ADSP-2115KST-66 [ADI]

ADSP-2100 Family DSP Microcomputers; ADSP -2100系列的DSP微型计算机
ADSP-2115KST-66
型号: ADSP-2115KST-66
厂家: ADI    ADI
描述:

ADSP-2100 Family DSP Microcomputers
ADSP -2100系列的DSP微型计算机

计算机
文件: 总64页 (文件大小:666K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADSP-2100 Family  
DSP Microcomputers  
a
ADSP-21xx  
FUNCTIO NAL BLO CK D IAGRAM  
SUMMARY  
16-Bit Fixed-Point DSP Microprocessors w ith  
On-Chip Mem ory  
Enhanced Harvard Architecture for Three-Bus  
Perform ance: Instruction Bus & Dual Data Buses  
Independent Com putation Units: ALU, Multiplier/  
Accum ulator, and Shifter  
Single-Cycle Instruction Execution & Multifunction  
Instructions  
On-Chip Program Mem ory RAM or ROM  
& Data Mem ory RAM  
MEMORY  
FLAGS  
DATA ADDRESS  
GENERATORS  
(ADSP-2111)  
PROGRAM  
SEQUENCER  
DATA  
MEMORY  
PROGRAM  
MEMORY  
DAG 1  
DAG 2  
EXTERNAL  
ADDRESS  
BUS  
PROGRAM MEMORY ADDRESS  
DATA MEMORY ADDRESS  
PROGRAM MEMORY DATA  
DATA MEMORY DATA  
EXTERNAL  
DATA  
BUS  
Integrated I/ O Peripherals: Serial Ports, Tim er,  
Host Interface Port (ADSP-2111 Only)  
HOST  
INTERFACE  
PORT  
SERIAL PORTS  
SPORT 0 SPORT 1  
ARITHMETIC UNITS  
MAC  
TIMER  
SHIFTER  
ALU  
FEATURES  
(ADSP-2111)  
25 MIPS, 40 ns Maxim um Instruction Rate  
Separate On-Chip Buses for Program and Data Mem ory  
Program Mem ory Stores Both Instructions and Data  
(Three-Bus Perform ance)  
Dual Data Address Generators w ith Modulo and  
Bit-Reverse Addressing  
ADSP-2100 CORE  
T his data sheet describes the following ADSP-2100 Family  
processors:  
ADSP-2101  
Efficient Program Sequencing w ith Zero-Overhead  
Looping: Single-Cycle Loop Setup  
ADSP-2103  
ADSP-2105  
ADSP-2111  
ADSP-2115  
3.3 V Version of ADSP-2101  
Low Cost DSP  
DSP with Host Interface Port  
Autom atic Booting of On-Chip Program Mem ory from  
Byte-Wide External Mem ory (e.g., EPROM )  
Double-Buffered Serial Ports w ith Com panding Hardw are,  
Autom atic Data Buffering, and Multichannel Operation  
ADSP-2111 Host Interface Port Provides Easy Interface  
to 68000, 80C51, ADSP-21xx, Etc.  
ADSP-2161/62/63/64 Custom ROM-programmed DSPs  
T he following ADSP-2100 Family processors are not included  
in this data sheet:  
Autom atic Booting of ADSP-2111 Program Mem ory  
Through Host Interface Port  
Three Edge- or Level-Sensitive Interrupts  
Low Pow er IDLE Instruction  
PGA, PLCC, PQFP, and TQFP Packages  
MIL-STD-883B Versions Available  
ADSP-2100A  
DSP Microprocessor  
ADSP-2165/66  
ROM-programmed ADSP-216x processors  
with powerdown and larger on-chip  
memories (12K Program Memory ROM,  
1K Program Memory RAM, 4K Data  
Memory RAM)  
ADSP-21msp5x  
ADSP-2171  
Mixed-Signal DSP Processors with  
integrated on-chip A/D and D/A plus  
powerdown  
GENERAL D ESCRIP TIO N  
T he ADSP-2100 Family processors are single-chip micro-  
computers optimized for digital signal processing (DSP)  
and other high speed numeric processing applications. T he  
ADSP-21xx processors are all built upon a common core. Each  
processor combines the core DSP architecture—computation  
units, data address generators, and program sequencer—with  
differentiating features such as on-chip program and data  
memory RAM, a programmable timer, one or two serial ports,  
and, on the ADSP-2111, a host interface port.  
Speed and feature enhanced ADSP-2100  
Family processor with host interface port,  
powerdown, and instruction set extensions  
for bit manipulation, multiplication, biased  
rounding, and global interrupt masking  
ADSP-2181  
ADSP-21xx processor with ADSP-2171  
features plus 80K bytes of on-chip RAM  
configured as 16K words of program  
memory and 16K words of data memory.  
Refer to the individual data sheet of each of these processors for  
further information.  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
ADSP-21xx  
Fabricated in a high speed, submicron, double-layer metal  
CMOS process, the highest-performance ADSP-21xx proces-  
sors operate at 25 MHz with a 40 ns instruction cycle time.  
Every instruction can execute in a single cycle. Fabrication in  
CMOS results in low power dissipation.  
Receive and transmit data via one or two serial ports  
Receive and/or transmit data via the host interface port  
(ADSP-2111 only)  
T he ADSP-2101, ADSP-2105, and ADSP-2115 comprise the  
basic set of processors of the family. Each of these three devices  
contains program and data memory RAM, an interval timer,  
and one or two serial ports. T he ADSP-2103 is a 3.3 volt  
power supply version of the ADSP-2101; it is identical to the  
ADSP-2101 in all other characteristics. T able I shows the  
features of each ADSP-21xx processor.  
T he ADSP-2100 Family’s flexible architecture and compre-  
hensive instruction set support a high degree of parallelism.  
In one cycle the ADSP-21xx can perform all of the following  
operations:  
Generate the next program address  
Fetch the next instruction  
Perform one or two data moves  
Update one or two data address pointers  
Perform a computation  
T he ADSP-2111 adds a 16-bit host interface port (HIP) to the  
basic set of ADSP-21xx integrated features. T he host port  
provides a simple interface to host microprocessors or  
microcontrollers such as the 8031, 68000, or ISA bus.  
Capacitive Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
T est Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
TABLE O F CO NTENTS  
GENERAL DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . . 1  
Development T ools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SPECIFICAT IONS (ADSP-2103/2162/2164) . . . . . . . . . 25  
Recommended Operating Conditions . . . . . . . . . . . . . . . . 25  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Supply Current & Power . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power Dissipation Example . . . . . . . . . . . . . . . . . . . . . . . . 27  
Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Capacitive Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
T est Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
ARCHIT ECT URE OVERVIEW . . . . . . . . . . . . . . . . . . . . 4  
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Host Interface Port (ADSP-2111) . . . . . . . . . . . . . . . . . . . . 6  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SYST EM INT ERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TIMING PARAMETERS  
Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Program Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . 10  
Program Memory Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Boot Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Low Power IDLE Instruction . . . . . . . . . . . . . . . . . . . . . . 13  
ADSP-216x Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Ordering Procedure for ADSP-216x ROM Processors . . . . 13  
Wafer Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Functional Differences for Older Revision Devices . . . . . . 14  
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
(ADSP-2101/2105/2111/2115/2161/2163) . . . . . . . . . . . . 29  
Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Interrupts & Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Bus Request–Bus Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Host Interface Port (ADSP-2111) . . . . . . . . . . . . . . . . . . . 36  
T IMING PARAMET ERS (ADSP-2103/2162/2164) . . . . 44  
Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Interrupts & Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Bus Request–Bus Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
SPECIFICAT IONS  
(ADSP-2101/2105/2115/2161/2163) . . . . . . . . . . . . . . . 17  
Recommended Operating Conditions . . . . . . . . . . . . . . . . 17  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Supply Current & Power (ADSP-2101/2161/2163) . . . . . . 18  
Power Dissipation Example . . . . . . . . . . . . . . . . . . . . . . . . 19  
Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Capacitive Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
T est Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PIN CONFIGURAT IONS  
68-Pin PGA (ADSP-2101) . . . . . . . . . . . . . . . . . . . . . . . . 51  
68-Lead PLCC (ADSP-2101/2103/2105/2115/216x) . . . . 52  
80-Lead PQFP (ADSP-2101/2103/2115/216x) . . . . . . . . . 53  
80-Lead T QFP (ADSP-2115) . . . . . . . . . . . . . . . . . . . . . . 53  
100-Pin PGA (ADSP-2111) . . . . . . . . . . . . . . . . . . . . . . . 54  
100-Lead PQFP (ADSP-2111) . . . . . . . . . . . . . . . . . . . . . 55  
SPECIFICAT IONS  
PACKAGE OUT LINE DIMENSIONS  
(ADSP-2111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Recommended Operating Conditions . . . . . . . . . . . . . . . . 21  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Supply Current & Power . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power Dissipation Example . . . . . . . . . . . . . . . . . . . . . . . . 23  
Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 23  
68-Pin PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
68-Lead PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
80-Lead PQFP, 80-Lead T QFP . . . . . . . . . . . . . . . . . . . . 58  
100-Pin PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
100-Lead PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . 61-62  
–2–  
REV. B  
ADSP-21xx  
Table I. AD SP -21xx P rocessor Features  
Feature  
2101  
2103  
2105  
2115  
2111  
Data Memory (RAM)  
Program Memory (RAM)  
T imer  
Serial Port 0 (Multichannel)  
Serial Port 1  
Host Interface Port  
Speed Grades (Instruction Cycle Time)  
10.24 MHz (76.9 ns)  
13.0 MHz (76.9 ns)  
13.824 MHz (72.3 ns)  
16.67 MHz (60 ns)  
20.0 MHz (50 ns)  
25 MHz (40 ns)  
1K  
2K  
1K  
2K  
12 K  
1K  
12 K  
1K  
1K  
2K  
• • • • •  
• •  
• •  
• • • • •  
• •  
• • •  
5 V  
Supply Voltage  
Packages  
5 V  
3.3 V  
5 V  
5 V  
68-Pin PGA  
68-Lead PLCC  
80-Lead PQFP  
80-Lead T QFP  
100-Pin PGA  
100-Lead PQFP  
T emperature Grades  
K Commercial 0°C to +70°C  
B Industrial  
T Extended  
• • • •  
• •  
• • • • •  
–40°C to +85°C  
–55°C to +125°C  
• • • • •  
Table II. AD SP -216x RO M-P rogram m ed P rocessor Features  
Feature  
2161  
2162  
2163  
2164  
Data Memory (RAM)  
Program Memory (ROM)  
Program Memory (RAM)  
T imer  
Serial Port 0 (Multichannel)  
Serial Port 1  
12 K  
8K  
12 K  
8K  
12 K  
4K  
12 K  
4K  
• • • •  
• • • •  
• • • •  
Supply Voltage  
5 V  
3.3 V  
5 V  
3.3 V  
Speed Grades (Instruction Cycle Time)  
10.24 MHz (97.6 ns)  
16.67 MHz (60 ns)  
25 MHz (40 ns)  
Packages  
68-Lead PLCC  
• • • •  
80-Lead PQFP  
• • • •  
T emperature Grades  
K Commercial 0°C to +70°C  
B Industrial –40°C to +85°C  
• • • •  
• • • •  
REV. B  
–3–  
ADSP-21xx  
T he ADSP-216x series are memory-variant versions of the  
ADSP-2101 and ADSP-2103 that contain factory-programmed  
on-chip ROM program memory. T hese devices offer different  
amounts of on-chip memory for program and data storage.  
T able II shows the features available in the ADSP-216x series of  
custom ROM-coded processors.  
ARCH ITECTURE O VERVIEW  
Figure 1 shows a block diagram of the ADSP-21xx architecture.  
T he processors contain three independent computational units:  
the ALU, the multiplier/accumulator (MAC), and the shifter.  
T he computational units process 16-bit data directly and have  
provisions to support multiprecision computations. T he ALU  
performs a standard set of arithmetic and logic operations;  
division primitives are also supported. T he MAC performs  
single-cycle multiply, multiply/add, and multiply/subtract  
operations. T he shifter performs logical and arithmetic shifts,  
normalization, denormalization, and derive exponent operations.  
The shifter can be used to efficiently implement numeric format  
control including multiword floating-point representations.  
T he ADSP-216x products eliminate the need for an external  
boot EPROM in your system, and can also eliminate the need  
for any external program memory by fitting the entire applica-  
tion program in on-chip ROM. T hese devices thus provide an  
excellent option for volume applications where board space and  
system cost constraints are of critical concern.  
D evelopm ent Tools  
T he internal result (R) bus directly connects the computational  
units so that the output of any unit may be used as the input of  
any unit on the next cycle.  
T he ADSP-21xx processors are supported by a complete set of  
tools for system development. T he ADSP-2100 Family Devel-  
opment Software includes C and assembly language tools that  
allow programmers to write code for any of the ADSP-21xx  
processors. T he ANSI C compiler generates ADSP-21xx  
assembly source code, while the runtime C library provides  
ANSI-standard and custom DSP library routines. T he ADSP-  
21xx assembler produces object code modules which the linker  
combines into an executable file. T he processor simulators  
provide an interactive instruction-level simulation with a  
reconfigurable, windowed user interface. A PROM splitter  
utility generates PROM programmer compatible files.  
EZ-ICE® in-circuit emulators allow debugging of ADSP-21xx  
systems by providing a full range of emulation functions such as  
modification of memory and register values and execution  
breakpoints. EZ-LAB® demonstration boards are complete DSP  
systems that execute EPROM-based programs.  
A powerful program sequencer and two dedicated data address  
generators ensure efficient use of these computational units.  
T he sequencer supports conditional jumps, subroutine calls,  
and returns in a single cycle. With internal loop counters and  
loop stacks, the ADSP-21xx executes looped code with zero  
overhead—no explicit jump instructions are required to  
maintain the loop.  
T wo data address generators (DAGs) provide addresses for  
simultaneous dual operand fetches (from data memory and  
program memory). Each DAG maintains and updates four  
address pointers. Whenever the pointer is used to access data  
(indirect addressing), it is post-modified by the value of one of  
four modify registers. A length value may be associated with  
each pointer to implement automatic modulo addressing for  
circular buffers. T he circular buffering feature is also used by  
the serial ports for automatic data transfers to (and from) on-  
chip memory.  
T he EZ-Kit Lite is a very low-cost evaluation/development  
platform that contains both the hardware and software needed  
to evaluate the ADSP-21xx architecture.  
Efficient data transfer is achieved with the use of five internal  
buses:  
Additional details and ordering information is available in the  
ADSP-2100 Family Software & Hardware Development Tools data  
sheet (ADDS-21xx-T OOLS). T his data sheet can be requested  
from any Analog Devices sales office or distributor.  
• Program Memory Address (PMA) Bus  
• Program Memory Data (PMD) Bus  
Data Memory Address (DMA) Bus  
Data Memory Data (DMD) Bus  
• Result (R) Bus  
Additional Infor m ation  
T his data sheet provides a general overview of ADSP-21xx  
processor functionality. For detailed design information on the  
architecture and instruction set, refer to the ADSP-2100 Family  
User’s Manual, available from Analog Devices.  
T he two address buses (PMA, DMA) share a single external  
address bus, allowing memory to be expanded off-chip, and the  
two data buses (PMD, DMD) share a single external data bus.  
T he BMS, DMS, and PMS signals indicate which memory  
space is using the external buses.  
Program memory can store both instructions and data, permit-  
ting the ADSP-21xx to fetch two operands in a single cycle, one  
from program memory and one from data memory. T he  
processor can fetch an operand from on-chip program memory  
and the next instruction in the same cycle.  
T he memory interface supports slow memories and memory-  
mapped peripherals with programmable wait state generation.  
External devices can gain control of the processor’s buses with  
the use of the bus request/grant signals (BR, BG).  
EZ-ICE and EZ-LAB are registered trademarks of Analog Devices, Inc.  
–4–  
REV. B  
ADSP-21xx  
FLAGS  
(ADSP-2111 Only)  
INSTRUCTION  
REGISTER  
PROGRAM  
MEMORY  
DATA  
MEMORY  
3
BOOT  
ADDRESS  
GENERATOR  
DATA  
ADDRESS  
GENERATOR  
#2  
DATA  
ADDRESS  
GENERATOR  
#1  
SRAM  
or ROM  
SRAM  
TIMER  
PROGRAM  
SEQUENCER  
24  
16  
PMA BUS  
DMA BUS  
14  
PMA BUS  
DMA BUS  
14  
EXTERNAL  
ADDRESS  
BUS  
MUX  
14  
24  
PMD BUS  
PMD BUS  
DMD BUS  
24  
EXTERNAL  
DATA  
BUS  
EXCHANGE  
MUX  
BUS  
16 DMD BUS  
COMPANDING  
CIRCUITRY  
INPUT REGS  
INPUT REGS  
MAC  
INPUT REGS  
11  
HOST  
PORT  
CONTROL  
SHIFTER  
ALU  
EXTERNAL  
HOST PORT  
TRANSMIT REG  
RECEIVE REG  
TRANSMIT REG  
RECEIVE REG  
OUTPUT REGS  
OUTPUT REGS  
OUTPUT REGS  
16  
BUS  
HOST  
PORT  
DATA  
16  
SERIAL  
PORT 0  
(Not on ADSP-2105)  
SERIAL  
PORT 1  
R Bus  
HOST INTERFACE PORT  
(ADSP-2111 Only)  
5
5
Figure 1. ADSP-21xx Block Diagram  
Ser ial P or ts  
One bus grant execution mode (GO Mode) allows the ADSP-  
21xx to continue running from internal memory. A second  
execution mode requires the processor to halt while buses are  
granted.  
T he ADSP-21xx processors include two synchronous serial  
ports (“SPORT s”) for serial communications and multiproces-  
sor communication. All of the ADSP-21xx processors have two  
serial ports (SPORT 0, SPORT 1) except for the ADSP-2105,  
which has only SPORT 1.  
Each ADSP-21xx processor can respond to several different  
interrupts. T here can be up to three external interrupts,  
configured as edge- or level-sensitive. Internal interrupts can be  
generated by the timer, serial ports, and, on the ADSP-2111,  
the host interface port. T here is also a master RESET signal.  
T he serial ports provide a complete synchronous serial interface  
with optional companding in hardware. A wide variety of  
framed or frameless data transmit and receive modes of opera-  
tion are available. Each SPORT can generate an internal  
programmable serial clock or accept an external serial clock.  
Booting circuitry provides for loading on-chip program memory  
automatically from byte-wide external memory. After reset,  
three wait states are automatically generated. T his allows, for  
example, a 60 ns ADSP-2101 to use a 200 ns EPROM as  
external boot memory. Multiple programs can be selected and  
loaded from the EPROM with no additional hardware.  
Each serial port has a 5-pin interface consisting of the following  
signals:  
Signal Nam e  
Function  
SCLK  
RFS  
T FS  
DR  
Serial Clock (I/O)  
T he data receive and transmit pins on SPORT 1 (Serial Port 1)  
can be alternatively configured as a general-purpose input flag  
and output flag. You can use these pins for event signalling to  
and from an external device. T he ADSP-2111 has three  
additional flag outputs whose states are controlled through  
software.  
Receive Frame Synchronization (I/O)  
T ransmit Frame Synchronization (I/O)  
Serial Data Receive  
DT  
Serial Data T ransmit  
T he ADSP-21xx serial ports offer the following capabilities:  
A programmable interval timer can generate periodic interrupts.  
A 16-bit count register (T COUNT ) is decremented every n  
cycles, where n–1 is a scaling value stored in an 8-bit register  
(T SCALE). When the value of the count register reaches zero,  
an interrupt is generated and the count register is reloaded from  
a 16-bit period register (T PERIOD).  
Bidir ectional—Each SPORT has a separate, double-buffered  
transmit and receive function.  
Flexible Clocking—Each SPORT can use an external serial  
clock or generate its own clock internally.  
REV. B  
–5–  
ADSP-21xx  
Flexible Fr am ing—T he SPORT s have independent framing  
for the transmit and receive functions; each function can run in  
a frameless mode or with frame synchronization signals inter-  
nally generated or externally generated; frame sync signals may  
be active high or inverted, with either of two pulse widths and  
timings.  
of the ADSP-2111. T he two status registers provide status  
information to both the ADSP-2111 and the host processor.  
HSR7 contains a software reset bit which can be set by both the  
ADSP-2111 and the host.  
HIP transfers can be managed using either interrupts or polling.  
T he HIP generates an interrupt whenever an HDR register  
receives data from a host processor write. It also generates an  
interrupt when the host processor has performed a successful  
read of any HDR. T he read/write status of the HDRs is also  
stored in the HSR registers.  
D iffer ent Wor d Lengths—Each SPORT supports serial data  
word lengths from 3 to 16 bits.  
Com panding in H ar dwar e—Each SPORT provides optional  
A-law and µ-law companding according to CCIT T recommen-  
dation G.711.  
T he HMASK register bits can be used to mask the generation of  
read or write interrupts from individual HDR registers. Bits in  
the IMASK register enable and disable all HIP read interrupts  
or all HIP write interrupts. So, for example, a write to HDR4  
will cause an interrupt only if both the HDR4 Write bit in  
HMASK and the HIP Write interrupt enable bit in IMASK are  
set.  
Flexible Inter r upt Schem e—Receive and transmit functions  
can generate a unique interrupt upon completion of a data word  
transfer.  
Autobuffer ing with Single-Cycle O ver head—Each SPORT  
can automatically receive or transmit the contents of an entire  
circular data buffer with only one overhead cycle per data word;  
an interrupt is generated after the transfer of the entire buffer is  
completed.  
T he HIP provides a second method of booting the ADSP-2111  
in which the host processor loads instructions into the HIP. T he  
ADSP-2111 automatically transfers the data, in this case  
opcodes, to internal program memory. T he BMODE pin  
determines whether the ADSP-2111 boots from the host  
processor through the HIP or from external EPROM over the  
data bus.  
Multichannel Capability (SP O RT0 O nly)—SPORT 0  
provides a multichannel interface to selectively receive or  
transmit a 24-word or 32-word, time-division multiplexed serial  
bit stream; this feature is especially useful for T 1 or CEPT  
interfaces, or as a network communication scheme for multiple  
processors. (Note that the ADSP-2105 includes only SPORT 1,  
not SPORT 0, and thus does not offer multichannel operation.)  
Inter r upts  
T he ADSP-21xx’s interrupt controller lets the processor  
respond to interrupts with a minimum of overhead. Up to three  
external interrupt input pins, IRQ0, IRQ1, and IRQ2, are  
provided. IRQ2 is always available as a dedicated pin; IRQ1 and  
IRQ0 may be alternately configured as part of Serial Port 1. T he  
ADSP-21xx also supports internal interrupts from the timer, the  
serial ports, and the host interface port (on the ADSP-2111).  
T he interrupts are internally prioritized and individually  
maskable (except for RESET which is non-maskable). T he  
IRQx input pins can be programmed for either level- or edge-  
sensitivity. T he interrupt priorities for each ADSP-21xx  
processor are shown in T able III.  
Alter nate Configur ation—SPORT 1 can be alternatively  
configured as two external interrupt inputs (IRQ0, IRQ1) and  
the Flag In and Flag Out signals (FI, FO).  
H ost Inter face P or t (AD SP -2111)  
T he ADSP-2111 includes a Host Interface Port (HIP), a  
parallel I/O port that allows easy connection to a host processor.  
T hrough the HIP, the ADSP-2111 can be accessed by the host  
processor as a memory-mapped peripheral. T he host interface  
port can be thought of as an area of dual-ported memory, or  
mailbox registers, that allows communication between the  
computational core of the ADSP-2111 and the host computer.  
T he host interface port is completely asynchronous. T he host  
processor can write data into the HIP while the ADSP-2111 is  
operating at full speed.  
T he ADSP-21xx uses a vectored interrupt scheme: when an  
interrupt is acknowledged, the processor shifts program control  
to the interrupt vector address corresponding to the interrupt  
received. Interrupts can be optionally nested so that a higher  
priority interrupt can preempt the currently executing interrupt  
service routine. Each interrupt vector location is four instruc-  
tions in length so that simple service routines can be coded  
entirely in this space. Longer service routines require an  
additional JUMP or CALL instruction.  
T hree pins configure the HIP for operation with different types  
of host processors. T he HSIZE pin configures HIP for 8- or 16-  
bit communication with the host processor. HMD0 configures  
the bus strobes, selecting either separate read and write strobes  
or a single read/write select and a host data strobe. HMD1  
selects either separate address (3-bit) and data (16-bit) buses or  
a multiplexed 16-bit address/data bus with address latch enable.  
T ying these pins to appropriate values configures the ADSP-  
2111 for straight-wire interface to a variety of industry-standard  
microprocessors and microcomputers.  
Individual interrupt requests are logically ANDed with the bits  
in the IMASK register; the highest-priority unmasked interrupt  
is then selected.  
T he interrupt control register, ICNT L, allows the external  
interrupts to be set as either edge- or level-sensitive. Depending  
on bit 4 in ICNT L, interrupt service routines can either be  
nested (with higher priority interrupts taking precedence) or be  
processed sequentially (with only one interrupt service active at  
a time).  
T he HIP contains six data registers (HDR5-0) and two status  
registers (HSR7-6) with an associated HMASK register for  
masking interrupts from individual HIP data registers. T he HIP  
data registers are memory-mapped in the internal data memory  
–6–  
REV. B  
ADSP-21xx  
T he interrupt force and clear register, IFC, is a write-only  
register that contains a force bit and a clear bit for each inter-  
rupt (except for level-sensitive interrupts and the ADSP-2111  
HIP interrupts—these cannot be forced or cleared in software).  
SYSTEM INTERFACE  
Figure 3 shows a typical system for the ADSP-2101, ADSP-  
2115, or ADSP-2103, with two serial I/O devices, a boot  
EPROM, and optional external program and data memory. A  
total of 15K words of data memory and 16K words of program  
memory is addressable for the ADSP-2101 and ADSP-2103. A  
total of 14.5K words of data memory and 15K words of  
program memory is addressable for the ADSP-2115.  
When responding to an interrupt, the AST AT , MST AT , and  
IMASK status registers are pushed onto the status stack and  
the PC counter is loaded with the appropriate vector address.  
T he status stack is seven levels deep (nine levels deep on the  
ADSP-2111) to allow interrupt nesting. T he stack is automati-  
cally popped when a return from the interrupt instruction is  
executed.  
Figure 4 shows a system diagram for the ADSP-2105, with one  
serial I/O device, a boot EPROM, and optional external  
program and data memory. A total of 14.5K words of data  
memory and 15K words of program memory is addressable for  
the ADSP-2105.  
P in D efinitions  
T able IV (on next page) shows pin definitions for the ADSP-  
21xx processors. Any inputs not used must be tied to VDD  
.
Figure 5 shows a system diagram for the ADSP-2111, with two  
serial I/O devices, a host processor, a boot EPROM, and  
optional external program and data memory. A total of 15K  
words of data memory and 16K words of program memory is  
addressable.  
Table III. Interrupt Vector Addresses & P riority  
AD SP -2105  
Interrupt  
Source  
Interrupt  
Vector Address  
Programmable wait-state generation allows the processors to  
easily interface to slow external memories.  
RESET Startup  
IRQ2  
SPORT 1 T ransmit or IRQ1  
SPORT 1 Receive or IRQ0  
T imer  
0x0000  
0x0004 (High Priority)  
0x0010  
0x0014  
0x0018 (Low Priority)  
T he ADSP-2101, ADSP-2103, ADSP-2115, and ADSP-2111  
processors also provide either: one external interrupt (IRQ2)  
and two serial ports (SPORT 0, SPORT 1), or three external  
interrupts (IRQ2, IRQ1, IRQ0) and one serial port (SPORT 0).  
T he ADSP-2105 provides either: one external interrupt (IRQ2)  
and one serial port (SPORT 1), or three external interrupts  
(IRQ2, IRQ1, IRQ0) with no serial port.  
AD SP -2101/2103/2115/216x  
Interrupt  
Interrupt  
Source  
Vector Address  
Clock Signals  
T he ADSP-21xx processors’ CLKIN input may be driven by a  
crystal or by a T T L-compatible external clock signal. T he  
CLKIN input may not be halted or changed in frequency during  
operation, nor operated below the specified low frequency limit.  
RESET Startup  
IRQ2  
0x0000  
0x0004 (High Priority)  
0x0008  
0x000C  
0x0010  
SPORT 0 T ransmit  
SPORT 0 Receive  
SPORT 1 T ransmit or IRQ1  
SPORT 1 Receive or IRQ0  
T imer  
If an external clock is used, it should be a T T L-compatible  
signal running at the instruction rate. T he signal should be  
connected to the processor’s CLKIN input; in this case, the  
XT AL input must be left unconnected.  
0x0014  
0x0018 (Low Priority)  
AD SP -2111  
Interrupt  
Source  
Because the ADSP-21xx processors include an on-chip oscilla-  
tor circuit, an external crystal may also be used. T he crystal  
should be connected across the CLKIN and XT AL pins, with  
two capacitors connected as shown in Figure 2. A parallel-  
resonant, fundamental frequency, microprocessor-grade crystal  
should be used.  
Interrupt  
Vector Address  
RESET Startup  
IRQ2  
0x0000  
0x0004 (High Priority)  
0x0008  
0x000C  
0x0010  
0x0014  
0x0018  
0x001C  
0x0020 (Low Priority)  
HIP Write from Host  
HIP Read to Host  
SPORT 0 T ransmit  
SPORT 0 Receive  
SPORT 1 T ransmit or IRQ1  
SPORT 1 Receive or IRQ0  
T imer  
XTAL  
ADSP-21xx  
CLKIN  
CLKOUT  
Figure 2. External Crystal Connections  
REV. B  
–7–  
ADSP-21xx  
A clock output signal (CLKOUT ) is generated by the processor,  
synchronized to the processor’s internal cycles.  
T he power-up sequence is defined as the total time required for  
the crystal oscillator circuit to stabilize after a valid VDD is  
applied to the processor and for the internal phase-locked loop  
(PLL) to lock onto the specific crystal frequency. A minimum of  
2000 tCK cycles will ensure that the PLL has locked (this does  
not, however, include the crystal oscillator start-up time).  
During this power-up sequence the RESET signal should be  
held low. On any subsequent resets, the RESET signal must  
Reset  
The RESET signal initiates a complete reset of the ADSP-21xx.  
T he RESET signal must be asserted when the chip is powered  
up to assure proper initialization. If the RESET signal is applied  
during initial power-up, it must be held long enough to allow  
the processor’s internal clock to stabilize. If RESET is activated  
at any time after power-up and the input clock frequency does  
not change, the processor’s internal clock continues and does  
not require this stabilization time.  
meet the minimum pulse width specification, tRSP  
.
T o generate the RESET signal, use either an RC circuit with an  
external Schmidt trigger or a commercially available reset IC.  
(Do not use only an RC circuit.)  
Table IV. AD SP -21xx P in D efinitions  
P in  
Nam e(s)  
# of  
P ins  
Input /  
O utput  
Function  
Address  
Data1  
14  
24  
O
I/O  
Address outputs for program, data and boot memory.  
Data I/O pins for program and data memories. Input only for  
boot memory, with two MSBs used for boot memory addresses.  
Unused data lines may be left floating.  
Processor Reset Input  
External Interrupt Request # 2  
External Bus Request Input  
External Bus Grant Output  
External Program Memory Select  
External Data Memory Select  
Boot Memory Select  
External Memory Read Enable  
External Memory Write Enable  
Memory Map Select Input  
External Clock or Quartz Crystal Input  
Processor Clock Output  
Power Supply Pins  
RESET  
1
1
1
1
1
1
1
1
1
1
2
1
I
I
I
O
O
O
O
O
O
I
IRQ2  
BR2  
BG  
PMS  
DMS  
BMS  
RD  
WR  
MMAP  
CLKIN, XT AL  
CLKOUT  
VDD  
I
O
GND  
Ground Pins  
SPORT 03  
SPORT 1  
or Interrupts & Flags:  
IRQ0 (RFS1)  
IRQ1 (TFS1)  
FI (DR1)  
FO (DT1)  
FL2–0 (ADSP-2111 Only)  
5
5
I/O  
I/O  
Serial Port 0 Pins (TFS0, RFS0, DT0, DR0, SCLK0)  
Serial Port 1 Pins (TFS1, RFS1, DT1, DR1, SCLK1)  
1
1
1
1
3
I
I
I
O
O
External Interrupt Request # 0  
External Interrupt Request # 1  
Flag Input Pin  
Flag Output Pin  
General Purpose Flag Output Pins  
Host Interface Port  
(ADSP-2111 Only)  
HSEL  
HACK  
1
1
I
O
HIP Select Input  
HIP Acknowledge Output  
HSIZE  
BMODE  
HMD0  
HMD1  
HRD/HRW  
HWR/HDS  
HD15–0/HAD15-0  
HA2/ALE  
HA1–0/Unused  
1
1
1
1
1
1
16  
1
2
I
I
I
I
I
I
8/16-Bit Host Select (0 = 16-Bit, 1 = 8-Bit)  
Boot Mode Select (0 = Standard EPROM Booting, 1 = HIP Booting)  
Bus Strobe Select (0 = RD/WR, 1 = RW/DS)  
HIP Address/Data Mode Select (0 = Separate, 1 = Multiplexed)  
HIP Read Strobe or Read/Write Select  
HIP Write Strobe or Host Data Strobe Select  
HIP Data or HIP Data and Address  
I/O  
I
I
Host Address 2 Input or Address Latch Enable Input  
Host Address 1 and 0 Inputs  
NOT ES  
1Unused data bus lines may be left floating.  
2BR must be tied high (to VDD) if not used.  
3ADSP-2105 does not have SPORT 0. (SPORT 0 pins are No Connects on the ADSP-2105.)  
–8–  
REV. B  
ADSP-21xx  
ADSP-2101  
or ADSP-2103  
or ADSP-2115  
A13-0  
14  
ADDR13-0  
BOOT  
MEMORY  
1x CLOCK  
or  
CRYSTAL  
D
CLKIN  
ADDR  
23-22  
XTAL  
e.g. EPROM  
D15-8  
24  
2764  
27128  
27256  
27512  
CLKOUT  
RESET  
DATA23-0  
DATA  
OE  
CS  
BMS  
IRQ2  
BR  
A13-0  
D23-0  
BG  
ADDR  
DATA  
MMAP  
PROGRAM  
MEMORY  
OE  
WE  
CS  
RD  
SPORT 1  
SCLK1  
RFS1 or IRQ0  
TFS1 or IRQ1  
DT1 or FO  
DR1 or FI  
WR  
(OPTIONAL)  
SERIAL  
DEVICE  
A13-0  
D23-8  
(OPTIONAL)  
ADDR  
DATA  
DATA  
MEMORY  
&
SPORT 0  
SCLK0  
RFS0  
TFS0  
DT0  
PMS  
DMS  
PERIPHERALS  
OE  
WE  
CS  
SERIAL  
DEVICE  
(OPTIONAL)  
(OPTIONAL)  
DR0  
THE TWO MSBs OF THE DATA BUS (D23-22) ARE USED TO SUPPLY THE TWO MSBs OF THE  
BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.  
Figure 3. ADSP-2101/ADSP-2103/ADSP-2115 System  
ADSP-2105  
A
14  
13-0  
ADDR  
13-0  
23-0  
BOOT  
MEMORY  
1x CLOCK  
or  
CRYSTAL  
D
CLKIN  
XTAL  
ADDR  
23-22  
e.g. EPROM  
D
24  
15-8  
2764  
27128  
27256  
27512  
CLKOUT  
RESET  
IRQ2  
DATA  
DATA  
OE  
CS  
BMS  
BR  
BG  
A
13-0  
ADDR  
DATA  
D
MMAP  
23-0  
PROGRAM  
MEMORY  
RD  
OE  
WE  
CS  
SPORT 1  
SCLK1  
RFS1 or IRQ0  
TFS1 or IRQ1  
DT1 or FO  
DR1 or FI  
WR  
(OPTIONAL)  
SERIAL  
DEVICE  
A
D
13-0  
(OPTIONAL)  
ADDR  
DATA  
DATA  
MEMORY  
&
23-8  
PMS  
DMS  
PERIPHERALS  
OE  
WE  
CS  
(OPTIONAL)  
THE TWO MSBs OF THE DATA BUS (D  
) ARE USED TO SUPPLY THE TWO MSBs OF THE  
23-22  
BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.  
Figure 4. ADSP-2105 System  
REV. B  
–9–  
ADSP-21xx  
ADSP-2111  
A13-0  
14  
BOOT  
MEMORY  
ADDR13-0  
1x CLOCK  
or  
CRYSTAL  
D
CLKIN  
ADDR  
23-22  
(OPTIONAL)  
XTAL  
e.g. EPROM  
D15-8  
24  
2764  
27128  
27256  
27512  
CLKOUT  
RESET  
DATA23-0  
DATA  
OE  
CS  
BMS  
IRQ2  
BR  
A13-0  
D23-0  
ADDR  
DATA  
BG  
MMAP  
PROGRAM  
MEMORY  
OE  
WE  
CS  
RD  
SPORT 1  
SCLK1  
RFS1 or IRQ0  
TFS1 or IRQ1  
DT1 or FO  
DR1 or FI  
WR  
(OPTIONAL)  
SERIAL  
DEVICE  
A13-0  
D23-8  
(OPTIONAL)  
ADDR  
DATA  
DATA  
MEMORY  
&
SPORT 0  
SCLK0  
RFS0  
TFS0  
DT0  
PMS  
DMS  
PERIPHERALS  
OE  
WE  
CS  
SERIAL  
DEVICE  
(OPTIONAL)  
(OPTIONAL)  
DR0  
FL0  
FL1  
FL2  
HOST  
PROCESSOR  
HOST INTERFACE PORT  
CONTROL  
7
(OPTIONAL)  
16  
DATA / ADDR  
THE TWO MSBs OF THE DATA BUS (D23-22) ARE USED TO SUPPLY THE TWO MSBs OF THE  
BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.  
Figure 5. ADSP-2111 System  
T he data lines are bidirectional. T he program memory select  
(PMS) signal indicates accesses to program memory and can be  
used as a chip select signal. T he write (WR) signal indicates a  
write operation and is used as a write strobe. T he read (RD)  
signal indicates a read operation and is used as a read strobe or  
output enable signal.  
T he RESET input resets all internal stack pointers to the empty  
stack condition, masks all interrupts, and clears the MST AT  
register. When RESET is released, the boot loading sequence is  
performed (provided there is no pending bus request and the  
chip is configured for booting, with MMAP = 0). T he first  
instruction is then fetched from internal program memory  
location 0x0000.  
T he ADSP-21xx processors write data from their 16-bit  
registers to 24-bit program memory using the PX register to  
provide the lower eight bits. When the processor reads 16-bit  
data from 24-bit program memory to a 16-bit data register, the  
lower eight bits are placed in the PX register.  
P r ogr am Mem or y Inter face  
T he on-chip program memory address bus (PMA) and on-chip  
program memory data bus (PMD) are multiplexed with the on-  
chip data memory buses (DMA, DMD), creating a single  
external data bus and a single external address bus. T he external  
data bus is bidirectional and is 24 bits wide to allow instruction  
fetches from external program memory. Program memory may  
contain code and data.  
T he program memory interface can generate 0 to 7 wait states  
for external memory devices; default is to 7 wait states after  
RESET.  
P r ogr am Mem or y Maps  
T he external address bus is 14 bits wide. For the ADSP-2101,  
ADSP-2103, and ADSP-2111, these lines can directly address  
up to 16K words, of which 2K are on-chip. For the ADSP-2105  
and ADSP-2115, the address lines can directly address up to  
15K words, of which 1K is on-chip.  
Program memory can be mapped in two ways, depending on the  
state of the MMAP pin. Figure 6 shows the two program  
memory maps for the ADSP-2101, ADSP-2103, and  
ADSP-2111. Figure 8 shows the program memory maps for the  
ADSP-2105 and ADSP-2115. Figures 7 and 9 show the  
program memory maps for the ADSP-2161/62 and ADSP-2163/  
64, respectively.  
–10–  
REV. B  
ADSP-21xx  
AD SP -2101/AD SP -2103/AD SP -2111  
AD SP -2105/AD SP -2115  
When MMAP = 0, on-chip program memory RAM occupies  
2K words beginning at address 0x0000. Off-chip program  
memory uses the remaining 14K words beginning at address  
0x0800. In this configuration–when MMAP = 0–the boot  
loading sequence (described below in “Boot Memory Inter-  
face”) is automatically initiated when RESET is released.  
When MMAP = 0, on-chip program memory RAM occupies  
1K words beginning at address 0x0000. Off-chip program  
memory uses the remaining 14K words beginning at address  
0x0800. In this configuration–when MMAP = 0–the boot  
loading sequence (described below in “Boot Memory Inter-  
face”) is automatically initiated when RESET is released.  
When MMAP = 1, 14K words of off-chip program memory  
begin at address 0x0000 and on-chip program memory RAM is  
located in the upper 2K words, beginning at address 0x3800. In  
this configuration, program memory is not booted although it  
can be written to and read under program control.  
When MMAP = 1, 14K words of off-chip program memory  
begin at address 0x0000 and on-chip program memory RAM is  
located in the 1K words between addresses 0x3800–0x3BFF. In  
this configuration, program memory is not booted although it  
can be written to and read under program control.  
0x0000  
0x0000  
0x0000  
0x0000  
INTERNAL RAM  
1K  
INTERNAL  
RAM  
LOADED FROM  
EXTERNAL  
2K  
BOOT MEMORY  
0x03FF  
0x0400  
LOADED FROM  
EXTERNAL  
EXTERNAL  
14K  
BOOT MEMORY  
0x07FF  
0x0800  
RESERVED  
1K  
EXTERNAL  
14K  
0x07FF  
0x0800  
0x37FF  
0x3800  
EXTERNAL  
14K  
INTERNAL RAM  
1K  
EXTERNAL  
14K  
0x37FF  
0x3800  
0x3BFF  
0x3C00  
INTERNAL  
RAM  
RESERVED  
1K  
2K  
0x3FFF  
0x3FFF  
0x3FFF  
0x3FFF  
MMAP=1  
No Booting  
MMAP=0  
MMAP=0  
MMAP=1  
No Booting  
Figure 6. ADSP-2101/ADSP-2103/ADSP-2111 Program  
Mem ory Maps  
Figure 8. ADSP-2105/ADSP-2115 Program Mem ory Maps  
0x0000  
0x0000  
0x0000  
0x0000  
2K  
2K  
EXTERNAL  
EXTERNAL  
8K  
4K  
0x07FF  
0x0800  
0x07FF  
0x0800  
INTERNAL  
ROM  
INTERNAL  
ROM  
2K  
6K  
INTERNAL  
ROM  
INTERNAL  
ROM  
0x0FF0  
0x0FF0  
RESERVED  
0x1FF0  
RESERVED  
0x1FF0  
0x0FFF  
0x1000  
0x0FFF  
0x1000  
RESERVED  
RESERVED  
0x1FFF  
0x2000  
0x1FFF  
0x2000  
10K  
EXTERNAL  
6K  
EXTERNAL  
12K  
EXTERNAL  
8K  
EXTERNAL  
0x37FF  
0x3800  
0x37FF  
0x3800  
2K  
2K  
INTERNAL  
ROM  
INTERNAL  
ROM  
0x3FFF  
0x3FFF  
0x3FFF  
0x3FFF  
MMAP=0  
MMAP=1  
MMAP=0  
MMAP=1  
Figure 7. ADSP-2161/62 Program Mem ory Maps  
REV. B  
Figure 9. ADSP-2163/64 Program Mem ory Maps  
–11–  
ADSP-21xx  
D ata Mem or y Inter face  
All P r ocessor s  
T he data memory address bus (DMA) is 14 bits wide. T he  
bidirectional external data bus is 24 bits wide, with the upper 16  
bits used for data memory data (DMD) transfers.  
T he remaining 14K of data memory is located off-chip. T his  
external data memory is divided into five zones, each associated  
with its own wait-state generator. T his allows slower peripherals  
to be memory-mapped into data memory for which wait states  
are specified. By mapping peripherals into different zones, you  
can accommodate peripherals with different wait-state require-  
ments. All zones default to seven wait states after RESET.  
T he data memory select (DMS) signal indicates access to data  
memory and can be used as a chip select signal. T he write (WR)  
signal indicates a write operation and can be used as a write  
strobe. T he read (RD) signal indicates a read operation and can  
be used as a read strobe or output enable signal.  
Boot Mem or y Inter face  
On the ADSP-2101, ADSP-2103, and ADSP-2111, boot  
memory is an external 64K by 8 space, divided into eight  
separate 8K by 8 pages. On the ADSP-2105 and ADSP-2115,  
boot memory is a 32K by 8 space, divided into eight separate  
4K by 8 pages. T he 8-bit bytes are automatically packed into  
24-bit instruction words by each processor, for loading into on-  
chip program memory.  
T he ADSP-21xx processors support memory-mapped I/O, with  
the peripherals memory-mapped into the data memory address  
space and accessed by the processor in the same manner as data  
memory.  
D ata Mem or y Map  
AD SP -2101/AD SP -2103/AD SP -2111  
For the ADSP-2101, ADSP-2103, and ADSP-2111, on-chip  
data memory RAM resides in the 1K words beginning at  
address 0x3800, as shown in Figure 10. Data memory locations  
from 0x3C00 to the end of data memory at 0x3FFF are  
reserved. Control and status registers for the system, timer,  
wait-state configuration, and serial port operations are located in  
this region of memory.  
T hree bits in the processors’ System Control Register select  
which page is loaded by the boot memory interface. Another bit  
in the System Control Register allows the forcing of a boot  
loading sequence under software control. Boot loading from  
Page 0 after RESET is initiated automatically if MMAP = 0.  
T he boot memory interface can generate zero to seven wait  
states; it defaults to three wait states after RESET. T his allows  
the ADSP-21xx to boot from a single low cost EPROM such as  
a 27C256. Program memory is booted one byte at a time and  
converted to 24-bit program memory words.  
AD SP -2105/AD SP -2115  
For the ADSP-2105 and ADSP-2115, on-chip data memory  
RAM resides in the 512 words beginning at address 0x3800,  
also shown in Figure 10. Data memory locations from 0x3A00  
to the end of data memory at 0x3FFF are reserved. Control and  
status registers for the system, timer, wait-state configuration,  
and serial port operations are located in this region of memory.  
T he BMS and RD signals are used to select and to strobe the  
boot memory interface. Only 8-bit data is read over the data  
bus, on pins D8-D15. T o accommodate up to eight pages of  
boot memory, the two MSBs of the data bus are used in the  
boot memory interface as the two MSBs of the boot memory  
address: D23, D22, and A13 supply the boot page number.  
0x0000  
1K EXTERNAL  
DWAIT0  
T he ADSP-2100 Family Assembler and Linker allow the  
creation of programs and data structures requiring multiple boot  
pages during execution.  
0x0400  
1K EXTERNAL  
DWAIT1  
T he BR signal is recognized during the booting sequence. T he  
bus is granted after loading the current byte is completed. BR  
during booting may be used to implement booting under control  
of a host processor.  
0x0800  
EXTERNAL  
10K EXTERNAL  
RAM  
DWAIT2  
Bus Inter face  
T he ADSP-21xx processors can relinquish control of their data  
and address buses to an external device. When the external  
device requires control of the buses, it asserts the bus request  
signal (BR). If the ADSP-21xx is not performing an external  
memory access, it responds to the active BR input in the next  
cycle by:  
0x3000  
0x3400  
1K EXTERNAL  
DWAIT3  
1K EXTERNAL  
DWAIT4  
0x3800  
0x3A00  
0x3C00  
T hree-stating the data and address buses and the PMS,  
DMS, BMS, RD, WR output drivers,  
512 for ADSP-2105  
ADSP-2115  
1K for ADSP-2101  
ADSP-2103  
ADSP-216x  
Asserting the bus grant (BG) signal,  
and halting program execution.  
ADSP-2111  
INTERNAL  
RAM  
If the Go mode is set, however, the ADSP-21xx will not halt  
program execution until it encounters an instruction that  
requires an external memory access.  
MEMORY-MAPPED  
CONTROL REGISTERS  
& RESERVED  
0x3FFF  
Figure 10. Data Mem ory Map (All Processors)  
–12–  
REV. B  
ADSP-21xx  
If the ADSP-21xx is performing an external memory access  
when the external device asserts the BR signal, it will not three-  
state the memory interfaces or assert the BG signal until the  
cycle after the access completes (up to eight cycles later depend-  
ing on the number of wait states). T he instruction does not need  
to be completed when the bus is granted; the ADSP-21xx will  
grant the bus in between two memory accesses if an instruction  
requires more than one external memory access.  
Devices for conversion into a ADSP-216x ROM product.  
T he ADSP-2101 EZ-ICE emulator can be used for develop-  
ment of ADSP-216x systems. For the 3.3 V ADSP-2162 and  
ADSP-2164, a voltage converter interface board provides 3.3 V  
emulation.  
Additional overlay memory is used for emulation of ADSP-  
2161/62 systems. It should be noted that due to the use of off-  
chip overlay memory to emulate the ADSP-2161/62, a perfor-  
mance loss may be experienced when both executing instruc-  
tions and fetching program memory data from the off-chip  
overlay memory in the same cycle. T his can be overcome by  
locating program memory data in on-chip memory.  
When the BR signal is released, the processor releases the BG  
signal, re-enables the output drivers and continues program  
execution from the point where it stopped.  
T he bus request feature operates at all times, including when  
the processor is booting and when RESET is active. If this  
feature is not used, the BR input should be tied high (to VDD).  
O r der ing P r ocedur e for AD SP -216x RO M P r ocessor s  
T o place an order for a custom ROM-coded ADSP-2161,  
ADSP-2162, ADSP-2163, or ADSP-2164 processor, you must:  
Low P ower ID LE Instr uction  
T he IDLE instruction places the ADSP-21xx processor in low  
power state in which it waits for an interrupt. When an interrupt  
occurs, it is serviced and execution continues with instruction  
following IDLE. T ypically this next instruction will be a JUMP  
back to the IDLE instruction. T his implements a low-power  
standby loop.  
1. Complete the following forms contained in the ADSP ROM  
Ordering Package, available from your Analog Devices sales  
representative:  
ADSP-216x ROM Specification Form  
ROM Release Agreement  
ROM NRE Agreement & Minimum Quantity Order (MQO)  
Acceptance Agreement for Pre-Production ROM Products  
T he IDLE n instruction is a special version of IDLE that slows  
the processor’s internal clock signal to further reduce power  
consumption. T he reduced clock frequency, a programmable  
fraction of the normal clock rate, is specified by a selectable  
divisor, n, given in the IDLE instruction. T he syntax of the  
instruction is:  
2. Return the forms to Analog Devices along with two copies of  
the Memory Image File (.EXE file) of your ROM code. T he  
files must be supplied on two 3.5" or 5.25" floppy disks for  
the IBM PC (DOS 2.01 or higher).  
3. Place a purchase order with Analog Devices for non-recurring  
engineering changes (NRE) associated with ROM product  
development.  
IDLE n;  
where n = 16, 32, 64, or 128.  
T he instruction leaves the chip in an idle state, operating at the  
slower rate. While it is in this state, the processor’s other  
internal clock signals, such as SCLK, CLKOUT , and the timer  
clock, are reduced by the same ratio. Upon receipt of an  
enabled interrupt, the processor will stay in the IDLE state for  
up to a maximum of n CLKIN cycles, where n is the divisor  
specified in the instruction, before resuming normal operation.  
After this information is received, it is entered into Analog  
Devices’ ROM Manager System which assigns a custom ROM  
model number to the product. T his model number will be  
branded on all prototype and production units manufactured to  
these specifications.  
T o minimize the risk of code being altered during this process,  
Analog Devices verifies that the .EXE files on both floppy disks  
are identical, and recalculates the checksums for the .EXE file  
entered into the ROM Manager System. T he checksum data, in  
the form of a ROM Memory Map, a hard copy of the .EXE file,  
and a ROM Data Verification form are returned to you for  
inspection.  
When the IDLE n instruction is used, it slows the processor’s  
internal clock and thus its response time to incoming interrupts–  
the 1-cycle response time of the standard IDLE state is in-  
creased by n, the clock divisor. When an enabled interrupt is  
received, the ADSP-21xx will remain in the IDLE state for up  
to a maximum of n CLKIN cycles (where n = 16, 32, 64, or  
128) before resuming normal operation.  
When the IDLE n instruction is used in systems that have an  
externally generated serial clock (SCLK), the serial clock rate  
may be faster than the processor’s reduced internal clock rate.  
Under these conditions, interrupts must not be generated at a  
faster rate than can be serviced, due to the additional time the  
processor takes to come out of the IDLE state (a maximum of n  
CLKIN cycles).  
AD SP -216x P r ototyping  
You can prototype your ADSP-216x system with either the  
ADSP-2101 or ADSP-2103 RAM-based processors. When code  
is fully developed and debugged, it can be submitted to Analog  
REV. B  
–13–  
ADSP-21xx  
A signed ROM Verification Form and a purchase order for  
production units are required prior to any product being  
manufactured. Prototype units may be applied toward the  
minimum order quantity.  
Functional D iffer ences for O lder Revision D evices  
Older revisions of the ADSP-21xx processors have slight  
differences in functionality. T he two differences are as follows:  
Bus Grant (BG) is asserted in the same cycle that Bus  
Request (BR) is recognized (i.e. when setup and hold time  
requirements are met for the BR input). Bus Request input is  
a synchronous input rather than asynchronous. (In newer  
revision devices, BG is asserted in the cycle after BR is  
recognized.)  
Upon completion of prototype manufacture, Analog Devices  
will ship prototype units and a delivery schedule update for  
production units. An invoice against your purchase order for the  
NRE charges is issued at this time.  
T here is a charge for each ROM mask generated and a mini-  
mum order quantity. Consult your sales representative for  
details. A separate order must be placed for parts of a specific  
package type, temperature range, and speed grade.  
Only the standard IDLE instruction is available, not the  
clock-reducing IDLE n instruction.  
T o determine the revision of a particular ADSP-21xx device,  
inspect the marking on the device. For example, an ADSP-2101  
of revision 6.0 will have the following marking:  
a
ADSP-2101  
KS-66  
EE/A12345-6.0  
Package & Speed  
Lot # & Revision Code  
Date Code  
9234  
T he revision codes for the older versions of each ADSP-21xx  
device are as follows:  
P rocessor  
O ld Functionality  
New Functionality  
ADSP-2101  
ADSP-2105  
ADSP-2115  
ADSP-2111  
ADSP-2103  
Revision Code 5.0  
No Revision Code  
Revision Code < 1.0  
RevisionCode < 2.0  
Revision code 5.0  
Revision Code 6.0  
Revision Code 1.0  
Revision Code 1.0  
Revision Code 2.0  
Revision code 6.0  
–14–  
REV. B  
ADSP-21xx  
Instr uction Set  
operational parallelism. T here are five basic categories of  
instructions: data move instructions, computational instruc-  
tions, multifunction instructions, program flow control instruc-  
tions and miscellaneous instructions. Multifunction instructions  
perform one or two data moves and a computation.  
T he ADSP-21xx assembly language uses an algebraic syntax for  
ease of coding and readability. T he sources and destinations of  
computations and data movements are written explicitly in each  
assembly statement, eliminating cryptic assembler mnemonics.  
Every instruction assembles into a single 24-bit word and  
executes in a single cycle. T he instructions encompass a wide  
variety of instruction types along with a high degree of  
T he instruction set is summarized below. T he ADSP-2100  
Family Users Manual contains a complete reference to the  
instruction set.  
ALU Instructions  
[IF cond] AR| AF  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
xop + yop [+ C] ;  
xop – yop [+ C– 1] ;  
yop – xop [+ C– 1] ;  
xop AND yop ;  
xop OR yop ;  
xop XOR yop ;  
PASS xop ;  
– xop ;  
NOT xop ;  
ABS xop ;  
yop + 1 ;  
Add/Add with Carry  
Subtract X – Y/Subtract X – Y with Borrow  
Subtract Y – X/Subtract Y – X with Borrow  
AND  
OR  
XOR  
Pass, Clear  
Negate  
NOT  
Absolute Value  
Increment  
Decrement  
Divide  
yop – 1 ;  
DIVS yop, xop ;  
DIVQ xop ;  
MAC Instructions  
[IF cond] MR| MF  
=
=
=
=
=
xop yop ;  
*
Multiply  
MR + xop yop ;  
*
Multiply/Accumulate  
Multiply/Subtract  
Transfer MR  
MR – xop yop ;  
*
MR ;  
0 ;  
Clear  
IF MV SAT MR ;  
Conditional MR Saturation  
Shifter Instructions  
[IF cond] SR = [SR OR] ASHIFT xop ;  
[IF cond] SR = [SR OR] LSHIFT xop ;  
SR = [SR OR] ASHIFT xop BY <exp>;  
SR = [SR OR] LSHIFT xop BY <exp>;  
[IF cond] SE = EXP xop ;  
Arithmetic Shift  
Logical Shift  
Arithmetic Shift Immediate  
Logical Shift Immediate  
Derive Exponent  
[IF cond] SB = EXPADJ xop  
[IF cond] SR = [SR OR] NORM xop ;  
;
Block Exponent Adjust  
Normalize  
D ata Move Instructions  
reg = reg ;  
reg = <data> ;  
Register-to-Register Move  
Load Register Immediate  
reg = DM (<addr>) ;  
dreg = DM (Ix , My) ;  
dreg = PM (Ix , My) ;  
DM (<addr>) = reg ;  
DM (Ix , My) = dreg ;  
PM (Ix , My) = dreg ;  
Data Memory Read (Direct Address)  
Data Memory Read (Indirect Address)  
Program Memory Read (Indirect Address)  
Data Memory Write (Direct Address)  
Data Memory Write (Indirect Address)  
Program Memory Write (Indirect Address)  
Multifunction Instructions  
<ALU>| <MAC>| <SHIFT > , dreg = dreg ;  
Computation with Register-to-Register Move  
<ALU>| <MAC>| <SHIFT > , dreg = DM (Ix , My) ;  
<ALU>| <MAC>| <SHIFT > , dreg = PM (Ix , My) ;  
DM (Ix , My) = dreg , <ALU>| <MAC>| <SHIFT > ;  
PM (Ix , My) = dreg , <ALU>| <MAC>| <SHIFT > ;  
dreg = DM (Ix , My) , dreg = PM (Ix , My) ;  
Computation with Memory Read  
Computation with Memory Read  
Computation with Memory Write  
Computation with Memory Write  
Data & Program Memory Read  
<ALU>| <MAC> , dreg = DM (Ix , My) , dreg = PM (Ix , My) ;  
ALU/MAC with Data & Program Memory Read  
REV. B  
–15–  
ADSP-21xx  
P rogram Flow Instructions  
DO <addr> [UNT IL term] ;  
[IF cond] JUMP (Ix) ;  
Do Until Loop  
Jump  
[IF cond] JUMP <addr>;  
[IF cond] CALL (Ix) ;  
Call Subroutine  
[IF cond] CALL <addr>;  
IF [NOT ] FLAG_IN  
IF [NOT ] FLAG_IN  
JUMP <addr>;  
CALL <addr>;  
Jump/Call on Flag In Pin  
[IF cond] SET | RESET | T OGGLE  
[IF cond] RT S ;  
[IF cond] RT I ;  
FLAG_OUT [, ...] ;  
Modify Flag Out Pin  
Return from Subroutine  
Return from Interrupt Service Routine  
Idle  
IDLE [(n)] ;  
Miscellaneous Instructions  
NOP ;  
MODIFY (Ix , My);  
No Operation  
Modify Address Register  
[PUSH ST S] [, POP CNT R] [, POP PC] [, POP LOOP] ;  
Stack Control  
Mode Control  
ENA| DIS  
SEC_REG [, ...] ;  
BIT _REV  
AV_LAT CH  
AR_SAT  
M_MODE  
T IMER  
G_MODE  
Notation Conventions  
Ix  
Index registers for indirect addressing  
My  
Modify registers for indirect addressing  
Immediate data value  
Immediate address value  
Exponent (shift value) in shift immediate instructions (8-bit signed number)  
Any ALU instruction (except divide)  
Any multiply-accumulate instruction  
Any shift instruction (except shift immediate)  
Condition code for conditional instruction  
T ermination code for DO UNT IL loop  
Data register (of ALU, MAC, or Shifter)  
Any register (including dregs)  
<data>  
<addr>  
<exp>  
<ALU>  
<MAC>  
<SHIFT >  
cond  
term  
dreg  
reg  
;
,
[
A semicolon terminates the instruction  
Commas separate multiple operations of a single instruction  
Optional part of instruction  
]
[, ...]  
option1 | option2  
Optional, multiple operations of an instruction  
List of options; choose one.  
Assem bly Code Exam ple  
T he following example is a code fragment that performs the filter tap update for an adaptive filter based on a least-mean-squared  
algorithm. Notice that the computations in the instructions are written like algebraic equations.  
MF=MX0 MY1(RND), MX0=DM(I2,M1);  
{MF=error beta}  
*
*
MR=MX0 MF(RND), AY0=PM(I6,M5);  
*
DO adapt UNTIL CE;  
AR=MR1+AY0, MX0=DM(I2,M1), AY0=PM(I6,M7);  
adapt:  
PM(I6,M6)=AR, MR=MX0 MF(RND);  
*
MODIFY(I2,M3);  
MODIFY(I6,M7);  
{Point to oldest data}  
{Point to start of data}  
–16–  
REV. B  
ADSP-21xx  
ADSP-2101/2105/2115/2161/2163–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
K Grade  
B Grade  
T Grade  
P aram eter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
VDD  
T AMB  
Supply Voltage  
Ambient Operating T emperature  
4.50  
0
5.50  
+70  
4.50  
–40  
5.50  
+85  
4.50  
–55  
5.50  
+125  
V
°C  
See “Environmental Conditions” for information on thermal specifications.  
ELECTRICAL CHARACTERISTICS  
P aram eter  
Test Conditions  
Min  
Max  
Unit  
VIH  
VIH  
VIL  
VOH  
Hi-Level Input Voltage3, 5  
Hi-Level CLKIN Voltage  
Lo-Level Input Voltage1, 3  
Hi-Level Output Voltage2, 3, 7  
@ VDD = max  
@ VDD = max  
@ VDD = min  
2.0  
2.2  
V
V
V
V
V
V
µA  
µA  
µA  
µA  
pF  
pF  
0.8  
@ VDD = min, IOH = –0.5 mA  
@ VDD = min, IOH = –100 µA8  
@ VDD = min, IOL = 2 mA  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
2.4  
VDD – 0.3  
VOL  
IIH  
IIL  
IOZH  
IOZL  
CI  
Lo-Level Output Voltage2, 3, 7  
Hi-Level Input Current1  
0.4  
10  
10  
10  
10  
8
Lo-Level Input Current1  
T ristate Leakage Current4  
T ristate Leakage Current4  
Input Pin Capacitance1, 8, 9  
Output Pin Capacitance4, 8, 9, 10  
@ VDD = max, VIN = VDD max6  
@ VDD = max, VIN = 0 V6  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
CO  
8
NOT ES  
1Input-only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR1, DR0 (not on ADSP-2105).  
2Output pins: BG, PMS, DMS, BMS, RD, WR, A0–A13, CLKOUT , DT 1, DT 0 (not on ADSP-2105).  
3Bidirectional pins: D0–D23, SCLK1, RFS1, T FS1, SCLK0 (not on ADSP-2105), RFS0 (not on ADSP-2105), T FS0 (not on ADSP-2105).  
4T ristatable pins: A0–A13, D0–D23, PMS, DMS, BMS, RD, WR, DT 1, SCLK1, RSF1, T FS1, DT 0 (not on ADSP-2105), SCLK0 (not on ADSP-2105),  
RFS0 (not on ADSP-2105), T FS0 (not on ADSP-2105).  
5Input-only pins: RESET, IRQ2, BR, MMAP, DR1, DR0 (not on ADSP-2105).  
60 V on BR, CLKIN Active (to force tristate condition).  
7Although specified for T T L outputs, all ADSP-21xx outputs are CMOS-compatible and will drive to V DD and GND, assuming no dc loads.  
8Guaranteed but not tested.  
9Applies to PGA, PLCC, PQFP package types.  
10Output pin capacitance is the capacitive load for any three-stated output pin.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS  
*
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Voltage Swing . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating T emperature Range (Ambient) . . . –55ºC to +125ºC  
Storage T emperature Range . . . . . . . . . . . . . –65ºC to +150ºC  
Lead T emperature (10 sec) PGA . . . . . . . . . . . . . . . . . +300ºC  
Lead T emperature (5 sec) PLCC, PQFP, T QFP . . . . +280ºC  
*Stresses greater than those listed above may cause permanent damage to the  
device. T hese are stress ratings only, and functional operation of the device at these  
or any other conditions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-21xx processors feature proprietary ESD protection circuitry to dissipate high energy  
electrostatic discharges (H uman Body Model), permanent damage may occur to devices subjected  
to such discharges. T herefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality. Unused devices must be stored in conductive foam or shunts,  
and the foam should be discharged to the destination socket before the devices are removed. Per  
method 3015 of MIL-ST D-883, the ADSP-21xx processors have been classified as Class 1 devices.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–17–  
ADSP-21xx  
SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163)  
SUPPLY CURRENT & POWER (ADSP-2101/2105/2115/2161/2163)  
P aram eter  
IDD  
Supply Current (Dynamic)1  
Test Conditions  
Min  
Max  
Unit  
@ VDD = max, tCK = 40 ns2  
@ VDD = max, tCK = 50 ns2  
@ VDD = max, tCK = 72.3 ns2  
@ VDD = max, tCK = 40 ns4  
@ VDD = max, tCK = 50 ns  
@ VDD = max, tCK = 72.3 ns  
38  
31  
24  
12  
11  
10  
mA  
mA  
mA  
mA  
mA  
mA  
IDD  
Supply Current (Idle)1, 3  
NOT ES  
1Current reflects device operating with no output loads.  
2VIN = 0.4 V and 2.4 V.  
3Idle refers to ADSP-21xx state of operation during execution of IDLE instruction. Deasserted pins are driven to either V DD or GND.  
4ADSP-2105 is not available in a 25 MHz speed grade.  
For typical supply current (internal power dissipation) figures, see Figure 11.  
IDD DYNAMIC  
220  
1
205mW  
200  
180  
160  
157mW  
VDD = 5.5V  
140  
129mW  
120  
VDD = 5.0V  
118mW  
100  
100mW  
74mW  
VDD = 4.5V  
20.00  
80  
60  
10.00  
13.83  
25.00  
30.00  
FREQUENCY – MHz  
IDD IDLE  
IDD IDLE n MODES3  
70  
65  
60  
55  
50  
45  
40  
35  
64mW  
1,2  
64mW  
60  
50  
40  
30  
20  
10  
0
VDD = 5.5V  
IDD IDLE  
51mW  
49mW  
35mW  
51mW  
VDD = 5.0V  
VDD = 4.5V  
38mW  
28mW  
IDLE 16  
43mW  
42mW  
41mW  
40mW  
IDLE 128  
30  
10.00  
13.83  
20.00  
25.00  
30.00  
10.00  
13.83  
20.00  
25.00  
30.00  
FREQUENCY – MHz  
FREQUENCY – MHz  
VALID FOR ALL TEMPERATURE GRADES.  
1 POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
2 IDLE REFERS TO ADSP-21xx OPERATION DURING EXECUTION OF IDLE INSTRUCTION.  
DEASSERTED PINS ARE DRIVEN TO EITHER VDD OR GND.  
3 MAXIMUM POWER DISSIPATION AT VDD = 5.5V DURING EXECUTION OF IDLE n INSTRUCTION.  
Figure 11. ADSP-2101 Power (Typical) vs. Frequency  
–18–  
REV. B  
ADSP-21xx  
SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163)  
P O WER D ISSIP ATIO N EXAMP LE  
CAP ACITIVE LO AD ING  
Figures 12 and 13 show capacitive loading characteristics for the  
ADSP-2101, ADSP-2105, ADSP-2115, and ADSP-2161/2163.  
T o determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
2
C × VDD × f  
8
7
C = load capacitance, f = output switching frequency.  
Exam ple:  
V
= 4.5V  
DD  
In an ADSP-2101 application where external data memory is  
used and no other outputs are active, power dissipation is  
calculated as follows:  
6
5
4
3
2
1
0
Assumptions:  
External data memory is accessed every cycle with 50% of the  
address pins switching.  
External data memory writes occur every other cycle with  
50% of the data pins switching.  
Each address and data pin has a 10 pF total load at the pin.  
T he application operates at VDD = 5.0 V and tCK = 50 ns.  
0
25  
50  
75  
C
100 125 150 175  
– pF  
2
L
Total Power Dissipation = PINT + (C × VDD × f )  
PINT = internal power dissipation (from Figure 11).  
Figure 12. Typical Output Rise Tim e vs. Load Capacitance, CL  
(at Maxim um Am bient Operating Tem perature)  
2
(C × VDD × f ) is calculated for each output:  
5
4
# of  
P ins × C  
2
O utput  
× VD D × f  
Address, DMS 8  
× 10 pF × 52 V × 20 MHz = 40.0 mW  
× 10 pF × 52 V × 10 MHz = 22.5 mW  
× 10 pF × 52 V × 10 MHz = 2.5 mW  
× 10 pF × 52 V × 20 MHz = 5.0 mW  
V
= 4.5V  
3
2
DD  
Data, WR  
RD  
9
1
1
CLKOUT  
1
70.0 mW  
0
T otal power dissipation for this example = PINT + 70.0 mW.  
–1  
–2  
–3  
ENVIRO NMENTAL CO ND ITIO NS  
Ambient T emperature Rating:  
TAMB = T CASE – (PD × θC A  
)
0
25  
50  
75  
100 125  
– pF  
150 175  
TCASE = Case T emperature in °C  
PD = Power Dissipation in W  
C
L
θC A = T hermal Resistance (Case-to-Ambient)  
θJA = T hermal Resistance (Junction-to-Ambient)  
θJC = T hermal Resistance (Junction-to-Case)  
Figure 13. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maxim um Am bient Operating Tem perature)  
P ackage  
θJA  
θJC  
θCA  
PGA  
18°C/W  
27°C/W  
60°C/W  
60°C/W  
9°C/W  
9°C/W  
PLCC  
PQFP  
T QFP  
16°C/W  
18°C/W  
18°C/W  
11°C/W  
42°C/W  
42°C/W  
REV. B  
–19–  
ADSP-21xx  
SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163)  
TEST CO ND ITIO NS  
Figure 14 shows voltage reference levels for ac measurements.  
T he decay time, tDECAY, is dependent on the capacitative load,  
CL , and the current load, iL , on the output pin. It can be  
approximated by the following equation:  
CL × 0.5 V  
3.0V  
1.5V  
0.0V  
tDECAY  
=
INPUT  
iL  
from which  
2.0V  
1.5V  
0.8V  
tDIS = tMEASURED tDECAY  
OUTPUT  
is calculated. If multiple pins (such as the data bus) are dis-  
abled, the measurement value is that of the last pin to stop  
driving.  
Figure 14. Voltage Reference Levels for AC Measurem ents  
(Except Output Enable/Disable)  
O utput Enable Tim e  
Output pins are considered to be enabled when they have made  
a transition from a high-impedance state to when they start  
driving. T he output enable time (t E NA) is the interval from  
when a reference signal reaches a high or low voltage level to  
when the output has reached a specified high or low trip point,  
as shown in Figure 15. If multiple pins (such as the data bus)  
are enabled, the measurement value is that of the first pin to  
start driving.  
O utput D isable Tim e  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured  
output high or low voltage to a high impedance state. T he  
output disable time (tDIS) is the difference of tMEASURED and  
t
DECAY, as shown in Figure 15. T he time tMEASURED is the  
interval from when a reference signal reaches a high or low  
voltage level to when the output voltages have changed by 0.5 V  
from the measured output high or low voltage.  
REFERENCE  
SIGNAL  
tMEASURED  
tDIS  
tENA  
V
V
(MEASURED)  
(MEASURED)  
V
V
(MEASURED)  
(MEASURED)  
OH  
OL  
OH  
2.0V  
1.0V  
V
(MEASURED) – 0.5V  
(MEASURED) +0.5V  
OH  
OUTPUT  
tDECAY  
V
OL  
OL  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE  
APPROXIMATELY 1.5V.  
Figure 15. Output Enable/Disable  
I
OL  
TO  
OUTPUT  
PIN  
+1.5V  
50pF  
I
OH  
Figure 16. Equivalent Device Loading for AC Measurem ents  
(Except Output Enable/Disable)  
–20–  
REV. B  
ADSP-2111–SPECIFICATIONS  
ADSP-21xx  
RECOMMENDED OPERATING CONDITIONS  
K Grade  
B Grade  
T Grade  
Min  
P aram eter  
Min  
Max  
Min  
Max  
Max  
5.50  
Unit  
VDD  
T AMB  
Supply Voltage  
Ambient Operating T emperature  
4.50  
0
5.50  
+70  
4.50  
–40  
5.50  
+85  
4.50  
–55  
V
°C  
+125  
See “Environmental Conditions” for information on thermal specifications.  
ELECTRICAL CHARACTERISTICS  
P aram eter  
Test Conditions  
Min  
Max  
Unit  
VIH  
VIH  
VIL  
VOH  
Hi-Level Input Voltage3, 5  
Hi-Level CLKIN Voltage  
Lo-Level Input Voltage1, 3  
Hi-Level Output Voltage2, 3, 7  
@ VDD = max  
@ VDD = max  
@ VDD = min  
2.0  
2.2  
V
V
V
V
V
V
µA  
µA  
µA  
µA  
pF  
pF  
0.8  
@ VDD = min, IOH = –0.5 mA  
@ VDD = min, IOH = –100 µA8  
@ VDD = min, IOL = 2 mA  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0V  
2.4  
VDD – 0.3  
VOL  
IIH  
IIL  
IOZH  
IOZL  
CI  
Lo-Level Output Voltage2, 3, 7  
Hi-Level Input Current1  
Lo-Level Input Current1  
T ristate Leakage Curren4  
T ristate Leakage Current4  
Input Pin Capacitance1, 8, 9  
Output Pin Capacitance4, 8, 9, 10  
0.4  
10  
10  
10  
10  
8
@ VDD = max, VIN = VDD max6  
@ VDD = max, VIN = 0V6  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
CO  
8
NOT ES  
1Input-only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR1, DR0, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HRW, HWR/HDS, HA2/ALE, HA1-0.  
2Output pins: BG, PMS, DMS, BMS, RD, WR, A0–A13, CLKOUT , DT 1, DT 0, HACK, FL2-0.  
3Bidirectional pins: D0–D23, SCLK1, RFS1, T FS1, SCLK0, RFS0, T FS0, HD0–HD15/HAD0–HAD15.  
4T ristatable pins: A0–A13, D0–D23, PMS, DMS, BMS, RD, WR, DT 1, SCLK1, RSF1, T FS1, DT 0, SCLK0, RFS0, T FS0, HD0–HD15/HAD0–HAD15.  
5Input-only pins: RESET, IRQ2, BR, MMAP, DR1, DR0, HSEL, HSIZE, BMODE, HMD0, HMD1, HRD/HRW, HWR/HDS, HA2/ALE, HA1-0.  
6 0 V on BR, CLKIN Active (to force tristate condition).  
7Although specified for T T L outputs, all ADSP-2111 outputs are CMOS-compatible and will drive to V DD and GND, assuming no dc loads.  
8Guaranteed but not tested.  
9Applies to ADSP-2111 PGA and PQFP packages.  
10Output pin capacitance is the capacitive load for any three-stated output pin.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Voltage Swing . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating T emperature Range (Ambient) . . . –55ºC to +125ºC  
Storage T emperature Range . . . . . . . . . . . . . –65ºC to +150ºC  
Lead T emperature (10 sec) PGA . . . . . . . . . . . . . . . . . +300ºC  
Lead T emperature (5 sec) PQFP . . . . . . . . . . . . . . . . . +280ºC  
*Stresses greater than those listed above may cause permanent damage to the  
device. T hese are stress ratings only, and functional operation of the device at these  
or any other conditions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
REV. B  
–21–  
ADSP-21xx  
SPECIFICATIONS (ADSP-2111)  
SUPPLY CURRENT & POWER (ADSP-2111)  
P aram eter  
Test Conditions  
Min  
Max  
Unit  
IDD  
Supply Current (Dynamic)1  
@ VDD = max, tCK = 50 ns2  
@ VDD = max, tCK = 60 ns2  
@ VDD = max, tCK = 76.9 ns2  
@ VDD = max, tCK = 50 ns  
@ VDD = max, tCK = 60 ns  
@ VDD = max, tCK = 76.9 ns  
60  
52  
46  
18  
16  
14  
mA  
mA  
mA  
mA  
mA  
mA  
IDD  
Supply Current (Idle)1, 3  
NOT ES  
1Current reflects device operating with no output loads.  
2VIN = 0.4 V and 2.4 V.  
3Idle refers to ADSP-21xx state of operation during execution of IDLE instruction. Deasserted pins are driven to either V DD or GND.  
For typical supply current (internal power dissipation) figures, see Figure 17.  
1
POWER, INTERNAL  
330  
330mW  
310  
290  
270  
V
= 5.5V  
DD  
260mW  
200mW  
250mW  
250  
230  
V
V
= 5.0V  
= 4.5V  
210  
190  
DD  
DD  
200mW  
155mW  
170  
150  
14 15 16 17 18 19 20  
1/ tCK – MHz  
1,2  
POWER, IDLE  
3
POWER, IDLE n MODES  
IDLE;  
70  
70mW  
100mW  
100  
90  
80  
70  
60  
50  
40  
30  
65  
60  
55  
50  
45  
40  
35  
30  
V
= 5.5V  
DD  
80mW  
55mW  
n
V
= 5.0V  
70mW  
DD  
V
V
= 5.0V  
= 4.5V  
55mW  
40mW  
DD  
DD  
50mW  
38mW  
36mW  
IDLE 16;  
IDLE 128;  
34mW  
32mW  
14 15 16 17 18 19 20  
1/ tCK – MHz  
14 15 16 17 18 19 20  
1/ tCK – MHz  
VALID FOR ALL TEMPERATURE GRADES.  
1
POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
2
IDLE REFERS TO ADSP-21xx OPERATION DURING EXECUTION OF IDLE INSTRUCTION.  
DEASSERTED PINS ARE DRIVEN TO EITHER V OR GND.  
DD  
3
MAXIMUM POWER DISSIPATION AT V = 5.0V DURING EXECUTION OF IDLE n INSTRUCTION.  
DD  
Figure 17. ADSP-2111 Power (Typical) vs. Frequency  
–22–  
REV. B  
ADSP-21xx  
SPECIFICATIONS (ADSP-2111)  
P O WER D ISSIP ATIO N EXAMP LE  
CAP ACITIVE LO AD ING  
T o determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
Figures 18 and 19 show capacitive loading characteristics for the  
ADSP-2111.  
2
C × VDD × f  
C = load capacitance, f = output switching frequency.  
14  
Exam ple:  
VDD = 4.5V  
In an ADSP-2111 application where external data memory is  
used and no other outputs are active, power dissipation is  
calculated as follows:  
12  
10  
8
Assumptions:  
6
External data memory is accessed every cycle with 50% of the  
address pins switching.  
4
External data memory writes occur every other cycle with  
50% of the data pins switching.  
2
25  
50  
75  
100 125 150  
Each address and data pin has a 10 pF total load at the pin.  
T he application operates at VDD = 5.0 V and tCK = 50 ns.  
CL – pF  
2
Figure 18. Typical Output Rise Tim e vs. Load Capacitance, CL  
(at Maxim um Am bient Operating Tem perature)  
Total Power Dissipation = PINT + (C × VDD × f )  
PINT = internal power dissipation (from Figure 17).  
2
(C × VDD × f ) is calculated for each output:  
# of  
P ins × C  
+12  
+10  
2
O utput  
× VD D × f  
V
= 4.5V  
DD  
+8  
Address, DMS 8  
Data, WR  
RD  
× 10 pF × 52 V × 20 MHz = 40.0 mW  
× 10 pF × 52 V × 10 MHz = 22.5 mW  
× 10 pF × 52 V × 10 MHz = 2.5 mW  
× 10 pF × 52 V × 20 MHz = 5.0 mW  
+6  
9
1
1
+4  
+2  
CLKOUT  
NOMINAL  
70.0 mW  
–2  
–4  
–6  
T otal power dissipation for this example = PINT + 70.0 mW.  
ENVIRO NMENTAL CO ND ITIO NS  
Ambient T emperature Rating:  
25  
50  
75 100  
– pF  
125 150  
C
L
TAMB = T CASE – (PD × θC A  
)
TCASE = Case T emperature in °C  
PD = Power Dissipation in W  
θC A = T hermal Resistance (Case-to-Ambient)  
θJA = T hermal Resistance (Junction-to-Ambient)  
θJC = T hermal Resistance (Junction-to-Case)  
Figure 19. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maxim um Am bient Operating Tem perature)  
P ackage  
θJA  
θJC  
θCA  
PGA  
PQFP  
35°C/W  
42°C/W  
18°C/W  
18°C/W  
17°C/W  
23°C/W  
REV. B  
–23–  
ADSP-21xx  
SPECIFICATIONS (ADSP-2111)  
T he decay time, tDECAY, is dependent on the capacitative load,  
CL , and the current load, iL , on the output pin. It can be  
approximated by the following equation:  
TEST CO ND ITIO NS  
Figure 20 shows voltage reference levels for ac measurements.  
CL × 0.5 V  
3.0V  
1.5V  
0.0V  
tDECAY =  
iL  
INPUT  
from which  
tDIS = tMEASURED tDECAY  
2.0V  
1.5V  
0.8V  
OUTPUT  
is calculated. If multiple pins (such as the data bus) are dis-  
abled, the measurement value is that of the last pin to stop  
driving.  
Figure 20. Voltage Reference Levels for AC Measurem ents  
(Except Output Enable/Disable)  
O utput Enable Tim e  
Output pins are considered to be enabled when they have made  
a transition from a high-impedance state to when they start  
driving. T he output enable time (t E NA) is the interval from  
when a reference signal reaches a high or low voltage level to  
when the output has reached a specified high or low trip point,  
as shown in Figure 21. If multiple pins (such as the data bus)  
are enabled, the measurement value is that of the first pin to  
start driving.  
O utput D isable Tim e  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured  
output high or low voltage to a high impedance state. T he  
output disable time (tDIS) is the difference of tMEASURED and  
t
DECAY, as shown in Figure 21. T he time tMEASURED is the  
interval from when a reference signal reaches a high or low  
voltage level to when the output voltages have changed by 0.5 V  
from the measured output high or low voltage.  
REFERENCE  
SIGNAL  
tMEASURED  
tENA  
tDIS  
VOH (MEASURED)  
VOH (MEASURED)  
2.0V  
1.0V  
VOH (MEASURED) – 0.5V  
VOL (MEASURED) +0.5V  
OUTPUT  
tDECAY  
VOL (MEASURED)  
VOL (MEASURED)  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE  
APPROXIMATELY 1.5V.  
Figure 21. Output Enable/Disable  
I
OL  
TO  
OUTPUT  
PIN  
+1.5V  
50pF  
I
OH  
Figure 22. Equivalent Device Loading for AC Measurem ents  
(Except Output Enable/Disable)  
–24–  
REV. B  
ADSP-2103/2162/2164–SPECIFICATIONS  
ADSP-21xx  
RECOMMENDED OPERATING CONDITIONS  
K Grade  
Min  
B Grade  
Min Max  
P aram eter  
Max  
Unit  
VDD  
T AMB  
Supply Voltage  
Ambient Operating T emperature  
3.00  
0
3.60  
+70  
3.00  
–40  
3.60  
+85  
V
°C  
See “Environmental Conditions” for information on thermal specifications.  
ELECTRICAL CHARACTERISTICS  
P aram eter  
Test Conditions  
Min  
Max  
Unit  
VIH  
VIL  
VOH  
VOL  
IIH  
Hi-Level Input Voltage1, 3  
@ VDD = max  
@ VDD = min  
2.0  
V
V
V
V
µA  
µA  
µA  
µA  
pF  
pF  
Lo-Level Input Voltage1, 3  
Hi-Level Output Voltage2, 3, 6  
Lo-Level Output Voltage2, 3, 6  
Hi-Level Input Current1  
0.4  
@ VDD = min, IOH = –0.5 mA6  
@ VDD = min, IOL = 2 mA6  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
2.4  
0.4  
10  
10  
10  
10  
8
IIL  
Lo-Level Input Current1  
T ristate Leakage Current4  
T ristate Leakage Current4  
Input Pin Capacitance1, 7, 8  
Output Pin Capacitance4, 7, 8, 9  
IOZH  
IOZL  
CI  
@ VDD = max, VIN = VDD max5  
@ VDD = max, VIN = 0 V5  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
CO  
8
NOT ES  
1Input-only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR1, DR0.  
2  
Output pins: BG, PMS, DMS, BMS, RD, WR, A0–A13, CLKOUT, DT1, DT0.  
Bidirectional pins: D0–D23, SCLK1, RFS1, TFS1, SCLK0, RFS0, TFS0.  
Tristatable pins: A0–A13, D0–D23, PMS, DMS, BMS, RD, WR, DT1, SCLK1, RSF1, TFS1, DT0, SCLK0, RFS0, TFS0.  
0 V on BR, CLKIN Active (to force tristate condition).  
All ADSP-2103, ADSP-2162, and ADSP-2164 outputs are CMOS and will drive to VDD and GND with no dc loads.  
Guaranteed but not tested.  
3  
4  
5  
6  
7  
8  
Applies to PLCC and PQFP package types.  
9Output pin capacitance is the capacitive load for any three-stated output pin.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +4.5 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Voltage Swing . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating T emperature Range (Ambient) . . . . –40ºC to +85ºC  
Storage T emperature Range . . . . . . . . . . . . . –65ºC to +150ºC  
Lead T emperature (5 sec) PLCC, PQFP . . . . . . . . . . . +280ºC  
*Stresses greater than those listed above may cause permanent damage to the  
device. T hese are stress ratings only, and functional operation of the device at these  
or any other conditions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
REV. B  
–25–  
ADSP-21xx  
SPECIFICATIONS (ADSP-2103/2162/2164)  
SUPPLY CURRENT & POWER (ADSP-2103/2162/2164)  
P aram eter  
Test Conditions  
Min  
Max  
Unit  
IDD  
IDD  
Supply Current (Dynamic)1  
Supply Current (Idle)1, 3  
@ VDD = max, tCK = 72.3 ns2  
@ VDD = max, tCK = 72.3 ns  
14  
4
mA  
mA  
NOT ES  
1Current reflects device operating with no output loads.  
2VIN = 0.4 V and 2.4 V.  
3Idle refers to ADSP-21xx state of operation during execution of IDLE instruction. Deasserted pins are driven to either V DD or GND.  
For typical supply current (internal power dissipation) figures, see Figure 23.  
1,2  
IDLE DYNAMIC  
50  
48mW  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 3.6V  
DD  
V
= 3.30V  
37mW  
DD  
29mW  
24mW  
V
= 3.0V  
13.83  
DD  
19mW  
15mW  
0
5.00  
7.00  
10.00  
15.00  
FREQUENCY – MHz  
IDD IDLE n MODES 3  
13mW  
IDD IDLE1  
= 3.6V  
14  
14  
12  
10  
8
13mW  
V
12  
10  
8
DD  
IDD IDLE  
10mW  
8mW  
9mW  
9mW  
V
= 3.30V  
7mW  
6mW  
DD  
IDLE 16  
6
6mW  
5mW  
6
V
= 3.0V  
5mW  
4mW  
DD  
IDLE 128  
4
4
2
2
0
5.00  
0
5.00  
7.00  
10.00  
13.83  
15.00  
7.00  
10.00  
13.83  
15.00  
FREQUENCY – MHz  
FREQUENCY – MHz  
VALID FOR ALL TEMPERATURE GRADES.  
1
POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
2
IDLE REFERS TO ADSP-21xx OPERATION DURING EXECUTION OF IDLE INSTRUCTION.  
DEASSERTED PINS ARE DRIVEN TO EITHER V OR GND.  
DD  
3
MAXIMUM POWER DISSIPATION AT V = 3.6V DURING EXECUTION OF IDLE n INSTRUCTION.  
DD  
Figure 23. ADSP-2103 Power (Typical) vs. Frequency  
–26–  
REV. B  
ADSP-21xx  
SPECIFICATIONS (ADSP-2103/2162/2164)  
P O WER D ISSIP ATIO N EXAMP LE  
CAP ACITIVE LO AD ING  
T o determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
Figures 24 and 25 show capacitive loading characteristics for the  
ADSP-2103, ADSP-2162, and ADSP-2164.  
2
C × VDD × f  
C = load capacitance, f = output switching frequency.  
Exam ple:  
30  
25  
In an ADSP-2103 application where external data memory is  
used and no other outputs are active, power dissipation is  
calculated as follows:  
V
= 3.0V  
DD  
20  
15  
10  
5
Assumptions:  
External data memory is accessed every cycle with 50% of the  
address pins switching.  
External data memory writes occur every other cycle with  
50% of the data pins switching.  
25  
50  
75  
C
100 125 150  
– pF  
L
Each address and data pin has a 10 pF total load at the pin.  
T he application operates at VDD = 3.3 V and tCK = 100 ns.  
2
Figure 24. Typical Output Rise Tim e vs. Load Capacitance, CL  
(at Maxim um Am bient Operating Tem perature)  
Total Power Dissipation = PINT + (C × VDD × f )  
PINT = internal power dissipation (from Figure 23).  
2
(C × VDD × f ) is calculated for each output:  
# of  
P ins × C  
+8  
+6  
+4  
2
O utput  
× VD D  
× f  
Address, DMS 8  
× 10 pF × 3.32 V × 10 MHz = 8.71 mW  
× 10 pF × 3.32 V × 5 MHz = 4.90 mW  
× 10 pF × 3.32 V × 5 MHz = 0.55 mW  
× 10 pF × 3.32 V × 10 MHz = 1.09 mW  
V
= 3.0V  
Data, WR  
RD  
CLKOUT  
9
1
1
DD  
+2  
NOMINAL  
–2  
15.25 mW  
T otal power dissipation for this example = PINT + 15.25 mW.  
25  
50  
75  
100 125 150  
C
L
– pF  
ENVIRO NMENTAL CO ND ITIO NS  
Ambient T emperature Rating:  
Figure 25. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maxim um Am bient Operating Tem perature)  
TAMB = T CASE – (PD × θC A  
)
TCASE = Case T emperature in °C  
PD = Power Dissipation in W  
θC A = T hermal Resistance (Case-to-Ambient)  
θJA = T hermal Resistance (Junction-to-Ambient)  
θJC = T hermal Resistance (Junction-to-Case)  
P ackage  
θJA  
θJC  
θCA  
PGA  
PQFP  
27°C/W  
60°C/W  
16°C/W  
18°C/W  
11°C/W  
42°C/W  
REV. B  
–27–  
ADSP-21xx  
SPECIFICATIONS (ADSP-2103/2162/2164)  
TEST CO ND ITIO NS  
Figure 26 shows voltage reference levels for ac measurements.  
The decay time, tDECAY, is dependent on the capacitative load,  
CL, and the current load, iL, on the output pin. It can be  
approximated by the following equation:  
V
DD  
INPUT  
CL × 0.5 V  
2
tDECAY  
=
iL  
from which  
V
DD  
OUTPUT  
2
tDIS = tMEASURED tDECAY  
is calculated. If multiple pins (such as the data bus) are dis-  
abled, the measurement value is that of the last pin to stop  
driving.  
Figure 26. Voltage Reference Levels for AC Measurem ents  
(Except Output Enable/Disable)  
O utput Enable Tim e  
Output pins are considered to be enabled when they have made  
a transition from a high-impedance state to when they start  
driving. T he output enable time (t E NA) is the interval from  
when a reference signal reaches a high or low voltage level to  
when the output has reached a specified high or low trip point,  
as shown in Figure 27. If multiple pins (such as the data bus)  
are enabled, the measurement value is that of the first pin to  
start driving.  
O utput D isable Tim e  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured  
output high or low voltage to a high impedance state. T he  
output disable time (tDIS) is the difference of tMEASURED and  
t
DECAY, as shown in Figure 27. T he time tMEASURED is the  
interval from when a reference signal reaches a high or low  
voltage level to when the output voltages have changed by 0.5 V  
from the measured output high or low voltage.  
REFERENCE  
SIGNAL  
tMEASURED  
tDIS  
tENA  
V
V
(MEASURED)  
(MEASURED)  
V
V
(MEASURED)  
(MEASURED)  
OH  
OL  
OH  
OL  
2.0V  
1.0V  
V
(MEASURED) – 0.5V  
(MEASURED) +0.5V  
OH  
OUTPUT  
tDECAY  
V
OL  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE  
APPROXIMATELY 1.5V.  
Figure 27. Output Enable/Disable  
I
OL  
TO  
OUTPUT  
PIN  
V
DD  
2
50pF  
I
OH  
Figure 28. Equivalent Device Loading for AC Measurem ents  
(Except Output Enable/Disable)  
–28–  
REV. B  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)  
GENERAL NO TES  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
Timing requirements apply to signals that are controlled by  
circuitry external to the processor, such as the data input for a  
read operation. T iming requirements guarantee that the  
processor operates correctly with other devices.  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add parameters to derive longer times.  
TIMING NO TES  
MEMO RY REQ UIREMENTS  
Switching characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
T he table below shows common memory device specifications  
and the corresponding ADSP-21xx timing parameters, for your  
convenience.  
Mem ory  
D evice  
Specification  
AD SP -21xx  
Tim ing  
P aram eter  
Tim ing  
P aram eter  
D efinition  
Address Setup to Write Start  
Address Setup to Write End  
Address Hold Time  
Data Setup Time  
tASW  
tAW  
tWRA  
tDW  
tDH  
A0–A13, DMS, PMS Setup before WR Low  
A0–A13, DMS, PMS Setup before WR Deasserted  
A0–A13, DMS, PMS Hold after WR Deasserted  
Data Setup before WR High  
Data Hold Time  
Data Hold after WR High  
OE to Data Valid  
Address Access Time  
tRDD  
tAA  
RD Low to Data Valid  
A0–A13, DMS, PMS, BMS to Data Valid  
REV. B  
–29–  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)  
CLO CK SIGNALS & RESET  
Frequency  
13 MH z  
Min Max Min  
13.824 MH z 16.67 MH z  
20 MH z  
Min  
25 MH z  
Min Max  
D ependency  
P aram eter  
Max Min  
Max  
Max  
Min  
Max Unit  
Timing Requirement:  
tCK  
CLKIN Period  
76.9 150  
20  
20  
384.5  
72.3  
20  
20  
150  
60  
20  
20  
300  
150  
50  
20  
20  
250  
150  
40  
15  
15  
200  
150  
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tRSP  
CLKIN Width Low  
CLKIN Width High  
RESET Width Low  
20  
20  
5tCK  
1
361.5  
Switching Characteristic:  
tCPL  
tCPH  
tCKOH  
CLKOUT Width Low  
28.5  
28.5  
0
26.2  
26.2  
0
20  
20  
0
15  
15  
0
10  
10  
0
0.5tCK – 10  
0.5tCK – 10  
ns  
ns  
ns  
CLKOUT Width High  
CLKIN High to CLKOUT  
High  
20  
20  
20  
20  
15  
NOT ES  
1Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles, assuming stable CLKIN (not including crystal  
oscillator startup time).  
tCK  
tCKH  
CLKIN  
tCKL  
tCKOH  
tCPH  
CLKOUT  
tCPL  
Figure 29. Clock Signals  
–30–  
REV. B  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)  
INTERRUP TS & FLAGS  
Frequency  
D ependency  
Min Max Min Max Min  
13 MH z  
Min Max Min  
13.824 MH z 16.67 MH z 20 MH z  
25 MH z  
P aram eter  
Max Min Max  
Max Unit  
Timing Requirement:  
tIFS  
tIFS  
tIFH  
IRQx1  or FI Setup before  
34.2  
33.1  
36.1  
18.1  
30  
33  
15  
27.5  
30.5  
12.5  
25  
28  
10  
0.25tCK + 154  
0.25tCK + 184  
0.25tCK  
ns  
ns  
ns  
CLKOUT Low2, 3  
IRQx1 or FI Setup before  
CLKOUT Low (ADSP-2111)2, 3  
37.2  
IRQx1 or FI Hold after CLKOUT 19.2  
High2, 3  
Switching Characteristic:  
tFOH FO Hold after CLKOUT High5  
tFOD FO Delay from CLKOUT High  
0
0
0
0
0
0
ns  
ns  
15  
15  
15  
15  
12  
NOTES  
1IRQx=IRQ0, IRQ1, and IRQ2.  
2If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle;  otherwise they will be recognized  
during the following cycle. (Refer to the “Interrupt Controller” section in Chapter 3,  Program Control, of the  ADSP-2100 Family User’s Manual for further  
information on interrupt servicing.)  
3Edge-sensitive interrupts require pulse widths greater than 10 ns. Level-sensitive interrupts must be held low until serviced.  
4tIFS (min) = 0.25tCK + 20 ns for ADSP-2101TG-50, ADSP-2101TG/883B-50, ADSP-2111TG-52, and ADSP-2111TG/883B-52 ( Extended Temperature Range  
devices).  
5tFOH  (min) = –5 ns for ADSP-2111TG-52 and ADSP-2111TG/883B-52 (Extended Temperature Range devices).  
CLKOUT  
tFOD  
tFOH  
FLAG  
OUTPUT(S)  
tIFH  
IRQx  
FI  
tIFS  
Figure 30. Interrupts & Flags  
REV. B  
–31–  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)  
BUS REQ UEST/GRANT  
Frequency  
13 MH z  
13.824 MH z 16.67 MH z 20 MH z  
25 MH z  
D ependency  
P aram eter  
Min Max Min Max  
Min Max Min Max Min Max Min  
Max  
Unit  
Timing Requirement:  
tBH BR Hold after CLKOUT High1  
24.2  
23.1  
38.1  
20  
35  
17.5  
32.5  
15  
30  
0.25tCK + 5  
0.25tCK + 20  
ns  
ns  
tBS BR Setup before CLKOUT Low1 39.2  
Switching Characteristic:  
tSD CLKOUT High to DMS,  
PMS, BMS, RD, WR Disable  
39.2  
38.1  
35  
32.5  
30  
0.25tCK + 20 ns  
tSDB DMS, PMS, BMS, RD, WR  
Disable to BG Low  
tSE BG High to DMS, PMS,  
BMS, RD, WR Enable  
tSEC DMS, PMS, BMS, RD, WR  
Enable to CLKOUT High  
0
0
0
0
5
0
0
0
ns  
ns  
ns  
0
0
0
0
0
9.2  
8.1  
2.5  
1.52  
0.25tCK – 102  
NOTES  
1If BR meets the tBS and tBH setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle.  BR requires  
a pulse width greater than 10 ns.  
2For 25 MHz only the minimum frequency dependency formula for tSEC = (0.25tCK – 8.5).  
Section 10.2.4, “Bus Request/Grant,” on page 212 of the ADSP-2100 Family User’s Manual (1st Edition, 1993)  states that “When BR is recognized, the processor  
responds immediately by asserting BG during the same cycle.” This is incorrect for the current versions of all ADSP-21xx processors:  BG is asserted in the cycle after  
BR is recognized. No external synchronization circuit is needed when BR is generated as an asynchronous signal.  
tBH  
CLKOUT  
BR  
tBS  
CLKOUT  
PMS, DMS  
BMS, RD  
tSD  
tSEC  
WR  
BG  
tSDB  
tSE  
Figure 31. Bus Request/Grant  
–32–  
REV. B  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)  
MEMO RY READ  
13 MH z  
13.824 MH z 16.67 MH z  
20 MH z  
25 MH z  
P aram eter  
Min Max Min  
Max Min  
Max Min Max Min Max Unit  
Timing Requirement:  
tRDD RD Low to Data Valid  
23.5  
37.7  
23.2  
36.2  
0
17  
27  
12  
19.5  
7
12  
ns  
ns  
ns  
tAA  
A0–A13, PMS, DMS, BMS to Data Valid  
tRDH Data Hold from RD High  
0
0
0
0
Switching Characteristic:  
tRP  
RD Pulse Width  
33.5  
28.2  
22  
17  
7.5  
2.5  
12  
5
ns  
ns  
ns  
tCRD CLKOUT High to RD Low  
tASR A0–A13, PMS, DMS, BMS Setup before  
RD Low  
14.2 29.2 13.1 28.1 10  
9.2  
25  
22.5  
20  
8.1  
5
1.51  
tRDA A0–A13, PMS, DMS, BMS Hold after RD  
Deasserted  
tRWR RD High to RD or WR Low  
10.2  
33.5  
9.1  
6
3.5  
20  
1
ns  
ns  
31.2  
25  
15  
Frequency D ependency  
(CLKIN 25 MH z)  
Min  
P aram eter  
Max  
Unit  
Timing Requirement:  
tRDD RD Low to Data Valid  
0.5tCK – 13 + w  
0.75tCK – 18 + w  
ns  
ns  
tAA  
A0–A13, PMS, DMS, BMS to Data Valid  
tRDH Data Hold from RD High  
0
Switching Characteristic:  
tRP  
RD Pulse Width  
0.5tCK – 8 + w  
0.25tCK – 5  
ns  
ns  
tCRD CLKOUT High to RD Low  
tASR A0–A13, PMS, DMS, BMS Setup before  
RD Low  
0.25tCK + 10  
0.25tCK – 101  
ns  
tRDA A0–A13, PMS, DMS, BMS Hold after RD  
Deasserted  
tRWR RD High to RD or WR Low  
0.25tCK – 9  
0.5tCK – 5  
ns  
ns  
NOT ES  
1For 25 MHz only minimum frequency dependency formula for t ASR = (0.25tCK – 8.5).  
w = wait states × tCK.  
CLKOUT  
A0 – A13  
DMS, PMS  
BMS  
tRDA  
RD  
tASR  
tCRD  
tRP  
tRWR  
D
tRDD  
tRDH  
tAA  
WR  
Figure 32. Mem ory Read  
–33–  
REV. B  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)  
MEMO RY WRITE  
13 MH z  
13.824 MH z 16.67 MH z  
20 MH z  
25 MH z  
P aram eter  
Min Max Min Max Min  
Max Min Max Min Max Unit  
Switching Characteristic:  
tDW  
tDH  
tWP  
Data Setup before WR High  
Data Hold after WR High  
WR Pulse Width  
25.5  
9.2  
30.5  
0
23.2  
8.1  
28.2  
0
17  
5
22  
0
12  
2.5  
17  
0
7
0
ns  
ns  
ns  
ns  
ns  
12  
0
tWDE WR Low to Data Enabled  
tASW A0–A13, DMS, PMS Setup before  
WR Low  
tDDR Data Disable before WR or RD Low  
tCWR CLKOUT High to WR Low  
9.2  
8.1  
5
2.5  
1.51  
9.2  
8.1  
5
2.5  
7.5  
15.5  
1.51  
5
8
ns  
ns  
ns  
14.2 29.2 13.1 28.1 10  
25  
22.5  
20  
tAW  
A0–A13, DMS, PMS, Setup before WR  
Deasserted  
35.7  
10.2  
33.5  
32.2  
9.1  
23  
6
tWRA A0–A13, DMS, PMS Hold after WR  
Deasserted  
tWWR WR High to RD or WR Low  
3.5  
20  
1
ns  
ns  
31.2  
25  
15  
Frequency D ependency  
(CLKIN 25 MH z)  
P aram eter  
Min  
Max  
Unit  
Switching Characteristic:  
tDW Data Setup before WR High  
0.5tCK – 13 + w  
0.25tCK – 10  
0.5tCK – 8 + w  
0
ns  
ns  
ns  
tDH  
tWP  
Data Hold after WR High  
WR Pulse Width  
tWDE WR Low to Data Enabled  
tASW A0–A13, DMS, PMS Setup before WR Low  
tDDR Data Disable before WR or RD Low  
tCWR CLKOUT High to WR Low  
0.25tCK – 101  
0.25tCK – 101  
0.25tCK – 5  
ns  
ns  
ns  
0.25tCK + 10  
tAW  
A0–A13, DMS, PMS, Setup before WR  
Deasserted  
0.75tCK – 22 + w  
ns  
tWRA A0–A13, DMS, PMS Hold after WR  
Deasserted  
tWWR WR High to RD or WR Low  
0.25tCK – 9  
0.5tCK – 5  
ns  
ns  
NOT ES  
1For 25 MHz only the minimum frequency dependency formula for t ASW and tDDR = (0.25tCK – 8.5).  
w = wait states × tCK  
.
CLKOUT  
A0 – A13  
DMS, PMS  
tWRA  
WR  
tASW  
tWP  
tWWR  
tAW  
tDH  
tDDR  
tCWR  
D
tDW  
tWDE  
RD  
Figure 33. Mem ory Write  
–34–  
REV. B  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)  
SERIAL P O RTS  
Frequency  
D ependency  
Min  
12.5 MH z  
Min Max  
13.0 MH z  
Min Max  
13.824 MH z*  
Min Max  
P aram eter  
Max  
Unit  
Timing Requirement:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
80  
8
10  
30  
76.9  
8
10  
28  
72.3  
8
10  
28  
ns  
ns  
ns  
ns  
DR/T FS/RFS Setup before SCLK Low  
DR/T FS/RFS Hold after SCLK Low  
SCLKIN Width  
Switching Characteristic:  
tCC  
CLKOUT High to SCLKOUT  
20  
0
35  
20  
20  
19.2 34.2  
0
18.1 33.1  
0
0.25tCK 0.25tCK + 15ns  
tSCDE SCLK High to DT Enable  
tSCDV SCLK High to DT Valid  
tRH  
tRD  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
20  
20  
T FS/RFSOUT Hold after SCLK High  
T FS/RFSOUT Delay from SCLK High  
0
0
0
tSCDH DT Hold after SCLK High  
tT DE T FS (Alt) to DT Enable  
tT DV T FS (Alt) to DT Valid  
tSCDD SCLK High to DT Disable  
tRDV RFS (Multichannel, Frame Delay Zero)  
to DT Valid  
0
0
0
0
0
0
18  
25  
20  
18  
25  
20  
18  
25  
20  
*Maximum serial port operating frequency is 13.824 MHz for all processor speed grades except the 12.5 MHz ADSP-2101 and 13.0 MHz ADSP-2111.  
CLKOUT  
tCC  
tCC  
tSCK  
SCLK  
tSCP  
tSCS  
tSCH  
tSCP  
DR  
RFS  
IN  
TFS  
IN  
tRD  
tRH  
RFS  
TFS  
OUT  
OUT  
tSCDD  
tSCDV  
tSCDE  
tSCDH  
DT  
tTDE  
tTDV  
TFS  
( ALTERNATE  
FRAME MODE )  
tRDV  
RFS  
( MULTICHANNEL MODE,  
FRAME DELAY 0 {MFD = 0} )  
Figure 34. Serial Ports  
REV. B  
–35–  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2111)  
H O ST INTERFACE P O RT  
Separ ate D ata & Addr ess (H MD 1 = 0 )  
Read Str obe & Wr ite Str obe (H MD 0 = 0)  
13.0 MH z  
Min Max  
16.67 MH z  
Min Max  
20 MH z  
Min Max  
No Frequency  
Dependency  
P aram eter  
Unit  
Timing Requirement:  
tHSU HA2-0 Setup before Start of Write or Read1, 2  
tHDSU Data Setup before End of Write3  
tHWDH Data Hold after End of Write3  
8
8
3
3
8
8
3
3
8
8
3
3
ns  
ns  
ns  
ns  
ns  
tHH  
HA2-0 Hold after End of Write or Read3, 4  
tHRWP Read or Write Pulse Width5  
30  
30  
30  
Switching Characteristic:  
tHSHK HACK Low after Start of Write or Read1, 2  
tHKH HACK Hold after End of Write or Read3, 4  
tHDE Data Enabled after Start of Read2  
tHDD Data Valid after Start of Read2  
tHRDH Data Hold after End of Read4  
tHRDD Data Disabled after End of Read4  
0
0
0
20  
20  
0
0
0
20  
20  
0
0
0
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
23  
10  
23  
10  
23  
10  
0
0
0
NOTES  
1Start of Write = HWR Low and HSEL Low.  
2Start of Read = HRD Low and HSEL Low.  
3End of Write = HWR High or HSEL High.  
4End of Read = HRD High or HSEL High.  
5Read Pulse Width = HRD Low and HSEL Low, Write Pulse Width = HWR Low and HSEL Low.  
–36–  
REV. B  
ADSP-21xx  
HA2–0  
ADDRESS  
tHRWP  
HSEL  
tHSU  
Host Write Cycle  
HWR  
HACK  
tHH  
tHSHK  
tHKH  
DATA  
HD15–0  
tHWDH  
tHDSU  
ADDRESS  
tHRWP  
HA2–0  
HSEL  
tHSU  
HRD  
tHH  
Host Read Cycle  
HACK  
tHKH  
tHSHK  
DATA  
HD15–0  
tHDE  
tHDD  
tHRDH  
tHRDD  
Figure 35. Host Interface Port (HMD1 = 0, HMD0 = 0)  
REV. B  
–37–  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2111)  
H O ST INTERFACE P O RT  
Separ ate D ata & Addr ess (H MD 1 = 0)  
Read/Wr ite Str obe & D ata Str obe (H MD 0 = 1)  
13.0 MH z  
Min Max  
16.67 MH z  
Min Max  
20 MH z  
Min Max  
No Frequency  
Dependency  
P aram eter  
Unit  
Timing Requirement:  
tHSU HA2-0, HRW Setup before Start of Write or Read1  
tHDSU Data Setup before End of Write2  
tHWDH Data Hold after End of Write2  
8
8
3
3
8
8
3
3
8
8
3
3
ns  
ns  
ns  
ns  
ns  
tHH  
HA2-0, HRW Hold after End of Write or Read2  
tHRWP Read or Write Pulse Width3  
30  
30  
30  
Switching Characteristic:  
tHSHK HACK Low after Start of Write or Read1  
tHKH HACK Hold after End of Write or Read2  
tHDE Data Enabled after Start of Read1  
tHDD Data Valid after Start of Read1  
tHRDH Data Hold after End of Read2  
tHRDD Data Disabled after End of Read2  
0
0
0
20  
20  
0
0
0
20  
20  
0
0
0
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
23  
10  
23  
10  
23  
10  
0
0
0
NOTES  
1Start of Write or Read = HDS Low and HSEL Low.  
2End of Write or Read = HDS High or HSEL High.  
3Read or Write  Pulse Width = HDS Low and HSEL Low.  
–38–  
REV. B  
ADSP-21xx  
ADDRESS  
tHRWP  
HA2–0  
HSEL  
tHSU  
HRW  
Host Write Cycle  
HDS  
tHH  
HACK  
tHSHK  
tHKH  
DATA  
HD15–0  
tHWDH  
tHDSU  
ADDRESS  
tHRWP  
HA2–0  
HSEL  
tHSU  
HRW  
Host Read Cycle  
tHH  
HDS  
HACK  
tHKH  
tHSHK  
DATA  
HD15–0  
tHDE  
tHDD  
tHRDH  
tHRDD  
Figure 36. Host Interface Port (HMD1 = 0, HMD0 =1)  
REV. B  
–39–  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2111)  
H O ST INTERFACE P O RT  
Multiplexed D ata & Addr ess (H MD 1 = 1)  
Read Str obe & Wr ite Str obe (H MD 0 = 0)  
13.0 MH z  
Min Max  
16.67 MH z  
Min Max  
20 MH z  
Min Max  
No Frequency  
Dependency  
P aram eter  
Unit  
Timing Requirement:  
tHALP ALE Pulse Width  
15  
5
2
15  
8
3
15  
5
2
15  
8
3
15  
5
2
15  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHASU HAD15-0 Address Setup before ALE Low  
tHAH HAD15-0 Address Hold after ALE Low  
tHALS Start of Write or Read after ALE Low1, 2  
tHDSU HAD15-0 Data Setup before End of Write3  
tHWDH HAD15-0 Data Hold after End of Write3  
tHRWP Read or Write Pulse Width5  
30  
30  
30  
Switching Characteristic:  
tHSHK HACK Low after Start of Write or Read1, 2  
tHKH HACK Hold after End of Write or Read3, 4  
tHDE HAD15-0 Data Enabled after Start of Read2  
tHDD HAD15-0 Data Valid after Start of Read2  
tHRDH HAD15-0 Data Hold after End of Read4  
tHRDD HAD15-0 Data Disabled after End of Read4  
0
0
0
20  
20  
0
0
0
20  
20  
0
0
0
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
23  
10  
23  
10  
23  
10  
0
0
0
NOTES  
1Start of Write = HWR Low and HSEL Low.  
2Start of Read = HRD Low and HSEL Low.  
3End of Write = HWR High or HSEL High.  
4End of Read = HRD High or HSEL High.  
5Read Pulse Width = HRD Low and HSEL Low, Write Pulse Width = HWR Low and HSEL Low.  
–40–  
REV. B  
ADSP-21xx  
ALE  
tHALP  
tHRWP  
HSEL  
HWR  
tHALS  
Host Write Cycle  
tHKH  
tHSHK  
HACK  
tHASU  
tHAH  
ADDRESS  
DATA  
HD15–0  
tHDSU  
tHWDH  
ALE  
tHALP  
tHRWP  
HSEL  
HRD  
tHALS  
Host Read Cycle  
tHKH  
tHSHK  
tHDE  
tHASU tHAH  
ADDRESS  
HACK  
HAD15–0  
DATA  
tHRDH  
tHRDD  
tHDD  
Figure 37. Host Interface Port (HMD1 = 1, HMD0 = 0)  
REV. B  
–41–  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2111)  
H O ST INTERFACE P O RT  
Multiplexed D ata & Addr ess (H MD 1 = 1)  
Read/Wr ite Str obe & D ata Str obe (H MD 0 = 1 )  
13.0 MH z  
Min Max  
16.67 MH z  
Min Max  
20 MH z  
Min Max  
No Frequency  
Dependency  
P aram eter  
Unit  
Timing Requirement:  
tHALP ALE Pulse Width  
15  
5
2
15  
8
5
3
3
30  
15  
5
2
15  
8
5
3
3
30  
15  
5
2
15  
8
5
3
3
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHASU HAD15-0 Address Setup before ALE Low  
tHAH HAD15-0 Address Hold after ALE Low  
tHALS Start of Write or Read after ALE Low1  
tHSU HRW Setup before Start of Write or Read1  
tHDSU HAD15-0 Data Setup before End of Write2  
tHWDH HAD15-0 Data Hold after End of Write2  
tHH  
HRW Hold after End of Write or Read2  
tHRWP Read or Write Pulse Width3  
Switching Characteristic:  
tHSHK HACK Low after Start of Write or Read1  
tHKH HACK Hold after End of Write or Read2  
tHDE HAD15-0 Data Enabled after Start of Read1  
tHDD HAD15-0 Data Valid after Start of Read1  
tHRDH HAD15-0 Data Hold after End of Read2  
tHRDD HAD15-0 Data Disabled after End of Read2  
0
0
0
20  
20  
0
0
0
20  
20  
0
0
0
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
23  
10  
23  
10  
23  
10  
0
0
0
NOTES  
1Start of Write or Read = HDS Low and HSEL Low.  
2End of Write or Read = HDS High or HSEL High.  
3Read or Write Pulse Width = HDS Low and HSEL Low.  
–42–  
REV. B  
ADSP-21xx  
ALE  
tHALP  
tHRWP  
HSEL  
tHH  
tHALS  
HRW  
tHSU  
HDS  
Host Write Cycle  
tHSHK  
tHKH  
tHASU  
tHAH  
HACK  
HD15–0  
ADDRESS  
DATA  
tHDSU  
tHWDH  
ALE  
tHALP  
tHALS  
tHRWP  
HSEL  
tHH  
HRW  
HDS  
tHSU  
Host Read Cycle  
tHKH  
tHSHK  
tHASU  
HACK  
HD15–0  
tHAH  
tHDE  
ADDRESS  
DATA  
tHRDH  
tHDD  
tHRDD  
Figure 38. Host Interface Port (HMD1 = 1, HMD0 = 1)  
REV. B  
–43–  
ADSP-21xx  
Timing requirements apply to signals that are controlled by  
circuitry external to the processor, such as the data input for a  
read operation. T iming requirements guarantee that the  
processor operates correctly with other devices.  
TIMING PARAMETERS (ADSP-2103/2162/2164)  
GENERAL NO TES  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add parameters to derive longer times.  
MEMO RY REQ UIREMENTS  
T he table below shows common memory device specifications  
and the corresponding ADSP-21xx timing parameters, for your  
convenience.  
TIMING NO TES  
Switching characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
AD SP -21xx  
Mem ory Specification  
Tim ing P aram eter  
Tim ing P aram eter D efinition  
Address Setup to Write Start  
Address Setup to Write End  
Address Hold Time  
Data Setup Time  
tASW  
tAW  
tWRA  
tDW  
tDH  
A0–A13, DMS, PMS Setup before WR Low  
A0–A13, DMS, PMS Setup before WR Deasserted  
A0–A13, DMS, PMS Hold after WR Deasserted  
Data Setup before WR High  
Data Hold Time  
Data Hold after WR High  
OE to Data Valid  
Address Access Time  
tRDD  
tAA  
RD Low to Data Valid  
A0–A13, DMS, PMS, BMS to Data Valid  
–44–  
REV. B  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2103/2162/2164)  
CLO CK SIGNALS & RESET  
Frequency  
D ependency  
Min  
10.24 MH z  
P aram eter  
Min  
Max  
Max  
Unit  
Timing Requirement:  
tCK  
CLKIN Period  
97.6  
20  
20  
150  
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tRSP  
CLKIN Width Low  
CLKIN Width High  
RESET Width Low  
1
488  
5tCK  
Switching Characteristic:  
tCPL  
tCPH  
tCKOH  
CLKOUT Width Low  
CLKOUT Width High  
CLKIN High to CLKOUT High  
38.8  
38.8  
0
0.5tCK – 10  
0.5tCK – 10  
ns  
ns  
ns  
20  
NOTES  
1Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including crystal  
oscillator startup time).  
tCK  
tCKH  
CLKIN  
tCKL  
tCKOH  
tCPH  
CLKOUT  
tCPL  
Figure 39. Clock Signals  
REV. B  
–45–  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2103/2162/2164)  
INTERRUP TS & FLAGS  
Frequency  
D ependency  
Min  
10.24 MH z  
P aram eter  
Min  
Max  
Max  
Unit  
Timing Requirement:  
tIFS  
tIFH  
IRQx1 or FI Setup before CLKOUT Low2, 3  
44.4  
24.4  
0.25tCK + 20  
0.25tCK  
ns  
ns  
IRQx1 or FI Hold after CLKOUT High2, 3  
Switching Characteristic:  
tFOH FO Hold after CLKOUT High  
tFOD FO Delay from CLKOUT High  
0
ns  
ns  
15  
NOTES  
1IRQx=IRQ0, IRQ1, and IRQ2.  
2If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the  
 following cycle. (Refer to the “Interrupt Controller” section in Chapter 3, Program Control, of the  ADSP-2100 Family User’s Manual for further information on  
interrupt servicing.)  
3Edge-sensitive interrupts require pulse widths greater than 10 ns. Level-sensitive interrupts must be held low until serviced.  
CLKOUT  
tFOD  
tFOH  
FLAG  
OUTPUT(S)  
tIFH  
IRQx  
FI  
tIFS  
Figure 40. Interrupts & Flags  
–46–  
REV. B  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2103/2162/2164)  
BUS REQ UEST/GRANT  
Frequency  
D ependency  
Min  
10.24 MH z  
P aram eter  
Min  
Max  
Max  
Unit  
Timing Requirement:  
tBH  
tBS  
BR Hold after CLKOUT High1  
29.4  
44.4  
0.25tCK + 5  
0.25tCK + 20  
ns  
ns  
BR Setup before CLKOUT Low1  
Switching Characteristic:  
tSD  
tSDB  
tSE  
CLKOUT High to DMS, PMS, BMS, RD, WR Disable  
DMS, PMS, BMS, RD, WR  Disable to BG Low  
BG High to DMS, PMS, BMS, RD, WR Enable  
44.4  
0.25tCK + 20  
ns  
ns  
ns  
ns  
0
0
tSEC  
DMS, PMS, BMS, RD, WR  Enable to CLKOUT High 14.4  
0.25tCK – 10  
NOTES  
1If BR meets the tBS and tBH setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle.  BR  
 requires a pulse width greater than 10 ns.  
Section 10.2.4, “Bus Request/Grant,” of the ADSP-2100 Family User’s Manual (1st Edition, ©1993) states that “When BR is recognized, the processor  
responds immediately by asserting BG during the same cycle.” This is incorrect for the current versions of all ADSP-21xx processors:  BG is asserted in the  
cycle after BR is recognized. No external synchronization circuit is needed when BR is generated as an asynchronous signal.  
tBH  
CLKOUT  
BR  
tBS  
CLKOUT  
PMS, DMS  
BMS, RD  
tSD  
tSEC  
WR  
BG  
tSDB  
tSE  
Figure 41. Bus Request/Grant  
REV. B  
–47–  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2103/2162/2164)  
MEMO RY READ  
Frequency  
D ependency  
Min  
10.24 MH z  
P aram eter  
Min  
Max  
Max  
Unit  
Timing Requirement:  
tRDD  
tAA  
tRDH  
RD Low to Data Valid  
A0–A13, PMS, DMS, BMS to Data Valid  
Data Hold from RD High  
33.8  
49.2  
0.5tCK – 15 + w  
0.75tCK – 24 + w  
ns  
ns  
ns  
0
Switching Characteristic:  
tRP  
RD Pulse Width  
CLKOUT High to RD Low  
A0–A13, PMS, DMS, BMS Setup before RD Low  
A0–A13, PMS, DMS, BMS Hold after RD Deasserted  
RD High to RD or WR Low  
43.8  
19.4  
12.4  
14.4  
38.8  
0.5tCK – 5 + w  
0.25tCK – 5  
0.25tCK – 12  
0.25tCK – 10  
0.5tCK – 10  
ns  
ns  
ns  
ns  
ns  
tCRD  
tASR  
tRDA  
tRWR  
34.4  
0.25tCK + 10  
w = wait states × tCK.  
CLKOUT  
A0 – A13  
DMS, PMS  
BMS  
tRDA  
RD  
tASR  
tCRD  
tRP  
tRWR  
D
tRDD  
tRDH  
tAA  
WR  
Figure 42. Mem ory Read  
–48–  
REV. B  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2103/2162/2164)  
MEMO RY WRITE  
Frequency  
D ependency  
Min  
10.24 MH z  
P aram eter  
Min  
Max  
Max  
Unit  
Switching Characteristic:  
tDW  
tDH  
tWP  
tWDE  
tASW  
tDDR  
tCWR  
tAW  
Data Setup before WR High  
Data Hold after WR High  
WR Pulse Width  
WR Low to Data Enabled  
A0–A13, DMS, PMS Setup before WR Low  
Data Disable before WR or RD Low  
CLKOUT High to WR Low  
A0–A13, DMS, PMS, Setup before WR Deasserted  
A0–A13, DMS, PMS Hold After WR Deasserted  
WR High to RD or WR Low  
38.8  
14.4  
43.8  
0
12.4  
14.4  
19.4  
58.2  
14.4  
38.8  
0.5tCK – 10 + w  
0.25tCK – 10  
0.5tCK – 5 + w  
ns  
ns  
ns  
0.25tCK – 12  
0.25tCK – 10  
0.25tCK – 5  
0.75tCK – 15 + w  
0.25tCK – 10  
0.5tCK – 10  
ns  
ns  
ns  
ns  
ns  
ns  
34.4  
0.25tCK + 10  
tWRA  
tWWR  
w = wait states × tCK.  
CLKOUT  
A0 – A13  
DMS, PMS  
tWRA  
WR  
tASW  
tWP  
tWWR  
tAW  
tDH  
tDDR  
tCWR  
D
tDW  
tWDE  
RD  
Figure 43. Mem ory Write  
REV. B  
–49–  
ADSP-21xx  
TIMING PARAMETERS (ADSP-2103/2162/2164)  
SERIAL P O RTS  
Frequency  
D ependency  
Min  
10.24 MH z  
P aram eter  
Min  
Max  
Max  
Unit  
Timing Requirement:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
97.6  
8
10  
28  
tCK  
ns  
ns  
ns  
ns  
DR/T FS/RFS Setup before SCLK Low  
DR/T FS/RFS Hold after SCLK Low  
SCLKin Width  
Switching Characteristic:  
tCC  
CLKOUT High to SCLKout  
SCLK High to DT Enable  
SCLK High to DT Valid  
T FS/RFSout Hold after SCLK High  
T FS/RFSout Delay from SCLK High  
DT Hold after SCLK High  
T FS (alt) to DT Enable  
24.4  
0
39.4  
28  
0.25tCK  
0.25tCK + 15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCDE  
tSCDV  
tRH  
0
tRD  
28  
tSCDH  
tT DE  
tT DV  
tSCDD  
tRDV  
0
0
T FS (alt) to DT Valid  
18  
30  
20  
SCLK High to DT Disable  
RFS (Multichannel, Frame Delay Zero)  
to DT Valid  
CLKOUT  
SCLK  
tCC  
tCC  
tSCK  
tSCP  
tSCS  
tSCH  
tSCP  
DR  
RFSIN  
TFSIN  
tRD  
tRH  
RFSOUT  
TFSOUT  
tSCDD  
tSCDV  
tSCDE  
tSCDH  
DT  
tTDE  
tTDV  
TFS  
( ALTERNATE  
FRAME MODE )  
tRDV  
RFS  
( MULTICHANNEL MODE,  
FRAME DELAY 0 {MFD = 0} )  
Figure 44. Serial Ports  
–50–  
REV. B  
ADSP-21xx  
P IN CO NFIGURATIO NS  
68-P in P GA  
A
B
C
D
E
F
G
H
J
K
L
L
K
J
H
G
F
E
D
C
B
A
1
1
BR  
GND  
BR  
1
2
A3  
A1  
RESET  
VDD  
D22  
D20  
1
2
D20  
D22  
VDD  
RESET  
A1  
A3  
VDD  
GND  
VDD  
2
2
IRQ2  
D18  
D16  
D14  
D12  
D11  
D9  
IRQ2  
A5  
GND  
A8  
A4  
A2  
A0  
D19  
D17  
D15  
D13  
GND  
D10  
D8  
MMAP  
A0  
A2  
A4  
A5  
GND  
A8  
A6  
A7  
MMAP  
D23  
D21  
D21  
D23  
A6  
A7  
D19  
D17  
D15  
D13  
GND  
D10  
D8  
D18  
D16  
D14  
D12  
D11  
D9  
INDEX  
(NC)  
INDEX  
(NC)  
3
3
3
3
4
4
4
4
A9  
A9  
PGA PACKAGE  
ADSP-2101  
PGA PACKAGE  
ADSP-2101  
5
5
5
A10  
5
A10  
A11  
A13  
DMS  
BG  
A11  
A13  
DMS  
BG  
6
6
A12  
A12  
6
6
7
7
7
PMS  
BMS  
XTAL  
7
PMS  
BMS  
XTAL  
TOP VIEW  
(PINS DOWN)  
BOTTOM VIEW  
(PINS UP)  
D7  
8
8
8
8
D7  
CLK  
IN  
CLK  
IN  
D5  
9
9
D6  
9
9
D6  
D5  
IRQ1  
(TFS1)  
IRQ1  
(TFS1)  
FI  
(DR1)  
CLK  
OUT  
CLK  
OUT  
FI  
(DR1)  
10  
11  
D3  
10  
11  
D4  
SCLK0 GND  
TFS0  
10  
11  
RD  
10  
11  
RD  
TFS0  
GND SCLK0  
VDD  
D1  
D4  
D1  
VDD  
D3  
IRQ0  
(RFS1)  
IRQ0  
(RFS1)  
FO  
(DT1)  
FO  
(DT1)  
D2  
B
DR0  
G
RFS0  
H
DT0  
J
WR  
D2  
B
WR  
DT0  
J
RFS0  
H
DR0  
G
SCLK1  
D
D0  
C
D0  
C
SCLK1  
D
L
K
F
E
A
A
E
F
K
L
NC = NO CONNECT  
P GA  
P in  
P GA  
P in  
P GA  
P in  
P GA  
P in  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
B1  
B2  
C1  
C2  
D1  
D2  
E1  
E2  
F1  
F2  
G1  
G2  
H1  
H2  
J1  
GND  
D19  
D20  
D21  
D22  
D23  
VDD  
MMAP  
BR  
IRQ2  
RESET  
A0  
A1  
A2  
A3  
K11  
K10  
J11  
WR  
RD  
A10  
B10  
A9  
B9  
A8  
B8  
A7  
B7  
A6  
B6  
A5  
B5  
A4  
B4  
A3  
B3  
A2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
GND  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
L2  
K2  
L3  
K3  
L4  
K4  
L5  
K5  
L6  
K6  
L7  
K7  
L8  
K8  
L9  
K9  
L10  
C3  
A5  
A6  
GND  
A7  
A8  
DT 0  
T FS0  
RFS0  
GND  
DR0  
SCLK0  
FO  
IRQ1 (TFS1)  
IRQ0 (RFS1)  
FI  
SCLK1  
VDD  
D0  
D1  
D2  
J10  
H11  
H10  
G11  
G10  
F11  
F10  
E11  
E10  
D11  
D10  
C11  
C10  
B11  
A9  
A10  
A11  
A12  
A13  
PMS  
DMS  
BMS  
BG  
XT AL  
CLKIN  
CLKOUT  
Index (NC)  
(DT1)  
(DR1)  
J2  
K1  
A4  
VDD  
REV. B  
–51–  
ADSP-21xx  
P IN CO NFIGURATIO NS  
68-Lead P LCC  
PIN 1  
IDENTIFIER  
GND  
D19  
D20  
D21  
D22  
D23  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
D2  
D1  
D0  
V
DD  
SCLK1  
PLCC PACKAGE  
FI (DR1)  
V
IRQ0 (RFS1)  
DD  
ADSP-2101  
ADSP-2103  
MMAP  
BR  
IRQ1 (TFS1)  
ADSP-2105  
FO (DT1)  
ADSP-2115  
IRQ2  
RESET  
A0  
SCLK0 (NC on ADSP-2105)  
DR0 (NC on ADSP-2105)  
GND  
ADSP-2161/62/63/64  
TOP VIEW  
(PINS DOWN)  
A1  
RFS0 (NC on ADSP-2105)  
TFS0 (NC on ADSP-2105)  
DT0 (NC on ADSP-2105)  
RD  
A2  
A3  
A4  
V
WR  
DD  
NC = NO CONNECT  
P LCC  
P in  
P LCC  
P in  
P LCC  
P in  
P LCC  
P in  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
A12  
A13  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
FO  
(DT1)  
1
2
3
4
5
6
7
8
D11  
GND  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
GND  
D19  
D20  
D21  
D22  
D23  
VDD  
18  
BR  
IRQ1 (TFS1)  
IRQ0 (RFS1)  
FI  
SCLK1  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
IRQ2  
RESET  
A0  
A1  
A2  
A3  
A4  
VDD  
A5  
A6  
GND  
A7  
A8  
A9  
A10  
A11  
PMS  
DMS  
BMS  
BG  
XT AL  
CLKIN  
CLKOUT  
WR  
(DR1)  
9
10  
11  
12  
13  
14  
15  
16  
17  
RD  
DT 0  
(NC on ADSP-2105)  
T FS0 (NC on ADSP-2105)  
RFS0 (NC on ADSP-2105)  
GND  
DR0  
(NC on ADSP-2105)  
SCLK0 (NC on ADSP-2105)  
MMAP  
–52–  
REV. B  
ADSP-21xx  
P IN CO NFIGURATIO NS  
80-Lead P Q FP  
80-Lead TQ FP  
A5  
A6  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
GND  
GND  
D11  
D10  
D9  
2
GND  
GND  
A7  
3
4
5
A8  
6
PQFP PACKAGE  
A9  
7
A10  
A11  
A12  
A13  
PMS  
DMS  
BMS  
BG  
8
ADSP-2101  
ADSP-2103  
ADSP-2115  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
ADSP-2161/62/63/64  
D8  
TOP VIEW  
(PINS DOWN)  
D7  
D6  
XTAL  
CLKIN  
NC  
D5  
D4  
NC  
NC  
NC  
NC  
NC  
D(1T)  
D(1R)  
T(SF1)  
R(SF1)  
NC = NO CONNECT  
P QFP /  
TQFP  
Num ber Nam e  
P QFP /  
TQFP  
Num ber Nam e  
P QFP /  
TQFP  
Num ber Nam e  
P QFP /  
TQFP  
Num ber Nam e  
P in  
P in  
P in  
P in  
1
2
3
4
5
6
7
8
A5  
A6  
GND  
GND  
A7  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
CLKOUT  
WR  
RD  
DT 0  
T FS0  
RFS0  
GND  
GND  
DR0  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
NC  
NC  
NC  
D4  
D5  
D6  
D7  
D8  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
GND  
GND  
D19  
D20  
D21  
D22  
D23  
VDD  
VDD  
MMAP  
BR  
IRQ2  
RESET  
A0  
A1  
A2  
A3  
A4  
VDD  
VDD  
A8  
A9  
A10  
A11  
A12  
A13  
PMS  
DMS  
BMS  
BG  
XT AL  
CLKIN  
NC  
NC  
NC  
9
D9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SCLK0  
D10  
D11  
GND  
GND  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
FO  
(DT1)  
IRQ1 (TFS1)  
IRQ0 (RFS1)  
FI  
(DR1)  
SCLK1  
VDD  
D0  
D1  
D2  
D3  
REV. B  
–53–  
ADSP-21xx  
P IN CO NFIGURATIO NS  
100-P in P GA  
13  
D23  
12  
D21  
11  
D20  
D22  
10  
D18  
D19  
9
8
7
6
D10  
D9  
5
4
3
2
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
VDD  
D1  
D3  
D5  
D7  
D10  
D12  
D13  
D16  
D18  
D20  
D21  
D23  
N
M
L
D16  
D17  
D13  
D14  
D15  
D12  
D11  
GND  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FL2  
VDD  
FL1  
FL0  
N
M
L
N
M
L
N
M
L
FL1  
FL0  
D0  
D2  
D4  
D6  
D9  
D8  
D11  
D14  
D15  
D17  
D19  
D22  
GND  
MMAP  
BR  
MMAP  
BR  
GND  
RESET  
VDD  
GND  
D8  
FL2  
RESET  
VDD  
F1  
(DR1)  
F1  
(DR1)  
PMS  
SCLK1  
PMS  
BMS  
BG  
SCLK1  
K
J
K
J
K
J
K
J
IRQ0  
(RFS1)  
IRQ1  
(TFS1)  
IRQ1  
(TFS1)  
IRQ0  
(RFS1)  
BMS  
BG  
DMS  
WR  
A0  
DMS  
WR  
A0  
PGA PACKAGE  
ADSP-2111  
PGA PACKAGE  
ADSP-2111  
FO  
(DT1)  
FO  
(DT1)  
GND  
TFS0  
SCLK0  
RD  
A1  
RD  
A1  
GND SCLK0  
H
G
F
H
G
F
H
G
F
H
G
F
A2  
A2  
RFSO TFS0  
CLK  
DR0  
DT0  
DR0  
DT0  
RFSO  
HACK  
CLK  
OUT  
A5  
A4  
A3  
A3  
A4  
A5  
HACK  
OUT  
TOP VIEW  
(PINS DOWN)  
BOTTOM VIEW  
(PINS UP)  
IRQ2 BMODE  
HMD0 HMD1  
A6  
GND  
A7  
GND  
A6  
BMODE  
IRQ2  
E
D
C
B
A
E
D
C
B
A
E
D
C
B
A
E
D
C
B
A
A8  
A7  
A9  
A8  
A11  
A12  
HMD1 HMD0  
HRD/  
INDEX  
PIN  
(NC)  
INDEX  
PIN  
(NC)  
HRD/  
HSIZE  
XTAL  
HD7  
VDD  
HD6  
HD9  
A11  
A9  
HD9  
HD8  
HD7  
VDD  
XTAL  
HD4  
HSIZE  
HRW  
HRW  
HWR/  
HSEL  
HDS  
HWR/  
HSEL  
HA1  
HD0  
HD1  
HD2  
HD3  
HD4  
HD5  
HD8  
HD11 HD13 HD15  
A12  
A13  
A10  
A10  
HD15 HD13  
HD14 HD12  
HD11  
HD3  
HD1  
HA1  
HDS  
HA2/  
HA0  
CLK  
IN  
HA2/  
HA0  
ALE  
CLK  
IN  
V
GND  
HD10  
HD12  
HD14  
VDD  
A13  
HD10  
GND  
HD6  
HD5  
HD2  
HD0  
DD  
ALE  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
NC = NO CONNECT  
P GA  
P in  
P GA  
P in  
P GA  
P in  
P GA  
P in  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
N13  
N12  
M13  
M12  
L13  
L12  
K13  
K12  
J13  
D23  
D21  
MMAP  
GND  
BR  
RESET  
PMS  
VDD  
BMS  
DMS  
BG  
WR  
RD  
A2  
A0  
A1  
A3  
A4  
A5  
GND  
A6  
A7  
A8  
A9  
A11  
C3  
A2  
A1  
B1  
B2  
C1  
C2  
D1  
D2  
E1  
E2  
F1  
F2  
F3  
G1  
G2  
G3  
H1  
H2  
H3  
J1  
Index (NC)  
HA2/ALE  
HA0  
HWR/HDS  
HSEL  
HSIZE  
HRD/HRW  
HMD0  
HMD1  
IRQ2  
BMODE  
DT0  
CLKOUT  
HACK  
DR0  
B13  
A13  
A12  
B12  
A11  
B11  
A10  
B10  
A9  
B9  
A8  
B8  
C8  
A7  
B7  
C7  
A6  
B6  
C6  
A5  
B5  
A4  
B4  
A3  
A10  
VDD  
A13  
A12  
L2  
FL2  
FL1  
VDD  
D1  
D0  
D3  
D2  
D5  
D4  
D7  
M1  
N1  
N2  
M2  
N3  
M3  
N4  
M4  
N5  
M5  
N6  
M6  
L6  
N7  
M7  
L7  
N8  
M8  
L8  
HD14  
HD15  
HD12  
HD13  
HD10  
HD11  
GND  
HD8  
HD9  
HD6  
VDD  
HD7  
HD5  
HD4  
XT AL  
CLKIN  
HD3  
HD2  
HD1  
HD0  
HA1  
J12  
H13  
H12  
H11  
G13  
G12  
G11  
F13  
F12  
F11  
E13  
E12  
D13  
D12  
C13  
C12  
D6  
D10  
D9  
D8  
D12  
D11  
GND  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D22  
T FS0  
RFS0  
SCLK0  
GND  
FO  
(DT1)  
IRQ1 (TFS1)  
IRQ0 (RFS1)  
N9  
M9  
N10  
M10  
N11  
M11  
J2  
K1  
K2  
L1  
FI  
(DR1)  
SCLK1  
FL0  
B3  
–54–  
REV. B  
ADSP-21xx  
P IN CO NFIGURATIO NS  
100-Lead Bum per ed P Q FP  
GND  
MMAP  
RESET  
BR  
VDD  
PMS  
DMS  
BMS  
RD  
WR  
BG  
A0  
A1  
A2  
A3  
A4  
A5  
GND  
A6  
A7  
A8  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
VDD  
FL2  
FL1  
FL0  
SCLK1  
FI (DR1)  
IRQ0 (RFS1)  
IRQ1 (TFS1)  
FO (DT1)  
GND  
SCLK0  
DR0  
RFS0  
TFS0  
DT0  
CLKOUT  
HACK  
IRQ2  
BMODE  
HMD0  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
BEVELED EDGE  
PQFP PACKAGE  
ADSP-2111  
TOP VIEW  
(PINS DOWN)  
HMD1  
A9  
HSIZE  
HRD/HRW  
HWR/HDS  
HSEL  
A10  
A11  
VDD  
NOTE: PIN 1 IS LOCATED AT THE CENTER OF THE BEVELED-EDGE SIDE OF THE PACKAGE.  
P QFP  
P in  
P QFP  
P in  
P QFP  
P in  
P QFP  
P in  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
A1  
A2  
A3  
A4  
A5  
GND  
A6  
A7  
A8  
1
2
3
4
5
6
7
8
GND  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
GND  
MMAP  
RESET  
BR  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
HD7  
HD6  
HD5  
HD4  
XT AL  
CLKIN  
HD3  
HD2  
HD1  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
RFS0  
DR0  
SCLK0  
GND  
FO  
(DT1)  
IRQ1 (TFS1)  
IRQ0 (RFS1)  
FI  
SCLK1  
FL0  
FL1  
FL2  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
(DR1)  
9
A9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
HD0  
HA2/ALE  
HA1  
A10  
A11  
VDD  
HA0  
A12  
A13  
HD15  
HD14  
HD13  
HD12  
HD11  
HD10  
HD9  
HD8  
GND  
VDD  
HSEL  
HWR/HDS  
HRD/HRW  
HSIZE  
HMD1  
HMD0  
BMODE  
IRQ2  
VDD  
PMS  
DMS  
BMS  
RD  
WR  
BG  
HACK  
CLKOUT  
DT 0  
A0  
T FS0  
REV. B  
–55–  
ADSP-21xx  
O UTLINE D IMENSIO NS  
AD SP -2101  
68-P in Gr id Ar r ay (P GA)  
PGA LOCATION A1 QUADRANT MARKING  
e
e
1
2
1
2
3
4
GUIDE  
PIN ONLY  
5
6
7
8
e
1
e
D
2
TOP VIEW  
9
10  
11  
L
K J  
H
G
F
E
D C  
B A  
D
A
1
A
SEATING  
PLANE  
L
3
φ
b
e
φ
b1  
INCHES  
MILLIMETERS  
SYMBOL MIN  
TYP  
MAX  
0.164  
MIN  
3.12  
TYP  
MAX  
4.17  
A
0.123  
A1  
φb  
φb1  
D
0.50  
1.27  
0.46  
1.27  
0.016 0.018 0.020  
0.050  
1.086  
0.988  
0.788  
1.110  
1.012  
0.812  
27.58  
25.10  
20.02  
28.19  
25.70  
20.62  
e1  
e2  
e
0.100  
0.180  
2.54  
4.57  
L3  
–56–  
REV. B  
ADSP-21xx  
O UTLINE D IMENSIO NS  
AD SP -21xx  
68-Lead P lastic Leaded Chip Car r ier (P LCC)  
9
61  
e
PIN 1 IDENTIFIER  
D
2
b
BOTTOM VIEW  
(PINS UP)  
TOP VIEW  
(PINS DOWN)  
b
1
A
D
1
1
D
A
INCHES  
TYP  
MILLIMETERS  
SYMBOL MIN  
MAX  
MIN  
TYP  
MAX  
A
A1  
b
0.169 0.172 0.175  
0.104  
4.29 14.37  
12.64  
4.45  
0.017 0.018 0.019  
0.027 0.028 0.029  
0.985 0.990 0.995  
0.950 0.952 0.954  
0.895 0.910 0.925  
0.050  
0.43 10.46  
0.69 10.71  
0.48  
0.74  
b1  
D
D1  
D2  
e
25.02 25.15 25.27  
24.13 24.18 24.23  
22.73 23.11 23.50  
11.27  
0.004  
10.10  
REV. B  
–57–  
ADSP-21xx  
O UTLINE D IMENSIO NS  
AD SP -21xx  
80-Lead Metr ic P lastic Q uad Flatpack (P Q FP )  
80-Lead Metr ic Thin Q uad Flatpack (TQ FP )  
D
SEATING  
PLANE  
D
1
A
D
3
L
80  
1
61  
60  
TOP VIEW  
(PINS DOWN)  
E
E
E
1
3
20  
21  
41  
40  
A2  
A1  
B
e
P QFP  
TQFP  
MILLIMETERS  
TYP MAX  
INCHES  
TYP  
MILLIMETERS  
INCHES  
SYMBOL MIN  
A
MIN  
MAX  
0.096  
MIN TYP  
MAX  
1.60  
0.15  
1.45  
MIN  
TYP MAX  
2.45  
0.063  
0.006  
A1  
0.25  
1.90  
0.010  
0.05  
0.002  
A2  
2.00  
2.10  
0.075 0.079 0.083  
0.667 0.678 0.690  
0.547 0.551 0.555  
0.486 0.490  
1.35 1.40  
0.053 0.055 0.057  
0.620 0.630 0.640  
0.549 0.551 0.553  
0.486 0.490  
D, E  
D1, E1  
D3, E3  
L
16.95 17.20 17.45  
13.90 14.00 14.10  
12.35 12.43  
15.75 16.00 16.25  
13.95 14.00 14.05  
12.35 12.43  
0.65  
0.57  
0.22  
0.80  
0.65  
0.30  
0.95  
0.73  
0.38  
0.10  
0.026 0.031 0.037  
0.023 0.026 0.029  
0.009 0.012 0.015  
0.004  
0.50 0.60  
0.57 0.65  
0.25 0.30  
0.75  
0.73  
0.35  
0.10  
0.020 0.024 0.030  
0.022 0.026 0.029  
0.010 0.012 0.014  
0.004  
e
B
–58–  
REV. B  
ADSP-21xx  
O UTLINE D IMENSIO NS  
AD SP -2111  
100-P in Gr id Ar r ay (P GA)  
e
e
1
2
PGA LOCATION A1 QUADRANT MARKING  
1
2
3
4
INDEX  
PIN  
ONLY  
5
6
e
e
D
2
1
7
TOP VIEW  
8
9
10  
11  
12  
13  
N
M
L
K
J
H
G
F
E
D
C
B A  
D
A
1
A
L
3
e
SEATING  
PLANE  
φ b  
φ b  
1
INCHES  
TYP  
MILLIMETERS  
SYMBOL MIN  
MAX  
0.169  
MIN  
3.12  
TYP  
MAX  
4.29  
A
0.123  
A1  
φb  
φb1  
D
0.050  
1.27  
0.016 0.018 0.020  
0.050  
0.41  
0.46  
1.27  
0.51  
1.308 1.32  
1.188 1.20  
0.988 1.00  
0.100  
1.342  
1.212  
1.012  
33.22 33.53 34.09  
30.18 30.48 30.78  
e1  
e2  
e
25.10 25.4  
2.54  
4.57  
25.70  
L3  
0.180  
REV. B  
–59–  
ADSP-21xx  
O UTLINE D IMENSIO NS  
AD SP -2111  
100-Lead Bum per ed P lastic Q uad Flatpack (P Q FP )  
D
2
SEATING  
PLANE  
D
D
1
A
89  
13  
L
1
88  
14  
Beveled  
Edge  
E
E
E
2
TOP VIEW  
(PINS DOWN)  
1
D
3
, E  
3
64  
38  
39  
63  
A
2
e
B
NOTE: PIN 1 IS THE CENTER PIN ON THE BEVELED-EDGE SIDE OF THE PACKAGE.  
A
1
INCHES  
TYP  
MILLIMETERS  
MIN TYP  
SYMBOL MIN  
A
MAX  
0.180  
MAX  
4.572  
1.016  
3.810  
A1  
0.020  
0.130  
0.875  
0.747  
0.897  
0.030 0.040  
0.140 0.150  
0.880 0.885  
0.750 0.753  
0.900 0.903  
0.600 0.603  
0.046  
0.508  
3.302  
0.762  
3.556  
A2  
D, E  
D1, E1  
D2, E2  
D3, E3  
L
22.225 22.352 22.479  
18.974 19.050 19.126  
22.784 22.860 22.936  
15.240 15.316  
0.036  
0.022  
0.008  
0.914  
0.559  
0.203  
1.168  
0.711  
0.305  
0.102  
e
0.025 0.028  
0.012  
0.635  
B
0.004  
–60–  
REV. B  
ADSP-21xx  
O RD ERING GUID E  
Am bient  
Tem perature  
Range  
Instruction  
Rate (MH z)  
P ackage  
D escription  
P ackage  
O ption  
P art Num ber1  
ADSP-2101KG-66  
ADSP-2101BG-66  
ADSP-2101KP-66  
ADSP-2101BP-66  
ADSP-2101KS-66  
ADSP-2101BS-66  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
16.67 MHz  
16.67 MHz  
16.67 MHz  
16.67 MHz  
16.67 MHz  
16.67 MHz  
68-Pin PGA  
68-Pin PGA  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
G-68A  
G-68A  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2101KG-80  
ADSP-2101BG-80  
ADSP-2101KP-80  
ADSP-2101BP-80  
ADSP-2101KS-80  
ADSP-2101BS-80  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
20.0 MHz  
20.0 MHz  
20.0 MHz  
20.0 MHz  
20.0 MHz  
20.0 MHz  
68-Pin PGA  
68-Pin PGA  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
G-68A  
G-68A  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2101KP-100  
ADSP-2101BP-100  
ADSP-2101KS-100  
ADSP-2101BS-100  
ADSP-2101KG-100  
ADSP-2101BG-100  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
25.0 MHz  
25.0 MHz  
25.0 MHz  
25.0 MHz  
25.0 MHz  
25.0 MHz  
68-Pin PLCC  
68-Pin PLCC  
80-Lead PQFP  
80-Lead PQFP  
68-Lead PGA  
68-Lead PGA  
P-68A  
P-68A  
S-80  
S-80  
G-68A  
G-68A  
ADSP-2101T G-50  
–55°C to +125°C  
12.5 MHz  
68-Pin PGA  
G-68A  
ADSP-2103KP-40 (3.3 V)  
ADSP-2103BP-40 (3.3 V)  
ADSP-2103KS-40 (3.3 V)  
ADSP-2103BS-40 (3.3 V)  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
10.24 MHz  
10.24 MHz  
10.24 MHz  
10.24 MHz  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2105KP-55  
ADSP-2105BP-55  
ADSP-2105KP-80  
ADSP-2105BP-80  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
13.824 MHz  
13.824 MHz  
20.0 MHz  
68-Lead PLCC  
68-Lead PLCC  
68-Lead PLCC  
68-Lead PLCC  
P-68A  
P-68A  
P-68A  
P-68A  
20.0 MHz  
ADSP-2115KP-66  
ADSP-2115BP-66  
ADSP-2115KS-66  
ADSP-2115BS-66  
ADSP-2115KST -66  
ADSP-2115BST -66  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
16.67 MHz  
16.67 MHz  
16.67 MHz  
16.67 MHz  
16.67 MHz  
16.67 MHz  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
80-Lead T QFP  
80-Lead T QFP  
P-68A  
P-68A  
S-80  
S-80  
ST -80  
ST -80  
ADSP-2115KP-80  
ADSP-2115BP-80  
ADSP-2115KS-80  
ADSP-2115BS-80  
ADSP-2115KST -80  
ADSP-2115BST -80  
ADSP-2115KP-100  
ADSP-2115BP-100  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
20.0 MHz  
20.0 MHz  
20.0 MHz  
20.0 MHz  
20.0 MHz  
20.0 MHz  
25.0 MHz  
25.0 MHz  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
80-Lead T QFP  
80-Lead T QFP  
68-Lead PLCC  
68-Lead PLCC  
P-68A  
P-68A  
S-80  
S-80  
ST -80  
ST -80  
P-68A  
P-68A  
NOT ES  
1K = Commercial T emperature Range (0°C to +70°C).  
B
T
G
P
= Industrial T emperature Range (–40°C to +85°C).  
= Extended T emperature Range (–55°C to +125°C).  
= Ceramic PGA (Pin Grid Array).  
= PLCC (Plastic Leaded Chip Carrier).  
= PQFP (Plastic Quad Flatpack).  
S
ST = T QFP (T hin Quad Flatpack)  
REV. B  
–61–  
ADSP-21xx  
O RD ERING GUID E  
Am bient  
Tem perature  
Range  
Instruction  
Rate (MH z)  
P ackage  
D escription  
P ackage  
O ption  
P art Num ber1  
ADSP-2111KG-52  
ADSP-2111BG-52  
ADSP-2111KS-52  
ADSP-2111BS-52  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
13.0 MHz  
13.0 MHz  
13.0 MHz  
13.0 MHz  
100-Pin PGA  
100-Pin PGA  
100-Lead PQFP  
100-Lead PQFP  
G-100A  
G-100A  
S-100A  
S-100A  
ADSP-2111KG-66  
ADSP-2111BG-66  
ADSP-2111KS-66  
ADSP-2111BS-66  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
16.67 MHz  
16.67 MHz  
16.67 MHz  
16.67 MHz  
100-Pin PGA  
100-Pin PGA  
100-Lead PQFP  
100-Lead PQFP  
G-100A  
G-100A  
S-100A  
S-100A  
ADSP-2111KG-80  
ADSP-2111BG-80  
ADSP-2111KS-80  
ADSP-2111BS-80  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
20.0 MHz  
20.0 MHz  
20.0 MHz  
20.0 MHz  
100-Pin PGA  
100-Pin PGA  
100-Lead PQFP  
100-Lead PQFP  
G-100A  
G-100A  
S-100A  
S-100A  
ADSP-2111T G-52  
–55°C to +125°C  
13.0 MHz  
100-Pin PGA  
G-100A  
ADSP-2161KP-662  
ADSP-2161BP-662  
ADSP-2161KS-662  
ADSP-2161BS-662  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
16.67 MHz  
16.67 MHz  
16.67 MHz  
16.67 MHz  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2162KP-40 (3.3 V)2  
ADSP-2162BP-40 (3.3 V)2  
ADSP-2162KS-40 (3.3 V)2  
ADSP-2162BS-40 (3.3 V)2  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
10.24 MHz  
10.24 MHz  
10.24 MHz  
10.24 MHz  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2163KP-662  
ADSP-2163BP-662  
ADSP-2163KS-662  
ADSP-2163BS-662  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
16.67 MHz  
16.67 MHz  
16.67 MHz  
16.67 MHz  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2163KP-1002  
ADSP-2163BP-1002  
ADSP-2163KS-1002  
ADSP-2163BS-1002  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
P-68A  
P-68A  
S-80  
S-80  
ADSP-2164KP-40 (3.3 V)2  
ADSP-2164BP-40 (3.3 V)2  
ADSP-2164KS-40 (3.3 V)2  
ADSP-2164BS-40 (3.3 V)2  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
–40°C to +85°C  
10.24 MHz  
10.24 MHz  
10.24 MHz  
10.24 MHz  
68-Lead PLCC  
68-Lead PLCC  
80-Lead PQFP  
80-Lead PQFP  
P-68A  
P-68A  
S-80  
S-80  
NOT ES  
1K  
B
T
G
P
=
=
=
=
=
=
Commercial T emperature Range (0°C to +70°C).  
Industrial T emperature Range (–40°C to +85°C).  
Extended T emperature Range (–55°C to +125°C).  
Ceramic PGA (Pin Grid Array).  
PLCC (Plastic Leaded Chip Carrier).  
PQFP (Plastic Quad Flatpack).  
S
2Minimum order quantities required. Contact factory for further information.  
–62–  
REV. B  
–63–  
–64–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY