ADSP-21465W [ADI]

SHARC Processor material that is subject to change without notice; SHARC处理器的材料,如有变更,恕不另行通知
ADSP-21465W
型号: ADSP-21465W
厂家: ADI    ADI
描述:

SHARC Processor material that is subject to change without notice
SHARC处理器的材料,如有变更,恕不另行通知

文件: 总60页 (文件大小:814K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC Processor  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Code compatible with all other members of the SHARC family  
The ADSP-21462W/ADSP-21465W/ADSP-21467 are available  
SUMMARY  
Note: This datasheet is preliminary. This document contains  
material that is subject to change without notice.  
High performance 32-bit/40-bit floating point processor  
optimized for high performance audio processing  
Single-instruction, multiple-data (SIMD) computational  
architecture  
with unique audiocentric peripherals such as the digital  
applications interface, DTCP (digital transmission content  
protection protocol), serial ports, precision clock genera-  
tors, S/PDIF transceiver, asynchronous sample rate  
converters, input data port, and more.  
For complete ordering information, see Automotive Prod-  
ucts on Page 59 and Ordering Guide on Page 59.  
On-chip memory—5 Mbits of on-chip RAM, 4 Mbits of on-chip  
ROM  
Automotive applications—the ADSP-21462W and the ADSP-  
21465W are available exclusively as automotive products  
CORE PROCESSOR  
THERMAL  
PLL  
DIODE  
4 BLOCKS OF  
ON-CHIP MEMORY  
INSTRUCTION  
JTAGTEST & EMULATION  
EXTERNAL PORT  
CACHE  
32 48-BIT  
TIMER  
x
5M BIT RAM  
4M BIT ROM  
DATA  
8
FLAGS  
PWM  
DAG1  
8 x 4 x 32  
DAG2  
8 x 4 x 32  
ADDR  
32  
DATA  
48  
ASYNCHRONOUS  
MEMORY  
INTERFACE  
(AMI)  
PROGRAM  
SEQUENCER  
24 ADDRESS  
3
7
AMI CONTROL  
PM ADDRESS BUS  
DMADDRESS BUS  
32  
32  
DDR2 CONTROL  
16  
19  
DDR2 DRAM  
CONTROLLER  
DATA  
64  
64  
PM DATA BUS  
DM DATA BUS  
ADDRESS  
IOA(19)  
IOD(32)  
ACCELERATORS  
FFT FIR IIR  
PX REGISTER  
PROCESSING  
ELEMENT  
(PEX)  
PROCESSING  
ELEMENT  
(PEY)  
IOP REGISTER CONTROL  
STATUS, & DATA BUFFERS  
3/5  
20  
MLB  
DMA  
ARBITER  
LINK  
PORTS  
4
GPIO  
IRQ/FLAGS  
SPI PORT (2)  
SERIAL PORTS (8)  
PRECISION CLOCK  
GENERATORS (4)  
TWOWIRE  
INTERFACE  
UART  
DTCP  
GP TIMERS (2)  
INPUT DATA PORT/  
PDAP  
GPIO  
S/PDIF (RX/TX)  
ASRC  
DPI PINS (14)  
S
DAI PINS (20)  
DIGITAL PERIPHERAL INTERFACE  
I/O PROCESSOR  
DIGITAL APPLICATIONS INTERFACE  
20  
14  
Figure 1. Functional Block Diagram  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Delay-line DMA engine maintains circular buffers in exter-  
nal memory with tap/offset based reads  
16-bit data access for synchronous DDR2 DRAM memory  
8-bit data access for asynchronous memory  
4 memory select lines allows multiple external memory  
devices  
Digital audio interface (DAI) includes eight serial ports, four  
precision clock generators, an input data port, an S/PDIF  
transceiver, and a signal routing unit  
KEY FEATURESPROCESSOR CORE  
At up to 450 MHz core instruction rate, the processor per-  
forms at 2.7 GFLOPS/900 MMACs  
5 Mbits on-chip RAM, 4 Mbits on-chip ROM for simultaneous  
access by the core processor and DMA  
DDR2 DRAM interface (16-bit) operating at maximum fre-  
quency of half the core clock frequency  
Dual data address generators (DAGs) with modulo and bit-  
reverse addressing  
Digital peripheral interface (DPI) includes, two timers, one  
UART, and two SPI ports, a DTCP cipher (ADSP-21462W  
and ADSP-21465W), and a two-wire interface port  
Outputs of PCG A and B can be routed through DAI pins  
Outputs of PCG C and D can be driven on to DAI as well as  
DPI pins  
Eight dual data line serial ports — each has a clock, frame  
sync, and two data lines that can be configured as either a  
receiver or transmitter pair  
TDM support for telecommunications interfaces including  
128 TDM channel support for newer telephony interfaces  
such as H.100/H.110  
Up to 16 TDM stream support, each with 128 channels per  
frame  
Companding selection on a per channel basis in TDM mode  
Input data port (IDP), configurable as eight channels of serial  
data or seven channels of serial data and up to a 20-bit  
wide parallel data channel  
Signal routing unit provides configurable and flexible con-  
nections between the various peripherals and the DAI/DPI  
components  
4 independent asynchronous sample rate converters (ASRC).  
Each converter has separate serial input and output ports,  
a de-emphasis filter providing up to –128 dB SNR perfor-  
mance, stereo sample rate converter and supports left-  
justified, I2S, TDM, and right-justified modes and 24-, 20-,  
18-, and 16-audio data word lengths.  
An MLB (media local bus) interface allows the processor to  
support for both 3-pin as well as 5-pin media local bus pro-  
tocols (ADSP-21462W and ADSP-21465W).  
2 muxed flag/IRQ lines  
Zero-overhead looping with single-cycle loop setup, provid-  
ing efficient program sequencing  
VISA (variable instruction set) execution support  
Single instruction multiple data (SIMD) architecture  
provides:  
Two computational processing elements  
Concurrent execution  
Code compatibility with other SHARC family members at  
the assembly level  
Parallelism in buses and computational units allows:  
Single cycle executions (with or without SIMD) of a mul-  
tiply operation, an ALU operation, a dual memory read  
or write, and an instruction fetch  
Transfers between memory and core at a sustained  
7.2 Gbytes/second bandwidth  
FFT accelerator implements radix-2 complex/real input, com-  
plex output FFT with no core intervention  
IIR accelerators perform dedicated IIR filtering with high-per-  
formance, fixed- and floating-point processing capabilities  
with no core intervention  
FIR accelerators perform dedicated FIR filtering with high-  
performance, fixed- and floating-point processing capabil-  
ities with no core intervention  
Program sequencer can execute code directly from external  
memory bank 0 (SRAM, as well as DDR2 DRAM). This allows  
more options to a user in terms of code storage.  
New opcodes of 16 and 32 bits are supported in addition to  
the existing 48 bit opcodes. Variable Instruction Set Archi-  
tecture (VISA) execution from external DDR2 DRAM  
memory is also supported.  
1 muxed flag/IRQ /AMI_MS pin  
INPUT/OUTPUT FEATURES  
1 muxed flag/Timer expired line /AMI_MS pin  
S/PDIF-compatible digital audio receiver/transmitter sup-  
ports EIAJ CP-340 (CP-1201), IEC-958, AES/EBU standards  
Left-justified, I2S or right-justified serial data input with  
16-, 18-, 20- or 24-bit word widths (transmitter)  
Pulse-width modulation provides:  
16 PWM outputs configured as four groups of four outputs  
supports center-aligned or edge-aligned PWM waveforms  
PLL has a wide variety of software and hardware multi-  
plier/divider ratios  
Two 8-bit wide link ports can connect to the link ports of  
other SHARCs or peripherals. Link ports are bidirectional  
programmable ports having eight data lines, an acknowl-  
edge line and a clock line  
DMA controller supports  
67 DMA channels for transfers between internal memory  
and a variety of peripherals  
DMA transfers at peripheral clock speed, in parallel with  
full-speed processor execution  
External port provides glueless connection to 16-bit wide  
synchronous DDR2 DRAM using a dedicated DDR2 DRAM  
controller, and 8-bit wide asynchronous memory devices  
using asynchronous memory interface (AMI)  
Programmable wait state options (for AMI) 2 to 31  
DDR2_CLK cycles  
Thermal diode to monitor die temperature  
Available in 19 mm by 19 mm PBGA package (see Ordering  
Guide on Page 59)  
Rev. PrA  
|
Page 2 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
TABLE OF CONTENTS  
Summary ............................................................... 1  
Key Features—Processor Core ................................. 2  
Input/Output Features ........................................... 2  
Table Of Contents .................................................... 3  
Revision History ...................................................... 3  
General Description ................................................. 4  
Family Core Architecture ....................................... 5  
Memory ............................................................. 6  
External Memory .................................................. 6  
Input/Output Features ........................................... 8  
System Design ..................................................... 11  
Development Tools .............................................. 12  
Additional Information ......................................... 12  
Pin Function Descriptions ........................................ 13  
Data Modes ........................................................ 17  
Boot Modes ........................................................ 17  
Core Instruction Rate to CLKIN Ratio Modes ............. 17  
Specifications ......................................................... 18  
Operating Conditions ........................................... 18  
Electrical Characteristics ........................................ 19  
Maximum Power Dissipation ................................. 20  
Absolute Maximum Ratings ................................... 20  
ESD Sensitivity .................................................... 20  
Timing Specifications ........................................... 21  
Output Drive Currents .......................................... 53  
Test Conditions ................................................... 53  
Capacitive Loading ............................................... 53  
Thermal Characteristics ........................................ 54  
Ball configuration - ADSP-2146x ............................. 55  
PBGA Pinout ......................................................... 56  
Outline Dimensions ................................................ 58  
Automotive Products ............................................... 59  
Ordering Guide ...................................................... 59  
REVISION HISTORY  
11/08—Revision PrA  
Initial version  
Rev. PrA  
|
Page 3 of 60  
|
November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
GENERAL DESCRIPTION  
The ADSP-21462W/ADSP-21465W/ADSP-21467 SHARC®  
processors are members of the SIMD SHARC family of DSPs  
that feature Analog Devices' Super Harvard Architecture. The  
processors are source code compatible with the ADSP-2126x,  
ADSP-2136x, ADSP-2137x, and ADSP-2116x DSPs as well as  
with first generation ADSP-2106x SHARC processors in SISD  
(single-instruction, single-data) mode. These new processors  
are 32-bit/40-bit floating point processors optimized for high  
performance audio applications with its large on-chip SRAM,  
multiple internal buses to eliminate I/O bottlenecks, and an  
innovative digital applications interface (DAI).  
Table 1. SHARC Family Features (Continued)  
Feature  
AMI interface with 8-bit  
support  
Yes  
Yes  
Yes  
SPI  
2
2
2
TWI  
Yes  
Yes  
Yes  
Table 1. SHARC Family Features  
Package  
324-ball  
PBGA  
324-ball  
PBGA  
324-ball  
PBGA  
SRC Performance  
128 dB  
128 dB  
128 dB  
1 Audio decoding algorithms include PCM, Dolby Digital EX, Dolby Prologic IIx,  
DTS 96/24, Neo:6, DTS ES, MPEG-2 AAC, MP3, and functions like bass  
management, delay, speaker equalization, graphic equalization, and more.  
Decoder/post-processor algorithm combination support varies depending  
upon the chip version and the system configurations. Please visit  
www.analog.com for complete information.  
Feature  
Frequency  
400 MHz 400 MHz 450 MHz  
RAM  
ROM1  
5M bits  
4M bits  
No  
5M bits  
4M bits  
Yes  
5M bits  
4M bits  
Yes  
2 The ADSP-21462W and ADSP-21465W processors provide the Digital Trans-  
mission Content Protection protocol, a proprietary security protocol. Contact  
your Analog Devices sales office for more information.  
Audio Decoders in ROM  
Pulse-Width Modulation  
S/PDIF  
As shown in the functional block diagram on Page 1, the  
processor uses two computational units to deliver a significant  
performance increase over the previous SHARC processors on a  
range of DSP algorithms. Fabricated in a state-of-the-art, high  
speed, CMOS process, the processor achieves an instruction  
cycle time of 2.22 ns at 450 MHz (ADSP-21467) and 2.5 ns at  
400 MHz (ADSP-21462W, ADSP-21465W). With its SIMD  
computational hardware, the processors can perform 2.7  
GFLOPS running at 450 MHz (ADSP-21467) and 2.4 GFLOPS  
running at 400 MHz (ADSP-21462W, ADSP-21465W).  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DTCP2  
Yes  
Yes  
No  
DDR2 Memory Interface  
1/2 CCLK 1/2 CCLK 1/2 CCLK  
Max  
Max  
Max  
DDR2 Memory Bus Width 16 bits  
16 bits  
Yes  
16 bits  
Yes  
Direct DMA from SPORTs  
to external memory  
Yes  
Table 2 shows performance benchmarks for the ADSP-2146x  
processors.  
FIR accelerator  
IIR accelerator  
FFT accelerator  
MLB Interface  
IDP  
Yes  
Yes  
Yes  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
Yes  
8
Yes  
Yes  
Yes  
No  
Yes  
8
Table 2. Processor Benchmarks  
Speed  
(at 450 MHz)  
Benchmark Algorithm  
1024 Point Complex FFT (Radix 4, With Reversal) 20.44 μs  
Serial Ports  
SRU  
FIR Filter (per Tap)1  
IIR Filter (per Biquad)1  
1.11 ns  
4.43 ns  
2
2
2
Matrix Multiply (Pipelined)  
[3 × 3] × [3 × 1]  
[4 × 4] × [4 × 1]  
DDR2 Memory Interface  
UART  
Yes  
1
Yes  
1
Yes  
1
10.0 ns  
17.78 ns  
DAI and DPI  
20/14  
pins  
20/14  
pins  
20/14  
pins  
Divide (y/×)  
6.67 ns  
10.0 ns  
Inverse Square Root  
1 Assumes two files in multichannel SIMD mode  
Link ports  
2
1
2
1
2
1
S/PDIF transceiver  
Rev. PrA  
|
Page 4 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
The ADSP-21462W/ADSP-21465W/ADSP-21467 continues  
SHARC’s industry-leading standards of integration for DSPs,  
combining a high performance 32-bit DSP core with integrated,  
on-chip system features.  
The block diagram on Page 1 illustrates the following architec-  
tural features:  
• Two processing elements, each of which comprises an  
ALU, multiplier, shifter, and data register file  
• Data address generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
tion is executed in both processing elements, but each  
processing element operates on different data. This architecture  
is efficient at executing math intensive DSP algorithms.  
Entering SIMD mode also has an effect on the way data is trans-  
ferred between memory and the processing elements. When in  
SIMD mode, twice the data bandwidth is required to sustain  
computational operation in the processing elements. Because of  
this requirement, entering SIMD mode also doubles the band-  
width between memory and the processing elements. When  
using the DAGs to transfer data in SIMD mode, two data values  
are transferred with each access of memory or the register file.  
• PM and DM buses capable of supporting four 32-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
• Two programmable interval timers with external event  
counter capabilities  
• On-chip SRAM  
• JTAG test access port  
• FFT, FIR, IIR accelerators  
Independent, Parallel Computation Units  
Within each processing element is a set of computational units.  
The computational units consist of an arithmetic/logic unit  
(ALU), multiplier, and shifter. These units perform all opera-  
tions in a single cycle. The three units within each processing  
element are arranged in parallel, maximizing computational  
throughput. Single multifunction instructions execute parallel  
ALU and multiplier operations. In SIMD mode, the parallel  
ALU and multiplier operations occur in both processing ele-  
ments. These computation units support IEEE 32-bit single-  
precision floating-point, 40-bit extended precision floating-  
point, and 32-bit fixed-point data formats.  
The block diagram of the processor on Page 1 also illustrates the  
following architectural features:  
• DMA controller  
Data Register File  
• Digital applications interface that includes four precision  
clock generators (PCG), an S/PDIF-compatible digital  
audio receiver/transmitter with four independent asyn-  
chronous sample rate converters, an input data port (IDP)  
with eight serial ports, DTCP cipher, eight serial interfaces,  
a 20-bit parallel input port (PDAP), and a flexible signal  
routing unit (DAI SRU).  
• Digital peripheral interface that includes two timers, one  
UART, two serial peripheral interfaces (SPI), a 2-wire  
interface (TWI), and a flexible signal routing unit  
(DPI SRU).  
A general-purpose data register file is contained in each pro-  
cessing element. The register files transfer data between the  
computation units and the data buses, and store intermediate  
results. These 10-port, 32-register (16 primary, 16 secondary)  
register files, combined with the processor’s enhanced Harvard  
architecture, allow unconstrained data flow between computa-  
tion units and internal memory. The registers in PEX are  
referred to as R0-R15 and in PEY as S0-S15.  
Single-Cycle Fetch of Instruction and Four Operands  
The ADSP-21462W/ADSP-21465W/ADSP-21467 features an  
enhanced Harvard architecture in which the data memory  
(DM) bus transfers data and the program memory (PM) bus  
transfers both instructions and data (see Figure 1 on page 1).  
With the its separate program and data memory buses and on-  
chip instruction cache, the processor can simultaneously fetch  
four operands (two over each data bus) and one instruction  
(from the cache), all in a single cycle.  
FAMILY CORE ARCHITECTURE  
The ADSP-21462W/ADSP-21465W/ADSP-21467 is code com-  
patible at the assembly level with the ADSP-2137x, ADSP-  
2136x, ADSP-2126x, ADSP-21160, and ADSP-21161, and with  
the first generation ADSP-2106x SHARC processors. The  
ADSP-21462W/ADSP-21465W/ADSP-21467 shares architec-  
tural features with the ADSP-2126x, ADSP-2136x, ADSP-  
2137x, and ADSP-2116x SIMD SHARC processors, as detailed  
in the following sections.  
Instruction Cache  
The ADSP-21462W/ADSP-21465W/ADSP-21467 includes an  
on-chip instruction cache that enables three-bus operation for  
fetching an instruction and four data values. The cache is selec-  
tive—only the instructions whose fetches conflict with PM bus  
SIMD Computational Engine  
The ADSP-21462W/ADSP-21465W/ADSP-21467 contains two  
computational processing elements that operate as a single-  
instruction, multiple-data (SIMD) engine. The processing ele-  
ments are referred to as PEX and PEY and each contains an  
ALU, multiplier, shifter, and register file. PEX is always active,  
and PEY may be enabled by setting the PEYEN mode bit in the  
MODE1 register. When this mode is enabled, the same instruc-  
Rev. PrA  
|
Page 5 of 60  
|
November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
data accesses are cached. This cache allows full speed execution  
of core, looped operations such as digital filter multiply-accu-  
mulates, and FFT butterfly processing.  
MEMORY  
The ADSP-21462W/ADSP-21465W/ADSP-21467 adds the fol-  
lowing architectural features to the SIMD SHARC family core.  
Data Address Generators With Zero-Overhead Hardware  
Circular Buffer Support  
On-Chip Memory  
The processors contain 5 Mbits of internal RAM. Each block  
can be configured for different combinations of code and data  
storage (see Table 3 on Page 7). Each memory block supports  
single-cycle, independent accesses by the core processor and I/O  
processor. The ADSP-21462W/ADSP-21465W/ADSP-21467  
memory architecture, in combination with its separate on-chip  
buses, allow two data transfers from the core and one from the  
I/O processor, in a single cycle.  
The processor’s SRAM can be configured as a maximum of  
160k words of 32-bit data, 320k words of 16-bit data, 106.7k  
words of 48-bit instructions (or 40-bit data), or combinations of  
different word sizes up to 5 megabit. All of the memory can be  
accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit float-  
ing-point storage format is supported that effectively doubles  
the amount of data that may be stored on-chip. Conversion  
between the 32-bit floating-point and 16-bit floating-point for-  
mats is performed in a single instruction. While each memory  
block can store combinations of code and data, accesses are  
most efficient when one block stores data using the DM bus for  
transfers, and the other block stores instructions and data using  
the PM bus for transfers.  
Using the DM bus and PM buses, with one bus dedicated to a  
memory block, assures single-cycle execution with two data  
transfers. In this case, the instruction must be available in the  
cache.  
The memory map in Table 3 displays the internal memory  
address space of the ADSP-21462W/ADSP-21465W/ADSP-  
21467.  
The 48-bit space section describes what this address range looks  
like to an instruction that retrieves 48-bit memory.  
The 32-bit section describes what this address range looks like  
to an instruction that retrieves 32-bit memory.  
The ADSP-21462W/ADSP-21465W/ADSP-21467’s two data  
address generators (DAGs) are used for indirect addressing and  
implementing circular data buffers in hardware. Circular buff-  
ers allow efficient programming of delay lines and other data  
structures required in digital signal processing, and are com-  
monly used in digital filters and Fourier transforms. The two  
DAGs of the processors contain sufficient registers to allow the  
creation of up to 32 circular buffers (16 primary register sets, 16  
secondary). The DAGs automatically handle address pointer  
wraparound, reduce overhead, increase performance, and sim-  
plify implementation. Circular buffers can start and end at any  
memory location.  
Flexible Instruction Set  
The 48-bit instruction word accommodates a variety of parallel  
operations, for concise programming. For example, the  
ADSP-21462W/ADSP-21465W/ADSP-21467 can conditionally  
execute a multiply, an add, and a subtract in both processing  
elements while branching and fetching up to four 32-bit values  
from memory—all in a single instruction.  
Variable Instruction Set Architecture  
In addition to supporting the standard 48-bit instructions from  
previously existing SHARC family of processors, the ADSP-  
21462W/ADSP-21465W/ADSP-21467 support new instruc-  
tions of 16 and 32 bits in addition to the existing 48 bit  
instructions. This feature, called Variable Instruction Set Archi-  
tecture (VISA), is based on dropping redundant/unused bits  
within the 48-bit instruction to create more efficient and com-  
pact code. The program sequencer will now support fetching  
these 16-bit and 32-bit instructions as well in addition to the  
standard 48-bit instructions, both from internal as well as exter-  
nal memory. Source modules will need to be built using the  
VISA option, in order to allow code generation tools to create  
these more efficient opcodes.  
EXTERNAL MEMORY  
The external port on the ADSP-21462W/ADSP-  
FFT Accelerator  
21465W/ADSP-21467 SHARC provides a high performance,  
glueless interface to a wide variety of industry-standard memory  
devices. The external port may be used to interface to synchro-  
nous and/or asynchronous memory devices through the use of  
its separate internal DDR2 memory controller. The 16-bit  
DDR2 DRAM controller connects to industry-standard syn-  
chronous DRAM devices, while the second 8-bit asynchronous  
memory controller is intended to interface to a variety of mem-  
ory devices. Four memory select pins enable up to four separate  
devices to coexist, supporting any desired combination of syn-  
chronous and asynchronous device types. Non DDR2 DRAM  
external memory address space is shown in Table 4.  
FFT accelerator implements radix-2 complex/real input, com-  
plex output FFT with no core intervention.  
FIR Accelerators  
The FIR (finite impulse response) accelerator consists of a 1024  
word coefficient memory, a 1024 word deep delay line for the  
data, and four MAC units. A controller manages the accelerator.  
The FIR accelerator runs at the peripheral clock frequency.  
IIR Accelerators  
The IIR (infinite impulse response) accelerator consists of a  
1440 word coefficient memory for storage of biquad coeffi-  
cients, a data memory for storing the intermediate data and one  
MAC unit. A controller manages the accelerator. The IIR accel-  
erator runs at the peripheral clock frequency.  
Rev. PrA  
|
Page 6 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
instructions are fetched in parts from a 16-bit external bus cou-  
pled with the inherent latency of fetching instructions from  
DDR2 DRAM. VISA mode and SIMD mode accesses are sup-  
ported for DDR2 space. However, external memory execution  
from DDR2 space is different for VISA and non-VISA mode.  
External Memory Execution  
In the ADSP-21462W/ADSP-21465W/ADSP-21467, the pro-  
gram sequencer can execute code directly from external  
memory bank 0 (SRAM, as well as DDR2 DRAM). This allows  
more options to a user in terms of code and data storage. With  
external execution, programs run at slower speeds since 48-bit  
Table 3. ADSP-21462W/ADSP-21465W/ADSP-21467 Internal Memory Space  
IOP Registers 0x0000 0000–0x0003 FFFF  
Extended Precision Normal or  
Long Word (64 bits)  
Instruction Word (48 bits)  
Normal Word (32 bits)  
Short Word (16 bits)  
BLOCK 0 ROM  
BLOCK 0 ROM  
BLOCK 0 ROM  
BLOCK 0 ROM  
0x0004 0000–0x0004 7FFF  
0x0008 0000–0x0008 AAA9  
0x0008 0000–0x0008 FFFF  
0x0010 0000–0x0011 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 8000–0x0004 8FFF  
0x0009 0000–0x0009 1FFF  
0x0009 0000–0x0009 1FFF  
0x0012 0000–0x0012 3FFF  
BLOCK 0 RAM  
BLOCK 0 RAM  
BLOCK 0 RAM  
BLOCK 0 RAM  
0x0004 9000–0x0004 EFFF  
0x0008 C000-0x0009 3FFF  
0x0009 2000-0x0009 DFFF  
0x0012 4000–0x0013 BFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 F000–0x0004 FFFF  
0x0009 E000–0x0009 FFFF  
0x0009 E000–0x0009 FFFF  
0x0013 C000–0x0013 FFFF  
BLOCK 1 ROM  
BLOCK 1 ROM  
BLOCK 1 ROM  
BLOCK 1 ROM  
0x0005 0000–0x0005 7FFF  
0x000A 0000–0x000A AAA9  
0x000A 0000–0x000A FFFF  
0x0014 0000-0x0015 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 8000–0x0005 8FFF  
0x000B 000–0x000B 1FFF  
0x000B 0000–0x000B 1FFF  
0x0016 0000-0x0016 3FFF  
BLOCK 1 RAM  
BLOCK 1 RAM  
BLOCK 1 RAM  
BLOCK 1 RAM  
0x0005 9000–0x0005 EFFF  
0x000A C000-0x000B 3FFF  
0x000B 2000-0x000B DFFF  
0x0016 4000-0x0017 BFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 F000–0x0005 FFFF  
0x000B E000–0x000B FFFF  
0x000B E000–0x000B FFFF  
0x0017 C000–0x0017 FFFF  
BLOCK 2 RAM  
BLOCK 2 RAM  
BLOCK 2 RAM  
BLOCK 2 RAM  
0x0006 0000–0x0006 3FFF  
0x000C 0000–0x000C 5554  
0x000C 0000-0x000C 7FFF  
0x0018 0000–0x0018 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0006 4000–0x0006 FFFF  
0x000C 8000–0x000D FFFF  
0x000C 8000–0x000D FFFF  
0x0019 0000–0x001B FFFF  
BLOCK 3 RAM  
BLOCK 3 RAM  
BLOCK 3 RAM  
BLOCK 3 RAM  
0x0007 0000–0x0007 3FFF  
0x000E 0000–0x000E 5554  
0x000E 0000–0x000E 7FFF  
0x001C 0000–0x001C FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0007 4000–0x0007 FFFF  
0x000E 8000–0x000F FFFF  
0x000E 8000–0x000F FFFF  
0x001D 0000–0x001F FFFF  
DDR2_CS0), and can be configured to contain between 32M  
bytes and 256M bytes of memory. DDR2 DRAM external mem-  
ory address space is shown in Table 5  
A set of programmable timing parameters is available to config-  
ure the DDR2 DRAM banks to support memory devices.  
DDR2 Support  
The ADSP-21462W/ADSP-21465W/ADSP-21467 supports a  
16-bit DDR2 interface operating at a maximum frequency of  
half the core clock. Execution from external memory is sup-  
ported. External memory devices up to 2 Gbits in size can be  
supported. Delay line DMA functionality supported.  
DDR2 DRAM Controller  
The DDR2 DRAM controller provides an 16-bit interface to up  
to four separate banks of industry-standard DDR2 DRAM  
devices. Fully compliant with the DDR2 DRAM standard, each  
bank can has its own memory select line (DDR2_CS3-  
Rev. PrA  
|
Page 7 of 60  
|
November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Table 5. External Memory for DDR2 DRAM Addresses  
Shared External Memory  
The ADSP-21462W/ADSP-21465W/ADSP-21467 processor  
supports connecting to common shared external DDR2 mem-  
ory with other ADSP-2146x processors to create shared external  
bus processor systems. This support includes:  
• Distributed, on-chip arbitration for the shared external bus  
• Fixed and rotating priority bus arbitration  
• Bus time-out logic  
Size in  
Words  
Bank  
Address Range  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
62M  
0x0020 0000 – 0x03FF FFFF  
0x0400 0000 – 0x07FF FFFF  
0x0800 0000 – 0x0BFF FFFF  
0x0C00 0000 – 0x0FFF FFFF  
64M  
64M  
64M  
• Bus lock  
Table 4. External Memory for Non DDR2 DRAM Addresses  
Multiple processors can share the external bus with no addi-  
tional arbitration logic. Arbitration logic is included on-chip to  
allow the connection of up to TBD processors.  
Bus arbitration is accomplished through the BR6-1 signals and  
the priority scheme for bus arbitration is determined by the set-  
ting of the RPBA pin. Table 6 on Page 13 provides descriptions  
of the pins used in multiprocessor systems.  
Size in  
Words  
Bank  
Address Range  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
14M  
0x0020 0000 – 0x00FF FFFF  
0x0400 0000 – 0x04FF FFFF  
0x0800 0000 – 0x08FF FFFF  
0x0C00 0000 – 0x0CFF FFFF  
16M  
16M  
INPUT/OUTPUT FEATURES  
16M  
The ADSP-21462W and ADSP-21465W I/O processors provide  
67 channels of DMA, while ADSP-21467 I/O processors pro-  
vide 36 channels of DMA as well as an extensive set of  
peripherals. These include a 20 lead digital applications inter-  
face, which controls:  
• Eight serial ports  
• S/PDIF receiver/transmitter  
• Four precision clock generators  
• Input data port/parallel data acquisition port  
• Four asynchronous sample rate converters  
The ADSP-21462W/ADSP-21465W/ADSP-21467 processor  
also contains a 14 lead digital peripheral interface, which  
controls:  
Note that the external memory bank addresses shown are for  
normal-word (32-bit) accesses. If 48-bit instructions as well as  
32-bit data are both placed in the same external memory bank,  
care must be taken while mapping them to avoid overlap. In  
case of 32-bit wide external memory, two 48-bit instructions  
will be stored in three 32-bit wide memory locations. For exam-  
ple, if 2k instructions are placed in 32-bit wide external memory  
starting at the bank 0 normal-word base address 0x0030 0000  
(corresponding to instruction address 0x0020 0000) and ending  
at address 0x0030 0BFF (corresponding to instruction address  
0x0020 07FF), then data buffers can be placed starting at an  
address that is offset by 3k 32-bit words (for example, starting at  
0x0030 0C00).  
Asynchronous Memory Controller  
• Two general-purpose timers  
The asynchronous memory controller provides a configurable  
interface for up to four separate banks of memory or I/O  
devices. Each bank can be independently programmed with dif-  
ferent timing parameters, enabling connection to a wide variety  
of memory devices including SRAM, flash, and EPROM, as well  
as I/O devices that interface with standard memory control  
lines. Bank 0 occupies a 14M word window and banks 1, 2, and  
3 occupy a 16M word window in the processor’s address space  
but, if not fully populated, these windows are not made contigu-  
ous by the memory controller logic.  
The asynchronous memory controller is capable of a maximum  
throughput of TBD Mbps using a TBD MHz external bus speed.  
Other features include 8 to 32-bit packing and unpacking, boot-  
ing from bank select 1, and support for delay line DMA.  
• Two serial peripheral interfaces  
• One universal asynchronous receiver/transmitter (UART)  
• An I2C®-compatible 2-wire interface  
• Two PCGs (C and D) can also be routed through DPI  
DMA Controller  
The processor’s on-chip DMA controller allows data transfers  
without processor intervention. The DMA controller operates  
independently and invisibly to the processor core, allowing  
DMA operations to occur while the core is simultaneously exe-  
cuting its program instructions. DMA transfers can occur  
between the ADSP-21462W/ADSP-21465W/ADSP-21467’s  
internal memory and its serial ports, the SPI-compatible (serial  
peripheral interface) ports, the IDP (input data port), the paral-  
lel data acquisition port (PDAP) or the UART.  
Sixty-seven channels of DMA are available on the  
ADSP-21462W and ADSP-21465W devices, and thirty-six  
channels on the ADSP-21467. The breakdown is as follows: 16  
via the serial ports, eight via the input data port, two for the  
Rev. PrA  
|
Page 8 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
UART, two for the SPI interface, two for the external port, two  
for DTCP (or memory-to-memory data transfer when DTCP is  
not used), two for the link port, two for the FFT/FIR/IIR accel-  
erators, and up to 31 DMA channels for the media local bus  
interface on the ADSP-21462W and ADSP-21465W.  
Programs can be downloaded to the ADSP-21462W/ADSP-  
21465W/ADSP-21467 using DMA transfers. Other DMA fea-  
tures include interrupt generation upon completion of DMA  
transfers, and DMA chaining for automatic linked DMA  
transfers.  
The serial ports operate at a maximum data rate of 56.25 Mbps.  
Serial port data can be automatically transferred to and from  
on-chip memory/external memory via dedicated DMA chan-  
nels. Each of the serial ports can work in conjunction with  
another serial port to provide TDM support. One SPORT pro-  
vides two transmit signals while the other SPORT provides the  
two receive signals. The frame sync and clock are shared.  
Serial ports operate in five modes:  
• Standard DSP serial mode  
• Multichannel (TDM) mode  
• I2S mode  
• Packed I2S mode  
• Left-justified sample pair mode  
Left-justified sample pair mode is a mode where in each frame  
sync cycle two samples of data are transmitted/received—one  
sample on the high segment of the frame sync, the other on the  
low segment of the frame sync. Programs have control over var-  
ious attributes of this mode.  
Delay Line DMA  
The ADSP-21462W/ADSP-21465W/ADSP-21467 processor  
provides delay line DMA functionality. This allows processor  
reads and writes to external delay line buffers (and hence to  
external memory) with limited core interaction.  
Scatter/Gather DMA  
The ADSP-21462W/ADSP-21465W/ADSP-21467 processor  
provides scatter/gather DMA functionality.  
This allows processor DMA reads/writes to/from non-contin-  
geous memory blocks.  
Each of the serial ports supports the left-justified sample pair  
and I2S protocols (I2S is an industry-standard interface com-  
monly used by audio codecs, ADCs, and DACs such as the  
Analog Devices AD183x family), with two data pins, allowing  
four left-justified sample pair or I2S channels (using two stereo  
devices) per serial port, with a maximum of up to 32 I2S chan-  
nels. The serial ports permit little-endian or big-endian  
transmission formats and word lengths selectable from 3 bits to  
32 bits. For the left-justified sample pair and I2S modes, data-  
word lengths are selectable between 8 bits and 32 bits. Serial  
ports offer selectable synchronization and transmit modes as  
well as optional μ-law or A-law companding selection on a per  
channel basis. Serial port clocks and frame syncs can be inter-  
nally or externally generated.  
Digital Applications Interface (DAI)  
The digital applications interface (DAI) provides the ability to  
connect various peripherals to any of the DAI pins  
(DAI_P20–1).  
Programs make these connections using the signal routing unit  
(SRU), shown in Figure 1.  
The SRU is a matrix routing unit (or group of multiplexers) that  
enables the peripherals provided by the DAI to be intercon-  
nected under software control. This allows easy use of the DAI  
associated peripherals for a much wider variety of applications  
by using a larger set of algorithms than is possible with noncon-  
figurable signal paths.  
The DAI also includes eight serial ports, four precision clock  
generators (PCG), S/PDIF transceiver, four ASRCs, and an  
input data port (IDP). The IDP provides an additional input  
path to the SHARC core, configurable as either eight channels  
of serial data, or a single 20-bit wide synchronous parallel data  
acquisition port. Each data channel has its own DMA channel  
that is independent from the processor’s serial ports.  
The serial ports also contain frame sync error detection logic  
where the serial ports detect frame syncs that arrive early (for  
example frame syncs that arrive while the transmission/recep-  
tion of the previous word is occurring). All the serial ports also  
share one dedicated error interrupt.  
S/PDIF-Compatible Digital Audio Receiver/Transmitter  
and Synchronous/Asynchronous Sample Rate Converter  
The S/PDIF receiver/transmitter has no separate DMA chan-  
nels. It receives audio data in serial format and converts it into a  
biphase encoded signal. The serial data input to the  
Serial Ports  
The ADSP-21462W/ADSP-21465W/ADSP-21467 features  
eight synchronous serial ports that provide an inexpensive  
interface to a wide variety of digital and mixed-signal peripheral  
devices such as Analog Devices’ AD183x family of audio codecs,  
ADCs, and DACs. The serial ports are made up of two data  
lines, a clock, and frame sync. The data lines can be pro-  
grammed to either transmit or receive and each data line has a  
dedicated DMA channel.  
receiver/transmitter can be formatted as left justified, I2S or  
right justified with word widths of 16, 18, 20, or 24 bits.  
The serial data, clock, and frame sync inputs to the S/PDIF  
receiver/transmitter are routed through the signal routing unit  
(SRU). They can come from a variety of sources such as the  
SPORTs, external pins, the precision clock generators (PCGs),  
and are controlled by the SRU control registers.  
The sample rate converter (ASRC) contains four ASRC blocks  
and is the same core as that used in the AD1896 192 kHz stereo  
asynchronous sample rate converter and provides up to 128 dB  
SNR. The ASRC block is used to perform synchronous or asyn-  
Serial ports can support up to 16 transmit or 16 receive channels  
of audio data when all eight SPORTs are enabled, or four full  
duplex TDM streams of 128 channels per frame.  
Rev. PrA  
|
Page 9 of 60  
|
November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
chronous sample rate conversion across independent stereo  
channels, without using internal processor resources. The four  
SRC blocks can also be configured to operate together to con-  
vert multichannel audio data without phase mismatches.  
Finally, the ASRC can be used to clean up audio data from jit-  
tery clock sources such as the S/PDIF receiver.  
• DMA (direct memory access) – The DMA controller trans-  
fers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
The UART port's baud rate, serial data format, error code gen-  
eration and status, and interrupts are programmable:  
• Supporting bit rates ranging from (fPCLK/ 1,048,576) to  
(fPCLK/16) bits per second.  
• Supporting data formats from 7 to 12 bits per frame.  
• Both transmit and receive operations can be configured to  
generate maskable interrupts to the processor.  
In conjunction with the general-purpose timer functions, auto-  
baud detection is supported.  
Digital Transmission Content Protection  
The DTCP specification defines a cryptographic protocol for  
protecting audio entertainment content from illegal copying,  
intercepting, and tampering as it traverses high performance  
digital buses, such as the IEEE 1394 standard. Only legitimate  
entertainment content delivered to a source device via another  
approved copy protection system (such as the DVD content  
scrambling system) will be protected by this copy protection  
system. This feature is available on the ADSP-21462W and  
ADSP-21465W processors only. Licensing through DTLA is  
required for these products. Visit www.dtcp.com for more  
information.  
Timers  
Digital Peripheral Interface (DPI)  
The ADSP-21462W/ADSP-21465W/ADSP-21467 has a total of  
three timers: a core timer that can generate periodic software  
interrupts and two general purpose timers that can generate  
periodic interrupts and be independently set to operate in one  
of three modes:  
The digital peripheral interface provides connections to two  
serial peripheral interface ports (SPI), one universal asynchro-  
nous receiver-transmitter (UART), 12 flags, a 2-wire interface  
(TWI), and two general-purpose timers.  
• Pulse waveform generation mode  
• Pulse width count/capture mode  
• External event watchdog mode  
The core timer can be configured to use FLAG3 as a timer  
expired signal, and each general-purpose timer has one bidirec-  
tional pin and four registers that implement its mode of  
operation: a 6-bit configuration register, a 32-bit count register,  
a 32-bit period register, and a 32-bit pulse width register. A sin-  
gle control and status register enables or disables both general-  
purpose timers independently.  
Serial Peripheral (Compatible) Interface  
The ADSP-2146x SHARC processors contain two serial periph-  
eral interface ports (SPIs). The SPI is an industry-standard  
synchronous serial link, enabling the SPI-compatible port to  
communicate with other SPI compatible devices. The SPI con-  
sists of two data pins, one device select pin, and one clock pin. It  
is a full-duplex synchronous serial interface, supporting both  
master and slave modes. The SPI port can operate in a multi-  
master environment by interfacing with up to four other SPI-  
compatible devices, either acting as a master or slave device. The  
SPI-compatible peripheral implementation also features pro-  
grammable baud rate and clock phase and polarities. The SPI-  
compatible port uses open drain drivers to support a multimas-  
ter configuration and to avoid data contention.  
2-Wire Interface Port (TWI)  
The TWI is a bidirectional 2-wire, serial bus used to move 8-bit  
data while maintaining compliance with the I2C bus protocol.  
The TWI master incorporates the following features:  
UART Port  
• 7-bit addressing  
The processors provide a full-duplex Universal Asynchronous  
Receiver/Transmitter (UART) port, which is fully compatible  
with PC-standard UARTs. The UART port provides a simpli-  
fied UART interface to other peripherals or hosts, supporting  
full-duplex, DMA-supported, asynchronous transfers of serial  
data. The UART also has multiprocessor communication capa-  
bility using 9-bit address detection. This allows it to be used in  
multidrop networks through the RS-485 data interface stan-  
dard. The UART port also includes support for 5 to 8 data bits, 1  
or 2 stop bits, and none, even, or odd parity. The UART port  
supports two modes of operation:  
• Simultaneous master and slave operation on multiple  
device systems with support for multi master data  
arbitration  
• Digital filtering and timed event processing  
• 100 kbps and 400 kbps data rates  
• Low interrupt rate  
Pulse-Width Modulation  
The PWM module is a flexible, programmable, PWM waveform  
generator that can be programmed to generate the required  
switching patterns for various applications related to motor and  
engine control or audio power control. The PWM generator can  
generate either center-aligned or edge-aligned PWM wave-  
forms. In addition, it can generate complementary signals on  
• PIO (programmed I/O) – The processor sends or receives  
data by writing or reading I/O-mapped UART registers.  
The data is double-buffered on both transmit and receive.  
Rev. PrA  
|
Page 10 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
two outputs in paired mode or independent signals in non-  
paired mode (applicable to a single group of four PWM  
waveforms).  
The entire PWM module has four groups of four PWM outputs  
each. Therefore, this module generates 16 PWM outputs in  
total. Each PWM group produces two pairs of PWM signals on  
the four PWM outputs.  
The “Running Reset” feature allows a user to perform a reset of  
the processor core and peripherals, but without resetting the  
PLL and DDR2 DRAM controller, or performing a Boot. The  
functionality of the CLKOUT/RESETOUT/RUNRSTIN pin has  
now been extended to also act as the input for initiating a Run-  
ning Reset. For more information, see the ADSP-2146x SHARC  
Processor Hardware Reference.  
Power Supplies  
The PWM generator is capable of operating in two distinct  
modes while generating center-aligned PWM waveforms: single  
update mode or double update mode. In single update mode the  
duty cycle values are programmable only once per PWM period.  
This results in PWM patterns that are symmetrical about the  
mid-point of the PWM period. In double update mode, a sec-  
ond updating of the PWM registers is implemented at the mid-  
point of the PWM period. In this mode, it is possible to produce  
asymmetrical PWM patterns that produce lower harmonic dis-  
tortion in three-phase PWM inverters.  
The processors have separate power supply connections for the  
internal (VDD_INT), external (VDD_EXT), and analog  
(VDD_A/VSS_A) power supplies. The internal and analog supplies  
must meet the VDD_INT specifications. The external supply must  
meet the VDD_EXT specification. All external supply pins must  
be connected to the same power supply.  
Note that the analog supply pin (VDD_A) powers the processor’s  
internal clock generator PLL. To produce a stable clock, it is rec-  
ommended that PCB designs use an external filter circuit for the  
Link Ports  
V
DD_A pin. Place the filter components as close as possible to  
the VDD_A/VSS_A pins. For an example circuit, see Figure 2. (A  
recommended ferrite chip is the muRata BLM18AG102SN1D).  
Two 8-bit wide link ports can connect to the link ports of other  
DSPs or peripherals. Link ports are bidirectional ports having  
eight data lines, an acknowledge line and a clock line. Link ports  
can operate at a maximum frequency of 166 MHz.  
ADSP-213xx  
100nF  
10nF  
1nF  
MediaLB  
A
V
VDD  
DDINT  
The ADSP-21462W and ADSP-21465W have an MLB interface  
which allows the processor to function as a media local bus  
device. It includes support for both 3-pin as well as 5-pin media  
local bus protocols. It supports speeds up to 1024 FS (49.25  
Mbits/sec, FS = 48.1 kHz) and up to 31 logical channels, with up  
to 124 bytes of data per media local bus frame.  
HI Z FERRITE  
BEAD CHIP  
A
VSS  
LOCATE ALL COMPONENTS  
CLOSE TO A AND A PINS  
VDD  
VSS  
ROM Based Security  
Figure 2. Analog Power (VDD_A) Filter Circuit  
The ADSP-21462W/ADSP-21465W/ADSP-21467 has a ROM  
security feature that provides hardware support for securing  
user software code by preventing unauthorized reading from  
the internal code when enabled. When using this feature, the  
processor does not boot-load any external code, executing  
exclusively from internal SRAM/ROM. Additionally, the pro-  
cessor is not freely accessible via the JTAG port. Instead, a  
unique 64-bit key, which must be scanned in through the JTAG  
or Test Access Port will be assigned to each customer. The  
device will ignore a wrong key. Emulation features and external  
boot modes are only available after the correct key is scanned.  
To reduce noise coupling, the PCB should use a parallel pair of  
power and ground planes for VDD_INT and VSS. Use wide traces  
to connect the bypass capacitors to the analog power (VDD_A  
)
and ground (VSS_A) pins. Note that the VDD_A and VSS_A pins  
specified in Figure 2 are inputs to the processor and not the ana-  
log ground plane on the board—the VSS_A pin should connect  
directly to digital ground (VSS) at the chip  
Target Board JTAG Emulator Connector  
Analog Devices DSP Tools product line of JTAG emulators uses  
the IEEE 1149.1 JTAG test access port of the ADSP-2146x pro-  
cessors to monitor and control the target board processor  
during emulation. Analog Devices DSP Tools product line of  
JTAG emulators provides emulation at full processor speed,  
allowing inspection and modification of memory, registers, and  
processor stacks. The processor's JTAG interface ensures that  
the emulator will not affect target system loading or timing.  
SYSTEM DESIGN  
The following sections provide an introduction to system design  
options and power supply issues.  
Program Booting  
The internal memory of the ADSP-2146x boots at system  
power-up from an 8-bit EPROM via the external port, link port,  
an SPI master, or an SPI slave. Booting is determined by the  
boot configuration (BOOTCFG2–0) pins (see Table 8 on  
Page 17).  
For complete information on Analog Devices’ SHARC DSP  
Tools product line of JTAG emulator operation, see the appro-  
priate “Emulator Hardware User's Guide”.  
Rev. PrA  
|
Page 11 of 60  
|
November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Evaluation Kit  
DEVELOPMENT TOOLS  
Analog Devices offers a range of EZ-KIT Lite® evaluation plat-  
forms to use as a cost effective method to learn more about  
developing or prototyping applications with Analog Devices  
processors, platforms, and software tools. Each EZ-KIT Lite  
includes an evaluation board along with an evaluation suite of  
the VisualDSP++® development and debugging environment  
with the C/C++ compiler, assembler, and linker. Also included  
are sample application programs, power supply, and a USB  
cable. All evaluation versions of the software tools are limited  
for use only with the EZ-KIT Lite product.  
The ADSP-21462W/ADSP-21465W/ADSP-21467 processors  
are supported with a complete set of CROSSCORE® software  
and hardware development tools, including Analog Devices  
emulators and VisualDSP++® development environment. The  
same emulator hardware that supports other SHARC proces-  
sors also fully emulates the ADSP-2146x processors.  
EZ-KIT Lite Evaluation Board  
For evaluation of the processors, use the EZ-KIT Lite® board  
being developed by Analog Devices. The board comes with on-  
chip emulation capabilities and is equipped to enable software  
development. Multiple daughter cards are available.  
The USB controller on the EZ-KIT Lite board connects the  
board to the USB port of the user’s PC, enabling the  
VisualDSP++ evaluation suite to emulate the on-board proces-  
sor in-circuit. This permits the customer to download, execute,  
and debug programs for the EZ-KIT Lite system. It also allows  
in-circuit programming of the on-board Flash device to store  
user-specific boot code, enabling the board to run as a standal-  
one unit without being connected to the PC.  
With a full version of VisualDSP++ installed (sold separately),  
engineers can develop software for the EZ-KIT Lite or any cus-  
tom defined system. Connecting one of Analog Devices JTAG  
emulators to the EZ-KIT Lite board enables high speed, non-  
intrusive emulation.  
Designing an Emulator-Compatible DSP Board (Target)  
The Analog Devices family of emulators are tools that every  
DSP developer needs to test and debug hardware and software  
systems. Analog Devices has supplied an IEEE 1149.1 JTAG  
Test Access Port (TAP) on each JTAG DSP. Nonintrusive in-  
circuit emulation is assured by the use of the processor’s JTAG  
interface—the emulator does not affect target system loading or  
timing. The emulator uses the TAP to access the internal fea-  
tures of the processor, allowing the developer to load code, set  
breakpoints, observe variables, observe memory, and examine  
registers. The processor must be halted to send data and com-  
mands, but once an operation has been completed by the  
emulator, the DSP system is set running at full speed with no  
impact on system timing.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the ADSP-2146x  
architecture and functionality. For detailed information on the  
ADSP-21462W/ADSP-21465W/ADSP-21467 family core archi-  
tecture and instruction set, refer to the ADSP-2136x/ADSP-  
2146x SHARC Processor Programming Reference.  
To use these emulators, the target board must include a header  
that connects the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see the EE-68: Analog Devices  
JTAG Emulation Technical Reference on the Analog Devices  
website (www.analog.com)—use site search on “EE-68.” This  
document is updated regularly to keep pace with improvements  
to emulator support.  
Rev. PrA  
|
Page 12 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
PIN FUNCTION DESCRIPTIONS  
The following symbols appear in the Type column of Table 6:  
A = asynchronous, I = input, O = output, S = synchronous,  
(A/D) = active drive, (O/D) = open drain, and T = three-state,  
(pd) = pull-down resistor, (pu) = pull-up resistor.  
Table 6. Pin List  
State  
During  
and After  
LVTTL SSTL18 Reset  
Name  
Type  
Description  
AMI_ADDR23–0  
I/O/T  
3
High-Z/  
External Address. The ADSP-21462W/ADSP-21465W/ADSP-21467 outputs  
driven low addresses for external memory and peripherals on these pins. The data pins  
(boot)  
High-Z  
High-Z  
can be multiplexed to support the PDAP (I) and PWM (O). After reset, all  
AMI_ADDR23-0 pins are in EMIF mode and FLAG(0-3) pins will be in FLAGS  
mode (default). When configured in the IDP_PDAP_CTL register, IDP  
channel 0 scans the AMI_ADDR23–0 pins for parallel input data.  
AMI_DATA7–0  
DAI _P20–1  
I/O/T  
3
External Data. The data pins can be multiplexed to support the external  
memoryinterfacedata(I/O),thePDAP(I),FLAGS(I/O)andPWM(O).Afterreset,  
all AMI_DATApinsareinEMIF modeandFLAG(0-3) pinswillbeinFLAGS mode  
(default).  
I/O with fixed weak 3  
pull-up on input  
path 1, 2  
Digital Applications Interface Pins. These pins provide the physical  
interface to the DAI SRU. The DAI SRU configuration registers define the com-  
bination of on-chip audiocentric peripheral inputs or outputs connected to  
the pin and to the pin’s output enable. The configuration registers of these  
peripherals then determine the exact behavior of the pin. Any input or output  
signal present in the DAI SRU may be routed to any of these pins. The DAI SRU  
provides the connection from the serial ports, the S/PDIF module, input data  
ports (2), and the precision clock generators (4), to the DAI_P20–1 pins.  
DPI _P14–1  
I/O with fixed weak 3  
pull-up only on  
High-Z  
Digital Peripheral Interface. These pins provide the physical interface to the  
DPI SRU. The DPI SRU configuration registers define the combination of on-  
chip peripheral inputs or outputs connected to the pin and to the pin’s output  
enable. The configuration registers of these peripherals then determines the  
exact behavior of the pin. Any input or output signal present in the DPI SRU  
may be routed to any of these pins. The DPI SRU provides the connection from  
the timers (2), SPIs (2), UART (1), flags (12), and general-purpose I/O (9) to the  
DPI_P14–1 pins.  
input path1, 2  
AMI_ACK  
AMI_RD  
I (pu)  
3
Memory Acknowledge (AMI_ACK). External devices can deassert AMI_ACK  
(low) to add wait states to an external memory access. AMI_ACK is used by I/O  
devices, memory controllers, or other peripherals to hold off completion of  
an external memory access.  
O/T  
O/T  
3
3
High-Z  
High-Z  
AMI Port Read Enable. AMI_RD is asserted whenever the ADSP-  
21462W/ADSP-21465W/ADSP-21467 reads a word from external memory.  
AMI_RD has fixed internal pull-up resistor1, 2  
.
External Port Write Enable. AMI_WR is asserted when the ADSP-  
AMI_WR  
21462W/ADSP-21465W/ADSP-21467 writes a word to external memory.  
AMI_WR has fixed internal pull-up resistor1, 2  
.
DDR2_ADDR15–0  
DDR2_BA2-0  
O/T  
O/T  
3
3
High-Z/  
Driven low  
DDR2 Address pins. DDR2 address pins.  
High-Z/  
Driven low  
DDR2 Bank Address Input pins. Define which bank an ACTIVATE,  
READ, WRITE, or PRECHARGE command is being applied. BA2–0  
define which mode register including MR, EMR, EMR(2), and  
EMR(3) is loaded during the LOAD MODE command.  
Rev. PrA  
|
Page 13 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Table 6. Pin List (Continued)  
State  
During  
and After  
LVTTL SSTL18 Reset  
Name  
Type  
Description  
O/T  
3
High-Z/  
Driven  
high  
DDR2 Column Address Strobe. Connect to DDR2_CAS pin, in conjunction  
with other DDR2 command pins, defines the operation for the DDR2 to  
perform.  
DDR2_CAS  
DDR2_CKE  
O/T  
O/T  
3
3
High-Z/  
Driven low CKE signal.  
DDR2 Clock Enable Output to DDR2. Active high signal. Connect to DDR2  
High-Z/  
Driven  
high  
DDR2 Chip Select. All commands are masked when DDR2_CS3-0 is driven  
high. DDR2_CS3-0 are decoded emory address lines. Each DDR2_CS3-0lines  
select the corresponding bank.  
DDR2_CS3-0  
DDR2_DATA15-0  
DDR2_DM1-0  
I/O/T  
O/T  
3
3
High-Z  
DDR2 Data In/Out. Connect to corresponding DDR2_DATA pins.  
High-Z/  
Driven  
high  
DDR2InputDataMask. Maskfor theDDR2writedata ifdrivenhigh. Sampled  
on both edges of DDR2_DQS at DDR2 side. DM0 corresponds to DDR2_DATA  
7–0 and DM1 corresponds to DDR2_DATA 15–8.  
DDR2_DQS1-0  
DDR2_DQS1-0  
I/O/T (Differential)  
O/T  
3
3
High-Z  
Data Strobe. Output with Write Data. Input with Read Data. DQS0 corre-  
sponds to DDR2_DATA 7–0 and DQS1 corresponds to DDR2_DATA 15–8.  
High-Z/  
Driven  
high  
DDR2 Row Address Strobe. Connect to DDR2_RAS pin, in conjunction with  
other DDR2 command pins, defines the operation for the DDR2 to perform.  
DDR2_RAS  
DDR2_WE  
O/T  
3
3
High-Z/  
Driven  
high  
DDR2 Write Enable. Connect to DDR2_WE pin, in conjunction with other  
DDR2 command pins, defines the operation for the DDR2 to perform  
DDR2_CLK0,  
DDR2_CLK0,  
DDR2_CLK1,  
DDR2_CLK1  
DDR2_ODT  
O/T (Differential)  
High-Z/  
driven low  
DDR2 Clock. Freerunning, minimum frequency not guaranteed during reset.  
O/T  
O/T  
3
High-Z/  
DDR2 On Die Termination. ODT pin when driven high (along with other  
Driven low requirements) enables the DDR2 termination resistances.  
AMI_MS0–1  
3
High-Z  
Memory Select Lines 0–1. These lines are asserted (low) as chip selects for  
the corresponding banks of external memory on the AMI interface. The MS1-  
0 lines are decoded memory address lines that change at the same time as the  
other address lines. When no external memory access is occurring the MS1-0  
lines are inactive; they are active however when a conditional memory access  
instruction is executed, whether or not the condition is true.  
The MS1 pin can be used in EPORT/FLASH boot mode. For more information,  
see the ADSP-2146x SHARC Processor Hardware Reference.  
FLAG[0]/IRQ0  
FLAG[1]/IRQ1  
I/O  
I/O  
I/O  
3
3
3
High-Z  
High-Z  
High-Z  
FLAG0/Interrupt Request0.  
FLAG1/Interrupt Request1.  
FLAG2/Interrupt Request2/Async Memory Select2.  
FLAG[2]/IRQ2/  
AMI_MS2  
FLAG[3]/TIMEX P/ I/O  
AMI_MS3  
3
3
3
3
High-Z  
High-Z  
High-Z  
High-Z  
FLAG3/Timer Expired/Async Memory Select3.  
LDAT07–0  
LDAT17–0  
I/0  
Link Port Data (Link Ports 0-1).  
LCLK0  
LCLK1  
I/O  
I/O  
Link Port Clock (Link Ports 0–1).  
LACK0  
LACK1  
Link Port Acknowledge (Link Port 0-1).  
THD_P  
THD_M  
I
Thermal Diode Anode  
Thermal Diode Cathode  
O
Rev. PrA  
|
Page 14 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Table 6. Pin List (Continued)  
State  
During  
and After  
LVTTL SSTL18 Reset  
Name  
Type  
Description  
TDI  
I (pu)  
3
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI  
has a fixed internal pull-up resistor1, 2  
.
TDO  
TMS  
O /T  
3
3
High-Z  
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a  
I (pu)  
fixed internal pull-up resistor1, 2  
.
TCK  
I (pu)  
3
3
3
Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be  
asserted (pulsed low) after power-up or held low for proper operation of the  
device.  
TRST  
EMU  
I (pu)  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted  
(pulsed low) after power-up or held low for proper operation of the processor.  
TRST has a fixed internal pull-up resistor1, 2  
.
O/T (pu)  
High-Z  
Emulation Status. Must be connected to the ADSP-21462W/ADSP-  
21465W/ADSP-21467 Analog Devices DSP Tools product line of JTAG  
emulators target board connector only. EMU has a fixed internal pull-up  
resistor1, 2  
.
CLK_CFG1–0  
I
3
Core to CLKIN Ratio Control. These pins set the start up clock frequency. See  
Table 9 for a description of the clock configuration modes.  
Note that the operating frequency can be changed by programming the PLL  
multiplier and divider in the PMCTL register at any time after the core comes  
out of reset.  
BOOT_CFG2–0  
RESET  
I
3
3
Boot Configuration Select. These pins select the boot mode for the proces-  
sor. The BOOTCFG pins must be valid before reset is asserted. See Table 8 for  
a description of the boot modes.  
I (pu)  
Processor Reset. Resets the processor to a known state. Upon deassertion,  
there is a 4096 CLKIN cycle latency for the PLL to lock. After this time, the core  
begins program execution fromthe hardwarereset vectoraddress. The RESET  
input must be asserted (low) at power-up.  
XTAL  
O
I
3
3
Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an  
external crystal.  
CLKIN  
Local Clock In. Used in conjunction with XTAL. CLKIN is the clock input. It  
configures the processors to use either its internal clock generator or an  
external clock source. Connecting the necessary components to CLKIN and  
XTAL enables the internal clock generator. Connecting the external clock to  
CLKIN while leaving XTAL unconnected configures the processors to use the  
external clock source such as an external clock oscillator. CLKIN may not be  
halted, changed, or operated below the specified frequency.  
CLKOUT/  
RESETOUT/  
RUNRSTIN  
I/O (pu)  
I (pd)  
3
Clock Out/Reset Out/Running Reset In. The functionality can be switched  
between the PLL output clock and reset out by setting Bit 12 of the PMCTL  
register. The default is reset out. Thispin also has a third function as RUNRSTIN  
which is enabled by setting bit 0 of the RUNRSTCTL register. For more infor-  
mation, see the ADSP-2146x SHARC Processor Hardware Reference.  
MLBCLK  
MLBDAT  
3
3
High-Z  
High-Z  
Media Local Bus Clock. This clock is generated by the MLB controller that is  
synchronizedtotheMOSTnetworkandprovidesthetimingfortheentireMLB  
interface. 49.152 MHz at Fs=48 kHz  
I/O (pd) in 3 pin  
mode. Input in 5 pin  
mode.  
Media Local Bus Data. The MLBDAT line is driven by the transmitting MLB  
device and is received by all other MLB devices including the MLB controller.  
The MLBDAT line carries the actual data. In 5-pin MLB mode, this pin will be  
an input only.  
Rev. PrA  
|
Page 15 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Table 6. Pin List (Continued)  
State  
During  
and After  
LVTTL SSTL18 Reset  
Name  
Type  
Description  
MLBSIG  
I/O (pd) in 3 pin  
mode. Input in 5 pin  
mode  
3
High-Z  
Media Local Bus Signal. This is a multiplexed signal which carries the Chan-  
nel/Address generated by the MLB Controller, as well as the Command and  
RxStatus bytes from MLB devices. In 5-pin mode, this pin will be input only.  
MLBDO  
MLBSO  
BR6-1  
O (pd)  
O (pd)  
I/O  
3
3
3
High-Z  
High-Z  
Media Local Bus Data Output (in 5 pin mode). This pin is used only in 5-pin  
MLB mode. This serves as the output data pin in 5-pin mode.  
Media Local Bus Signal Output (in 5 pin mode). This pin is used only in 5-  
pin MLB mode. This serves as the output signal pin in 5-pin mode.  
High-Z/  
Bus request. Bus request pins for external DDR2 bus arbitration.  
Driven low  
RPBA  
ID2-0  
I
I
3
3
Rotating priority bus arbitration.  
Chip ID  
1 Pull-up/pull-down resistor can not be enabled/disabled and the value of the pull-up/pull-down resistor cannot be programmed.  
2 Range of fixed pull-up resistor can be between 26k-63kΩ. Range of fixed pull-down resistor can be between 31k-85kΩ.  
Rev. PrA  
|
Page 16 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-  
DATA MODES  
The address and data pins of the external memory interface are muxed (using bits in the SYSCTL register) to support the external memory  
interface data (input/output), the PDAP (input only), and the FLAGS (input/output). Table 7 provides the pin settings.  
Table 7. Function of Data Pins  
DATA PIN MODE  
AMI_ADDR [23:8]  
AMI_ADDR [23:0]  
AMI_ADDR [7:0]  
AMI_DATA [7:0]  
AMI_DATA [7:0]  
000  
001  
010  
011  
100  
101  
110  
111  
Reserved  
Reserved  
FLAGS/PWM [15–0]  
PDAP (DATA + CTRL)  
FLAGS [15–0]  
FLAGS [7–0]  
Reserved  
Reserved  
Three-state all pins  
BOOT MODES  
Table 8. Boot Mode Selection  
BOOTCFG2–0  
Booting Mode  
000  
001  
010  
011  
100  
101  
SPI Slave Boot  
SPI Master Boot  
AMI user boot (for 8-bit Flash boot)  
Reserved  
Link Port 0 Boot  
Reserved  
CORE INSTRUCTION RATE TO CLKIN RATIO MODES  
For details on processor timing, see Timing Specifications and Figure 3 on Page 21.  
Table 9. Core Instruction Rate/ CLKIN Ratio Selection  
CLKCFG1–0  
Core to CLKIN Ratio  
00  
01  
11  
10  
6:1  
32:1  
Reserved  
16:1  
Rev. PrA  
|
Page 17 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
SPECIFICATIONS  
OPERATING CONDITIONS  
Parameter1  
Description  
Min  
Max  
Unit  
VDD_INT  
VDD_EXT  
Internal (Core) Supply Voltage  
TBD2  
3.14  
TBD2  
V
External (I/O) Supply Voltage  
3.46  
V
3
VDD_DDR2  
DDR2 Controller Supply Voltage  
DDR2 Reference Voltage  
1.71  
1.89  
V
VREF  
0.84  
0.96  
V
4
VIH  
High Level Input Voltage @ VDD_EXT = max  
Low Level Input Voltage @ VDD_EXT = min  
High Level Input Voltage @ VDD_EXT = max  
Low Level Input Voltage @ VDD_EXT = min  
DC Low Level Input Voltage  
2.0  
3.6  
V
4
VIL  
-0.3  
0.8  
V
5
VIH_CLKIN  
TBD  
TBD  
V
5
VIL_CLKIN  
TBD  
TBD  
V
VIL_DDR2 (DC)  
VIH_DDR2 (DC)  
VIL_DDR2 (AC)  
VIH_DDR2 (AC)  
TJ  
-0.3  
VREF - 0.12  
VDD_DDR2 + 0.3  
VREF - 250  
V
DC High Level Input Voltage  
VREF + 0.13  
V
AC Low Level Input Voltage  
mV  
mV  
°C  
AC High Level Input Voltage  
VREF + 250  
0
Junction Temperature 208-Lead PBGA @ TAMBIENT 0 °C to +70 °C  
125  
1 Specifications subject to change without notice.  
2 The expected value is 1.1V and initial customer designs should design with a programmable regulator that can be adjusted from 0.95V to 1.15V +/-50mV  
3 Applies to DDR2 signals.  
4 Appliestoinputandbidirectionalpins:AMI_ADDR23–0, AMI_DATA7–0, FLAG3–0, DAI_Px, DPI_Px, SPIDS, BOOTCFGx, CLKCFGx, CLKOUT(RUNRSTIN), RESET,  
TCK, TMS, TDI, TRST.  
5 Applies to input pin CLKIN.  
Rev. PrA  
|
Page 18 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
ELECTRICAL CHARACTERISTICS  
Parameter1  
Description  
Test Conditions  
Min  
Typical Max  
Unit  
2
VOH  
High Level Output Voltage  
Low Level Output Voltage  
Output Source DC Current  
Output Sink DC Current  
@ VDD_EXT = min, IOH = –1.0 mA3  
@ VDD_EXT = min, IOL = 1.0 mA3  
@ VOH_DDR2 (DC) = VDD_DDR2 -0.28 V  
@ VOL_DDR2 (DC)=0.28  
2.4  
V
2
VOL  
0.4  
V
4
IOH_DDR2  
TBD  
TBD  
mA  
mA  
mA  
mA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
pF  
4
IOL_DDR2  
TBD  
VOH_DDR2  
VOL_DDR2  
@
@
TBD  
10  
5, 6  
IIH  
High Level Input Current  
@ VDD_EXT = max, VIN = VDD_EXT max  
@ VDD_EXT = max, VIN = 0 V  
@ VDD_EXT = max, VIN = 0 V  
@ VDD_EXT = max, VIN = VDD_EXT max  
@ VDD_EXT = max, VIN = 0 V  
5
IIL  
Low Level Input Current  
10  
6
IILPU  
Low Level Input Current Pull-up  
Three-State Leakage Current  
Three-State Leakage Current  
TBD  
10  
7, 8  
IOZH  
7
IOZL  
10  
8
IOZLPU  
Three-State Leakage Current Pull-up @ VDD_EXT = max, VIN = 0 V  
TBD  
TBD  
TBD  
9, 10  
IDD-INTYP  
Supply Current (Internal)  
Input Capacitance  
TBD  
TBD  
11, 12  
CIN  
1
Specifications subject to change without notice.  
2 Applies to output and bidirectional pins: AMI_ADDR23-0, AMI_DATA7-0, AMI_RD, AMI_WR, FLAG3–0, DAI_Px, DPI_Px, EMU, TDO, CLKOUT.  
3 See Output Drive Currents on Page 53 for typical drive current capabilities.  
4 Applies to DDR2_ADDR18-0, DDR2_CAS, DDR2_CS3-0, DDR2_DQ1-0, DDR2_DM1-0, DDR2_DQS1-0, DDR2_DATA15-0, DDR2_RAS, DDR2_WE, DDR2_CLK0,  
DDR2_CLK0, DDR2_CLK1 and, DDR2_CLK1.  
5 Applies to input pins: BOOTCFGx, CLKCFGx, TCK, RESET, CLKIN.  
6 Applies to input pins with internal pull-ups: TRST, TMS, TDI.  
7 Applies to three-statable pins: FLAG3–0.  
8 Applies to three-statable pins with pull-ups: DAI_Px, DPI_Px, EMU.  
9 Typical internal current data reflects nominal operating conditions.  
10See Engineer-to-Engineer Note “Estimating Power Dissipation for ADSP-2146x SHARC Processors” for further information.  
11Applies to all signal pins.  
12Guaranteed, but not tested.  
Rev. PrA  
|
Page 19 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
MAXIMUM POWER DISSIPATION  
See Engineer-to-Engineer Note “Estimating Power Dissipation  
for ADSP-2146x SHARC Processors” for detailed thermal and  
power information regarding maximum power dissipation. For  
information on package thermal specifications, see Thermal  
Characteristics on Page 54.  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed in Table 10 may cause perma-  
nent damage to the device. These are stress ratings only;  
functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
Table 10. Absolute Maximum Ratings  
Parameter  
Rating  
Internal (Core) Supply Voltage  
–0.3 V to +1.32V  
(VDD_INT  
)
Analog (PLL) Supply Voltage (VDD_A  
)
TBD  
External (I/O) Supply Voltage(VDD_EXT) –0.3 V to +4.6V  
DDR2 Controller Supply Voltage  
(VDD_DDR2)  
–0.5 V to +2.7V  
Input Voltage  
–0.5 V to +3.8V  
–0.5 V to VDD_EXT +0.5V  
200 pF  
Output Voltage Swing  
Load Capacitance  
Storage Temperature Range  
Junction Temperature under Bias  
–65°C to +150°C  
125°C  
ESD SENSITIVITY  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
Rev. PrA  
|
Page 20 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Figure 3 shows core to CLKIN ratios of 6:1, 16:1, and 32:1 with  
external oscillator or crystal. Note that more ratios are possible  
and can be set through software using the power management  
control register (PMCTL). For more information, see the  
ADSP-2136x SHARC Processor Programming Reference.  
The processor’s internal clock switches at higher frequencies  
than the system input clock (CLKIN). To generate the internal  
clock, the processor uses an internal phase-locked loop (PLL).  
This PLL-based clocking minimizes the skew between the sys-  
tem clock (CLKIN) signal and the processor’s internal clock.  
TIMING SPECIFICATIONS  
The ADSP-21462W/ADSP-21465W/ADSP-21467’s internal  
clock (a multiple of CLKIN) provides the clock signal for timing  
internal memory, processor core, and serial ports. During reset,  
program the ratio between the processor’s internal clock fre-  
quency and external (CLKIN) clock frequency with the  
CLKCFG1–0 pins (see Table 9 on Page 17). To determine  
switching frequencies for the serial ports, divide down the inter-  
nal clock, using the programmable divider control of each port  
(DIVx for the serial ports).  
CLK_CFGx/  
PMCTL  
PMCTL  
LINKPORT  
CLOCK  
DIVIDER  
LCLK  
PMCTL  
CLK_CFGx/  
PMCTL  
PLL  
PLLI  
CLK  
CLKIN  
DDR2  
DIVIDER  
CLKIN  
DIVIDER  
LOOP  
FILTER  
PLL  
DIVIDER  
VCO  
CCLK  
DDR2_CLK  
XTAL  
BUF  
PMCTL  
PCLK  
DIVIDE  
BY 2  
PLL  
MULTIPLIER  
CLK_CFGx/  
PMCTL  
PCLK  
CCLK  
CLK_CFGx/PMCTL  
CLK_CFGx/  
PMCTL  
PMCTL  
MLBSYSCLK  
MLB CLOCK  
DIVIDER  
PMCTL  
CLKOUT  
RESETOUT/  
CLKOUT  
DELAY OF  
4096 CLKIN  
RESETOUT  
BUF  
RESET  
CYCLES  
CORERST  
Figure 3. Core Clock and System Clock Relationship to CLKIN  
Core clock frequency can be calculated as:  
CCLK = (2 × PLLM × fINPUT) ÷ (2 × PLLN)  
f
f
INPUT = CLKIN when the input divider is disabled  
INPUT = CLKIN ÷ 2 when the input divider is enabled  
f
Note that in the user application, the PLL multiplier value  
should be selected in such a way that the VCO frequency falls in  
between 160 MHz and 800 MHz. The VCO frequency is calcu-  
lated as follows:  
Note the definitions of various clock periods shown in Table 12  
which are a function of CLKIN and the appropriate ratio con-  
trol shown in Table 11.  
Table 11. CLKOUT and CCLK Clock Generation Operation  
f
VCO = 2 × PLLM × fINPUT  
where:  
VCO is the VCO frequency  
PLLM is the multiplier value programmed  
INPUT is the input frequency to the PLL in MHz.  
Timing  
Requirements  
CLKIN  
Description  
Input Clock  
Core Clock  
Calculation  
1/tCK  
f
CCLK  
1/tCCLK  
f
Rev. PrA  
|
Page 21 of 60  
|
November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Table 12. Clock Periods  
Timing  
Requirements  
Description1  
tCK  
CLKIN Clock Period  
tCCLK  
(Processor) Core Clock Period  
(Peripheral) Clock Period = 2 × tCCLK  
Serial Port Clock Period = (tPCLK) × SR  
DDR2 DRAM Clock Period = (tCCLK) × SDR  
SPI Clock Period = (tPCLLK) × SPIR  
tPCLK  
tSCLK  
tDDR2_CLK  
tSPICLK  
1 where:  
SR = serial port-to-core clock ratio (wide range, determined by SPORT CLKDIV  
bits in DIVx register)  
SPIR = SPI-to-Core Clock Ratio (wide range, determined by SPIBAUD register  
setting)  
SDR=DDR2 DRAM-to-Core Clock Ratio (Values determined by bits 20-18 of  
the PMCTL register)  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, it is  
not meaningful to add parameters to derive longer times. See  
Figure 41 on Page 53 under Test Conditions for voltage refer-  
ence levels.  
Switching Characteristics specify how the processor changes its  
signals. Circuitry external to the processor must be designed for  
compatibility with these signal characteristics. Switching char-  
acteristics describe what the processor will do in a given  
circumstance. Use switching characteristics to ensure that any  
timing requirement of a device connected to the processor (such  
as memory) is satisfied.  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
Rev. PrA  
|
Page 22 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Power-Up Sequencing  
The timing requirements for processor startup are given in  
Table 13.  
Table 13. Power Up Sequencing Timing Requirements (Processor Startup)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRSTVDD  
RESET Low Before VDD_EXT or VDD_DDR2 On  
VDD_EXT on Before VDD_DDR2  
0
ms  
ms  
ms  
ms  
ms  
ms  
tEVDD-DDR2VDD  
TBD  
TBD  
0
102  
203  
tDDR2VDD_IVDD  
VDD_DDR2 on Before VDD_INT  
1
tCLKVDD  
CLKIN Valid After VDD_INT Valid  
200  
tCLKRST  
CLKIN Valid Before RESET Deasserted  
PLL Control Setup Before RESET Deasserted  
tPLLRST  
Switching Characteristic  
tCORERST  
4, 5  
Core Reset Deasserted After RESET Deasserted  
4096 × tCK + 2 × tCCLK  
ms  
1 Valid VDD_INT assumes that the supply is fully ramped to its 1 volt rail. Voltage ramp rates can vary from microseconds to hundreds of milliseconds depending on the design  
of the power supply subsystem.  
2 Assumes a stable CLKIN signal, after meeting worst-case startup timing of crystal oscillators. Refer to your crystal oscillator manufacturer's datasheet for startup time. Assume  
a 25 ms maximum oscillator startup time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.  
3 Based on CLKIN cycles.  
4 Applies after the power-up sequence is complete. Subsequent resets require a minimum of four CLKIN cycles for RESET to be held low in order to properly initialize and  
propagate default states at all I/O pins.  
5 The 4096 cycle count depends on tSRST specification in Table 15. If setup time is not met, one additional CLKIN cycle may be added to the core reset time, resulting in 4097  
cycles maximum.  
tRSTVDD  
RESET  
V
tEVDD-DDR2VDD  
DDEXT  
V
V
DD_DDR2  
DDINT  
tDDR2VDD_IVDD  
tCLKVDD  
CLKIN  
tCLKRST  
CLK_CFG1-0  
tCORERST  
tPLLRST  
RESETOUT  
Figure 4. Power-Up Sequencing  
Rev. PrA  
|
Page 23 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Clock Input  
Table 14. Clock Input  
400 MHz  
Max  
450 MHz  
Unit  
Parameter  
Min  
Min  
Max  
Timing Requirements  
tCK  
CLKIN Period  
TBD1  
TBD1  
TBD1  
TBD2  
TBD2  
TBD2  
TBD  
TBD1  
TBD1  
TBD1  
TBD2  
TBD2  
TBD2  
TBD  
ns  
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
tCCLK  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V to 2.0 V)  
CCLK Period  
3
2.51  
TBD  
2.221  
TBD  
1 Applies only for CLKCFG1–0 = 00 and default values for PLL control bits in PMCTL.  
2 Applies only for CLKCFG1–0 = 01 and default values for PLL control bits in PMCTL.  
3 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification tCCLK  
.
tCK  
CLKIN  
tCKH  
tCKL  
Figure 5. Clock Input  
Clock Signals  
The ADSP-2146x can use an external clock or a crystal. See the  
CLKIN pin description in Table 6. Programs can configure the  
processor to use its internal clock generator by connecting the  
necessary components to CLKIN and XTAL. Figure 6 shows the  
component connections used for a crystal operating in funda-  
mental mode. Note that the clock rate is achieved using a 28.125  
MHz crystal and a PLL multiplier ratio 16:1 (CCLK:CLKIN  
achieves a clock speed of 450 MHz). To achieve the full core  
clock rate, programs need to configure the multiplier bits in the  
PMCTL register. In case of ADSP-21462W and ADSP-21465W,  
the maximum clock speed of 400 MHz is arrived at by using a 25  
MHz crystal with the default multiplier of 16:1.  
ADSP-2146X  
R1  
1M*  
XTAL  
CLKIN  
R2  
47*  
C1  
22pF  
C2  
22pF  
Y1  
29.125 MHz  
R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL  
DRIVE POWER. REFER TO CRYSTAL  
MANUFACTURER’S SPECIFICATIONS  
*TYPICAL VALUES  
Figure 6. 450 MHz Operation (Fundamental Mode Crystal)  
Rev. PrA  
|
Page 24 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Reset  
Table 15. Reset  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tWRST  
RESET Pulse Width Low  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
tSRST  
RESET Setup Before CLKIN Low  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 ms while RESET is low, assuming stable  
VDD and CLKIN (not including start-up time of external clock oscillator).  
CLKIN  
tWRST  
tSRST  
RESET  
Figure 7. Reset  
Running Reset  
The following timing specification applies to CLKOUT/  
RESETOUT/RUNRSTIN pin when it is configured as  
RUNRSTIN.  
Table 16. Running Reset  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tWRUNRST  
tSRUNRST  
Running RESET Pulse Width Low  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
Running RESET Setup Before CLKIN High  
CLKIN  
t
t
SRUNRST  
WRUNRST  
RUNRSTIN  
Figure 8. Running Reset  
Rev. PrA  
|
Page 25 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Interrupts  
The following timing specification applies to the FLAG0,  
FLAG1, and FLAG2 pins when they are configured as IRQ0,  
IRQ1, and IRQ2 interrupts as well as the DAI_P20-1 and  
DPI_P14-1 pins when they are configured as interrupts.  
Table 17. Interrupts  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tIPW  
IRQx Pulse Width  
TBD  
TBD  
ns  
DAI_P20  
DPI_P14  
1
1
-
FLAG2  
(IRQ2  
-0  
tIPW  
-0)  
Figure 9. Interrupts  
Core Timer  
The following timing specification applies to FLAG3 when it is  
configured as the core timer (CTIMER).  
Table 18. Core Timer  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tWCTIM  
CTIMER Pulse Width  
TBD  
TBD  
ns  
tWCTIM  
FLAG3  
(CTIMER)  
Figure 10. Core Timer  
Timer PWM_OUT Cycle Timing  
The following timing specification applies to Timer0 and  
Timer1 in PWM_OUT (pulse-width modulation) mode. Timer  
signals are routed to the DPI_P14–1 pins through the DPI SRU.  
Therefore, the timing specifications provided below are valid at  
the DPI_P14–1 pins.  
Table 19. Timer PWM_OUT Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tPWMO  
Timer Pulse Width Output  
TBD  
TBD  
ns  
tPWMO  
DPI_P14  
(TIMER1  
-
1
-0)  
Figure 11. Timer PWM_OUT Timing  
Rev. PrA  
|
Page 26 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Timer WDTH_CAP Timing  
The following timing specification applies to timer0 and timer1,  
and in WDTH_CAP (pulse width count and capture) mode.  
Timer signals are routed to the DPI_P14–1 pins through the  
SRU. Therefore, the timing specification provided below is valid  
at the DPI_P14–1 pins.  
Table 20. Timer Width Capture Timing  
Parameter  
Timing Requirement  
Min  
TBD  
Max  
Unit  
tPWI  
Timer Pulse Width  
TBD  
ns  
tPWI  
DPI_P14  
-1  
(TIMER1-0)  
Figure 12. Timer Width Capture Timing  
Pin to Pin Direct Routing (DAI and DPI)  
For direct pin connections only (for example DAI_PB01_I to  
DAI_PB02_O).  
Table 21. DAI Pin to Pin Routing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tDPIO  
Delay DAI/DPI Pin Input Valid to DAI Output Valid  
TBD  
TBD  
ns  
DAI_Pn  
DPI_Pn  
DAI_Pm  
DPI_Pm  
tDPIO  
Figure 13. DAI Pin to Pin Direct Routing  
Rev. PrA  
|
Page 27 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
inputs and outputs are not directly routed to/from DAI pins (via  
pin buffers) there is no timing data available. All timing param-  
eters and switching characteristics apply to external DAI pins  
(DAI_P01 – DAI_P20).  
Precision Clock Generator (Direct Pin Routing)  
This timing is only valid when the SRU is configured such that  
the precision clock generator (PCG) takes its inputs directly  
from the DAI pins (via pin buffers) and sends its outputs  
directly to the DAI pins. For the other cases, where the PCG’s  
Table 22. Precision Clock Generator (Direct Pin Routing)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tPCGIW  
tSTRIG  
Input Clock Period  
TBD  
TBD  
TBD  
ns  
ns  
PCG Trigger Setup Before Falling Edge of PCG Input TBD  
Clock  
tHTRIG  
PCG Trigger Hold After Falling Edge of PCG Input  
Clock  
TBD  
TBD  
ns  
Switching Characteristics  
tDPCGIO  
PCGOutputClockandFrameSyncActiveEdgeDelay  
After PCG Input Clock  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
tDTRIGCLK  
PCG Output Clock Delay After PCG Trigger  
PCG Frame Sync Delay After PCG Trigger  
Output Clock Period  
tDTRIGFS  
1
tPCGOW  
D = FSxDIV, PH = FSxPHASE. For more information, see the ADSP-2146x SHARC Processor Hardware Reference, “Precision Clock Generators”  
chapter.  
1 Normal mode of operation.  
tSTRIG  
tHTRIG  
DAI_Pn  
DPI_Pn  
PCG_TRIGx_I  
tPCGIW  
DAI_Pm  
DPI_Pm  
PCG_EXTx_I  
(CLKIN)  
tDPCGIO  
DAI_Py  
DPI_Py  
PCG_CLKx_O  
tDTRIGCLK  
tDPCGIO  
tPCGOW  
DAI_Pz  
DPI_Pz  
PCG_FSx_O  
tDTRIGFS  
Figure 14. Precision Clock Generator (Direct Pin Routing)  
Rev. PrA  
|
Page 28 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Flags  
The timing specifications provided below apply to  
AMI_ADDR23-0 and AMI_DATA7-0 when configured as  
FLAGS. See Table 6 on page 13 for more information on flag  
use.  
Table 23. Flags  
Parameter  
Timing Requirement  
Min  
Max  
TBD  
TBD  
Unit  
ns  
tFIPW  
Switching Characteristic  
tFOPW DPI_P14-1, AMI_ADDR23-0, AMI_DATA7-0, FLAG3–0 OUT Pulse Width TBD  
DPI_P14-1, AMI_ADDR23-0, AMI_DATA7-0, FLAG3–0 IN Pulse Width TBD  
ns  
DPI_P14  
(FLAG3  
(AMI_DATA7  
(AMI_ADDR23-0)  
-1  
-0 )  
IN  
-
0)  
tFIPW  
DPI_P14  
(FLAG3  
(AMI_DATA7  
-1  
-
0
)
OUT  
-
0)  
tFOPW  
AMI_ADDR23-0)  
Figure 15. Flags  
Rev. PrA  
|
Page 29 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
DDR2 SDRAM Read Cycle Timing  
Table 24. DDR2 SDRAM Read Cycle Timing, VDD-DDR2 nominal 1.8V  
Parameter  
Timing Requirements  
TBD  
Symbol  
Minimum  
Maximum Unit  
TBD TBD  
TBD  
TBD  
TBD  
Figure 16. DDR2 SDRAM Controller Input AC Timing  
Rev. PrA  
|
Page 30 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
DDR2 SDRAM Write Cycle Timing  
Table 25. DDR2 SDRAM Write Cycle Timing, VDD-DDR2 nominal 1.8V  
Parameter  
Switching Characteristics  
TBD  
Symbol  
Minimum  
Maximum Unit  
TBD TBD  
TBD  
TBD  
TBD  
Figure 17. DDR2 SDRAM Controller Output AC Timing  
Rev. PrA  
|
Page 31 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Memory ReadBus Master  
Use these specifications for asynchronous interfacing to memo-  
ries. Note that timing for AMI_ACK, AMI_DATA, AMI_RD,  
AMI_WR, and strobe timing parameters only apply to asyn-  
chronous access mode.  
Table 26. Memory ReadBus Master  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDAD  
Address, Selects Delay to Data Valid1, 2  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
tDRLD  
tSDS  
AMI_RD Low to Data Valid1  
Data Setup to AMI_RD High  
tHDRH  
tDAAK  
tDSAK  
Data Hold from AMI_RD High3, 4  
AMI_ACK Delay from Address, Selects2, 5  
AMI_ACK Delay from AMI_RD Low4  
Switching Characteristics  
tDRHA  
tDARL  
tRW  
Address Selects Hold After AMI_RD High  
Address Selects to AMI_RD Low2  
ns  
ns  
ns  
ns  
AMI_RD Pulse Width  
tRWR  
AMI_RD High to AMI_WR, AMI_RD, Low  
W = (number of wait states specified in AMICTLx register) × tDDR2_CLK  
.
HI = RHC + IC (RHC = (number of Read Hold Cycles specified in AMICTLx register) x tDDR2_CLK  
IC = (number of idle cycles specified in AMICTLx register) x tDDR2_CLK).  
H = (number of hold cycles specified in AMICTLx register) x tDDR2_CLK  
.
1 Data delay/setup: System must meet tDAD, tDRLD, or tSDS.  
2 The falling edge of AMI_MSx, is referenced.  
3 Note that timing for AMI_ACK, AMI_DATA, AMI_RD, AMI_WR, and strobe timing parameters only apply to asynchronous access mode.  
4 Data hold: User must meet tHDRH in asynchronous access mode. See Test Conditions on Page 53 for the calculation of hold times given capacitive and dc loads.  
5 AMI_ACK delay/setup: User must meet tDAAK, or tDSAK, for deassertion of AMI_ACK (low). For asynchronous assertion of AMI_ACK (high) user must meet tDAAK or tDSAK  
.
ADDRESS  
MSx  
tDRHA  
tDARL  
tRW  
RD  
tDRLD  
tSDS  
tDAD  
tHDRH  
DATA  
tDSAK  
tDAAK  
tRWR  
ACK  
WR  
Figure 18. Memory Read—Bus Master  
Rev. PrA  
|
Page 32 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Memory WriteBus Master  
Use these specifications for asynchronous interfacing to memo-  
ries. Note that timing for AMI_ACK, AMI_DATA, AMI_RD,  
AMI_WR, and strobe timing parameters only apply to asyn-  
chronous access mode.  
Table 27. Memory WriteBus Master  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDAAK  
tDSAK  
AMI_ACK Delay from Address, Selects1, 2  
AMI_ACK Delay from AMI_WR Low 1, 3  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
Switching Characteristics  
tDAWH  
tDAWL  
tWW  
Address, Selects to AMI_WR Deasserted2  
Address, Selects to AMI_WR Low2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AMI_WR Pulse Width  
tDDWH  
tDWHA  
tDWHD  
tDATRWH  
tWWR  
Data Setup Before AMI_WR High  
Address Hold After AMI_WR Deasserted  
Data Hold After AMI_WR Deasserted  
Data Disable After AMI_WR Deasserted4  
AMI_WR High to AMI_WR, AMI_RD Low  
Data Disable Before AMI_RD Low  
AMI_WR Low to Data Enabled  
tDDWR  
tWDE  
W = (number of wait states specified in AMICTLx register) × tSDDR2_CLKH = (number of hold cycles specified in AMICTLx register) x tDDR2_CLK  
1 AMI_ACK delay/setup: System must meet tDAAK, or tDSAK, for deassertion of AMI_ACK (low). For asynchronous assertion of AMI_ACK(high) user must meet tDAAK or tDSAK  
.
2 The falling edge of AMI_MSx is referenced.  
3 Note that timing for AMI_ACK, AMI_DATA, AMI_RD, AMI_WR, and strobe timing parameters only applies to asynchronous access mode.  
4 See Test Conditions on Page 53 for calculation of hold times given capacitive and dc loads.  
ADDRESS  
MSx  
tDAWH  
tDWHA  
tDAWL  
tWW  
WR  
tWWR  
tWDE  
tDATRWH  
tDDWR  
tDDWH  
DATA  
tDSAK  
tDWHD  
tDAAK  
ACK  
RD  
Figure 19. Memory WriteBus Master  
that can be introduced in the transmission path between  
Link Ports  
LDATA and LCLK. Setup skew is the maximum delay that can  
Calculation of link receiver data setup and hold relative to link  
clock is required to determine the maximum allowable skew  
be introduced in LDATA relative to LCLK, (setup skew = tLCLK-  
Rev. PrA  
|
Page 33 of 60  
|
November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
TWH min– tDLDCH – tSLDCL). Hold skew is the maximum delay  
that can be introduced in LCLK relative to LDATA, (hold skew  
= tLCLKTWL min – tHLDCH – tHLDCL). Calculations made directly  
from speed specifications will result in unrealistically small skew  
times because they include multiple tester guardbands. The  
setup and hold skew times shown below are calculated to  
include only one tester guardband.  
Setup Skew = TBD ns max  
Hold Skew = TBD ns max  
Note that there is a two-cycle effect latency between the link  
port enable instruction and the DSP enabling the link port.  
Table 28. Link Ports – Receive  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSLDCL  
Data Setup Before LCLK Low  
Data Hold After LCLK Low  
LCLK Period  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
tHLDCL  
tLCLKIW  
tLCLKRWL  
tLCLKRWH  
LCLK Width Low  
LCLK Width High  
Switching Characteristics  
tDLALC  
LACK Low Delay After LCLK High1  
ns  
1 LACK goes low with tDLALC relative to rise of LCLK after first byte, but does not go low if the receiver's link buffer is not about to fill.  
tLCLKIW  
tLCLKRWH  
tLCLKRWL  
LCLK  
tHLDCL  
tSLDCL  
IN  
LDAT7-0  
tDLALC  
LACK (OUT)  
Figure 20. Link Ports—Receive  
Rev. PrA  
|
Page 34 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Table 29. Link Ports – Transmit  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSLACH  
tHLACH  
LACK Setup Before LCLK High  
LACK Hold After LCLK High  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
Switching Characteristics  
tDLDCH  
Data Delay After LCLK High  
ns  
ns  
ns  
ns  
ns  
tHLDCH  
Data Hold After LCLK High  
LCLK Width Low  
tLCLKTWL  
tLCLKTWH  
tDLACLK  
LCLK Width High  
LCLK Low Delay After LACK High  
LCLK INACTIVE  
(HIGH)  
LAST BYTE  
TRANSMITTED  
FIRST BYTE  
TRANSMITTED  
tLCLKTWH  
tLCLKTWL  
LCLK  
tDLDCH  
tHLDCH  
LDAT7-0  
OUT  
tDLACLK  
tSLACH  
tHLACH  
LACK (IN)  
THE tSLACH REQUIREMENT APPLIES TO THE RISING EDGE OF LCLK ONLY FOR THE FIRST BYTE TRANSMITTED.  
Figure 21. Link Ports—Transmit  
Rev. PrA  
|
Page 35 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Serial Ports  
To determine whether communication is possible between two  
devices at clock speed n, the following specifications must be  
confirmed: 1) frame sync delay and frame sync setup and hold,  
2) data delay and data setup and hold, and 3) SCLK width.  
Serial port signals (SCLK, FS, Data Channel A, Data Channel B)  
are routed to the DAI_P20–1 pins using the SRU. Therefore, the  
timing specifications provided below are valid at the  
DAI_P20–1 pins.  
Table 30. Serial Ports—External Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSE  
FS Setup Before SCLK  
(Externally Generated FS in either Transmit or Receive Mode)  
TBD  
TBD  
ns  
1
tHFSE  
FS Hold After SCLK  
(Externally Generated FS in either Transmit or Receive Mode)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
1
tSDRE  
Receive Data Setup Before Receive SCLK  
Receive Data Hold After SCLK  
SCLK Width  
1
tHDRE  
tSCLKW  
tSCLK  
SCLK Period  
Switching Characteristics  
2
tDFSE  
FS Delay After SCLK  
(Internally Generated FS in either Transmit or Receive Mode)  
TBD  
ns  
2
tHOFSE  
FS Hold After SCLK  
(Internally Generated FS in either Transmit or Receive Mode)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
2
tDDTE  
Transmit Data Delay After Transmit SCLK  
Transmit Data Hold After Transmit SCLK  
2
tHDTE  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Table 31. Serial Ports—Internal Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSI  
FS Setup Before SCLK  
(Externally Generated FS in either Transmit or Receive Mode)  
TBD  
TBD  
ns  
1
tHFSI  
FS Hold After SCLK  
(Externally Generated FS in either Transmit or Receive Mode)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
1
tSDRI  
Receive Data Setup Before SCLK  
Receive Data Hold After SCLK  
1
tHDRI  
Switching Characteristics  
2
tDFSI  
FS Delay After SCLK (Internally Generated FS in Transmit Mode)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
tHOFSI  
FS Hold After SCLK (Internally Generated FS in Transmit Mode)  
FS Delay After SCLK (Internally Generated FS in Receive Mode)  
FS Hold After SCLK (Internally Generated FS in Receive Mode)  
Transmit Data Delay After SCLK  
2
tDFSIR  
2
tHOFSIR  
2
tDDTI  
2
tHDTI  
Transmit Data Hold After SCLK  
tSCKLIW  
Transmit or Receive SCLK Width  
1 Referenced to the sample edge.  
2 Referenced to drive edge.  
Rev. PrA  
|
Page 36 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Table 32. Serial Ports—Enable and Three-State  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
1
tDDTEN  
Data Enable from External Transmit SCLK  
Data Disable from External Transmit SCLK  
Data Enable from Internal Transmit SCLK  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
1
tDDTTE  
1
tDDTIN  
1 Referenced to drive edge.  
Table 33. Serial Ports—External Late Frame Sync  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
1
tDDTLFSE  
Data Delay from Late External Transmit FS or External Receive FS  
with MCE = 1, MFD = 0  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
1
tDDTENFS  
Data Enable for MCE = 1, MFD = 0  
1 The tDDTLFSE and tDDTENFS parameters apply to left-justified sample pair as well as DSP serial mode, and MCE = 1, MFD = 0.  
EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0  
SAMPLE  
DRIVE  
DRIVE  
DAI_P20-1  
(SCLK)  
tSFSE/I  
tHFSE/I  
DAI_P20-1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
DAI_P20-1  
(DATA CHANNEL A/B)  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TRANSMIT FS  
SAMPLE  
DRIVE  
DRIVE  
DAI_P20-1  
(SCLK)  
tSFSE/I  
tHFSE/I  
DAI_P20-1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
DAI_P20  
(DATA CHANNEL A/B)  
-1  
2ND BIT  
tDDTLFSE  
NOTE: SERIAL PORT SIGNALS (SCLK, FS, DATA CHANNEL A/B) ARE ROUTED TO THE DAI_P20  
-
1 PINS  
USING THE SRU. THE TIMING SPECIFICATIONS PROVIDED HERE ARE VALID AT THE DAI_P20  
-
1 PINS.  
THE CHARACTERIZED AC SPORT TIMINGS ARE APPLICABLE WHEN INTERNAL CLOCKS AND FRAMES  
ARE LOOPED BACK FROM THE PIN, NOT ROUTED DIRECTLY THROUGH SAU.  
Figure 22. External Late Frame Sync1  
1 This figure reflects changes made to support left-justified sample pair mode.  
Rev. PrA  
|
Page 37 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
DATA RECEIVE—INTERNAL CLOCK  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE  
SAMPLE EDGE  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20  
(SCLK)  
-1  
DAI_P20  
(SCLK)  
-1  
tDFSIR  
tDFSE  
tHFSE  
tHFSI  
tSFSI  
tSFSE  
tHOFSIR  
tHOFSE  
DAI_P20  
(FS)  
-1  
DAI_P20-1  
(FS)  
tHDRE  
tSDRI  
tHDRI  
tSDRE  
DAI_P20  
(DATA CHANNEL A/B)  
-
1
DAI_P20  
(DATA CHANNEL A/B)  
-1  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF SCLK (EXTERNAL) OR SCLK (INTERNAL) CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20  
(SCLK)  
-
1
DAI_P20  
(SCLK)  
-1  
tDFSI  
tDFSE  
tHFSI  
tHOFSI  
tSFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20  
(FS)  
-
1
DAI_P20-1  
(FS)  
tDDTE  
tDDTI  
tHDTE  
tHDTI  
DAI_P20  
(DATA CHANNEL A/B)  
-
1
DAI_P20-1  
(DATA CHANNEL A/B)  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF SCLK (EXTERNAL) OR SCLK (INTERNAL) CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE EDGE  
DRIVE EDGE  
SCLK  
DAI_P20  
SCLK (EXT)  
-1  
tDDTEN  
tDDTTE  
DAI_P20  
(DATA CHANNEL A/B)  
-1  
DRIVE EDGE  
DAI_P20  
SCLK (INT)  
-1  
tDDTIN  
DAI_P20  
-1  
(DATA CHANNEL A/B)  
Figure 23. Serial Ports  
Rev. PrA  
|
Page 38 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Input Data Port (IDP)  
The timing requirements for the IDP are given in Table 34. IDP  
signals (SCLK, FS, and SDATA) are routed to the DAI_P20–1  
pins using the SRU. Therefore, the timing specifications pro-  
vided below are valid at the DAI_P20–1 pins.  
Table 34. Input Data Port (IDP)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SData Setup Before SCLK Rising Edge  
SData Hold After SCLK Rising Edge  
Clock Width  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
1
tSISD  
1
tSIHD  
tIDPCLKW  
tIDPCLK  
Clock Period  
1
AMI_DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG's input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
t
IPDCLK  
tIPDCLKW  
DAI_P20  
(SCLK)  
-1  
tSISFS  
tSIHFS  
DAI_P20  
(FS)  
-1  
tSISD  
tSIHD  
DAI_P20  
(SDATA)  
-
1
Figure 24. IDP Master Timing  
Rev. PrA  
|
Page 39 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Sample Rate Converter—Serial Input Port  
The ASRC input signals (SCLK, FS, and SDATA) are routed  
from the DAI_P20–1 pins using the SRU. Therefore, the timing  
specifications provided in Table 35 are valid at the DAI_P20–1  
pins.  
Table 35. ASRC, Serial Input Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SDATA Setup Before SCLK Rising Edge  
SDATA Hold After SCLK Rising Edge  
Clock Width  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSRCHFS  
1
tSRCSD  
1
tSRCHD  
tSRCCLKW  
tSRCCLK  
Clock Period  
1
AMI_DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
tSRCCLKW  
DAI_P20  
(SCLK)  
-
1
1
1
tSRCSFS  
tSRCHFS  
DAI_P20  
-
(FS)  
tSRCSD  
tSRCHD  
DAI_P20  
(SDATA)  
-
Figure 25. ASRC Serial Input Port Timing  
Rev. PrA  
|
Page 40 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
and delay specification with regard to SCLK. Note that SCLK  
rising edge is the sampling edge and the falling edge is the  
drive edge.  
Sample Rate Converter—Serial Output Port  
For the serial output port, the frame-sync is an input and it  
should meet setup and hold times with regard to SCLK on the  
output port. The serial data output, SDATA, has a hold time  
Table 36. ASRC, Serial Output Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
Clock Width  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
1
tSRCHFS  
tSRCCLKW  
tSRCCLK  
Clock Period  
Switching Characteristics  
1
tSRCTDD  
Transmit Data Delay After SCLK Falling Edge  
Transmit Data Hold After SCLK Falling Edge  
ns  
ns  
1
tSRCTDH  
1
AMI_DATA, SCLK, and FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
tSRCCLKW  
DAI_P20  
(SCLK)  
-
1
1
tSRCSFS  
tSRCHFS  
DAI_P20  
-
(FS)  
tSRCTDD  
DAI_P20  
(SDATA)  
-
1
tSRCTDH  
Figure 26. ASRC Serial Output Port Timing  
Rev. PrA  
|
Page 41 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Reference. Note that the most significant 16 bits of external  
PDAP data can be provided through the DATA7-0 pins. The  
remaining four bits can only be sourced through DAI_P4–1.  
The timing below is valid at the DATA7–0 pins.  
Parallel Data Acquisition Port (PDAP)  
The timing requirements for the PDAP are provided in  
Table 37. PDAP is the parallel mode operation of Channel 0 of  
the IDP. For details on the operation of the PDAP, see the  
PDAP chapter of the ADSP-2146x SHARC Processor Hardware  
Table 37. Parallel Data Acquisition Port (PDAP)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSPCLKEN  
PDAP_CLKEN Setup Before PDAP_CLK Sample Edge  
PDAP_CLKEN Hold After PDAP_CLK Sample Edge  
PDAP_DAT Setup Before SCLK PDAP_CLK Sample Edge  
PDAP_DAT Hold After SCLK PDAP_CLK Sample Edge  
Clock Width  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
1
tHPCLKEN  
1
tPDSD  
1
tPDHD  
tPDCLKW  
tPDCLK  
Clock Period  
Switching Characteristics  
tPDHLDD Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word  
tPDSTRB PDAP Strobe Pulse Width  
ns  
ns  
1
Source pins of AMI_DATA are DATA7–0 or DAI pins. Source pins for SCLK and FS are: 1) DAI pins, 2) CLKIN through PCG, or 3) DAI pins through PCG.  
SAMPLE EDGE  
tPDCLK  
tPDCLKW  
DAI_P20  
(PDAP_CLK)  
-1  
tSPCLKEN  
tHPCLKEN  
DAI_P20-1  
(PDAP_CLKEN)  
tPDSD  
tPDHD  
DATA  
DAI_P20  
(PDAP_STROBE)  
-1  
tPDSTRB  
tPDHLDD  
Figure 27. PDAP Timing  
Rev. PrA  
|
Page 42 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Pulse-Width Modulation Generators (PWM)  
The following timing specifications apply when the  
AMI_ADDR23-8 pins are configured as PWM.  
Table 38. Pulse-Width Modulation (PWM) Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tPWMW  
tPWMP  
PWM Output Pulse Width  
PWM Output Period  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
tPWMW  
PWM  
OUTPUTS  
tPWMP  
Figure 28. PWM Timing  
Rev. PrA  
|
Page 43 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
S/PDIF Transmitter  
Serial data input to the S/PDIF transmitter can be formatted as  
left justified, I2S, or right justified with word widths of 16-, 18-,  
20-, or 24-bits. The following sections provide timing for the  
transmitter.  
S/PDIF Transmitter-Serial Input Waveforms  
Figure 29 shows the right-justified mode. LRCLK is high for the  
left channel and low for the right channel. Data is valid on the  
rising edge of SCLK. The MSB is delayed 12-bit clock periods  
(in 20-bit output mode) or 16-bit clock periods (in 16-bit output  
mode) from an LRCLK transition, so that when there are 64  
SCLK periods per LRCLK period, the LSB of the data will be  
right-justified to the next LRCLK transition.  
DAI_P20-1  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
DAI_P20-1  
SCLK  
LSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
DAI_P20-1  
SDATA  
Figure 29. Right-Justified Mode  
Figure 30 shows the default I2S-justified mode. LRCLK is low  
for the left channel and HI for the right channel. Data is valid on  
the rising edge of SCLK. The MSB is left-justified to an LRCLK  
transition but with a single SCLK period delay.  
RIGHT CHANNEL  
DAI_P20-1  
LEFT CHANNEL  
LRCLK  
DAI_P20-1  
SCLK  
DAI_P20-1  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1 LSB  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
SDATA  
Figure 30. I2S-Justified Mode  
Figure 31 shows the left-justified mode. LRCLK is high for the  
left channel and LO for the right channel. Data is valid on the  
rising edge of SCLK. The MSB is left-justified to an LRCLK  
transition with no MSB delay.  
DAI_P20-1  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
DAI_P20-1  
SCLK  
LSB+2 LSB+1 LSB  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1 MSB-2  
MSB MSB+1  
DAI_P20-1  
SDATA  
Figure 31. Left-Justified Mode  
Rev. PrA  
|
Page 44 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
S/PDIF Transmitter Input Data Timing  
The timing requirements for the S/PDIF transmitter are given  
in Table 39. Input signals (SCLK, FS, SDATA) are routed to the  
DAI_P20–1 pins using the SRU. Therefore, the timing specifica-  
tions provided below are valid at the DAI_P20–1 pins.  
Table 39. S/PDIF Transmitter Input Data Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SData Setup Before SCLK Rising Edge  
SData Hold After SCLK Rising Edge  
Transmit Clock Width  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
1
tSISD  
1
tSIHD  
tSITXCLKW  
tSITXCLK  
tSISCLKW  
tSISCLK  
Transmit Clock Period  
Clock Width  
Clock Period  
1
AMI_DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
tSITXCLKW  
tSITXCLK  
SAMPLE EDGE  
DAI_P20-1  
(TXCLK)  
tSISCLKW  
DAI_P20-1  
(SCLK)  
tSISCLK  
tSIHFS  
tSISFS  
DAI_P20-1  
(FS)  
tSISD  
tSIHD  
DAI_P20-1  
(SDATA)  
Figure 32. S/PDIF Transmitter Input Timing  
Oversampling Clock (TxCLK) Switching Characteristics  
The S/PDIF transmitter has an oversampling clock. This TxCLK  
input is divided down to generate the biphase clock.  
Table 40. Over Sampling Clock (TxCLK) Switching Characteristics  
Parameter  
Min  
TBD  
TBD  
TBD  
Max  
TBD  
TBD  
TBD  
Unit  
MHz  
MHz  
kHz  
TxCLK Frequency for TxCLK = 384 × FS  
TxCLK Frequency for TxCLK = 256 × FS  
Frame Rate  
Rev. PrA  
|
Page 45 of 60  
|
November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
S/PDIF Receiver  
The following section describes timing as it relates to the  
S/PDIF receiver.  
Internal Digital PLL Mode  
In the internal digital phase-locked loop mode the internal PLL  
(digital PLL) generates the TBD × FS clock.  
Table 41. S/PDIF Receiver Internal Digital PLL Mode Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSI  
LRCLK Delay After SCLK  
LRCLK Hold After SCLK  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
Transmit Data Delay After SCLK  
Transmit Data Hold After SCLK  
Transmit SCLK Width  
tHDTI  
1
tSCLKIW  
1 SCLK frequency is TBD x FS where FS = the frequency of LRCLK.  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
DAI_P20-1  
(SCLK)  
tDFSI  
tHOFSI  
DAI_P20-1  
(FS)  
tDDTI  
tHDTI  
DAI_P20-1  
(DATA CHANNEL A/B)  
Figure 33. S/PDIF Receiver Internal Digital PLL Mode Timing  
Rev. PrA  
|
Page 46 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
SPI Interface—Master  
The ADSP-21462W/ADSP-21465W/ADSP-21467 contains two  
SPI ports. Both primary and secondary are available through  
DPI only. The timing provided in Table 42 and Table 43 applies  
to both.  
Table 42. SPI Interface Protocol—Master Switching and Timing Specifications  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Switching Characteristics  
Data Input Valid To SPICLK Edge (Data Input Setup Time)  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
SPICLK Last Sampling Edge To Data Input Not Valid  
tSPICLKM  
tSPICHM  
tSPICLM  
tDDSPIDM  
tHDSPIDM  
tSDSCIM  
tHDSM  
Serial Clock Cycle  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
FLAG3–0IN (SPI device select) Low to First SPICLK Edge  
Last SPICLK Edge to FLAG3–0IN High  
Sequential Transfer Delay  
ns  
ns  
ns  
ns  
tSPITDM  
FLAG3-0  
(OUTPUT)  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICHM  
tDDSPIDM  
tSPICLKM  
tHDSM  
tSPITDM  
SPICLK  
(CP = 0)  
(OUTPUT)  
tSPICLM  
SPICLK  
(CP = 1)  
(OUTPUT)  
tHDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
tSSPIDM  
tSSPIDM  
CPHASE = 1  
tHSPIDM  
tHSPIDM  
MISO  
MSB  
LSB  
(INPUT)  
VALID  
VALID  
tHDSPIDM  
tDDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
tSSPIDM  
tHSPIDM  
CPHASE = 0  
MSB  
VALID  
LSB  
VALID  
MISO  
(INPUT)  
Figure 34. SPI Master Timing  
Rev. PrA  
|
Page 47 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
SPI Interface—Slave  
Table 43. SPI Interface Protocol—Slave Switching and Timing Specifications  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSPICLKS  
tSPICHS  
tSPICLS  
tSDSCO  
Serial Clock Cycle  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPIDS Assertion to First SPICLK Edge  
CPHASE = 0  
CPHASE = 1  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
tHDS  
Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0  
Data Input Valid to SPICLK edge (Data Input Set-up Time)  
SPICLK Last Sampling Edge to Data Input Not Valid  
SPIDS Deassertion Pulse Width (CPHASE=0)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
tSSPIDS  
tHSPIDS  
tSDPPW  
Switching Characteristics  
tDSOE  
SPIDS Assertion to Data Out Active  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPIDS  
tHDSPIDS  
tDSOV  
SPIDS Deassertion to Data High Impedance  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
SPIDS Assertion to Data Out Valid (CPHAS E = 0)  
SPIDS  
(INPUT)  
tSPIC HS  
tSPICLS  
tSPICLKS  
tHDS  
tSDPPW  
SPICLK  
(CP = 0)  
(INPUT)  
tSPICLS  
tSDSCO  
tSPICHS  
SPICLK  
(CP = 1)  
(INPUT)  
tDSDHI  
tDDSPIDS  
tDSOE  
tDDSPIDS  
tHDSPIDS  
MISO  
(OUTPUT)  
MSB  
LSB  
tHSPIDS  
CPHASE = 1  
tSSPIDS  
tSSPIDS  
MOSI  
(INPUT)  
MSB VALID  
LSB VALID  
tHDSPIDS  
tDDSPIDS  
tDSDHI  
MISO  
(OUTPUT)  
MSB  
LSB  
tDSOV  
tHSPIDS  
CPHASE = 0  
tSSPIDS  
MOSI  
(INPUT)  
MSB VALID  
LSB VALID  
Figure 35. SPI Slave Timing  
Rev. PrA  
|
Page 48 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
ation of internal UART interrupts and the external data  
operations. These latencies are negligible at the data transmis-  
sion rates for the UART.  
Universal Asynchronous Receiver-Transmitter  
(UART) Port—Receive and Transmit Timing  
Figure 36 describes UART port receive and transmit operations.  
The maximum baud rate is PCLK/16 where PCLK = 1/tPCLK.  
As shown in Figure 36 there is some latency between the gener-  
Table 44. UART Port  
Parameter  
Min  
Max  
Unit  
ns  
Timing Requirement  
1
tRXD  
Incoming Data Pulse Width  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Switching Characteristic  
t
TXD1 Outgoing Data Pulse Width  
ns  
1 UART signals RXD and TXD are routed through DPI P14-1 pins using the SRU.  
DPI_P14  
[RXD]  
-1  
DATA(5-8)  
STOP  
RECEIVE  
tRXD  
INTERNAL  
UART RECEIVE  
INTERRUPT  
UART RECEIVE BIT SET BY DATA STOP;  
CLEARED BY FIFO READ  
START  
DPI_P14  
[TXD]  
-1  
DATA(5-8)  
STOP(1-2)  
TRANSMIT  
tTXD  
INTERNAL  
UART TRANSMIT  
INTERRUPT  
UART TRANSMIT BIT SET BY PROGRAM;  
CLEARED BY WRITE TO TRANSMIT  
Figure 36. UART Port—Receive and Transmit Timing  
Rev. PrA  
|
Page 49 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
TWI Controller Timing  
Table 45 and Figure 37 provide timing information for the TWI  
interface. Input Signals (SCL, SDA) are routed to the  
DPI_P14–1 pins using the SRU. Therefore, the timing specifica-  
tions provided below are valid at the DPI_P14–1 pins.  
Table 45. Characteristics of the SDA and SCL Bus Lines for F/S-Mode TWI Bus Devices1  
Standard Mode  
Fast Mode  
Parameter  
fSCL  
Min  
TBD  
Max  
TBD  
Min  
TBD  
Max  
TBD  
Unit  
kHz  
SCL Clock Frequency  
tHDSTA  
Hold Time (repeated) Start Condition. After This  
Period, the First Clock Pulse is Generated.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
ns  
tLOW  
Low Period of the SCL Clock  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tSUSTO  
tBUF  
High Period of the SCL Clock  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Setup Time for a Repeated Start Condition  
Data Hold Time for TWI-bus Devices  
Data Setup Time  
Setup Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
tSP  
Pulse Width of Spikes Suppressed By the Input Filter n/a  
n/a  
TBD  
1 All values referred to VIHmin and VILmax levels. For more information, see Electrical Characteristics on page 19.  
DPI_P14-1  
SDA  
tSUDAT  
tHDS TA  
tBUF  
tLOW  
tSP  
DPI_P14-1  
SCL  
tSUS TA  
tSUSTO  
tHDS TA  
tHIGH  
S
P
Sr  
S
tH DDAT  
Figure 37. Fast and Standard Mode Timing on the TWI Bus  
Rev. PrA  
|
Page 50 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
JTAG Test Access Port and Emulation  
Table 46. JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High  
System Inputs Hold After TCK High  
TRST Pulse Width  
1
tSSYS  
1
tHSYS  
tTRSTW  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
System Outputs Delay After TCK Low  
ns  
ns  
2
tDSYS  
1 System Inputs = AD15–0, CLKCFG1–0, RESET, BOOTCFG1–0, DAI_Px, and FLAG3–0.  
2 System Outputs = DAI_Px, AD15–0, AMI_RD, AMI_WR, FLAG3–0, CLKOUT, and EMU.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 38. IEEE 1149.1 JTAG Test Access Port  
Rev. PrA  
|
Page 51 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
Thermal Diode  
TBD  
Media Local Bus  
TBD  
Rev. PrA  
|
Page 52 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
OUTPUT DRIVE CURRENTS  
TESTER PIN ELECTRONICS  
Figure 39 shows typical I-V characteristics for the output driv-  
ers of the ADSP-21462W/ADSP-21465W/ADSP-21467. The  
curves represent the current drive capability of the output driv-  
ers as a function of output voltage.  
50:  
V
LOAD  
T1  
DUT  
OUTPUT  
45:  
70:  
ZO = 50:ꢀ(impedance)  
TD = 4.04 r 1.18 ns  
50:  
0.5pF  
4pF  
2pF  
12  
10  
400:  
NOTES:  
THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED  
FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE  
EFFECT AND MUST BE CONSIDERED.THE TRANSMISSION LINE (TD), IS FOR  
LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.  
8
TBD  
6
ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN  
SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE  
EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.  
4
Figure 40. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
2
0
outside the ranges shown for Typical Output Delay vs. Load  
Capacitance and Typical Output Rise Time (20% to 80%,  
V = Min) vs. Load Capacitance.  
50  
100  
150  
200  
250  
0
Figure 39. ADSP-21462W/ADSP-21465W/ADSP-21467 Typical Drive at Junc-  
tion Temperature  
TEST CONDITIONS  
12  
10  
The ac signal specifications (timing parameters) appear in  
Table 15 on Page 25 through Table 46 on Page 51. These include  
output disable time, output enable time, and capacitive loading.  
The timing specifications for the SHARC apply for the voltage  
reference levels in Figure 40.  
Timing is measured on signals when they cross the 1.5 V level as  
described in Figure 41. All delays (in nanoseconds) are mea-  
sured between the point that the first signal reaches 1.5 V and  
the point that the second signal reaches 1.5 V.  
8
TBD  
6
4
2
0
50  
100  
150  
200  
250  
0
INPUT  
OR  
OUTPUT  
Figure 42. Typical Output Rise/Fall Time (20% to 80%,  
VDD_EXT = Max)  
1.5V  
1.5V  
Figure 41. Voltage Reference Levels for AC Measurements  
CAPACITIVE LOADING  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 40). Figure 44 shows graphically  
how output delays and holds vary with load capacitance. The  
graphs of Figure 42, Figure 43, and Figure 44 may not be linear  
Rev. PrA  
|
Page 53 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
TJ = junction temperature °C  
CASE = case temperature (°C) measured at the top center of the  
package  
JT = junction-to-top (of package) characterization parameter  
is the Typical value from Table 47.  
D = power dissipation  
T
12  
10  
Ψ
P
8
Values of θJA are provided for package comparison and PCB  
design considerations. θJA can be used for a first order approxi-  
mation of TJ by the equation:  
TBD  
6
4
T = T + (θ × P )  
J
A
JA  
D
2
0
where:  
TA = ambient temperature °C  
50  
100  
150  
200  
250  
0
Values of θJC are provided for package comparison and PCB  
design considerations when an external heatsink is required.  
Figure 43. Typical Output Rise/Fall Time (20% to 80%,  
VDD_EXT = Min)  
Values of θJB are provided for package comparison and PCB  
design considerations. Note that the thermal characteristics val-  
ues provided in Table 47 are modeled values.  
12  
10  
Table 47. Thermal Characteristics for 324-Lead PBGA  
Parameter  
θJA  
Condition  
Typical  
TBD  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
θJMA  
TBD  
8
θJMA  
TBD  
TBD  
6
θJC  
TBD  
ΨJT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
TBD  
4
ΨJMT  
ΨJMT  
TBD  
TBD  
2
0
50  
100  
150  
200  
250  
0
Figure 44. Typical Output Delay or Hold vs. Load Capacitance  
(at Ambient Temperature)  
THERMAL CHARACTERISTICS  
The ADSP-21462W/ADSP-21465W/ADSP-21467 processor is  
rated for performance over the temperature range specified in  
Operating Conditions on Page 18.  
Table 47 airflow measurements comply with JEDEC standards  
JESD51-2 and JESD51-6 and the junction-to-board measure-  
ment complies with JESD51-8. Test board design complies with  
JEDEC standards JESD51-7 (PBGA). The junction-to-case mea-  
surement complies with MIL- STD-883. All measurements use a  
2S2P JEDEC test board.  
To determine the junction temperature of the device while on  
the application PCB, use:  
T = T  
+ (Ψ × P )  
JT  
D
J
CASE  
where:  
Rev. PrA  
|
Page 54 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
BALL CONFIGURATION - ADSP-2146x  
Figure 45 shows the ball configuration for the ASDP-2146x.  
A1 CORNER  
INDEX AREA  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
A
B
C
D
E
F
D
D
D
R
R
D
D
D
D
D
D
D
S
D
D
D
D
D
D
D
G
A
H
J
K
L
M
N
P
R
T
T
U
V
V
D
R
V
DDINT  
DD_DDR2  
V
V
DDEXT  
V
REF  
T
A
S
V
SS  
DD_THD  
DD_A  
V
V
NC  
SS_A  
I/O SIGNALS  
Figure 45. ADSP-21462W/ADSP-21465W/ADSP-21467 Ball Configuration - Pin Out  
Rev. PrA  
|
Page 55 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
PBGA PINOUT  
Table 48 lists the pin assignments of the SHARC processors.  
Table 48. 19 mm by 19 mm PBGA Pin Assignment (Alphabetically by Signal)  
Signal  
AMI_ACK  
Ball  
R10  
V16  
U16  
T16  
R16  
V15  
U15  
T15  
Signal  
BR3  
Ball  
T8  
Signal  
Ball  
B17  
A17  
C18  
C17  
B18  
C7  
Signal  
Ball  
T1  
DDR2_ADDR14  
DDR2_ADDR15  
DDR2_BA0  
DDR2_BA1  
DDR2_BA2  
DDR2_CAS  
DDR2_CKE  
DDR2_CLK0  
DPI_P03  
DPI_P04  
DPI_P05  
DPI_P06  
DPI_P07  
DPI_P08  
DPI_P09  
DPI_P10  
AMI_ADDR0  
AMI_ADDR01  
AMI_ADDR02  
AMI_ADDR03  
AMI_ADDR04  
AMI_ADDR05  
AMI_ADDR06  
BR4  
V9  
U9  
T9  
R1  
P1  
P2  
P3  
P4  
N1  
N2  
BR5  
BR6  
CLK_CFG0  
CLK_CFG1  
CLKIN  
G1  
G2  
L1  
E1  
CLKOUT/RESETOUT M2  
/RUNRSTIN  
B7  
AMI_ADDR07  
AMI_ADDR08  
AMI_ADDR09  
AMI_ADDR10  
AMI_ADDR11  
AMI_ADDR12  
AMI_ADDR13  
AMI_ADDR14  
AMI_ADDR15  
AMI_ADDR16  
AMI_ADDR17  
AMI_ADDR18  
AMI_ADDR19  
AMI_ADDR20  
AMI_ADDR21  
AMI_ADDR22  
AMI_ADDR23  
AMI_DATA0  
AMI_DATA1  
AMI_DATA2  
AMI_DATA3  
AMI_DATA4  
AMI_DATA5  
AMI_DATA6  
AMI_DATA7  
AMI_MS0  
R15  
V14  
U14  
T14  
R14  
V13  
U13  
T13  
R13  
V12  
U12  
T12  
R12  
V11  
U11  
T11  
R11  
U18  
T18  
R18  
P18  
V17  
U17  
T17  
R17  
T10  
U10  
J4  
DAI_P01  
R7  
DDR2_CLK0  
DDR2_CLK1  
DDR2_CLK1  
DDR2_CS0  
A7  
DPI_P11  
DPI_P12  
DPI_P13  
DPI_P14  
EMU  
N3  
DAI_P02  
V6  
B13  
A13  
C1  
N4  
DAI_P03  
U6  
M3  
M4  
K2  
DAI_P04  
T6  
DAI_P05  
R6  
DDR2_CS1  
D1  
C2  
DAI_P06  
V5  
DDR2_CS2  
FLAG0  
R8  
DAI_P07  
U5  
DDR2_CS3  
D2  
B2  
FLAG1  
V7  
DAI_P08  
T5  
DDR2_DATA0  
DDR2_DATA01  
DDR2_DATA02  
DDR2_DATA03  
DDR2_DATA04  
DDR2_DATA05  
DDR2_DATA06  
DDR2_DATA07  
DDR2_DATA08  
DDR2_DATA09  
DDR2_DATA10  
DDR2_DATA11  
DDR2_DATA12  
DDR2_DATA13  
DDR2_DATA14  
DDR2_DATA15  
DDR2_DM0  
DDR2_DM1  
DDR2_DQS0  
DDR2_DQS0  
DDR2_DQS1  
DDR2_DQS1  
DDR2_ODT  
FLAG2  
U7  
DAI_P09  
R5  
A2  
FLAG3  
T7  
DAI_P10  
V4  
B3  
ID_0  
G3  
DAI_P11  
U4  
A3  
ID_1  
G4  
DAI_P12  
T4  
B5  
ID_2  
G5  
DAI_P13  
R4  
A5  
LACK_0  
LACK_1  
LCLK_0  
LCLK_1  
LDAT0_0  
LDAT0_1  
LDAT0_2  
LDAT0_3  
LDAT0_4  
LDAT0_5  
LDAT0_6  
LDAT0_7  
LDAT1_0  
LDAT1_1  
LDAT1_2  
LDAT1_3  
LDAT1_4  
LDAT1_5  
LDAT1_6  
LDAT1_7  
MLBCLK  
MLBDO  
K17  
P17  
J18  
N18  
E18  
F17  
F18  
G17  
G18  
H16  
H17  
J16  
K18  
L16  
L17  
L18  
M16  
M17  
N16  
P16  
K3  
DAI_P14  
V3  
B6  
DAI_P15  
U3  
A6  
DAI_P16  
T3  
B8  
DAI_P17  
R3  
A8  
DAI_P18  
V2  
B9  
DAI_P19  
U2  
A9  
DAI_P20  
T2  
A11  
B11  
A12  
B12  
C3  
DDR2_ADDR0  
DDR2_ADDR01  
DDR2_ADDR02  
DDR2_ADDR03  
DDR2_ADDR04  
DDR2_ADDR05  
DDR2_ADDR06  
DDR2_ADDR07  
DDR2_ADDR08  
DDR2_ADDR09  
DDR2_ADDR10  
DDR2_ADDR11  
DDR2_ADDR12  
DDR2_ADDR13  
D13  
C13  
D14  
C14  
B14  
A14  
D15  
C15  
B15  
A15  
D16  
C16  
B16  
A16  
C11  
B4  
AMI_MS1  
A4  
AMI_RD  
B10  
A10  
B1  
AMI_WR  
V10  
J2  
BOOT_CFG0  
BOOT_CFG1  
BOOT_CFG2  
BR1  
J3  
DDR2_RAS  
C9  
H3  
DDR2_WE  
C10  
R2  
V8  
DPI_P01  
BR2  
U8  
DPI_P02  
U1  
L4  
Rev. PrA  
|
Page 56 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Table 48. 19 mm by 19 mm PBGA Pin Assignment (Alphabetically by Signal)  
Signal  
MLBSIG  
MLBSO  
MLDAT  
RESET  
RPBA  
Ball  
L2  
Signal  
Ball  
N9  
Signal  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Ball  
E3  
Signal  
VSS  
Ball  
L12  
L10  
L11  
L9  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
THD  
INT  
INT  
L3  
N8  
D10  
D17  
D9  
VSS  
K4  
N7  
VSS  
M1  
R9  
N6  
VSS  
N13  
M6  
M13  
L6  
E5  
VSS  
L14  
M5  
M7  
M8  
M9  
M10  
M11  
M12  
N14  
N17  
P5  
TCK  
K15  
L15  
M15  
N12  
N11  
K16  
N15  
H1  
E12  
E13  
E16  
F2  
VSS  
TDI  
VSS  
TDO  
VSS  
THD_M  
THD_P  
TMS  
L13  
K6  
VSS  
F4  
VSS  
K13  
J6  
F14  
F16  
G7  
VSS  
TRST  
VSS  
VDD_A  
J13  
H6  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
G16  
G14  
F5  
G8  
VSS  
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
EXT  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
H5  
G9  
VSS  
H14  
H13  
G6  
G10  
G11  
G12  
G15  
H4  
VSS  
P7  
F3  
VSS  
P9  
F15  
E7  
VSS  
P11  
P13  
V1  
G13  
F9  
VSS  
E2  
VSS  
E17  
E11  
E10  
D8  
F8  
H7  
VSS  
V18  
D4  
F7  
H8  
VREF  
VREF  
XTAL  
F6  
H9  
D11  
K1  
F13  
F12  
F11  
F10  
E9  
H10  
H11  
H12  
J1  
D6  
D3  
D18  
C5  
J7  
C12  
E17  
P8  
E8  
J8  
E6  
J9  
E15  
E14  
D12  
N10  
N9  
J10  
J11  
J12  
J14  
J17  
K5  
P6  
EXT  
P15  
P14  
P12  
P10  
N5  
EXT  
EXT  
EXT  
N8  
EXT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H2  
K7  
EXT  
_A  
M18  
M14  
L5  
A1  
K8  
EXT  
A18  
C4  
K9  
EXT  
K10  
K11  
K12  
L7  
EXT  
K14  
J5  
C6  
EXT  
C8  
EXT  
J15  
F1  
D5  
EXT  
D7  
L8  
INT  
Rev. PrA  
|
Page 57 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
The ADSP-21462W/ADSP-21465W/ADSP-21467 processors  
are available in a 19 mm by 19 mm PBGA lead-free package.  
19.20  
19.00 SQ  
18.80  
BALL A1  
BALL A1  
18 16 14 12 10  
17 15 13 11  
8
6
4
2
PAD CORNER  
PAD CORNER  
9
7
5
3
1
A
B
C
D
E
F
17.00  
17.05  
16.95 SQ  
16.85  
G
H
J
BSC SQ  
K
L
M
N
P
R
T
1.00  
BSC  
U
V
BOTTOM VIEW  
TOP VIEW  
1.00 REF  
DETAIL A  
2.40  
2.28  
2.16  
1.22  
1.17  
1.12  
DETAIL A  
0.61  
NOM  
0.50 NOM  
0.40 MIN  
0.70  
0.60  
0.50  
0.20  
COPLANARITY  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MS-034-BAR-2  
Figure 46. 324-Ball Plastic Ball Grid Array [PBGA]  
(B-324)  
Dimensions shown in millimeters  
Rev. PrA  
|
Page 58 of 60  
|
November 2008  
Preliminary Technical Data  
ADSP-21462W/ADSP-21465W/ADSP-21467  
AUTOMOTIVE PRODUCTS  
The ADSP-21462W and ADSP-21465W are available for auto-  
motive applications with controlled manufacturing. Note that  
these special models may have specifications that differ from the  
general release models.  
The automotive grade products shown in Table 49 are available  
for use in automotive applications. Contact your local ADI  
account representative or authorized ADI product distributor  
for specific product ordering information. Note that all automo-  
tive products are RoHS compliant.  
Table 49. Automotive Products  
On-Chip  
Temperature Range1 SRAM  
Model  
ROM  
Package Description  
Package Option  
–40°C to +85°C  
5M bit  
4M bit  
324-Ball Plastic Ball Grid Array B-324-2  
(PBGA)  
AD21462WBBZ3xx  
–40°C to +85°C  
5M bit  
4M bit  
324-Ball Plastic Ball Grid Array B-324-2  
(PBGA)  
AD21465WBBZ3xx  
1 Referenced temperature is ambient temperature.  
ORDERING GUIDE  
Temperature Range1 On-Chip  
SRAM  
Model  
ADSP-21467KBZ-ENG2, 3, 4  
ROM  
4 Mbit  
Package Description  
324-Ball Plastic Ball Grid Array B-324-2  
(PBGA)  
Package Option  
0 °C to +70 °C  
5 Mbit  
1
2
3
4
Referenced temperature is ambient temperature.  
Z =Part number subject to change.  
Z =RoHS Compliant Part  
Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at  
www.analog.com/SHARC  
Rev. PrA  
|
Page 59 of 60 | November 2008  
ADSP-21462W/ADSP-21465W/ADSP-21467  
Preliminary Technical Data  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR07900-0-11/08(PrA)  
Rev. PrA  
|
Page 60 of 60  
|
November 2008  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY