tSDDATO  
tDATTR  
DATA  
(OUT)  
WRITE ACCESS  
tRWHPI  
tSRWLI  
tHRWLI  
WR  
tHDATWH  
tSDATWH  
DATA  
(IN)  
Figure 14. Synchronous Read/Write—Bus Slave  
REV. B  
–21–  
ADSP-21065L  
Multiprocessor Bus Request and Host Bus Request  
Use these specifications for passing of bus mastership between multiprocessing ADSP-21065Ls (BRx) or a host processor (HBR,  
HBG).  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tHBGRCSV  
tSHBRI  
tHHBRI  
tSHBGI  
tHHBGI  
tSBRI  
HBG Low to RD/WR/CS Valid1  
20.0 + 36 DT  
6.0 + 12 DT  
1.0 + 8 DT  
1.0 + 8 DT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HBR Setup Before CLKIN2  
12.0 + 12 DT  
6.0 + 8 DT  
7.0 + 8 DT  
HBR Hold Before CLKIN2  
HBG Setup Before CLKIN  
HBG Hold Before CLKIN High  
BRx, CPA Setup Before CLKIN3  
BRx, CPA Hold Before CLKIN High  
tHBRI  
Switching Characteristics:  
tDHBGO  
tHHBGO  
tDBRO  
HBG Delay After CLKIN  
HBG Hold After CLKIN  
BRx Delay After CLKIN  
8.0 – 2 DT  
7.0 – 2 DT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.0 – 2 DT  
1.0 – 2 DT  
1.0 – 2 DT  
44.0 + 43 DT  
tHBRO  
BRx Hold After CLKIN  
CPA Low Delay After CLKIN  
tDCPAO  
tTRCPA  
tDRDYCS  
tTRDYHG  
tARDYTR  
11.5 – 2 DT  
5.5 – 2 DT  
13.0  
CPA Disable After CLKIN  
REDY (O/D) or (A/D) Low from CS and HBR Low4  
REDY (O/D) Disable or REDY (A/D) High from HBG4  
REDY (A/D) Disable from CS or HBR High4  
10.0  
NOTES  
1For first asynchronous access after HBR and CS asserted, ADDR23-0 must be a nonMMS value 1/2 tCK before RD or WR goes low or by tHBGRCSV after HBG goes  
low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the Host Processor Control of the ADSP-21065L section of the  
ADSP-21065L SHARC User’s Manual, Second Edition.  
2Only required for recognition in the current cycle.  
3CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.  
4(O/D) = open drain, (A/D) = active drive.  
–22–  
REV. B  
ADSP-21065L  
CLKIN  
tSHBRI  
tHHBRI  
HBR  
tDHBGO  
tHHBGO  
HBG  
(OUT)  
tDBRO  
tHBRO  
BRx  
(OUT)  
tDCPAO  
tTRCPA  
CPA (OUT)  
(O/D)  
tSHBGI  
tHHBGI  
HBG (IN)  
tSBRI  
tHBRI  
BRx (IN)  
CPA (IN) (O/D)  
HBR  
CS  
tTRDYHG  
tDRDYCS  
REDY (O/D)  
REDY (A/D)  
tARDYTR  
tHBGRCSV  
HBG (OUT)  
RD  
WR  
CS  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 15. Multiprocessor Bus Request and Host Bus Request  
REV. B  
–23–  
ADSP-21065L  
Asynchronous Read/Write—Host to ADSP-21065L  
Use these specifications for asynchronous host processor accesses of an ADSP-21065L, after the host has asserted CS and HBR  
(low). After the ADSP-21065L returns HBG, the host can drive the RD and WR pins to access the ADSP-21065L’s IOP registers.  
HBR and HBG are assumed low for this timing. Writes can occur at a minimum interval of (1/2) tCK  
.
Parameter  
Min  
Max  
Units  
Read Cycle  
Timing Requirements:  
tSADRDL  
tHADRDH  
tWRWH  
Address Setup/CS Low Before RD Low*  
Address Hold/CS Hold Low After RD High  
RD/WR High Width  
0.0  
0.0  
6.0  
0.0  
0.0  
ns  
ns  
ns  
ns  
ns  
tDRDHRDY  
tDRDHRDY  
RD High Delay After REDY (O/D) Disable  
RD High Delay After REDY (A/D) Disable  
Switching Characteristics:  
tSDATRDY  
tDRDYRDL  
tRDYPRD  
Data Valid Before REDY Disable from Low  
1.5  
ns  
ns  
ns  
ns  
REDY (O/D) or (A/D) Low Delay After RD Low  
REDY (O/D) or (A/D) Low Pulsewidth for Read  
Data Disable After RD High  
13.5  
10.0  
28.0 + DT  
2.0  
tHDARWH  
Write Cycle  
Timing Requirements:  
tSCSWRL  
tHCSWRH  
tSADWRH  
tHADWRH  
tWWRL  
CS Low Setup Before WR Low  
0.0  
0.0  
5.0  
2.0  
7.0  
6.0  
0.0  
5.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Low Hold After WR High  
Address Setup Before WR High  
Address Hold After WR High  
WR Low Width  
tWRWH  
RD/WR High Width  
tDWRHRDY  
tSDATWH  
tHDATWH  
WR High Delay After REDY (O/D) or (A/D) Disable  
Data Setup Before WR High  
Data Hold After WR High  
Switching Characteristics:  
tDRDYWRL REDY (O/D) or (A/D) Low Delay After WR/CS Low  
tRDYPWR REDY (O/D) or (A/D) Low Pulsewidth for Write  
13.5  
ns  
ns  
7.75  
NOTE  
*Not required if RD and address are valid tHBGRCSV after HBG goes low. For first access after HBR asserted, ADDR23-0 must be a nonMMS value 1/2 tCLK before RD  
or WR goes low or by tHBGRCSV after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See Host Interface, in  
the ADSP-21065L SHARC User’s Manual, Second Edition.  
–24–  
REV. B  
ADSP-21065L  
READ CYCLE  
ADDRESS/CS  
tHADRDH  
tSADRDL  
tWRWH  
RD  
tHDARWH  
DATA (OUT)  
tDRDHRDY  
tSDATRDY  
tRDYPRD  
tDRDYRDL  
REDY (O/D)  
REDY (A/D)  
WRITE CYCLE  
ADDRESS  
tHADWRH  
tSADWRH  
tHCSWRH  
tSCSWRL  
CS  
tWWRL  
tWRWH  
WR  
tHDATWH  
tSDATWH  
DATA (IN)  
tDWRHRDY  
tDRDYWRL  
tRDYPWR  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 16. Asynchronous Read/Write—Host to ADSP-21065L  
REV. B  
–25–  
ADSP-21065L  
Three-State Timing—Bus Master, Bus Slave, HBR, SBTS  
These specifications show how the memory interface is disabled (stops driving) or enabled (resumes driving) relative to CLKIN and  
the SBTS pin. This timing is applicable to bus master transition cycles (BTC) and host transition cycles (HTC) as well as the SBTS  
pin.  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tSTSCK  
tHTSCK  
SBTS Setup Before CLKIN  
SBTS Hold Before CLKIN  
7.0 + 8 DT  
ns  
ns  
1.0 + 8 DT  
Switching Characteristics:  
tMIENA  
tMIENS  
tMIENHG  
tMITRA  
Address/Select Enable After CLKIN  
1.0 – 2 DT  
–0.5 – 2 DT  
2.0 – 2 DT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Strobes Enable After CLKIN1  
HBG Enable After CLKIN  
Address/Select Disable After CLKIN  
Strobes Disable After CLKIN1  
HBG Disable After CLKIN  
3.0 – 4 DT  
4.0 – 4 DT  
5.5 – 4 DT  
tMITRS  
tMITRHG  
tDATEN  
tDATTR  
tACKEN  
tACKTR  
tMTRHBG  
tMENHBG  
Data Enable After CLKIN2  
10.0 + 5 DT  
1.0 – 2 DT  
7.5 + 4 DT  
1.0 – 2 DT  
2.0 + 2 DT  
15.75 + DT  
Data Disable After CLKIN2  
7.0 – 2 DT  
6.0 – 2 DT  
ACK Enable After CLKIN2  
ACK Disable After CLKIN2  
Memory Interface Disable Before HBG Low3  
Memory Interface Enable After HBG High3  
NOTES  
1Strobes = RD, WR, SW, DMAG.  
2In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write.  
3Memory Interface = Address, RD, WR, MSx, SW, DMAGx, BMS (in EPROM boot mode).  
–26–  
REV. B  
ADSP-21065L  
CLKIN  
tSTSCK  
tHTSCK  
SBTS  
tMITRA, tMITRS, tMITRHG  
tMIENA, tMIENS, tMIENHG  
MEMORY  
INTERFACE  
tDATTR  
tDATEN  
DATA  
ACK  
tACKTR  
tACKEN  
HBG  
tMTRHBG  
tMENHBG  
MEMORY  
INTERFACE  
MEMORY INTERFACE = ADDRESS, RD, WR, MSx, SW, DMAGx. BMS (IN EPROM BOOT MODE)  
Figure 17. Three-State Timing  
REV. B  
–27–  
ADSP-21065L  
DMA Handshake  
These specifications describe the three DMA handshake modes. In all three modes DMAR is used to initiate transfers. For hand-  
shake mode, DMAG controls the latching or enabling of data externally. For external handshake mode, the data transfer is controlled  
by the ADDR23-0, RD, WR, SW, MS3-0, ACK, and DMAG signals. Extern mode cannot be used for transfers with SDRAM. For  
Paced Master mode, the data transfer is controlled by ADDR23-0, RD, WR, MS3-0, and ACK (not DMAG). For Paced Master mode,  
the Memory Read-Bus Master, Memory Write-Bus Master, and Synchronous Read/Write-Bus Master timing specifications for  
ADDR23-0, RD, WR, MS3-0, SW, DATA31-0, and ACK also apply.  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tSDRLC  
DMARx Low Setup Before CLKIN1  
5.0  
5.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSDRHC  
tWDR  
DMARx High Setup Before CLKIN1  
DMARx Width Low (Nonsynchronous)  
Data Setup After DMAGx Low2  
Data Hold After DMAGx High  
Data Valid After DMARx High2  
DMARx Low Edge to Low Edge  
DMARx Width High  
tSDATDGL  
tHDATIDG  
tDATDRH  
tDMARLL  
tDMARH  
15.0 + 20 DT  
25.0 + 14 DT  
0.0  
18.0 + 14 DT  
6.0  
Switching Characteristics:  
tDDGL  
DMAGx Low Delay After CLKIN  
14.0 + 10 DT  
10.0 + 12 DT + HI  
16.0 + 20 DT  
0.0 – 2 DT  
28.0 + 16 DT  
–1.0  
16.0 + 20 DT  
0.0  
5.0 + 6 DT  
18.0 + 19 DT + W  
0.75 + 1 DT  
5.0  
20.0 + 10 DT  
6.0 – 2 DT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWDGH  
DMAGx High Width  
tWDGL  
tHDGC  
DMAGx Low Width  
DMAGx High Delay After CLKIN  
Address Select Valid to DMAGx High  
Address Select Hold After DMAGx High  
Data Valid Before DMAGx High3  
Data Disable After DMAGx High4  
WR Low Before DMAGx Low  
DMAGx Low Before WR High  
WR High Before DMAGx High  
RD Low Before DMAGx Low  
RD Low Before DMAGx High  
RD High Before DMAGx High  
DMAGx High to WR, RD Low  
tDADGH  
tDDGHA  
tVDATDGH  
tDATRDGH  
tDGWRL  
tDGWRH  
tDGWRR  
tDGRDL  
tDRDGH  
tDGRDR  
tDGWR  
4.0  
8.0 + 6 DT  
3.0 + 1 DT  
8.0  
24.0 + 26 DT + W  
0.0  
5.0 + 6 DT + HI  
2.0  
W = (number of wait states specified in WAIT register) × tCK  
.
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
NOTES  
1Only required for recognition in the current cycle.  
2tSDATDGL is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the  
data can be driven tDATDRH after DMARx is brought high.  
3tVDATDGH is valid if DMARx is not being used to hold off completion of a read. If DMARx is used to prolong the read, then tVDATDGH = 8 + 9 DT + (n × tCK) where n  
equals the number of extra cycles that the access is prolonged.  
4See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
–28–  
REV. B  
ADSP-21065L  
CLKIN  
tSDRLC  
tDMARLL  
tSDRHC  
tWDR  
tDMARH  
DMARx  
DMAGx  
tHDGC  
tDDGL  
tWDGL  
tWDGH  
TRANSFERS BETWEEN ADSP-2106x INTERNAL MEMORY AND EXTERNAL DEVICE  
tDATRDGH  
tVDATDGH  
DATA (FROM  
ADSP-2106x TO  
EXTERNAL DEVICE)  
tDATDRH  
tHDATIDG  
tSDATDGL  
DATA (FROM  
EXTERNAL DEVICE  
TO ADSP-2106x)  
TRANSFERS BETWEEN EXTERNAL DEVICE AND EXTERNAL MEMORY* (EXTERNAL HANDSHAKE MODE)  
tDGWRL  
tDGWRH  
tDGWRR  
WR  
(EXTERNAL DEVICE  
TO EXTERNAL  
MEMORY)  
tDGRDR  
tDGRDL  
RD  
(EXTERNAL  
MEMORY TO  
EXTERNAL DEVICE)  
tDRDGH  
tDDGHA  
tDADGH  
ADDRESS  
SW, MSx  
*MEMORY READ BUS MASTER,” “MEMORY WRITE BUS MASTERAND SYNCHRONOUS READ/WRITE BUS MASTER”  
TIMING SPECIFICATIONS FOR ADDR RD WR SW MS AND ACK ALSO APPLY HERE.  
,
,
,
,
230  
30  
Figure 18. DMA Handshake Timing  
REV. B  
–29–  
ADSP-21065L  
SDRAM Interface—Bus Master  
Use these specifications for ADSP-21065L bus master accesses of SDRAM.  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tSDSDK  
tHDSDK  
Data Setup Before SDCLK  
Data Hold After SDCLK  
2.0  
1.25  
ns  
ns  
Switching Characteristics:  
tDSDK1  
tDSDK2  
tSDK  
First SDCLK Rise Delay After CLKIN  
Second SDCLK Rise Delay After CLKIN  
SDCLK Period  
9.0 + 6 DT  
25.5 + 22 DT  
16.67  
7.5 + 8 DT  
6.5 + 8 DT  
12.75 + 6 DT  
29.25 + 22 DT  
tCK/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSDKH  
tSDKL  
SDCLK Width High  
SDCLK Width Low  
tDCADSDK  
tHCADSDK  
tSDTRSDK  
tSDENSDK  
tSDCTR  
tSDCEN  
tSDATR  
tSDAEN  
Command, Address, Data, Delay After SDCLK1  
Command, Address, Data, Hold After SDCLK1  
Data Three-State After SDCLK  
Data Enable After SDCLK2  
10.0 + 5 DT  
9.5 + 5 DT  
4.5 + 5 DT  
6.0 + 5 DT  
5.0 + 3 DT  
5.0 + 2 DT  
–1.0 – 4 DT  
1.0 – 2 DT  
SDCLK, Command Three-State After CLKIN1  
SDCLK, Command Enable After CLKIN1  
Address Three-State After CLKIN  
Address Enable After CLKIN  
9.75 + 3 DT  
10.0 + 2 DT  
3.0 – 4 DT  
7.0 – 2 DT  
NOTES  
1Command = SDCKE, MSx, RAS, CAS, SDWE, DQM, and SDA10.  
2SDRAM controller adds one SDRAM CLK three-stated cycle delay (tCK/2) on a Read followed by a Write.  
SDRAM Interface—Bus Slave  
These timing requirements allow a bus slave to sample the bus master’s SDRAM command and detect when a refresh occurs.  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tSSDKC1  
tSSDKC2  
tSCSDK  
tHCSDK  
First SDCLK Rise After CLKIN  
6.50 + 16 DT  
23.25  
0.0  
17.5 + 16 DT  
34.25  
ns  
ns  
ns  
ns  
Second SDCLK Rise After CLKIN  
Command Setup Before SDCLK1  
Command Hold After SDCLK1  
2.0  
NOTE  
1Command = SDCKE, RAS, CAS, and SDWE.  
–30–  
REV. B  
ADSP-21065L  
CLKIN  
tDSDK2  
tSDK  
tDSDK1  
tSDKH  
SDCLK  
tSDSDK  
tSDKL  
tHDSDK  
DATA  
(IN)  
tSDTRSDK  
tHCADSDK  
tDCADSDK  
tSDENSDK  
DATA  
(OUT)  
tDCADSDK  
1
CMND  
ADDR  
(OUT)  
tHCADSDK  
tSDCEN  
tSDCTR  
1
CMND  
(OUT)  
ADDR  
(OUT)  
tSDAEN  
tSDATR  
CLKIN  
tSSDKC2  
tSSDKC1  
SDCLK  
(IN)  
tSCSDK  
2
CMND  
(IN)  
tHCSDK  
NOTES  
1
COMMAND = SDCKE, MS , RAS, CAS, SDWE, DQM AND SDA10.  
X
2
SDRAM CONTROLLER ADDS ONE SDRAM CLK THREE-STATED CYCLE DELAY (tCK/2) ON A READ FOLLOWED BY A WRITE.  
Figure 19. SDRAM Interface  
REV. B  
–31–  
ADSP-21065L  
Serial Ports  
Parameter  
Min  
Max  
Units  
External Clock  
Timing Requirements:  
tSFSE  
TFS/RFS Setup Before TCLK/RCLK1  
4.0  
4.0  
1.5  
4.0  
9.0  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
tSDRE  
tHDRE  
tSCLKW  
tSCLK  
TFS/RFS Hold After TCLK/RCLK1  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
TCLK/RCLK Width  
TCLK/RCLK Period  
Internal Clock  
Timing Requirements:  
tSFSI  
TFS Setup Before TCLK2; RFS Setup Before RCLK1  
8.0  
1.0  
3.0  
3.0  
ns  
ns  
ns  
ns  
tHFSI  
tSDRI  
tHDRI  
TFS/RFS Hold After TCLK/RCLK1  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
External or Internal Clock  
Switching Characteristics:  
tDFSE  
RFS Delay After RCLK (Internally Generated RFS)2  
13.0  
ns  
ns  
tHOFSE  
RFS Hold After RCLK (Internally Generated RFS)2  
3.0  
External Clock  
Switching Characteristics:  
tDFSE  
TFS Delay After TCLK (Internally Generated TFS)2  
13.0  
12.5  
ns  
ns  
ns  
ns  
tHOFSE  
tDDTE  
tHDTE  
TFS Hold After TCLK (Internally Generated TFS)2  
Transmit Data Delay After TCLK2  
3.0  
4.0  
Transmit Data Hold After TCLK2  
Internal Clock  
Switching Characteristics:  
tDFSI  
TFS Delay After TCLK (Internally Generated TFS)2  
4.5  
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
tHDTI  
tSCLKIW  
TFS Hold After TCLK (Internally Generated TFS)2  
Transmit Data Delay After TCLK2  
Transmit Data Hold After TCLK2  
TCLK/RCLK Width  
–1.5  
7.5  
0.0  
(tSCLK/2) – 2.5  
(tSCLK/2) + 2.5  
Enable and Three-State  
Switching Characteristics:  
tDTENE  
tDDTTE  
tDTENI  
tDDTTI  
tDCLK  
Data Enable from External TCLK2  
5.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
Data Disable from External RCLK2  
Data Enable from Internal TCLK2  
Data Disable from Internal TCLK2  
TCLK/RCLK Delay from CLKIN  
SPORT Disable After CLKIN  
10.0  
3.0  
18.0 + 6 DT  
14.0  
tDPTR  
External Late Frame Sync  
tDDTLFSE  
Data Delay from Late External TFS or External RFS  
with MCE = 1, MFD = 03, 4  
10.5  
12.0  
ns  
ns  
tDTENLFSE  
tDDTLSCK  
Data Enable from late FS or MCE = 1, MFD = 03, 4  
Data Delay from TCLK/RCLK for Late External  
TFS or External RFS with MCE = 1, MFD = 03, 4  
Data Enable from RCLK/TCLK for Late External FS or  
MCE = 1, MFD = 03, 4  
3.5  
4.5  
ns  
ns  
tDTENLSCK  
NOTES  
To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame  
sync setup-and-hold, 2) data delay and data setup-and-hold, and 3) SCLK width.  
1Referenced to sample edge.  
2Referenced to drive edge.  
3MCE = 1, TFS enable and TFS valid follow tDDTENFS and tDDTLFSE.  
4If external RFS/TFS setup to RCLK/TCLK > tSCLK/2 then tDDTLSCK and tDTENLSCK apply; otherwise tDDTLFSE and tDTENLFS apply.  
*Word selected timing for I2S mode is the same as TFS/RFS timing (normal framing only).  
–32–  
REV. B  
ADSP-21065L  
DATA RECEIVE– INTERNAL CLOCK  
DATA RECEIVE– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
RCLK  
RCLK  
tDFSE  
tHOFSE  
tDFSE  
tHOFSE  
tHFSE  
tSFSI  
tHFSI  
tSFSE  
RFS  
DR  
RFS  
DR  
tSDRE  
tHDRE  
tSDRI  
tHDRI  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT– INTERNAL CLOCK  
DATA TRANSMIT– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
TCLK  
TCLK  
tDFSI  
tHOFSI  
tDFSE  
tHOFSE  
tSFSI  
tHFSI  
tHFSE  
tSFSE  
TFS  
TFS  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DT  
DT  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK (EXT)  
TFS ("LATE", EXT.)  
TCLK / RCLK  
tDDTEN  
tDDTTE  
DT  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK (INT)  
TFS ("LATE", INT.)  
TCLK / RCLK  
tDDTIN  
tDDTTI  
DT  
CLKIN  
tDPTR  
SPORT ENABLE AND  
THREE-STATE  
LATENCY  
TCLK, RCLK  
TFS, RFS, DT  
SPORT DISABLE DELAY  
FROM INSTRUCTION  
IS TWO CYCLES  
tDCLK  
TCLK (INT)  
RCLK (INT)  
LOW TO HIGH ONLY  
Figure 20. Serial Ports  
REV. B  
–33–  
ADSP-21065L  
EXTERNAL RFS with MCE = 1, MFD = 0  
DRIVE  
DRIVE  
SAMPLE  
RCLK  
tHOFSE/I  
tSFSE/I  
RFS  
tDDTE/I  
tHDTE/I  
tDTENLFSE  
1ST BIT  
2ND BIT  
DT  
tDDTLFSE  
LATE EXTERNAL TFS  
DRIVE  
DRIVE  
SAMPLE  
TCLK  
tHOFSE/I  
tSFSE/I  
TFS  
DT  
tDDTE/I  
tHDTE/I  
tDTENLFSE  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 21. External Late Frame Sync (Frame Sync Setup < tSCLK/2)  
EXTERNAL RFS with MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
RCLK  
RFS  
tHOFSE/I  
tSFSE/I  
tDDTE/I  
tHDTE/I  
tDTENLSCK  
DT  
1ST BIT  
2ND BIT  
tDDTLSCK  
LATE EXTERNAL TFS  
DRIVE  
SAMPLE  
DRIVE  
TCLK  
TFS  
tHOFSE/I  
tSFSE/I  
tDDTE/I  
tHDTE/I  
tDTENLSCK  
DT  
1ST BIT  
2ND BIT  
tDDTLSCK  
Figure 22. External Late Frame Sync (Frame Sync Setup > tSCLK/2)  
–34–  
REV. B  
ADSP-21065L  
JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Units  
Timing Requirements:  
tTCK  
TCK Period  
tCK  
3.0  
3.0  
7.0  
12.0  
4 tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
tTRSTW  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK Low1  
System Inputs Hold After TCK Low1  
TRST Pulsewidth  
Switching Characteristics:  
tDTDO TDO Delay from TCK Low  
tDSYS  
System Outputs Delay After TCK Low2  
11.0  
15.0  
ns  
ns  
NOTES  
1System Inputs = DATA31-0, ADDR23-0, RD, WR, ACK, SBTS, SW, HBR, HBG, CS, DMAR1, DMAR2, BR2-1, ID1-0, IRQ2-0, FLAG11-0, DR0x, DR1x, TCLK0,  
TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BSEL, BMS, CLKIN, RESET, SDCLK0, RAS, CAS, SDWE, SDCKE, PWM_EVENTx.  
2System Outputs = DATA31-0, ADDR23-0, MS3-0, RD, WR, ACK, SW, HBG, REDY, DMAG1, DMAG2, BR2-1, CPA, FLAG11-0, PWM_EVENTx, DT0x, DT1x,  
TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BMS, SDCLK0, SDCLK1, DQM, SDA10, RAS, CAS, SDWE, SDCKE, BM, XTAL.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 23. JTAG Test Access Port and Emulation  
REV. B  
–35–  
ADSP-21065L  
OUTPUT DRIVE CURRENT  
Example System Hold Time Calculation  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the ADSP-21065L’s output voltage  
and the input threshold for the device requiring the hold time. A  
typical V will be 0.4 V. CL is the total bus capacitance (per  
data line), and IL is the total leakage or three-state current (per  
data line). The hold time will be tDECAY plus the minimum  
disable time (i.e., tDATRWH for the write cycle).  
80  
V
OH  
3.1V, +85؇C  
3.6V, 40  
؇C  
60  
40  
20  
3.3V, +25  
؇
C
3.1V, +100؇C  
0
20  
3.1V, +100؇C  
40  
60  
80  
3.3V, +25؇C  
3.6V, 40؇C  
REFERENCE  
SIGNAL  
3.1V, +85؇C  
V
OL  
tMEASURED  
tENA  
100  
120  
tDIS  
V
V
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
0
OH (MEASURED)  
V
V
OH (MEASURED)  
SOURCE VOLTAGE V  
V
V  
+ V  
2.0V  
1.0V  
OH (MEASURED)  
OUTPUT  
V
OL (MEASURED)  
Figure 24. Typical Drive Currents  
OL (MEASURED)  
OL (MEASURED)  
tDECAY  
TEST CONDITIONS  
Output Disable Time  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from  
their output high or low voltage. The time for the voltage on the  
bus to decay by V is dependent on the capacitive load, CL and  
the load current, IL. This decay time can be approximated by  
the following equation:  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE TO BE  
APPROXIMATELY 1.5V  
Figure 25. Output Enable  
I
OL  
CL × ∆V  
tDECAY  
=
IL  
The output disable time tDIS is the difference between tMEASURED  
and tDECAY as shown in Figure 26. The time tMEASURED is the  
interval from when the reference signal switches to when the  
output voltage decays V from the measured output high or  
output low voltage. tDECAY is calculated with test loads CL and  
IL, and with V equal to 0.5 V.  
TO  
OUTPUT  
PIN  
+1.5V  
50pF  
Output Enable Time  
I
OH  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to when they start  
driving. The output enable time tENA is the interval from when a  
reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram. If multiple pins (such as  
the data bus) are enabled, the measurement value is that of the  
first pin to start driving.  
Figure 26. Equivalent Device Loading for AC Measure-  
ments (Includes All Fixtures)  
INPUT OR  
OUTPUT  
1.5V  
1.5V  
Figure 27. Voltage Reference Levels for AC Measure-  
ments (Except Output Enable/Disable)  
–36–  
REV. B  
ADSP-21065L  
Capacitive Loading  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
Output delays and holds are based on standard capacitive loads:  
50 pF on all pins. The delay and hold specifications given  
should be derated by a factor of l.8 ns/50 pF for loads other  
than the nominal value of 50 pF. Figure 28 and Figure 29 show  
how output rise time varies with capacitance. Figure 30 shows  
graphically how output delays and hold vary with load capaci-  
tance. (Note that this graph or derating does not apply to output  
disable delays; see the previous section Output Disable time  
under Test Conditions.) The graphs of Figure 28, Figure 29  
and Figure 30 may not be linear outside the ranges shown.  
RISE TIME  
FALL TIME  
18  
16  
14  
12  
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
LOAD CAPACITANCE pF  
Figure 29. Typical Rise and Fall Time (0.8 V–2.0 V)  
RISE TIME  
10  
6
5
4
8
FALL TIME  
6
4
2
0
3
2
0
20  
40  
60  
80  
100 120 140 160 180 200  
LOAD CAPACITANCE pF  
1
Figure 28. Typical Rise and Fall Time (10%–90% VDD  
)
0
1  
2  
0
20  
40  
60  
80  
100 120 140 160 180 200  
LOAD CAPACITANCE pF  
Figure 30. Typical Output Delay or Hold  
REV. B  
–37–  
ADSP-21065L  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation. (IDDIN  
see calculation in Electrical Characteristics section):  
POWER DISSIPATION  
Total power dissipation has two components: one due to inter-  
nal circuitry and one due to the switching of external output  
drivers. Internal power dissipation depends on the sequence in  
which instructions execute and the data operands involved. See  
IDDIN calculation in Electrical Characteristics section. Internal  
power dissipation is calculated this way:  
P
TOTAL = PEXT + (IDDIN × VDD)  
Note that the conditions causing a worst-case PEXT differ from  
those causing a worst-case PINT. Maximum PINT cannot occur  
while 100% of the output pins are switching from all ones (1s)  
to all zeros (0s). Note also that it is not common for an appli-  
cation to have 100% or even 50% of the outputs switching  
simultaneously.  
PINT = IDDIN × VDD  
The external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
– the number of output pins that switch during each cycle (O)  
– the maximum frequency at which the pins can switch (f)  
– the load capacitance of the pins (C)  
ENVIRONMENTAL CONDITIONS  
Thermal Characteristics  
The ADSP-21065L is offered in a 208-lead MQFP and a 196-  
ball Mini-BGA package.  
– the voltage swing of the pins (VDD).  
The external component is calculated using:  
The ADSP-21065L is specified for a case temperature (TCASE  
To ensure that TCASE is not exceeded, an air flow source may be  
used.  
)
.
2
P
EXT = O × C × VDD × f  
The load capacitance should include the processor’s package  
capacitance (CIN). The frequency f includes driving the load  
high and then back low. Address and data pins can drive high  
and low at a maximum rate of 1/tCK while in SDRAM burst  
mode.  
TCASE = TAMB + (PD × θCA  
)
TCASE = Case temperature (measured on top surface of package)  
PD = Power Dissipation in W (this value depends upon the  
specific application; a method for calculating PD is  
shown under Power Dissipation)  
Example:  
Estimate PEXT with the following assumptions:  
θJC  
θJC  
=
=
7.1°C/W for 208-lead MQFP  
5.1°C/W for 196-ball Mini-BGA  
– a system with one bank of external memory (32-bit)  
– two 1M × 16 SDRAM chips, each with a control signal load  
of 3 pF and a data signal load of 4 pF  
Airflow  
Table VI. Thermal Characteristics (208-Lead MQFP)  
– external data writes occur in burst mode, two every 1/tCK  
cycles, a potential frequency of 1/tCK cycles/s. Assume 50%  
pin switching  
– the external SDRAM clock rate is 60 MHz (2/tCK).  
(Linear Ft./Min.)  
CA (°C/W)  
0
100  
200  
400  
600  
The PEXT equation is calculated for each class of pins that can  
drive:  
θ
24  
20  
19  
17  
13  
Table VII. 196-Ball Mini-BGA  
Table V. External Power Calculations  
(Linear Ft./Min.)  
CA (°C/W)  
0
200  
400  
Pin  
Type  
# of  
%
2
θ
38  
29  
23  
Pins Switching 
؋
 C  
؋
 f  
؋
 VDD  
= PEXT  
Address  
MS0  
SDWE  
Data  
11  
1
1
50  
0
0
× 10.7 × 30 MHz × 10.9 V = 0.019 W  
× 10.7  
× 10.7  
× 7.7  
× 10.9 V = 0.000 W  
× 10.9 V = 0.000 W  
32  
50  
× 30 MHz × 10.9 V = 0.042 W  
SDRAM CLK 1  
× 10.7 × 30 MHz × 10.9 V = 0.007 W  
P
EXT = 0.068 W  
–38–  
REV. B  
ADSP-21065L  
208-LEAD MQFP PIN CONFIGURATION  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
1
2
3
4
5
6
7
8
VDD  
RFS0  
GND  
RCLK0  
DR0A  
DR0B  
TFS0  
TCLK0  
VDD  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
CAS  
SDWE  
VDD  
DQM  
SDCKE  
SDA10  
GND  
DMAG1  
DMAG2  
HBG  
BMSTR  
VDD  
CS  
SBTS  
GND  
WR  
RD  
GND  
VDD  
GND  
REDY  
SW  
CPA  
VDD  
VDD  
GND  
ACK  
MS0  
MS1  
GND  
GND  
MS2  
MS3  
FLAG11  
VDD  
FLAG10  
FLAG9  
FLAG8  
GND  
DATA0  
DATA1  
DATA2  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
VDD  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
DATA28  
DATA29  
GND  
VDD  
VDD  
DATA30  
DATA31  
FLAG7  
GND  
FLAG6  
FLAG5  
FLAG4  
GND  
VDD  
VDD  
NC  
ID1  
ID0  
EMU  
TDO  
TRST  
TDI  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
ADDR17  
ADDR16  
ADDR15  
VDD  
ADDR14  
ADDR13  
ADDR12  
VDD  
DATA3  
DATA4  
DATA5  
GND  
DATA6  
DATA7  
DATA8  
VDD  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
GND  
GND  
VDD  
ADDR11  
ADDR10  
ADDR9  
GND  
DT0A  
DT0B  
RFS1  
DATA9  
DATA10  
DATA11  
GND  
DATA12  
DATA13  
NC  
NC  
DATA14  
VDD  
GND  
VDD  
RCLK1  
DR1A  
DR1B  
TFS1  
TCLK1  
VDD  
ADDR8  
ADDR7  
ADDR6  
GND  
GND  
ADDR5  
ADDR4  
ADDR3  
VDD  
VDD  
DT1A  
DT1B  
PWM_EVENT1  
GND  
PWM_EVENT0  
BR1  
BR2  
VDD  
CLKIN  
XTAL  
VDD  
GND  
DATA15  
DATA16  
DATA17  
VDD  
DATA18  
DATA19  
DATA20  
GND  
TMS  
GND  
TCK  
BSEL  
BMS  
GND  
GND  
VDD  
VDD  
ADDR2  
ADDR1  
ADDR0  
GND  
FLAG0  
FLAG1  
FLAG2  
VDD  
FLAG3  
NC  
NC  
GND  
IRQ0  
NC  
RESET  
VDD  
GND  
DATA21  
DATA22  
DATA23  
GND  
GND  
SDCLK1  
GND  
ADDR23  
ADDR22  
ADDR21  
VDD  
ADDR20  
ADDR19  
ADDR18  
GND  
VDD  
VDD  
SDCLK0  
DMAR1  
DMAR2  
HBR  
GND  
RAS  
DATA24  
DATA25  
DATA26  
VDD  
GND  
DATA27  
IRQ1  
IRQ2  
NC  
GND  
REV. B  
–39–  
ADSP-21065L  
208-LEAD MQFP PIN  
VDD  
RSF0  
GND  
RCLK0  
DR0A  
DR0B  
TFS0  
TCLK0  
VDD  
1
2
3
4
5
6
7
8
9
VDD  
GND  
GND  
156  
155  
154  
153  
152  
151  
PIN 1  
IDENTIFIER  
BMS  
BSEL  
TCK  
150 GND  
149 TMS  
148  
TDI  
GND  
DT0A 11  
10  
147  
TRST  
146 TDO  
145  
DT0B  
RFS1  
12  
13  
EMU  
ID0  
144  
GND 14  
RCLK1 15  
143 ID1  
142 NC  
141  
16  
17  
18  
19  
DR1A  
DR1B  
TFS1  
VDD  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
VDD  
GND  
FLAG4  
FLAG5  
FLAG6  
GND  
FLAG7  
DATA31  
DATA30  
VDD  
TCLK1  
VDD 20  
VDD  
DT1A  
21  
22  
DT1B 23  
PWM EVENT1 24  
GND 25  
ADSP-21065L  
TOP VIEW  
PWM EVENT0  
26  
27  
28  
29  
130 VDD  
129 GND  
128  
BR1  
BR2  
VDD  
(Not to Scale)  
DATA29  
CLKIN 30  
127 DATA28  
126  
31  
XTAL  
VDD 32  
DATA27  
125 GND  
33  
34  
35  
124  
123  
122  
121  
GND  
SDCLK1  
GND  
VDD  
DATA26  
DATA25  
DATA24  
VDD 36  
SDCLK0 37  
120 VDD  
GND  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
38  
DMAR1  
DMAR2  
HBR  
39  
40  
DATA23  
DATA22  
DATA21  
NC  
GND  
DATA20  
DATA19  
DATA18  
VDD  
DATA17  
DATA16  
GND 41  
42  
RAS  
CAS  
SDWE  
VDD  
43  
44  
45  
DQM 46  
SDCKE 47  
SDA10  
48  
GND 49  
50  
51  
52  
107 DATA15  
DMAG1  
DMAG2  
HBG  
GND  
VDD  
106  
105  
NC = NO CONNECT  
–40–  
REV. B  
ADSP-21065L  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
208-Lead Plastic Quad Flatpack (MQFP)  
1.213 (30.80)  
1.205 (30.60) SQ  
1.197 (30.40)  
0.161 (4.10)  
MAX  
0.030 (0.75)  
0.024 (0.60)  
0.020 (0.50)  
208  
157  
156  
10  
TYP  
1
SEATING  
PLANE  
1.106 (28.10)  
1.102 (28.00) SQ  
1.098 (27.90)  
TOP VIEW  
(PINS DOWN)  
0.003 (0.08)  
MAX LEAD  
105  
104  
52  
COPLANARITY  
53  
0
MIN  
0.007 (0.17) MAX  
0.020 (0.50)  
0.011 (0.27)  
0.020 (0.50)  
BSC  
0.009 (0.22)  
0.007 (0.17)  
LEAD WIDTH  
0.010 (0.25)  
LEAD PITCH  
0.141 (3.59)  
0.137 (3.49)  
0.133 (3.39)  
NOTES  
1. THE ACTUAL POSITION OF EACH LEAD IS WITHIN 0.003 (0.08) FROM ITS IDEAL  
POSITION WHEN MEASURED IN THE LATERAL DIRECTION.  
2. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.  
3. THE 208 LEAD MQFP IS A METRIC PACKAGE. ENGLISH DIMENSIONS PROVIDED  
ARE APPROXIMATE AND MUST NOT BE USED FOR BOARD DESIGN PURPOSES.  
REV. B  
–41–  
ADSP-21065L  
196-BALL MINI-BGA PIN CONFIGURATION  
Ball #  
Name  
Ball #  
Name  
Ball #  
Name  
Ball #  
Name  
Ball #  
Name  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
NC1  
NC2  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
DR0A  
RFS0  
IRQ0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
TCLK0  
RCLK0  
IRQ2  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
RCLK1  
TFS0  
DR0B  
IRQ1  
FLAG1  
VDD  
VDD  
VDD  
VDD  
VDD  
BMS  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
TFS1  
DT0B  
DT0A  
RFS1  
VDD  
GND  
GND  
GND  
GND  
VDD  
ID0  
FLAG2  
ADDR0  
ADDR3  
ADDR6  
ADDR7  
ADDR8  
ADDR11  
ADDR14  
ADDR17  
ADDR18  
NC8  
FLAG0  
ADDR2  
ADDR5  
ADDR9  
ADDR12  
ADDR15  
ADDR19  
ADDR21  
ADDR23  
GND  
FLAG3  
ADDR1  
ADDR4  
ADDR10  
ADDR13  
ADDR16  
ADDR20  
ADDR22  
RESET  
BSEL  
A9  
B9  
C9  
D9  
E9  
A10  
A11  
A12  
A13  
A14  
B10  
B11  
B12  
B13  
B14  
C10  
C11  
C12  
C13  
C14  
D10  
D11  
D12  
D13  
D14  
E10  
E11  
E12  
E13  
E14  
TMS  
TRST  
EMU  
TDI  
ID1  
FLAG4  
NC7  
TCK  
TDO  
F1  
TCLK1  
G1  
PWM_  
EVENT1  
DT1B  
DT1A  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
DATA31  
DATA30  
DATA29  
H1  
PWM_  
EVENT0  
BR1  
BR2  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
DATA28  
DATA27  
DATA26  
J1  
CLKIN  
K1  
DMAR1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
F10  
F11  
F12  
F13  
F14  
DR1B  
DR1A  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
H13  
H14  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
XTAL  
SDCLK1  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
K13  
K14  
SDCLK0  
HBR  
SDWE  
VDD  
GND  
GND  
GND  
GND  
VDD  
DATA19  
DATA21  
DATA20  
DATA22  
VDD  
FLAG6  
FLAG5  
FLAG7  
DATA24  
DATA25  
DATA23  
L1  
L2  
L3  
L4  
L5  
L6  
DMAR2  
CAS  
SDA10  
DMAG2  
VDD  
M1  
M2  
M3  
M4  
M5  
M6  
RAS  
N1  
N2  
N3  
N4  
N5  
N6  
DQM  
HBG  
BMSTR  
SBTS  
REDY  
GND  
P1  
P2  
P3  
P4  
P5  
P6  
NC3  
NC4  
GND  
WR  
SW  
SDCKE  
DMAG1  
CS  
RD  
CPA  
VDD  
MS0  
L7  
VDD  
M7  
ACK  
N7  
MS1  
P7  
MS2  
L8  
L9  
VDD  
VDD  
M8  
M9  
FLAG10  
DATA2  
DATA5  
DATA9  
DATA12  
DATA14  
DATA15  
N8  
N9  
FLAG11  
DATA1  
DATA4  
DATA7  
DATA10  
DATA11  
NC6  
P8  
P9  
MS3  
FLAG9  
FLAG8  
DATA0  
DATA3  
DATA6  
NC5  
L10  
L11  
L12  
L13  
L14  
DATA8  
DATA13  
DATA16  
DATA17  
DATA18  
M10  
M11  
M12  
M13  
M14  
N10  
N11  
N12  
N13  
N14  
P10  
P11  
P12  
P13  
P14  
–42–  
REV. B  
ADSP-21065L  
196-BALL MINI-BGA PIN CONFIGURATION  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
NC7  
NC8  
ADDR18 ADDR17 ADDR14 ADDR11 ADDR8  
ADDR7  
ADDR6  
ADDR3  
ADDR0  
FLAG2  
NC2  
RFS0  
RCLK0  
TFS0  
NC1  
A
B
C
D
E
F
TCK  
TDO  
GND  
ADDR23 ADDR21 ADDR19 ADDR15 ADDR12 ADDR9  
ADDR5  
ADDR2  
ADDR1  
FLAG1  
VDD  
FLAG0  
FLAG3  
DR0A  
TCLK0  
RCLK1  
TFS1  
IRQ0  
IRQ2  
BSEL  
ADDR22 ADDR20 ADDR16 ADDR13 ADDR10 ADDR4  
RESET  
TMS  
VDD  
VDD  
GND  
GND  
GND  
GND  
VDD  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
ACK  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
DR0B  
DT0A  
DR1A  
DT1A  
EMU  
TRST  
ID1  
BMS  
ID0  
IRQ1  
RFS1  
VDD  
FLAG4  
FLAG7  
TDI  
DT0B  
DR1B  
DT1B  
FLAG5  
FLAG6  
VDD  
VDD  
VDD  
VDD  
GND  
TCLK1  
PWM_  
EVENT1  
DATA29 DATA30 DATA31  
DATA26 DATA27 DATA28  
DATA23 DATA25 DATA24  
GND  
VDD  
G
H
PWM_  
EVENT0  
GND  
VDD  
BR2  
BR1  
XTAL  
GND  
VDD  
SDCLK1  
CLKIN  
DMAR1  
DMAR2  
RAS  
J
DATA22 DATA20 DATA21 DATA19  
VDD  
SDCLK0  
SDWE  
DMAG2  
CS  
HBR  
K
L
DATA18 DATA17 DATA16 DATA13 DATA8  
VDD  
SDA10  
CAS  
DATA15 DATA14 DATA12 DATA9  
DATA5  
DATA4  
FLAG8  
DATA2 FLAG10  
DATA1 FLAG11  
SDCKE  
CPA  
RD  
DMAG1  
BMSTR  
GND  
M
N
P
NC6  
NC5  
DATA11 DATA10 DATA7  
GND  
REDY  
DQM  
MS1  
MS2  
SBTS  
WR  
HBG  
DATA6  
DATA3  
DATA0  
FLAG9  
NC4  
NC3  
MS3  
MS0  
SW  
REV. B  
–43–  
ADSP-21065L  
ORDERING GUIDE  
Part  
Number  
Case Temperature  
Range  
Instruction  
Rate  
On-Chip  
SRAM  
Operating  
Voltage  
Package  
Options  
ADSP-21065LKS-240  
ADSP-21065LCS-240  
ADSP-21065LKCA-240  
ADSP-21065LKS-264  
ADSP-21065LKCA-264  
0°C to +85°C  
–40°C to +100°C  
0°C to +85°C  
0°C to +85°C  
0°C to +85°C  
60 MHz  
60 MHz  
60 MHz  
66 MHz  
66 MHz  
544 Kbit  
544 Kbit  
544 Kbit  
544 Kbit  
544 Kbit  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
MQFP  
MQFP  
Mini-BGA  
MQFP  
Mini-BGA  
OUTLINE DIMENSIONS  
Dimensions shown in mm.  
196-Ball Mini-BGA  
15.20  
15.00 SQ  
14.80  
DETAIL B  
14 13 12 1110 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
13.00  
BSC  
15.20  
15.00 SQ  
14.80  
TOP VIEW  
1.00  
BSC  
K
L
M
N
P
DETAIL A  
1.00 BSC  
1.90  
1.75  
1.60  
13.00 BSC  
DETAIL A  
DETAIL B  
CCC = 0.25  
(TOP PLANARITY)  
0.75  
0.70  
0.65  
1.10  
1.00  
0.90  
0.55  
NOM  
0.60  
0.50  
0.40  
1.10  
1.00  
0.90  
0.20  
MAX BALL  
COPLANARITY  
0.70  
0.60  
0.50  
BALL  
SEATING  
PLANE  
1.00  
BSC  
DIAMETER  
NOTES  
1. THE ACTUAL POSITION OF THE BALL GRID IS WITHIN 0.30 OF ITS IDEAL POSITION RELATIVE TO THE  
PACKAGE EDGES. THE ACTUAL POSITION OF EACH BALL IS WITHIN 0.10 OF ITS IDEAL POSITION  
RELATIVE TO THE BALL GRID.  
2. ALL MEASUREMENTS ARE PROVIDED IN METRIC UNITS BECAUSE THIS IS A METRIC PACKAGE.  
ANALOG DEVICES STRONGLY RECOMMENDS THAT YOU DESIGN WITH THE METRIC MEASUREMENTS  
ONLY.  
3. BALL DIAMETER HAS BEEN CHANGED FROM 0.50mm NOMINAL TO 0.60mm NOMINAL TO COMPLY  
WITH JEDEC STANDARD PUBLICATION 95 CASE OUTLINE DRAWING MO151. 0.60 NOMINAL BALL  
DIAMETER PRODUCT WILL BE AVAILABLE IN JULY, 2000.  
–44–  
REV. B  

相关型号:

ADSP-21065L

DSP Microcomputer
ADI

ADSP-21065LCCA-240

DSP Microcomputer
ADI

ADSP-21065LCCAZ-240

32-BIT, 30 MHz, OTHER DSP, PBGA196, CHIP SCALE, MS-034AAE-1, BGA-196
ROCHESTER

ADSP-21065LCS-240

DSP Microcomputer
ADI

ADSP-21065LCSZ-240

DSP Microcomputer
ADI

ADSP-21065LCSZ-240

32-BIT, 30 MHz, OTHER DSP, PQFP208, MS-029FA-1, MQFP-208
ROCHESTER

ADSP-21065LKCA-240

DSP Microcomputer
ADI

ADSP-21065LKCA-264

DSP Microcomputer
ADI

ADSP-21065LKCAZ-240

32-BIT, 30 MHz, OTHER DSP, PBGA196, CHIP SCALE, MS-034AAE-1, BGA-196
ROCHESTER
ADI

ADSP-21065LKCAZ-264

IC 32-BIT, 33.33 MHz, OTHER DSP, PBGA196, CHIP SCALE, MS-034AAE-1, BGA-196, Digital Signal Processor
ADI

ADSP-21065LKS-200X

IC 32-BIT, 30 MHz, OTHER DSP, PQFP208, METRIC, PLASTIC, QFP-208, Digital Signal Processor
ADI