ADSP-21483 [ADI]

SHARC Processor;
ADSP-21483
型号: ADSP-21483
厂家: ADI    ADI
描述:

SHARC Processor

文件: 总71页 (文件大小:1881K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC Processor  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
FEATURES  
High performance 32-bit/40-bit floating-point processor  
The ADSP-2148x processors are available with unique audio-  
centric peripherals, such as the digital applications  
interface, serial ports, precision clock generators, S/PDIF  
transceiver, asynchronous sample rate converters, input  
data port, and more  
optimized for high performance audio processing  
Single-instruction, multiple-data (SIMD) computational  
architecture  
On-chip memory—5 Mbits on-chip RAM, 4 Mbits on-chip  
ROM  
For complete ordering information, see Ordering Guide on  
Page 70  
Up to 450 MHz operating frequency  
AEC-Q100 qualified for automotive applications  
Code compatible with all other members of the SHARC family  
Internal Memory  
SIMD Core  
Block 0  
RAM/ROM  
Block 1  
RAM/ROM  
Block 2  
RAM  
Block 3  
RAM  
Instruction  
Cache  
5 Stage  
Sequencer  
S
B2D  
64-BIT  
B0D  
64-BIT  
B3D  
64-BIT  
B1D  
64-BIT  
Core  
Timer  
DAG1/2  
PEx  
DMD  
DMD  
64-BIT  
64-BIT  
PEy  
Core Bus  
Cross Bar  
Internal Memory I/F  
PMD  
64-BIT  
PMD 64-BIT  
FLAGx/IRQx/  
TMREXP  
IOD0 32-BIT  
THERMAL  
DIODE  
EPD BUS 64-BIT  
JTAG  
PERIPHERAL BUS  
32-BIT  
IOD1  
32-BIT  
IOD0 BUS  
FFT  
DTCP/  
FIR  
MTM  
IIR  
PERIPHERAL BUS  
EP  
SPEP BUS  
CORE  
FLAGS/  
PWM3  
PDAP/  
IDP  
7-0  
S/PDIF PCG ASRC  
Tx/Rx  
SPORT  
7-0  
CORE PWM  
WDT  
SDRAM  
CTL  
PCG  
TIMER  
1-0  
TWI SPI/B UART  
AMI  
A
-
D
3
-
0
FLAGS  
3-0  
C-D  
-
1
DPI Routing/Pins  
DAI Routing/Pins  
External Port Pin MUX  
External  
Port  
DPI Peripherals  
DAI Peripherals  
Figure 1. Functional Block Diagram  
Peripherals  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. H Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
TABLE OF CONTENTS  
Features ................................................................. 1  
Table of Contents ..................................................... 2  
Revision History ...................................................... 2  
General Description ................................................. 3  
Family Core Architecture ........................................ 4  
Family Peripheral Architecture ................................ 7  
I/O Processor Features ......................................... 10  
System Design .................................................... 11  
Development Tools ............................................. 12  
Additional Information ........................................ 13  
Related Signal Chains .......................................... 13  
Pin Function Descriptions ....................................... 14  
Specifications ........................................................ 18  
Operating Conditions .......................................... 18  
Electrical Characteristics ....................................... 19  
Absolute Maximum Ratings .................................. 21  
ESD Sensitivity ................................................... 21  
Maximum Power Dissipation ................................. 21  
Timing Specifications ........................................... 22  
Output Drive Currents ......................................... 55  
Test Conditions .................................................. 55  
Capacitive Loading .............................................. 55  
Thermal Characteristics ........................................ 56  
88-Lead LFCSP_VQ Lead Assignment ......................... 58  
100-Lead LQFP_EP Lead Assignment ......................... 60  
176-Lead LQFP_EP Lead Assignment ......................... 62  
Outline Dimensions ................................................ 66  
Surface-Mount Design .......................................... 68  
Automotive Products .............................................. 69  
Ordering Guide ..................................................... 70  
REVISION HISTORY  
2/2020—Rev. G to Rev. H  
Changes to Pin List, Power, Ground and Other .............. 17  
Changes to Operating Conditions ............................... 18  
Changes to Electrical Characteristics ............................ 19  
Changes to Thermal Characteristics ............................ 56  
Changes to 88-Lead LFCSP_VQ Lead Assignment .......... 58  
Changes to 100-Lead LQFP_EP Lead Assignment ........... 60  
Changes to 176-Lead LQFP_EP Lead Assignment ........... 62  
Changes to Automotive Products ................................ 69  
Changes to Ordering Guide ....................................... 70  
Rev. H  
|
Page 2 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
GENERAL DESCRIPTION  
The ADSP-2148x SHARC® processors are members of the  
SIMD SHARC family of DSPs that feature Analog Devices’  
Super Harvard Architecture. The processors are source code  
compatible with the ADSP-2126x, ADSP-2136x, ADSP-2137x,  
ADSP-2146x, ADSP-2147x and ADSP-2116x DSPs, as well as  
with first generation ADSP-2106x SHARC processors in SISD  
(single-instruction, single-data) mode. The ADSP-2148x pro-  
cessors are 32-bit/40-bit floating point processors optimized for  
high performance audio applications with large on-chip SRAM,  
multiple internal buses to eliminate I/O bottlenecks, and an  
innovative digital applications interface (DAI).  
Table 1. Processor Benchmarks  
Speed  
Speed  
(at 400 MHz) (at 450 MHz)  
Benchmark Algorithm  
1024 Point Complex FFT  
(Radix 4, with Reversal)  
23 μs  
20.44 μs  
FIR Filter (per Tap)1  
IIR Filter (per Biquad)1  
1.25 ns  
5 ns  
1.1 ns  
4.43 ns  
Matrix Multiply (Pipelined)  
[3 × 3] × [3 × 1]  
[4 × 4] × [4 × 1]  
11.25 ns  
20 ns  
10.0 ns  
17.78 ns  
Table 1 shows performance benchmarks for the ADSP-2148x  
processors. Table 2 shows the features of the individual product  
offerings.  
Divide (y/×)  
7.5 ns  
6.67 ns  
10.0 ns  
Inverse Square Root  
1 Assumes two files in multichannel SIMD mode  
11.25 ns  
Table 2. ADSP-2148x Family Features  
Feature  
ADSP-21483 ADSP-21486  
ADSP-21487  
ADSP-21488  
400 MHz  
2/3 Mbits1  
ADSP-21489  
450 MHz  
Maximum Instruction Rate  
RAM  
400 MHz  
3 Mbits  
400 MHz  
450 MHz  
5 Mbits  
5 Mbits  
ROM  
4 Mbits  
No  
No  
Audio Decoders in ROM2  
Pulse-Width Modulation  
DTCP Hardware Accelerator  
Yes  
4 Units (3 Units on 100-Lead Packages)  
Contact Analog Devices  
External Port Interface (SDRAM, AMI)3 Yes (16-bit)  
AMI Only  
Yes (16-bit)  
Serial Ports  
8
Direct DMA from SPORTs to  
Yes  
External Port (External Memory)  
FIR, IIR, FFT Accelerator  
Watchdog Timer  
MediaLB Interface  
IDP/PDAP  
Yes  
Yes (176-Lead Package Only)  
Automotive Models Only  
Yes  
1
UART  
DAI (SRU)/DPI (SRU2)  
S/PDIF Transceiver  
SPI  
Yes  
Yes  
Yes  
TWI  
1
SRC Performance4  
Thermal Diode  
VISA Support  
–128 dB  
Yes  
Yes  
Package3  
176-Lead LQFP EPAD  
100-Lead LQFP EPAD  
176-Lead LQFP EPAD 176-Lead LQFP EPAD 176-Lead LQFP EPAD  
88-Lead LFCSP5 100-Lead LQFP EPAD 100-Lead LQFP EPAD5  
88-Lead LFCSP5 88-Lead LFCSP5  
1 See Ordering Guide on Page 70.  
2 ROM is factory programmed with latest multichannel audio decoding and post-processing algorithms from Dolby® Labs and DTS®. Decoder/post-processor algorithm  
combination support varies depending upon the chip version and the system configurations. Visit www.analog.com for complete information.  
3 The 100-lead and 88-lead packages do not contain an external port. The SDRAM controller pins must be disabled when using this package. For more information, see Pin  
FunctionDescriptionsonPage 14. TheADSP-21486 processorin the176-leadpackagealso does notcontaina SDRAMcontroller. Formoreinformation, see176-LeadLQFP_EP  
Lead Assignment on page 62.  
4 Some models have –140 dB performance. For more information, see Ordering Guide on page 70.  
5 Only available up to 400 MHz. See Ordering Guide on Page 70 for details.  
Rev. H  
| Page 3 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
The diagram on Page 1 shows the two clock domains that make  
up the ADSP-2148x processors. The core clock domain contains  
the following features:  
SIMD Computational Engine  
The ADSP-2148x contains two computational processing ele-  
ments that operate as a single-instruction, multiple-data  
(SIMD) engine. The processing elements are referred to as PEX  
and PEY and each contains an ALU, multiplier, shifter, and reg-  
ister file. PEx is always active, and PEy may be enabled by  
setting the PEYEN mode bit in the MODE1 register. SIMD  
mode allows the processor to execute the same instruction in  
both processing elements, but each processing element operates  
on different data. This architecture is efficient at executing math  
intensive DSP algorithms.  
• Two processing elements (PEx, PEy), each of which com-  
prises an ALU, multiplier, shifter, and data register file  
• Data address generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
• PM and DM buses capable of supporting 2x64-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
• One periodic interval timer with pinout  
SIMD mode also affects the way data is transferred between  
memory and the processing elements because twice the data  
bandwidth is required to sustain computational operation in the  
processing elements. Therefore, entering SIMD mode also dou-  
bles the bandwidth between memory and the processing  
elements. When using the DAGs to transfer data in SIMD  
mode, two data values are transferred with each memory or reg-  
ister file access.  
• On-chip SRAM (5 Mbit) and mask-programmable ROM  
(4 Mbit)  
• JTAG test access port for emulation and boundary scan.  
The JTAG provides software debug through user break-  
points which allows flexible exception handling.  
The block diagram of the ADSP-2148x on Page 1 also shows the  
peripheral clock domain (also known as the I/O processor)  
which contains the following features:  
Independent, Parallel Computation Units  
Within each processing element is a set of computational units.  
The computational units consist of an arithmetic/logic unit  
(ALU), multiplier, and shifter. These units perform all opera-  
tions in a single cycle and are arranged in parallel, maximizing  
computational throughput. Single multifunction instructions  
execute parallel ALU and multiplier operations. In SIMD mode,  
the parallel ALU and multiplier operations occur in both pro-  
cessing elements. These computation units support IEEE 32-bit  
single-precision floating-point, 40-bit extended precision float-  
ing-point, and 32-bit fixed-point data formats.  
• IOD0 (peripheral DMA) and IOD1 (external port DMA)  
buses for 32-bit data transfers  
• Peripheral and external port buses for core connection  
• External port with an AMI and SDRAM controller  
• 4 units for PWM control  
• 1 memory-to-memory (MTM) unit for internal-to-internal  
memory transfers  
• Digital applications interface that includes four precision  
clock generators (PCG), an input data port (IDP/PDAP)  
for serial and parallel interconnects, an S/PDIF  
receiver/transmitter, four asynchronous sample rate con-  
verters, eight serial ports, and a flexible signal routing unit  
(DAI SRU).  
Timer  
The processor contains a core timer that can generate periodic  
software interrupts. The core timer can be configured to use  
FLAG3 as a timer expired signal.  
• Digital peripheral interface that includes two timers, a  
2-wire interface (TWI), one UART, two serial peripheral  
interfaces (SPI), 2 precision clock generators (PCG), pulse  
width modulation (PWM), and a flexible signal routing  
unit (DPI SRU2).  
Data Register File  
Each processing element contains a general-purpose data regis-  
ter file. The register files transfer data between the computation  
units and the data buses, and store intermediate results. These  
10-port, 32-register (16 primary, 16 secondary) register files,  
combined with the processor’s enhanced Harvard architecture,  
allow unconstrained data flow between computation units and  
internal memory. The registers in PEX are referred to as  
R0–R15 and in PEY as S0–S15.  
As shown in the SHARC core block diagram on Page 5, the  
processor uses two computational units to deliver a significant  
performance increase over the previous SHARC processors on a  
range of DSP algorithms. With its SIMD computational hard-  
ware, the processors can perform 2.7 GFLOPS running at  
450 MHz.  
Context Switch  
Many of the processor’s registers have secondary registers that  
can be activated during interrupt servicing for a fast context  
switch. The data registers in the register file, the DAG registers,  
and the multiplier result registers all have secondary registers.  
The primary registers are active at reset, while the secondary  
registers are activated by control bits in a mode control register.  
FAMILY CORE ARCHITECTURE  
The ADSP-2148x is code compatible at the assembly level with  
the ADSP-2147x, ADSP-2146x, ADSP-2137x, ADSP-2136x,  
ADSP-2126x, ADSP-21160, and ADSP-21161, and with the first  
generation ADSP-2106x SHARC processors. The ADSP-2148x  
shares architectural features with the ADSP-2126x, ADSP-  
2136x, ADSP-2137x, ADSP-2146x and ADSP-2116x SIMD  
SHARC processors, as shown in Figure 2 and detailed in the fol-  
lowing sections.  
Rev. H  
|
Page 4 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
S
JTAG  
FLAG TIMER INTERRUPT CACHE  
SIMD Core  
PM ADDRESS 24  
PM DATA 48  
DMD/PMD 64  
5 STAGE  
PROGRAM SEQUENCER  
DAG2  
16x32  
DAG1  
16x32  
PM ADDRESS 32  
SYSTEM  
I/F  
DM ADDRESS 32  
PM DATA 64  
USTAT  
4x32-BIT  
PX  
64-BIT  
DM DATA 64  
DATA  
SWAP  
RF  
Rx/Fx  
PEx  
RF  
Sx/SFx  
PEy  
ALU  
SHIFTER  
MULTIPLIER  
ALU  
SHIFTER MULTIPLIER  
16x40-BIT  
16x40-BIT  
MRB  
80-BIT  
MSB  
80-BIT  
MRF  
80-BIT  
MSF  
80-BIT  
ASTATy  
STYKy  
ASTATx  
STYKx  
Figure 2. SHARC Core Block Diagram  
fetches conflict with PM bus data accesses are cached. This  
cache allows full speed execution of core, looped operations  
such as digital filter multiply-accumulates, and FFT butterfly  
processing.  
Universal Registers  
These registers can be used for general-purpose tasks. The  
USTAT (4) registers allow easy bit manipulations (Set, Clear,  
Toggle, Test, XOR) for all peripheral registers (control/status).  
Data Address Generators With Zero-Overhead Hardware  
Circular Buffer Support  
The data bus exchange register (PX) permits data to be passed  
between the 64-bit PM data bus and the 64-bit DM data bus, or  
between the 40-bit register file and the PM/DM data bus. These  
registers contain hardware to handle the data width difference.  
The two data address generators (DAGs) are used for indirect  
addressing and implementing circular data buffers in hardware.  
Circular buffers allow efficient programming of delay lines and  
other data structures required in digital signal processing, and  
are commonly used in digital filters and Fourier transforms.  
The two DAGs contain sufficient registers to allow the creation  
of up to 32 circular buffers (16 primary register sets, 16 second-  
ary). The DAGs automatically handle address pointer  
wraparound, reduce overhead, increase performance, and sim-  
plify implementation. Circular buffers can start and end at any  
memory location.  
Single-Cycle Fetch of Instruction and Four Operands  
The ADSP-2148x features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data and the pro-  
gram memory (PM) bus transfers both instructions and data.  
With the its separate program and data memory buses and on-  
chip instruction cache, the processor can simultaneously fetch  
four operands (two over each data bus) and one instruction  
(from the cache), all in a single cycle.  
Instruction Cache  
Flexible Instruction Set  
The processor includes an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and four  
data values. The cache is selective—only the instructions whose  
The 48-bit instruction word accommodates a variety of parallel  
operations, for concise programming. For example, the  
processor can conditionally execute a multiply, an add, and a  
Rev. H  
|
Page 5 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
subtract in both processing elements while branching and fetch-  
ing up to four 32-bit values from memory, all in a single  
instruction.  
SDRAM memory. This support is not extended to the  
asynchronous memory interface (AMI). Source modules need  
to be built using the VISA option, in order to allow code genera-  
tion tools to create these more efficient opcodes.  
Variable Instruction Set Architecture (VISA)  
On-Chip Memory  
In addition to supporting the standard 48-bit instructions from  
previous SHARC processors, the ADSP-2148x supports new  
instructions of 16 and 32 bits. This feature, called Variable  
Instruction Set Architecture (VISA), drops redundant/unused  
bits within the 48-bit instruction to create more efficient and  
compact code. The program sequencer supports fetching these  
16-bit and 32-bit instructions from both internal and external  
The ADSP-21483 and the ADSP-21488 processors contain  
3 Mbits of internal RAM (Table 3) and the ADSP-21486,  
ADSP-21487, and ADSP-21489 processors contain 5 Mbits of  
internal RAM (Table 4). Each memory block supports single-  
cycle, independent accesses by the core processor and I/O  
processor.  
Table 3. Internal Memory Space (3 MBits—ADSP-21483/ADSP-21488)1  
IOP Registers 0x0000 0000–0x0003 FFFF  
Extended Precision Normal or  
Instruction Word (48 Bits)  
Long Word (64 Bits)  
Normal Word (32 Bits)  
Short Word (16 Bits)  
Block 0 ROM (Reserved)  
Block 0 ROM (Reserved)  
Block 0 ROM (Reserved)  
Block 0 ROM (Reserved)  
0x0004 0000–0x0004 7FFF  
0x0008 0000–0x0008 AAA9  
0x0008 0000–0x0008 FFFF  
0x0010 0000–0x0011 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 8000–0x0004 8FFF  
0x0008 AAAA–0x0008 BFFF  
0x0009 0000–0x0009 1FFF  
0x0012 0000–0x0012 3FFF  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
0x0004 9000–0x0004 CFFF  
0x0008 C000–0x0009 1554  
0x0009 2000–0x0009 9FFF  
0x0012 4000–0x0013 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 D000–0x0004 FFFF  
0x0009 1555–0x0009 FFFF  
0x0009 A000–0x0009 FFFF  
0x0013 4000–0x0013 FFFF  
Block 1 ROM (Reserved)  
Block 1 ROM (Reserved)  
Block 1 ROM (Reserved)  
Block 1 ROM (Reserved)  
0x0005 0000–0x0005 7FFF  
0x000A 0000–0x000A AAA9  
0x000A 0000–0x000A FFFF  
0x0014 0000–0x0015 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 8000–0x0005 8FFF  
0x000A AAAA–0x000A BFFF  
0x000B 0000–0x000B 1FFF  
0x0016 0000–0x0016 3FFF  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
0x0005 9000–0x0005 CFFF  
0x000A C000–0x000B 1554  
0x000B 2000–0x000B 9FFF  
0x0016 4000–0x0017 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 D000–0x0005 FFFF  
0x000B 1555–0x000B FFFF  
0x000B A000–0x000B FFFF  
0x0017 4000–0x0017 FFFF  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
0x0006 0000–0x0006 1FFF  
0x000C 0000–0x000C 2AA9  
0x000C 0000–0x000C 3FFF  
0x0018 0000–0x0018 7FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0006 2000– 0x0006 FFFF  
0x000C 2AAA–0x000D FFFF  
0x000C 4000–0x000D FFFF  
0x0018 8000–0x001B FFFF  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
0x0007 0000–0x0007 1FFF  
0x000E 0000–0x000E 2AA9  
0x000E 0000–0x000E 3FFF  
0x001C 0000–0x001C 7FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0007 2000–0x0007 FFFF  
0x000E 2AAA–0x000F FFFF  
0x000E 4000–0x000F FFFF  
0x001C 8000–0x001F FFFF  
1 Some ADSP-2148x processors include a customer-definable ROM block. ROM addresses on these models are not reserved as shown in this table. Contact your Analog Devices  
sales representative for additional details.  
The processor’s SRAM can be configured as a maximum of  
160k words of 32-bit data, 320k words of 16-bit data, 106.7k  
words of 48-bit instructions (or 40-bit data), or combinations of  
different word sizes up to 5 megabits. All of the memory can be  
accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit  
floating-point storage format is supported that effectively dou-  
bles the amount of data that may be stored on-chip. Conversion  
between the 32-bit floating-point and 16-bit floating-point  
formats is performed in a single instruction. While each mem-  
ory block can store combinations of code and data, accesses are  
most efficient when one block stores data using the DM bus for  
transfers, and the other block stores instructions and data using  
the PM bus for transfers.  
Using the DM bus and PM buses, with one bus dedicated to a  
memory block, assures single-cycle execution with two data  
transfers. In this case, the instruction must be available in the  
cache.  
The memory maps in Table 3 and Table 4 display the internal  
memory address space of the processors. The 48-bit space sec-  
tion describes what this address range looks like to an  
Rev. H  
|
Page 6 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Table 4. Internal Memory Space (5 MBits—ADSP-21486/ADSP-21487/ADSP-21489)1  
IOP Registers 0x0000 0000–0x0003 FFFF  
Extended Precision Normal or  
Long Word (64 Bits)  
Instruction Word (48 Bits)  
Normal Word (32 Bits)  
Short Word (16 Bits)  
Block 0 ROM (Reserved)  
Block 0 ROM (Reserved)  
Block 0 ROM (Reserved)  
Block 0 ROM (Reserved)  
0x0004 0000–0x0004 7FFF  
0x0008 0000–0x0008 AAA9  
0x0008 0000–0x0008 FFFF  
0x0010 0000–0x0011 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 8000–0x0004 8FFF  
0x0008 AAAA–0x0008 BFFF  
0x0009 0000–0x0009 1FFF  
0x0012 0000–0x0012 3FFF  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
0x0004 9000–0x0004 EFFF  
0x0008 C000–0x0009 3FFF  
0x0009 2000–0x0009 DFFF  
0x0012 4000–0x0013 BFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 F000–0x0004 FFFF  
0x0009 4000–0x0009 FFFF  
0x0009 E000–0x0009 FFFF  
0x0013 C000–0x0013 FFFF  
Block 1 ROM (Reserved)  
Block 1 ROM (Reserved)  
Block 1 ROM (Reserved)  
Block 1 ROM (Reserved)  
0x0005 0000–0x0005 7FFF  
0x000A 0000–0x000A AAA9  
0x000A 0000–0x000A FFFF  
0x0014 0000–0x0015 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 8000–0x0005 8FFF  
0x000A AAAA–0x000A BFFF  
0x000B 0000–0x000B 1FFF  
0x0016 0000–0x0016 3FFF  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
0x0005 9000–0x0005 EFFF  
0x000A C000–0x000B 3FFF  
0x000B 2000–0x000B DFFF  
0x0016 4000–0x0017 BFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 F000–0x0005 FFFF  
0x000B 4000–0x000B FFFF  
0x000B E000–0x000B FFFF  
0x0017 C000–0x0017 FFFF  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
0x0006 0000–0x0006 3FFF  
0x000C 0000–0x000C 5554  
0x000C 0000–0x000C 7FFF  
0x0018 0000–0x0018 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0006 4000– 0x0006 FFFF  
0x000C 5555–0x000D FFFF  
0x000C 8000–0x000D FFFF  
0x0019 0000–0x001B FFFF  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
0x0007 0000–0x0007 3FFF  
0x000E 0000–0x000E 5554  
0x000E 0000–0x000E 7FFF  
0x001C 0000–0x001C FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0007 4000–0x0007 FFFF  
0x000E 5555–0x0000F FFFF  
0x000E 8000–0x000F FFFF  
0x001D 0000–0x001F FFFF  
1 Some ADSP-2148x processors include a customer-definable ROM block and are not reserved as shown on this table. Contact your Analog Devices sales representative for  
additional details.  
instruction that retrieves 48-bit memory. The 32-bit section  
describes what this address range looks like to an instruction  
that retrieves 32-bit memory.  
FAMILY PERIPHERAL ARCHITECTURE  
The ADSP-2148x family contains a rich set of peripherals that  
support a wide variety of applications including high quality  
audio, medical imaging, communications, military, test equip-  
ment, 3D graphics, speech recognition, motor control, imaging,  
and other applications.  
ROM Based Security  
The ADSP-2148x has a ROM security feature that provides  
hardware support for securing user software code by preventing  
unauthorized reading from the internal code. When using this  
feature, the processor does not boot-load any external code, exe-  
cuting exclusively from internal ROM. Additionally, the  
processor is not freely accessible via the JTAG port. Instead, a  
unique 64-bit key, which must be scanned in through the JTAG  
or Test Access Port will be assigned to each customer. The  
device will ignore a wrong key. Emulation features are available  
after the correct key is scanned.  
External Memory  
The external port interface supports access to the external mem-  
ory through core and DMA accesses. The external memory  
address space is divided into four banks. Any bank can be pro-  
grammed as either asynchronous or synchronous memory. The  
external ports are comprised of the following modules.  
• An Asynchronous Memory Interface which communicates  
with SRAM, FLASH, and other devices that meet the stan-  
dard asynchronous SRAM access protocol. The AMI  
supports 6M words of external memory in bank 0 and 8M  
words of external memory in bank 1, bank 2, and bank 3.  
On-Chip Memory Bandwidth  
The internal memory architecture allows programs to have four  
accesses at the same time to any of the four blocks (assuming  
there are no block conflicts). The total bandwidth is realized  
using the DMD and PMD buses (2 × 64-bits, CCLK speed) and  
the IOD0/1 buses (2 × 32-bit, PCLK speed).  
• A SDRAM controller that supports a glueless interface with  
any of the standard SDRAMs. The SDC supports 62M  
words of external memory in bank 0, and 64M words of  
external memory in bank 1, bank 2, and bank 3. NOTE:  
This feature is not available on the ADSP-21486 product.  
Rev. H  
|
Page 7 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
• Arbitration logic to coordinate core and DMA transfers  
between internal and external memory over the external  
port.  
A set of programmable timing parameters is available to config-  
ure the SDRAM banks to support slower memory devices. Note  
that 32-bit wide devices are not supported on the SDRAM and  
AMI interfaces.  
Non-SDRAM external memory address space is shown in  
Table 5.  
The SDRAM controller address, data, clock, and control pins  
can drive loads up to distributed 30 pF. For larger memory sys-  
tems, the SDRAM controller external buffer timing should be  
selected and external buffering should be provided so that the  
load on the SDRAM controller pins does not exceed 30 pF.  
Table 5. External Memory for Non-SDRAM Addresses  
Size in  
Bank  
Words  
Address Range  
Note that the external memory bank addresses shown are for  
normal-word (32-bit) accesses. If 48-bit instructions as well as  
32-bit data are both placed in the same external memory bank,  
care must be taken while mapping them to avoid overlap.  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
6M  
0x0020 0000–0x007F FFFF  
0x0400 0000–0x047F FFFF  
0x0800 0000–0x087F FFFF  
0x0C00 0000–0x0C7F FFFF  
8M  
8M  
8M  
SIMD Access to External Memory  
The SDRAM controller on the processor supports SIMD access  
on the 64-bit EPD (external port data bus) which allows access  
to the complementary registers on the PEy unit in the normal  
word space (NW). This removes the need to explicitly access the  
complimentary registers when the data is in external SDRAM  
memory.  
External Port  
The external port provides a high performance, glueless inter-  
face to a wide variety of industry-standard memory devices. The  
external port, available on the 176-lead LQFP, may be used to  
interface to synchronous and/or asynchronous memory devices  
through the use of its separate internal memory controllers. The  
first is an SDRAM controller for connection of industry-stan-  
dard synchronous DRAM devices while the second is an  
asynchronous memory controller intended to interface to a  
variety of memory devices. Four memory select pins enable up  
to four separate devices to coexist, supporting any desired com-  
bination of synchronous and asynchronous device types.  
VISA and ISA Access to External Memory  
The SDRAM controller on the ADSP-2148x processors sup-  
ports VISA code operation which reduces the memory load  
since the VISA instructions are compressed. Moreover, bus  
fetching is reduced because, in the best case, one 48-bit fetch  
contains three valid instructions. Code execution from the tra-  
ditional ISA operation is also supported. Note that code  
execution is only supported from bank 0 regardless of  
VISA/ISA. Table 7 shows the address ranges for instruction  
fetch in each mode.  
Asynchronous Memory Controller  
The asynchronous memory controller provides a configurable  
interface for up to four separate banks of memory or I/O  
devices. Each bank can be independently programmed with dif-  
ferent timing parameters, enabling connection to a wide variety  
of memory devices including SRAM, flash, and EPROM, as well  
as I/O devices that interface with standard memory control  
lines. Bank 0 occupies a 6M word window and banks 1, 2, and 3  
occupy a 8M word window in the processor’s address space but,  
if not fully populated, these windows are not made contiguous  
by the memory controller logic.  
Table 7. External Bank 0 Instruction Fetch  
Size in  
Access Type Words  
Address Range  
ISA (NW)  
4M  
0x0020 0000–0x005F FFFF  
0x0060 0000–0x00FF FFFF  
VISA (SW)  
10M  
SDRAM Controller  
The SDRAM controller provides an interface of up to four sepa-  
rate banks of industry-standard SDRAM devices at speeds up to  
Pulse-Width Modulation  
The PWM module is a flexible, programmable, PWM waveform  
generator that can be programmed to generate the required  
switching patterns for various applications related to motor and  
engine control or audio power control. The PWM generator can  
generate either center-aligned or edge-aligned PWM wave-  
forms. In addition, it can generate complementary signals on  
two outputs in paired mode or independent signals in non-  
paired mode (applicable to a single group of four PWM  
waveforms).  
f
SDCLK. Fully compliant with the SDRAM standard, each bank has  
its own memory select line (MS0–MS3), and can be configured  
to contain between 4M bytes and 256M bytes of memory.  
SDRAM external memory address space is shown in Table 6.  
NOTE: this feature is not available on the ADSP-21486 model.  
Table 6. External Memory for SDRAM Addresses  
Size in  
Bank  
Words  
Address Range  
The entire PWM module has four groups of four PWM outputs  
generating 16 PWM outputs in total. Each PWM group pro-  
duces two pairs of PWM signals on the four PWM outputs.  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
62M  
0x0020 0000–0x03FF FFFF  
0x0400 0000–0x07FF FFFF  
0x0800 0000–0x0BFF FFFF  
0x0C00 0000–0x0FFF FFFF  
64M  
64M  
64M  
Rev. H  
|
Page 8 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
The PWM generator is capable of operating in two distinct  
modes while generating center-aligned PWM waveforms:  
single-update mode or double-update mode. In single-update  
mode the duty cycle values are programmable only once per  
PWM period. This results in PWM patterns that are symmetri-  
cal about the midpoint of the PWM period. In double-update  
mode, a second updating of the PWM registers is implemented  
at the midpoint of the PWM period. In this mode, it is possible  
to produce asymmetrical PWM patterns that produce lower  
harmonic distortion in three-phase PWM inverters.  
another serial port to provide TDM support. One SPORT pro-  
vides two transmit signals while the other SPORT provides the  
two receive signals. The frame sync and clock are shared.  
Serial ports operate in five modes:  
• Standard serial mode  
• Multichannel (TDM) mode  
• I2S mode  
• Packed I2S mode  
• Left-justified mode  
PWM signals can be mapped to the external port address lines  
or to the DPI pins.  
S/PDIF-Compatible Digital Audio Receiver/Transmitter  
MediaLB  
The S/PDIF receiver/transmitter has no separate DMA chan-  
nels. It receives audio data in serial format and converts it  
into a biphase encoded signal. The serial data input to the  
receiver/transmitter can be formatted as left-justified, I2S or  
right-justified with word widths of 16, 18, 20, or 24 bits.  
The automotive models of the ADSP-2148x processors have an  
MLB interface which allows the processor to function as a  
media local bus device. It includes support for both 3-pin as well  
as 5-pin media local bus protocols. It supports speeds up to  
1024 FS (49.25 Mbits/sec, FS = 48.1 kHz) and up to 31 logical  
channels, with up to 124 bytes of data per media local bus frame.  
For a list of automotive models, see Automotive Products on  
Page 69.  
The serial data, clock, and frame sync inputs to the S/PDIF  
receiver/transmitter are routed through the signal routing unit  
(SRU). They can come from a variety of sources, such as the  
SPORTs, external pins, or the precision clock generators  
(PCGs), and are controlled by the SRU control registers.  
Digital Applications Interface (DAI)  
Asynchronous Sample Rate Converter (SRC)  
The digital applications interface (DAI) allows the connection  
of various peripherals to any of the DAI pins (DAI_P20–1).  
Programs make these connections using the signal routing unit  
(SRU).  
The asynchronous sample rate converter contains four SRC  
blocks and is the same core as that used in the AD1896 192 kHz  
stereo asynchronous sample rate converter and provides up to  
128 dB SNR. The SRC block is used to perform synchronous or  
asynchronous sample rate conversion across independent stereo  
channels, without using internal processor resources. The four  
SRC blocks can also be configured to operate together to  
convert multichannel audio data without phase mismatches.  
Finally, the SRC can be used to clean up audio data from jittery  
clock sources such as the S/PDIF receiver.  
The SRU is a matrix routing unit (or group of multiplexers) that  
enables the peripherals provided by the DAI to be intercon-  
nected under software control. This allows easy use of the DAI  
associated peripherals for a much wider variety of applications  
by using a larger set of algorithms than is possible with noncon-  
figurable signal paths.  
The DAI includes eight serial ports, four precision clock genera-  
tors (PCG), a S/PDIF transceiver, four ASRCs, and an input  
data port (IDP). The IDP provides an additional input path to  
the SHARC core, configurable as either eight channels of serial  
data, or a single 20-bit wide synchronous parallel data acquisi-  
tion port. Each data channel has its own DMA channel that is  
independent from the processor’s serial ports.  
Input Data Port  
The IDP provides up to eight serial input channels—each with  
its own clock, frame sync, and data inputs. The eight channels  
are automatically multiplexed into a single 32-bit by eight-deep  
FIFO. Data is always formatted as a 64-bit frame and divided  
into two 32-bit words. The serial protocol is designed to receive  
audio channels in I2S, left-justified sample pair, or right-justified  
mode.  
Serial Ports (SPORTs)  
The ADSP-2148x features eight synchronous serial ports that  
provide an inexpensive interface to a wide variety of digital and  
mixed-signal peripheral devices such as Analog Devices’  
AD183x family of audio codecs, ADCs, and DACs. The serial  
ports are made up of two data lines, a clock, and frame sync. The  
data lines can be programmed to either transmit or receive and  
each data line has a dedicated DMA channel.  
The IDP also provides a parallel data acquisition port (PDAP),  
which can be used for receiving parallel data. The PDAP port  
has a clock input and a hold input. The data for the PDAP can  
be received from DAI pins or from the external port pins. The  
PDAP supports a maximum of 20-bit data and four different  
packing modes to receive the incoming data.  
Precision Clock Generators  
Serial ports can support up to 16 transmit or 16 receive DMA  
channels of audio data when all eight SPORTs are enabled, or  
four full duplex TDM streams of 128 channels per frame.  
The precision clock generators (PCG) consist of four units, each  
of which generates a pair of signals (clock and frame sync)  
derived from a clock input signal. The units, A B, C, and D, are  
identical in functionality and operate independently of each  
other. The two signals generated by each unit are normally used  
as a serial bit clock/frame sync pair.  
Serial port data can be automatically transferred to and from  
on-chip memory/external memory via dedicated DMA chan-  
nels. Each of the serial ports can work in conjunction with  
Rev. H  
|
Page 9 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
The outputs of PCG A and B can be routed through the DAI  
pins and the outputs of PCG C and D can be driven on to the  
DAI as well as the DPI pins.  
The core timer can be configured to use FLAG3 as a timer  
expired signal, and the general-purpose timers have one bidirec-  
tional pin and four registers that implement its mode of  
operation: a 6-bit configuration register, a 32-bit count register,  
a 32-bit period register, and a 32-bit pulse width register. A sin-  
gle control and status register enables or disables the general-  
purpose timer.  
Digital Peripheral Interface (DPI)  
The ADSP-2148x SHARC processors have a digital peripheral  
interface that provides connections to two serial peripheral  
interface ports (SPI), one universal asynchronous receiver-  
transmitter (UART), 12 flags, a 2-wire interface (TWI), three  
PWM modules (PWM3–1), and two general-purpose timers.  
2-Wire Interface Port (TWI)  
The TWI is a bidirectional 2-wire, serial bus used to move 8-bit  
data while maintaining compliance with the I2C bus protocol.  
The TWI master incorporates the following features:  
Serial Peripheral (Compatible) Interface (SPI)  
The SPI is an industry-standard synchronous serial link,  
enabling the SPI-compatible port to communicate with other  
SPI compatible devices. The SPI consists of two data pins, one  
device select pin, and one clock pin. It is a full-duplex synchro-  
nous serial interface, supporting both master and slave modes.  
The SPI port can operate in a multimaster environment by  
interfacing with up to four other SPI-compatible devices, either  
acting as a master or slave device. The SPI-compatible periph-  
eral implementation also features programmable baud rate and  
clock phase and polarities. The SPI-compatible port uses open  
drain drivers to support a multimaster configuration and to  
avoid data contention.  
• 7-bit addressing  
• Simultaneous master and slave operation on multiple  
device systems with support for multi master data  
arbitration  
• Digital filtering and timed event processing  
• 100 kbps and 400 kbps data rates  
• Low interrupt rate  
I/O PROCESSOR FEATURES  
The I/O processors provide up to 65 channels of DMA, as well  
as an extensive set of peripherals.  
UART Port  
DMA Controller  
The processors provide a full-duplex Universal Asynchronous  
Receiver/Transmitter (UART) port, which is fully compatible  
with PC-standard UARTs. The UART port provides a simpli-  
fied UART interface to other peripherals or hosts, supporting  
full-duplex, DMA-supported, asynchronous transfers of serial  
data. The UART also has multiprocessor communication capa-  
bility using 9-bit address detection. This allows it to be used in  
multidrop networks through the RS-485 data interface  
standard. The UART port also includes support for 5 to 8 data  
bits, 1 or 2 stop bits, and none, even, or odd parity. The UART  
port supports two modes of operation:  
The processor’s on-chip DMA controller allows data transfers  
without processor intervention. The DMA controller operates  
independently and invisibly to the processor core, allowing  
DMA operations to occur while the core is simultaneously exe-  
cuting its program instructions. DMA transfers can occur  
between the ADSP-2148x’s internal memory and its serial ports,  
the SPI-compatible (serial peripheral interface) ports, the IDP  
(input data port), the PDAP, or the UART. The DMA channel  
summary is shown in Table 8.  
Programs can be downloaded to the ADSP-2148x using DMA  
transfers. Other DMA features include interrupt generation  
upon completion of DMA transfers and DMA chaining for  
automatic linked DMA transfers.  
• PIO (programmed I/O)—The processor sends or receives  
data by writing or reading I/O-mapped UART registers.  
The data is double-buffered on both transmit and receive.  
• DMA (direct memory access)—The DMA controller trans-  
fers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
Table 8. DMA Channels  
Peripheral  
SPORTs  
DMA Channels  
16  
8
IDP/PDAP  
SPI  
2
UART  
2
Timers  
External Port  
Accelerators  
Memory-to-Memory  
MLB1  
2
The ADSP-2148x has a total of three timers: a core timer that  
can generate periodic software interrupts and two general-  
purpose timers that can generate periodic interrupts and be  
independently set to operate in one of three modes:  
2
2
31  
1 Automotive models only.  
• Pulse waveform generation mode  
• Pulse width count/capture mode  
• External event watchdog mode  
Rev. H  
|
Page 10 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Delay Line DMA  
Table 9. Boot Mode Selection, 176-Lead Package  
The processor provides delay line DMA functionality. This  
allows processor reads and writes to external delay line buffers  
(and hence to external memory) with limited core interaction.  
BOOT_CFG2–0 Booting Mode  
000  
001  
010  
011  
SPI Slave Boot  
SPI Master Boot  
Scatter/Gather DMA  
AMI User Boot (for 8-bit Flash Boot)  
The processor provides scatter/gather DMA functionality. This  
allows processor DMA reads/writes to/from non contiguous  
memory blocks.  
No boot (processor executes from internal  
ROM after reset)  
1xx  
Reserved  
FFT Accelerator  
Table 10. Boot Mode Selection, 100-Lead Package  
The FFT accelerator implements a radix-2 complex/real input,  
complex output FFT with no core intervention. The FFT accel-  
erator runs at the peripheral clock frequency.  
BOOT_CFG1–0 Booting Mode  
00  
01  
10  
11  
SPI Slave Boot  
SPI Master Boot  
Reserved  
FIR Accelerator  
The FIR (finite impulse response) accelerator consists of a 1024  
word coefficient memory, a 1024 word deep delay line for the  
data, and four MAC units. A controller manages the accelerator.  
The FIR accelerator runs at the peripheral clock frequency.  
No boot (processor executes from internal  
ROM after reset)  
The “Running Reset” feature allows a user to perform a reset of  
the processor core and peripherals, but without resetting the  
PLL and SDRAM controller, or performing a boot. The  
functionality of the RESETOUT/RUNRSTIN pin has now been  
extended to also act as the input for initiating a Running Reset.  
For more information, see the hardware reference manual.  
IIR Accelerator  
The IIR (infinite impulse response) accelerator consists of a  
1440 word coefficient memory for storage of biquad coeffi-  
cients, a data memory for storing the intermediate data, and one  
MAC unit. A controller manages the accelerator. The IIR accel-  
erator runs at the peripheral clock frequency.  
Power Supplies  
Watchdog Timer  
The processors have separate power supply connections for the  
internal (VDD_INT) and external (VDD_EXT) power supplies. The  
internal supply must meet the VDD_INT specifications. The  
external supply must meet the VDD_EXT specification. All exter-  
nal supply pins must be connected to the same power supply.  
The watchdog timer is used to supervise the stability of the sys-  
tem software. When used in this way, software reloads the  
watchdog timer in a regular manner so that the downward  
counting timer never expires. An expiring timer then indicates  
that system software might be out of control.  
To reduce noise coupling, the PCB should use a parallel pair of  
power and ground planes for VDD_INT and GND.  
The 32-bit watchdog timer that can be used to implement a soft-  
ware watchdog function. A software watchdog can improve  
system reliability by forcing the processor to a known state  
through generation of a system reset, if the timer expires before  
being reloaded by software. Software initializes the count value  
of the timer, and then enables the timer. The watchdog timer  
resets both the core and the internal peripherals. Note that this  
feature is available on the 176-lead package only.  
Static Voltage Scaling (SVS)  
Some models of the ADSP-2148x feature Static Voltage Scaling  
(SVS) on the VDD_INT power supply. (See the Ordering Guide  
on Page 70 for model details.) This voltage specification tech-  
nique can provide significant performance benefits including  
450 MHz core frequency operation without a significant  
increase in power.  
SYSTEM DESIGN  
SVS optimizes the required VDD_INT voltage for each individual  
device to enable enhanced operating frequency up to 450 MHz.  
The optimized SVS voltage results in a reduction of maximum  
The following sections provide an introduction to system design  
options and power supply issues.  
I
DD_INT which enables 450 MHz operation at the same or lower  
Program Booting  
maximum power than 400 MHz operation at a fixed voltage  
supply. Implementation of SVS requires a specific voltage regu-  
lator circuit design and initialization code.  
The internal memory of the ADSP-2148x boots at system  
power-up from an 8-bit EPROM via the external port, an SPI  
master, or an SPI slave. Booting is determined by the boot con-  
figuration (BOOT_CFG2–0) pins in Table 9 for the 176-lead  
package and Table 10 for the 100-lead package.  
Refer to the Engineer-to-Engineer Note Static Voltage Scaling  
for ADSP-2148x SHARC Processors (EE-357) for further infor-  
mation. The EE-Note details the requirements and process to  
implement a SVS power supply system to enable operation up  
to 450 MHz. This applies only to specific products within the  
ADSP-2148x family which are capable of supporting 450 MHz  
operation.  
Rev. H  
|
Page 11 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Details on power consumption and Static and Dynamic current  
consumption can be found at Total Power Dissipation on  
Page 20. Also see Operating Conditions on Page 18 for more  
information.  
systems, file systems, TCP/IP stacks, USB stacks, algorithmic  
software modules, and evaluation hardware board support  
packages. For more information visit www.analog.com/cces.  
The other Analog Devices IDE, VisualDSP++, supports proces-  
sor families introduced prior to the release of CrossCore  
Embedded Studio. This IDE includes the Analog Devices VDK  
real time operating system and an open source TCP/IP stack.  
For more information visit www.analog.com/visualdsp. Note  
that VisualDSP++ will not support future Analog Devices  
processors.  
The following are SVS features.  
• SVS is applicable only to 450 MHz models (not applicable  
to 400 MHz or lower frequency models).  
• Each individual SVS device includes a register (SVS_DAT)  
containing the unique SVS voltage set at the factory, known  
as SVSNOM  
.
EZ-KIT Lite Evaluation Board  
• The SVSNOM value is the intended set voltage for the  
VDD_INT voltage regulator.  
For processor evaluation, Analog Devices provides wide range  
of EZ-KIT Lite® evaluation boards. Including the processor and  
key peripherals, the evaluation board also supports on-chip  
emulation capabilities and other evaluation and development  
features. Also available are various EZ-Extenders®, which are  
daughter cards delivering additional specialized functionality,  
including audio and video processing. For more information  
visit www.analog.com and search on “ezkit” or “ezextender”.  
• No dedicated pins are required for SVS. The TWI serial bus  
is used to communicate SVSNOM to the voltage regulator.  
• Analog Devices recommends a specific voltage regulator  
design and initialization code sequence that optimizes the  
power-up sequence.  
The Engineer-to-Engineer Note Static Voltage Scaling for  
ADSP-2148x SHARC Processors (EE-357) contains the  
details of the regulator design and the initialization  
requirements.  
EZ-KIT Lite Evaluation Kits  
For a cost-effective way to learn more about developing with  
Analog Devices processors, Analog Devices offer a range of EZ-  
KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT  
Lite evaluation board, directions for downloading an evaluation  
version of the available IDE(s), a USB cable, and a power supply.  
The USB controller on the EZ-KIT Lite board connects to the  
USB port of the user’s PC, enabling the chosen IDE evaluation  
suite to emulate the on-board processor in-circuit. This permits  
the customer to download, execute, and debug programs for the  
EZ-KIT Lite system. It also supports in-circuit programming of  
the on-board Flash device to store user-specific boot code,  
enabling standalone operation. With the full version of Cross-  
Core Embedded Studio or VisualDSP++ installed (sold  
separately), engineers can develop software for supported EZ-  
KITs or any custom system utilizing supported Analog Devices  
processors.  
• Any differences from the Analog Devices recommended  
programmable regulator design must be reviewed by Ana-  
log Devices to ensure that it meets the voltage accuracy and  
range requirements.  
Target Board JTAG Emulator Connector  
Analog Devices DSP Tools product line of JTAG emulators uses  
the IEEE 1149.1 JTAG test access port of the ADSP-2148x pro-  
cessors to monitor and control the target board processor  
during emulation. Analog Devices DSP Tools product line of  
JTAG emulators provides emulation at full processor speed,  
allowing inspection and modification of memory, registers, and  
processor stacks. The processor’s JTAG interface ensures that  
the emulator will not affect target system loading or timing.  
For complete information on Analog Devices’ SHARC DSP  
Tools product line of JTAG emulator operation, see the appro-  
priate emulator hardware user’s guide.  
Software Add-Ins for CrossCore Embedded Studio  
Analog Devices offers software add-ins which seamlessly inte-  
grate with CrossCore Embedded Studio to extend its capabilities  
and reduce development time. Add-ins include board support  
packages for evaluation hardware, various middleware pack-  
ages, and algorithmic modules. Documentation, help,  
configuration dialogs, and coding examples present in these  
add-ins are viewable through the CrossCore Embedded Studio  
IDE once the add-in is installed.  
DEVELOPMENT TOOLS  
Analog Devices supports its processors with a complete line of  
software and hardware development tools, including integrated  
development environments (which include CrossCore® Embed-  
ded Studio and/or VisualDSP++®), evaluation products,  
emulators, and a wide variety of software add-ins.  
Integrated Development Environments (IDEs)  
Board Support Packages for Evaluation Hardware  
For C/C++ software writing and editing, code generation, and  
debug support, Analog Devices offers two IDEs.  
Software support for the EZ-KIT Lite evaluation boards and EZ-  
Extender daughter cards is provided by software add-ins called  
Board Support Packages (BSPs). The BSPs contain the required  
drivers, pertinent release notes, and select example code for the  
given evaluation hardware. A download link for a specific BSP is  
located on the web page for the associated EZ-KIT or EZ-  
Extender product. The link is found in the Product Download  
area of the product web page.  
TM  
CrossCore Embedded Studio is based on the Eclipse frame-  
work. Supporting most Analog Devices processor families, it is  
the IDE of choice for future processors, including multicore  
devices. CrossCore Embedded Studio seamlessly integrates  
available software add-ins to support real time operating  
Rev. H  
|
Page 12 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Analog Devices eases signal processing system development by  
providing signal processing components that are designed to  
work together well. A tool for viewing relationships between  
specific applications and related components is available on the  
www.analog.com website.  
The application signal chains page in the Circuits from the Lab®  
site (http:\\www.analog.com\circuits) provides:  
Middleware Packages  
Analog Devices separately offers middleware add-ins such as  
real time operating systems, file systems, USB stacks, and  
TCP/IP stacks. For more information see the following web  
pages:  
www.analog.com/ucos3  
www.analog.com/ucfs  
www.analog.com/ucusbd  
www.analog.com/lwip  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
• Drill down links for components in each chain to selection  
guides and application information  
Algorithmic Modules  
• Reference designs applying best practice design techniques  
To speed development, Analog Devices offers add-ins that per-  
form popular audio and video processing algorithms. These are  
available for use with both CrossCore Embedded Studio and  
VisualDSP++. For more information visit www.analog.com and  
search on “Blackfin software modules” or “SHARC software  
modules”.  
Designing an Emulator-Compatible DSP Board (Target)  
For embedded system test and debug, Analog Devices provides  
a family of emulators. On each JTAG DSP, Analog Devices sup-  
plies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit  
emulation is facilitated by use of this JTAG interface. The emu-  
lator accesses the processor’s internal features via the  
processor’s TAP, allowing the developer to load code, set break-  
points, and view variables, memory, and registers. The  
processor must be halted to send data and commands, but once  
an operation is completed by the emulator, the DSP system is set  
to run at full speed with no impact on system timing. The emu-  
lators require the target board to include a header that supports  
connection of the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see Analog Devices JTAG  
Emulation Technical Reference (EE-68). This document is  
updated regularly to keep pace with improvements to emulator  
support.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the ADSP-2148x  
architecture and functionality. For detailed information on the  
ADSP-2148x family core architecture and instruction set, refer  
to the programming reference manual.  
RELATED SIGNAL CHAINS  
A signal chain is a series of signal-conditioning electronic com-  
ponents that receive input (data acquired from sampling either  
real-time phenomena or from stored data) in tandem, with the  
output of one portion of the chain supplying input to the next.  
Signal chains are often used in signal processing applications to  
gather and process data or to apply system controls based on  
analysis of real-time phenomena.  
Rev. H  
|
Page 13 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
PIN FUNCTION DESCRIPTIONS  
Table 11. Pin Descriptions  
State  
During/  
Name  
Type  
After Reset  
Description  
ADDR23–0  
I/O/T (ipu)  
High-Z/  
driven low  
(boot)  
External Address. The processor outputs addresses for external memory and periph-  
erals on these pins. The ADDR pins can be multiplexed to support the external memory  
interface address, and FLAGS15–8 (I/O) and PWM (O). After reset, all ADDR pins are in  
external memory interface mode and FLAG(0–3) pins are in FLAGS mode (default).  
When configured in the IDP_PDAP_CTL register, IDP channel 0 scans the ADDR23–4 pins  
for parallel input data.  
DATA15–0  
AMI_ACK  
I/O/T (ipu)  
I (ipu)  
High-Z  
High-Z  
External Data. The data pins can be multiplexed to support the external memory  
interface data (I/O), and FLAGS7–0 (I/O).  
Memory Acknowledge. External devices can deassert AMI_ACK (low) to add wait  
states to an external memory access. AMI_ACK is used by I/O devices, memory  
controllers, or other peripherals to hold off completion of an external memory access.  
MS0–1  
O/T (ipu)  
Memory Select Lines 0–1. These lines are asserted (low) as chip selects for the corre-  
spondingbanksofexternalmemory. TheMS1-0 linesaredecodedmemoryaddresslines  
that change at the same time as the other address lines. When no external memory  
access is occurring the MS1-0 lines are inactive; they are active however when a condi-  
tional memory access instruction is executed, when the condition evaluates as true.  
The MS1 pin can be used in EPORT/FLASH boot mode. For more information, see the  
hardware reference manual.  
AMI_RD  
O/T (ipu)  
O/T (ipu)  
I/O (ipu)  
I/O (ipu)  
I/O (ipu)  
High-Z  
High-Z  
AMI Port Read Enable. AMI_RD is asserted whenever the processor reads a word from  
external memory.  
AMI_WR  
AMI Port Write Enable. AMI_WR is asserted when the processor writes a word to  
external memory.  
FLAG0/IRQ0  
FLAG1/IRQ1  
FLAG2/IRQ2/MS2  
FLAG[0]  
INPUT  
FLAG0/Interrupt Request0.  
FLAG[1]  
INPUT  
FLAG1/Interrupt Request1.  
FLAG[2]  
INPUT  
FLAG2/Interrupt Request2/Memory Select2.  
FLAG3/Timer Expired/Memory Select3.  
FLAG3/TMREXP/MS3 I/O (ipu)  
FLAG[3]  
INPUT  
The following symbols appear in the Type column of this table: A = asynchronous, I = input, O = output, S = synchronous, A/D = active drive,  
O/D = open drain, and T = three-state, ipd = internal pull-down resistor, ipu = internal pull-up resistor.  
The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic  
levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot  
be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between 26 kΩ–63 kΩ. The  
range of an ipd resistor can be between 31 kΩ–85 kΩ. The three-state voltage of ipu pads will not reach to the full VDD_EXT level; at typical  
conditions the voltage is in the range of 2.3 V to 2.7 V.  
In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.  
Rev. H  
| Page 14 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Table 11. Pin Descriptions (Continued)  
State  
During/  
Name  
Type  
After Reset  
Description  
SDRAS  
O/T (ipu)  
High-Z/  
SDRAM Row Address Strobe. Connect to SDRAM’s RAS pin. In conjunction with other  
driven high  
SDRAM command pins, defines the operation for the SDRAM to perform.  
SDCAS  
SDWE  
O/T (ipu)  
O/T (ipu)  
O/T (ipu)  
O/T (ipu)  
O/T (ipu)  
High-Z/  
driven high  
SDRAM Column Address Select. Connect to SDRAM’s CAS pin. In conjunction with  
other SDRAM command pins, defines the operation for the SDRAM to perform.  
High-Z/  
driven high  
SDRAM Write Enable. Connect to SDRAM’s WE or W buffer pin. In conjunction with  
other SDRAM command pins, defines the operation for the SDRAM to perform.  
SDCKE  
SDA10  
SDDQM  
High-Z/  
driven high  
SDRAM Clock Enable. Connect to SDRAM’s CKE pin. Enables and disables the CLK  
signal. For details, see the data sheet supplied with the SDRAM device.  
High-Z/  
driven high  
SDRAMA10Pin. EnablesapplicationstorefreshanSDRAMinparallelwithnon-SDRAM  
accesses. This pin replaces the DSP’s ADDR10 pin only during SDRAM accesses.  
High-Z/  
driven high  
DQM Data Mask. SDRAM Input mask signal for write accesses and output mask signal  
for read accesses. Input data is masked when DQM is sampled high during a write cycle.  
The SDRAM output buffers are placed in a High-Z state when DQM is sampled high  
during a read cycle. SDDQM is driven high from reset de-assertion until SDRAM initial-  
ization completes. Afterwards it is driven low irrespective of whether any SDRAM  
accesses occur or not.  
SDCLK  
O/T (ipd)  
High-Z/  
driving  
SDRAM Clock Output. Clock driver for this pin differs from all other clock drivers. See  
Figure 40 on Page 55. For models in the 100-lead package, the SDRAM interface should  
be disabled to avoid unnecessary power switching by setting the DSDCTL bit in SDCTL  
register. For more information, see the hardware reference manual.  
DAI _P20–1  
I/O/T (ipu)  
High-Z  
Digital Applications Interface. These pins provide the physical interface to the DAI  
SRU. The DAI SRU configuration registers define the combination of on-chip audio-  
centricperipheralinputsoroutputsconnectedtothepinandtothepin’soutputenable.  
The configuration registers of these peripherals then determines the exact behavior of  
the pin. Any input or output signal present in the DAI SRU may be routed to any of these  
pins.  
DPI _P14–1  
I/O/T (ipu)  
High-Z  
Digital Peripheral Interface. These pins provide the physical interface to the DPI SRU.  
The DPI SRU configuration registers define the combination of on-chip peripheral  
inputs or outputs connected to the pin and to the pin’s output enable. The configu-  
ration registers of these peripherals then determines the exact behavior of the pin. Any  
input or output signal present in the DPI SRU may be routed to any of these pins.  
WDT_CLKIN  
WDT_CLKO  
WDTRSTO  
THD_P  
I
Watchdog Timer Clock Input. This pin should be pulled low when not used.  
Watchdog Resonator Pad Output.  
O
O (ipu)  
Watchdog Timer Reset Out.  
I
Thermal Diode Anode. When not used, this pin can be left floating.  
Thermal Diode Cathode. When not used, this pin can be left floating.  
THD_M  
O
The following symbols appear in the Type column of this table: A = asynchronous, I = input, O = output, S = synchronous, A/D = active drive,  
O/D = open drain, and T = three-state, ipd = internal pull-down resistor, ipu = internal pull-up resistor.  
The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic  
levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot  
be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between 26 kΩ–63 kΩ. The  
range of an ipd resistor can be between 31 kΩ–85 kΩ. The three-state voltage of ipu pads will not reach to the full VDD_EXT level; at typical  
conditions the voltage is in the range of 2.3 V to 2.7 V.  
In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.  
Rev. H  
| Page 15 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Table 11. Pin Descriptions (Continued)  
State  
During/  
Name  
Type  
After Reset  
Description  
MLBCLK1  
I
Media Local Bus Clock. This clock is generated by the MLB controller that is synchro-  
nized to the MOST network and provides the timing for the entire MLB interface at  
49.152 MHz at FS=48 kHz. When the MLB controller is not used, this pin should be  
grounded.  
MLBDAT1  
MLBSIG1  
I/O/T in 3  
pin mode. I  
in 5 pin  
High-Z  
High-Z  
Media Local Bus Data. The MLBDAT line is driven by the transmitting MLB device and  
is received by all other MLB devices including the MLB controller. The MLBDAT line  
carries the actual data. In 5-pin MLB mode, this pin is an input only. When the MLB  
controller is not used, this pin should be grounded.  
mode.  
I/O/T in 3  
pin mode. I  
in 5 pin  
MediaLocalBusSignal. ThisisamultiplexedsignalwhichcarriestheChannel/Address  
generated by the MLB Controller, as well as the Command and RxStatus bytes from  
MLB devices. In 5-pin mode, this pin is input only. When the MLB controller is not used,  
this pin should be grounded.  
mode  
MLBDO1  
MLBSO1  
O/T  
High-Z  
High-Z  
MediaLocalBusDataOutput(in5pinmode). Thispinisusedonlyin5-pinMLBmode.  
This serves as the output data pin in 5-pin mode. When the MLB controller is not used,  
this pin should be connected to ground.  
O/T  
Media Local Bus Signal Output (in 5 pin mode). This pin is used only in 5-pin MLB  
mode. This serves as the output signal pin in 5-pin mode. When the MLB controller is  
not used, this pin should be connected to ground.  
TDI  
I (ipu)  
O/T  
I (ipu)  
I
Test Data Input (JTAG). Provides serial data for the boundary scan logic.  
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
Test Mode Select (JTAG). Used to control the test state machine.  
TDO  
TMS  
TCK  
High-Z  
Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be asserted  
(pulsed low) after power-up or held low for proper operation of the device.  
TRST  
EMU  
I (ipu)  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low)  
after power-up or held low for proper operation of the processor.  
O (O/D, ipu) High-Z  
Emulation Status. Must be connected to the ADSP-2148x Analog Devices DSP Tools  
product line of JTAG emulators target board connector only.  
The following symbols appear in the Type column of this table: A = asynchronous, I = input, O = output, S = synchronous, A/D = active drive,  
O/D = open drain, and T = three-state, ipd = internal pull-down resistor, ipu = internal pull-up resistor.  
The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic  
levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot  
be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between 26 kΩ–63 kΩ. The  
range of an ipd resistor can be between 31 kΩ–85 kΩ. The three-state voltage of ipu pads will not reach to the full VDD_EXT level; at typical  
conditions the voltage is in the range of 2.3 V to 2.7 V.  
In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.  
Rev. H  
| Page 16 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Table 11. Pin Descriptions (Continued)  
State  
During/  
Name  
Type  
After Reset  
Description  
CLK_CFG1–0  
I
Core to CLKIN Ratio Control. These pins set the start up clock frequency.  
Note that the operating frequency can be changed by programming the PLL multiplier  
and divider in the PMCTL register at any time after the core comes out of reset. The  
allowed values are:  
00 = 8:1  
01 = 32:1  
10 = 16:1  
11 = reserved  
CLKIN  
I
Local Clock In. Used in conjunction with XTAL. CLKIN is the clock input. It configures  
the processors to use either its internal clock generator or an external clock source.  
Connecting the necessary components to CLKIN and XTAL enables the internal clock  
generator. Connecting the external clock to CLKIN while leaving XTAL unconnected  
configures the processors to use the external clock source such as an external clock  
oscillator. CLKIN may not be halted, changed, or operated below the specified  
frequency.  
XTAL  
O
I
Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an external  
crystal.  
RESET  
Processor Reset. Resets the processor to a known state. Upon deassertion, there is a  
4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program  
execution from the hardware reset vector address. The RESET input must be asserted  
(low) at power-up.  
RESETOUT/  
RUNRSTIN  
I/O (ipu)  
I
Reset Out/Running Reset In. The default setting on this pin is reset out. This pin also  
has a second function as RUNRSTIN which is enabled by setting bit 0 of the RUNRSTCTL  
register. For more information, see the hardware reference manual.  
BOOT_CFG2–0  
Boot Configuration Select. These pins select the boot mode for the processor (see  
Table 9). The BOOT_CFG pins must be valid before RESET (hardware and software) is  
asserted.  
The following symbols appear in the Type column of this table: A = asynchronous, I = input, O = output, S = synchronous, A/D = active drive,  
O/D = open drain, and T = three-state, ipd = internal pull-down resistor, ipu = internal pull-up resistor.  
The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic  
levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot  
be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between 26 kΩ–63 kΩ. The  
range of an ipd resistor can be between 31 kΩ–85 kΩ. The three-state voltage of ipu pads will not reach to the full VDD_EXT level; at typical  
conditions the voltage is in the range of 2.3 V to 2.7 V.  
In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.  
1 The MLB pins are only available on the automotive models.  
Table 12. Pin List, Power, Ground and Other  
Name  
VDD_INT  
VDD_EXT  
GND1  
Type  
Description  
P
Internal Power Supply  
P
I/O Power Supply  
G
Ground  
VDD_THD  
DNC  
P
Thermal Diode Power Supply. When not used, this pin can be left floating.  
Do Not Connect. Do not make any electrical connection to this pin.  
DNC  
1 The exposed pad is required to be electrically and thermally connected to GND. Implement this by soldering the exposed pad to a GND PCB land that is the same size as the  
exposed pad. The GND PCB land should be robustly connected to the GND plane in the PCB for best electrical and thermal performance. No separate GND pins are provided  
in the package.  
Rev. H  
| Page 17 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
SPECIFICATIONS  
OPERATING CONDITIONS  
266 MHz / 300 MHz / 350 MHz / 400 MHz  
450 MHz  
Parameter1 Description  
Min  
Nominal  
Max  
Min  
Nominal Max  
Unit  
2
VDD_INT  
VDD_EXT  
VDD_THD  
Internal (Core) Supply Voltage 1.05  
External (I/O) Supply Voltage 3.13  
Thermal Diode Supply Voltage 3.13  
1.10  
1.15  
3.47  
3.47  
3.6  
SVSNOM – 25 mV 1.00 – 1.15 SVSNOM + 25 mV  
V
V
V
V
3.13  
3.13  
2.0  
3.47  
3.47  
3.6  
3
VIH  
High Level Input Voltage at  
DD_EXT = Max  
2.0  
V
3
VIL  
Low Level Input Voltage at  
VDD_EXT = Min  
–0.3  
2.2  
+0.8  
–0.3  
2.2  
+0.8  
V
V
V
4
VIH_CLKIN  
VIL_CLKIN  
High Level Input Voltage at  
VDD_EXT = Max  
VDD_EXT  
+0.8  
VDD_EXT  
+0.8  
Low Level Input Voltage at  
VDD_EXT = Min  
–0.3  
–0.3  
CONSUMER GRADE  
TJ  
TJ  
TJ  
Junction Temperature  
88-Lead LFCSP_VQ  
0
0
0
115  
110  
110  
N/A5  
N/A5  
0
N/A5  
N/A5  
115  
°C  
°C  
°C  
Junction Temperature  
100-Lead LQFP_EP  
Junction Temperature  
176-Lead LQFP_EP  
INDUSTRIAL GRADE  
TJ  
Junction Temperature  
100-Lead LQFP_EP  
–40  
–40  
+125  
+125  
N/A5  
N/A5  
N/A5  
N/A5  
°C  
°C  
TJ  
Junction Temperature  
176-Lead LQFP_EP  
AUTOMOTIVE GRADE6  
TJ  
TJ  
TJ  
Junction Temperature  
88-Lead LFCSP_VQ  
–40  
–40  
–40  
+125  
+125  
+125  
N/A5  
N/A5  
N/A5  
N/A5  
N/A5  
N/A5  
°C  
°C  
°C  
Junction Temperature  
100-Lead LQFP_EP  
Junction Temperature  
176-Lead LQFP_EP  
1 Specifications subject to change without notice.  
2 SVSNOM refers to the nominal SVS voltage which is set between 1.0 V and 1.15 V at the factory for each individual device. Only the unique SVSNOM value in each chip may be used  
for 401 MHz to 450 MHz operation of that chip. This spec lists the possible range of the SVSNOM values for all devices. The initial VDD_INT voltage at power on is 1.1 V nominal  
and it transitions to SVS programmed voltage as outlined in Engineer-to-Engineer Note Static Voltage Scaling for ADSP-2148x SHARC Processors (EE-357).  
3 Applies to input and bidirectional pins: ADDR23–0, DATA15–0, FLAG3–0, DAI_Px, DPI_Px, BOOT_CFGx, CLK_CFGx, RUNRSTIN, RESET, TCK, TMS, TDI, TRST, AMI_ACK,  
MLBCLK, MLBDAT, MLBSIG.  
4 Applies to input pins CLKIN, WDT_CLKIN.  
5 N/A means not applicable.  
6 Automotive application use profile only. Not supported for nonautomotive use. Contact Analog Devices for more information.  
Rev. H  
| Page 18 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
ELECTRICAL CHARACTERISTICS  
266 MHz / 300 MHz / 350 MHz / 400 MHz / 450 MHz  
Parameter1 Description  
Conditions  
Min  
Typ  
Max  
Unit  
2
VOH  
High Level Output  
Voltage  
@ VDD_EXT = Min,  
I
2.4  
V
OH = –1.0 mA3  
2
VOL  
Low Level Output  
Voltage  
@ VDD_EXT = Min,  
OL = 1.0 mA3  
0.4  
10  
V
I
4, 5  
IIH  
High Level Input Current @ VDD_EXT = Max,  
IN = VDD_EXT Max  
ꢀA  
V
4
IIL  
Low Level Input Current @ VDD_EXT = Max, VIN = 0 V  
10  
ꢀA  
ꢀA  
5
IILPU  
Low Level Input Current @ VDD_EXT = Max, VIN = 0 V  
Pull-up  
200  
6, 7  
IOZH  
Three-State Leakage  
Current  
@ VDD_EXT = Max,  
IN = VDD_EXT Max  
10  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
V
6
IOZL  
Three-State Leakage  
Current  
@ VDD_EXT = Max, VIN = 0 V  
@ VDD_EXT = Max, VIN = 0 V  
@ VDD_EXT = Max,  
10  
7
IOZLPU  
Three-State Leakage  
Current Pull-up  
200  
200  
8
IOZHPD  
Three-State Leakage  
Current Pull-down  
V
IN = VDD_EXT Max  
9
IDD_INT  
IDD_INT  
Supply Current (Internal) fCCLK > 0 MHz  
Table 14 + Table 15 mA  
× ASF  
Supply Current (Internal) VDDINT = 1.1 V, ASF = 1,  
TJ = 25°C  
385 / 410 / 450 / 500 / 550  
mA  
10, 11  
CIN  
Input Capacitance  
TJ = 25°C  
5
pF  
1
Specifications subject to change without notice.  
2 Applies to output and bidirectional pins: ADDR23–0, DATA15–0, AMI_RD, AMI_WR, FLAG3–0, DAI_Px, DPI_Px, EMU, TDO, RESETOUT MLBSIG, MLBDAT, MLBDO,  
MLBSO, SDRAS, SDCAS, SDWE, SDCKE, SDA10, SDDQM, MS0-1.  
3 See Output Drive Currents on Page 55 for typical drive current capabilities.  
4 Applies to input pins: BOOT_CFGx, CLK_CFGx, TCK, RESET, CLKIN.  
5 Applies to input pins with internal pull-ups: TRST, TMS, TDI.  
6 Applies to three-statable pin: TDO.  
7 Applies to three-statable pins with pull-ups: DAI_Px, DPI_Px, EMU.  
8 Applies to three-statable pin with pull-down: SDCLK.  
9 See Engineer-to-Engineer Note Estimating Power for ADSP-214xx SHARC Processors (EE-348) for further information.  
10Applies to all signal pins.  
11Guaranteed, but not tested.  
Rev. H  
| Page 19 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Total Power Dissipation  
The information in this section should be augmented with the  
Engineer-to-Engineer Note Estimating Power for ADSP-214xx  
SHARC Processors (EE-348).  
Table 13. Activity Scaling Factors (ASF)1  
Activity  
Scaling Factor (ASF)  
Idle  
0.29  
0.53  
0.61  
0.77  
0.85  
0.93  
1.00  
1.16  
1.25  
1.31  
Total power dissipation has two components:  
Low  
1. Internal power consumption is additionally comprised of  
two components:  
Medium Low  
Medium High  
Peak Typical (50:50)2  
Peak Typical (60:40)2  
Peak Typical (70:30)2  
High Typical  
High  
• Static current due to leakage. Table 14 shows the static  
current consumption (IDD_INT_STATIC) as a function of  
junction temperature (TJ) and core voltage (VDD_INT).  
• Dynamic current (IDD_INT_DYNAMIC), due to transistor  
switching characteristics and activity level of the pro-  
cessor. The activity level is reflected by the Activity  
Scaling Factor (ASF), which represents the activity  
level of the application code running on the processor  
core and having various levels of peripheral and exter-  
nal port activity (Table 13).  
Peak  
1 See the Engineer-to-Engineer Note Estimating Power for ADSP-214xx SHARC  
Processors (EE-348) for more information on the explanation of the power  
vectors specific to the ASF table.  
2 Ratio of continuous instruction loop (core) to SDRAM control code reads and  
writes.  
Dynamic current consumption is calculated by select-  
ing the ASF that corresponds most closely with the  
user application and then multiplying that with the  
dynamic current consumption (Table 15).  
2. External power consumption is due to the switching activ-  
ity of the external pins.  
Table 14. Static Current—IDD_INT_STATIC (mA)1  
VDD_INT (V)  
TJ (°C)  
–45  
–35  
–25  
–15  
–5  
0.975 V  
68  
1.0 V  
77  
1.025 V  
86  
1.05 V  
96  
1.075 V  
107  
114  
125  
140  
161  
188  
219  
257  
303  
359  
423  
500  
588  
693  
816  
958  
1119  
1305  
1.10 V  
118  
126  
138  
155  
177  
206  
240  
280  
329  
389  
458  
539  
633  
746  
877  
1026  
1198  
1397  
1.125 V  
131  
1.15 V  
144  
1.175 V  
159  
74  
83  
92  
103  
113  
127  
147  
171  
201  
237  
279  
331  
391  
464  
547  
645  
761  
897  
1047  
1219  
140  
154  
170  
82  
92  
101  
115  
133  
156  
183  
216  
256  
305  
361  
429  
506  
599  
707  
833  
975  
1138  
153  
168  
185  
94  
104  
121  
142  
168  
199  
237  
282  
334  
398  
471  
559  
662  
779  
914  
1067  
171  
187  
205  
109  
129  
152  
182  
217  
259  
309  
369  
437  
519  
615  
727  
853  
997  
194  
212  
233  
+5  
225  
245  
268  
+15  
+25  
+35  
+45  
+55  
+65  
+75  
+85  
+95  
+105  
+115  
+125  
261  
285  
309  
305  
331  
360  
358  
388  
420  
421  
455  
492  
495  
533  
576  
582  
626  
675  
682  
731  
789  
802  
860  
926  
942  
1007  
1179  
1372  
1601  
1083  
1266  
1473  
1716  
1103  
1285  
1498  
1 Valid temperature and voltage ranges are model-specific. See Operating Conditions on Page 18.  
Rev. H  
| Page 20 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Table 15. Dynamic Current in CCLK Domain—IDD_INT_DYNAMIC (mA, with ASF = 1.0)1, 2  
fCCLK  
(MHz)  
VDD_INT (V)  
0.975 V  
76  
1.0 V  
77  
1.025 V  
81  
1.05 V  
84  
1.075 V  
87  
1.10 V  
88  
1.125 V  
90  
1.15 V  
92  
1.175 V  
95  
100  
150  
200  
250  
300  
350  
400  
450  
117  
119  
156  
195  
233  
272  
309  
349  
123  
161  
201  
240  
278  
317  
356  
126  
165  
207  
246  
286  
326  
365  
130  
170  
212  
253  
294  
335  
374  
133  
174  
217  
260  
302  
344  
385  
136  
179  
223  
266  
309  
352  
394  
139  
183  
229  
273  
318  
361  
405  
144  
188  
235  
280  
325  
370  
415  
153  
190  
227  
263  
300  
339  
1 The values are not guaranteed as standalone maximum specifications. They must be combined with static current per the equations of Electrical Characteristics on Page 19.  
2 Valid frequency and voltage ranges are model-specific. See Operating Conditions on Page 18.  
ABSOLUTE MAXIMUM RATINGS  
ESD SENSITIVITY  
Stresses at or above those listed in Table 16 may cause perma-  
nent damage to the product. This is a stress rating only;  
functional operation of the product at these or any other condi-  
tions above those indicated in the operational section of this  
specification is not implied. Operation beyond the maximum  
operating conditions for extended periods may affect product  
reliability.  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
Table 16. Absolute Maximum Ratings  
MAXIMUM POWER DISSIPATION  
Parameter  
Rating  
See Engineer-to-Engineer Note Estimating Power for ADSP-  
214xx SHARC Processors (EE-348) for detailed thermal and  
power information regarding maximum power dissipation. For  
information on package thermal specifications, see Thermal  
Characteristics on Page 56.  
Internal (Core) Supply Voltage (VDD_INT  
)
–0.3 V to +1.32 V  
–0.3 V to +3.6 V  
–0.3 V to +3.6 V  
External (I/O) Supply Voltage (VDD_EXT  
)
Thermal Diode Supply Voltage  
(VDD_THD  
)
Input Voltage  
–0.5 V to +3.6 V  
–0.5 V to VDD_EXT +0.5 V  
–65°C to +150°C  
125°C  
Output Voltage Swing  
Storage Temperature Range  
Junction Temperature While Biased  
Rev. H  
|
Page 21 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Timing requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
TIMING SPECIFICATIONS  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, it is  
not meaningful to add parameters to derive longer times. See  
Figure 42 on Page 55 for voltage reference levels.  
Core Clock Requirements  
The processor’s internal clock (a multiple of CLKIN) provides  
the clock signal for timing internal memory, the processor core,  
and the serial ports. During reset, program the ratio between the  
processor’s internal clock frequency and external (CLKIN)  
clock frequency with the CLK_CFG1–0 pins.  
Switching characteristics specify how the processor changes its  
signals. Circuitry external to the processor must be designed for  
compatibility with these signal characteristics. Switching char-  
acteristics describe what the processor will do in a given  
circumstance. Use switching characteristics to ensure that any  
timing requirement of a device connected to the processor (such  
as memory) is satisfied.  
The processor’s internal clock switches at higher frequencies  
than the system input clock (CLKIN). To generate the internal  
clock, the processor uses an internal phase-locked loop (PLL,  
see Figure 3). This PLL-based clocking minimizes the skew  
between the system clock (CLKIN) signal and the processor’s  
internal clock.  
PMCTL  
(SDCKR)  
PMCTL  
(PLLBP)  
PLL  
f
CCLK  
fVCO  
INPUT  
SDRAM  
DIVIDER  
CLKIN  
CLKIN  
DIVIDER  
PLL  
DIVIDER  
LOOP  
FILTER  
VCO  
fCCLK  
SDCLK  
XTAL  
BUF  
CLK_CFGx/  
PMCTL (2 × PLLM)  
PMCTL  
(PLLD)  
PMCTL  
(INDIV)  
PCLK  
DIVIDE  
BY 2  
PMCTL  
(PLLBP)  
fVCO ÷ (2 × PLLM)  
PCLK  
CCLK  
CLKOUT (TEST ONLY)*  
DELAY OF  
4096 CLKIN  
CYCLES  
BUF  
RESETOUT  
CORESRST  
RESETOUT  
RESET  
*CLKOUT (TEST ONLY) FREQUENCY IS THE SAME AS fINPUT.  
THIS SIGNAL IS NOT SPECIFIED OR SUPPORTED FOR ANY DESIGN.  
Figure 3. Core Clock and System Clock Relationship to CLKIN  
Voltage Controlled Oscillator (VCO)  
where:  
In application designs, the PLL multiplier value should be  
selected in such a way that the VCO frequency never exceeds  
fVCO specified in Table 19.  
fVCO = VCO output  
PLLM = Multiplier value programmed in the PMCTL register.  
During reset, the PLLM value is derived from the ratio selected  
using the CLK_CFG pins in hardware.  
• The product of CLKIN and PLLM must never exceed 1/2 of  
fVCO (max) in Table 19 if the input divider is not enabled  
(INDIV = 0).  
PLLD = 2, 4, 8, or 16 based on the divider value programmed on  
the PMCTL register. During reset this value is 2.  
• The product of CLKIN and PLLM must never exceed fVCO  
(max) in Table 19 if the input divider is enabled  
(INDIV = 1).  
f
f
f
INPUT = is the input frequency to the PLL.  
INPUT = CLKIN when the input divider is disabled or  
INPUT = CLKIN ÷ 2 when the input divider is enabled  
The VCO frequency is calculated as follows:  
f
f
VCO = 2 × PLLM × fINPUT  
CCLK = (2 × PLLM × fINPUT) ÷ PLLD  
Rev. H  
|
Page 22 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Note the definitions of the clock periods that are a function of  
CLKIN and the appropriate ratio control shown in Table 17. All  
of the timing specifications for the ADSP-2148x peripherals are  
defined in relation to tPCLK. See the peripheral specific section  
for each peripheral’s timing information.  
Power-Up Sequencing  
The timing requirements for processor startup are given in  
Table 18. While no specific power-up sequencing is required  
between VDD_EXT and VDD_INT, there are some considerations  
that system designs should take into account.  
• No power supply should be powered up for an extended  
period of time (> 200 ms) before another supply starts to  
ramp up.  
Table 17. Clock Periods  
Timing  
Requirements  
Description  
• If the VDD_INT power supply comes up after VDD_EXT, any  
pin, such as RESETOUT and RESET, may actually drive  
momentarily until the VDD_INT rail has powered up.  
Systems sharing these signals on the board must determine  
if there are any issues that need to be addressed based on  
this behavior.  
tCK  
CLKIN Clock Period  
tCCLK  
tPCLK  
tSDCLK  
Processor Core Clock Period  
Peripheral Clock Period = 2 × tCCLK  
SDRAM Clock Period = (tCCLK) × SDCKR  
Note that during power-up, when the VDD_INT power supply  
comes up after VDD_EXT, a leakage current of the order of three-  
state leakage current pull-up, pull-down may be observed on  
any pin, even if that is an input only (for example the RESET  
pin) until the VDD_INT rail has powered up.  
Figure 3 shows core to CLKIN relationships with external oscil-  
lator or crystal. The shaded divider/multiplier blocks denote  
where clock ratios can be set through hardware or software  
using the power management control register (PMCTL). For  
more information, see the hardware reference manual.  
Table 18. Power Up Sequencing Timing Requirements (Processor Startup)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRSTVDD  
RESET Low Before VDD_EXT or VDD_INT On  
VDD_INT On Before VDD_EXT  
0
ms  
ms  
ms  
ꢀs  
tIVDDEVDD  
–200  
+200  
200  
1
tCLKVDD  
CLKIN Valid After VDD_INT and VDD_EXT Valid  
CLKIN Valid Before RESET Deasserted  
PLL Control Setup Before RESET Deasserted  
0
tCLKRST  
102  
203  
tPLLRST  
ꢀs  
Switching Characteristic  
4, 5  
tCORERST  
Core Reset Deasserted After RESET Deasserted  
4096 × tCK + 2 × tCCLK  
1 Valid VDD_INT and VDD_EXT assumes that the supplies are fully ramped to their nominal values (it does not matter which supply comes up first). Voltage ramp rates can vary  
from microseconds to hundreds of milliseconds depending on the design of the power supply subsystem.  
2 Assumes a stable CLKIN signal, after meeting worst-case startup timing of crystal oscillators. Refer to your crystal oscillator manufacturer's data sheet for startup time. Assume  
a 25 ms maximum oscillator startup time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.  
3 Based on CLKIN cycles.  
4 Applies after the power-up sequence is complete. Subsequent resets require a minimum of four CLKIN cycles for RESET to be held low in order to properly initialize and  
propagate default states at all I/O pins.  
5 The 4096 cycle count depends on tSRST specification in Table 20. If setup time is not met, one additional CLKIN cycle may be added to the core reset time, resulting in 4097  
cycles maximum.  
Rev. H  
| Page 23 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
tRSTVDD  
RESET  
V
DDINT  
tIVDDEVDD  
V
DDEXT  
tCLKVDD  
CLKIN  
tCLKRST  
CLK_CFG1–0  
RESETOUT  
tPLLRST  
tCORERST  
Figure 4. Power-Up Sequencing  
Clock Input  
Table 19. Clock Input  
266 MHz  
300 MHz  
350 MHz  
400 MHz  
450 MHz  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tCK  
CLKIN Period  
301  
15  
1002  
45  
26.661 1002  
22.81 1002  
201  
10  
1002  
45  
17.751 1002  
ns  
tCKL  
tCKH  
tCKRF  
tCCLK  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V to 2.0 V)  
CCLK Period  
13  
13  
45  
11  
11  
45  
45  
3
8.875  
8.875  
45  
ns  
15  
45  
45  
10  
45  
45  
ns  
3
4
3
3
3
3
ns  
3.75  
200  
10  
3.33  
200  
10  
2.85  
200  
10  
800  
2.5  
10  
2.22  
200  
10  
ns  
5
fVCO  
VCO Frequency  
800  
+250  
800  
+250  
200  
800  
+250  
900  
+250  
MHz  
ps  
6, 7  
tCKJ  
CLKIN Jitter Tolerance  
–250  
–250  
–250 +250 –250  
–250  
1 Applies only for CLK_CFG1–0 = 00 and default values for PLL control bits in PMCTL.  
2 Applies only for CLK_CFG1–0 = 01 and default values for PLL control bits in PMCTL.  
3 Guaranteed by simulation but not tested on silicon.  
4 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification tCCLK  
5 See Figure 3 on Page 22 for VCO diagram.  
.
6 Actual input jitter should be combined with ac specifications for accurate timing analysis.  
7 Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.  
tCKJ  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 5. Clock Input  
Rev. H  
| Page 24 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Clock Signals  
The ADSP-2148x can use an external clock or a crystal. See the  
operating in fundamental mode. Note that the clock rate is  
achieved using a 25 MHz crystal and a PLL multiplier ratio 16:1  
(CCLK:CLKIN achieves a clock speed of 400 MHz). To achieve  
the full core clock rate, programs need to configure the multi-  
plier bits in the PMCTL register.  
CLKIN pin description in Table 11 on Page 14. Programs can  
configure the processor to use its internal clock generator by  
connecting the necessary components to CLKIN and XTAL.  
Figure 6 shows the component connections used for a crystal  
ADSP-2148x  
R1  
ꢀ0ȍꢁ  
XTAL  
CLKIN  
R2  
47ȍꢁ  
CHOOSE C1 AND C2 BASED ON THE CRYSTAL Y1.  
R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL DRIVE  
POWER. REFER TO CRYSTAL MANUFACTURER’S  
SPECIFICATIONS.  
C1  
22pF  
C2  
22pF  
Y1  
25MHz  
TYPICAL VALUES  
Figure 6. Recommended Circuit for  
Fundamental Mode Crystal Operation  
Rev. H  
| Page 25 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Reset  
Table 20. Reset  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tWRST  
tSRST  
RESET Pulse Width Low  
RESET Setup Before CLKIN Low  
4 × tCK  
8
ns  
ns  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 μwhile RESET is low, assuming stable  
VDD and CLKIN (not including start-up time of external clock oscillator).  
CLKIN  
tWRST  
tSRST  
RESET  
Figure 7. Reset  
Running Reset  
The following timing specification applies to  
RESETOUT/RUNRSTIN pin when it is configured as  
RUNRSTIN.  
Table 21. Running Reset  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tWRUNRST  
tSRUNRST  
Running RESET Pulse Width Low  
4 × tCK  
8
ns  
ns  
Running RESET Setup Before CLKIN High  
CLKIN  
tWRUNRST  
tSRUNRST  
RUNRSTIN  
Figure 8. Running Reset  
Rev. H  
| Page 26 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Interrupts  
The following timing specification applies to the FLAG0,  
FLAG1, and FLAG2 pins when they are configured as IRQ0,  
IRQ1, and IRQ2 interrupts, as well as the DAI_P20–1 and  
DPI_P14–1 pins when they are configured as interrupts.  
Table 22. Interrupts  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tIPW  
IRQx Pulse Width  
2 × tPCLK +2  
ns  
INTERRUPT  
INPUTS  
tIPW  
Figure 9. Interrupts  
Core Timer  
The following timing specification applies to FLAG3 when it is  
configured as the core timer (TMREXP).  
Table 23. Core Timer  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tWCTIM  
TMREXP Pulse Width  
4 × tPCLK – 1  
ns  
tWCTIM  
FLAG3  
(TMREXP)  
Figure 10. Core Timer  
Rev. H  
| Page 27 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Timer PWM_OUT Cycle Timing  
The following timing specification applies to timer0 and timer1  
in PWM_OUT (pulse-width modulation) mode. Timer signals  
are routed to the DPI_P14–1 pins through the DPI SRU. There-  
fore, the timing specifications provided below are valid at the  
DPI_P14–1 pins.  
Table 24. Timer PWM_OUT Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tPWMO  
Timer Pulse Width Output  
2 × tPCLK – 1.2  
2 × (231 – 1) × tPCLK  
ns  
tPWMO  
PWM  
OUTPUTS  
Figure 11. Timer PWM_OUT Timing  
Timer WDTH_CAP Timing  
The following timing specification applies to timer0 and timer1,  
and in WDTH_CAP (pulse-width count and capture) mode.  
Timer signals are routed to the DPI_P14–1 pins through the  
SRU. Therefore, the timing specification provided below is valid  
at the DPI_P14–1 pins.  
Table 25. Timer Width Capture Timing  
Parameter  
Min  
Max  
2 × (231 – 1) × tPCLK  
Unit  
Timing Requirement  
tPWI  
Timer Pulse Width  
2 × tPCLK  
ns  
tPWI  
TIMER  
CAPTURE  
INPUTS  
Figure 12. Timer Width Capture Timing  
Rev. H  
| Page 28 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Watchdog Timer Timing  
Table 26. Watchdog Timer Timing  
Parameter  
Min  
Max  
1000  
6.4  
Unit  
Timing Requirement  
tWDTCLKPER  
100  
ns  
Switching Characteristics  
tRST  
WDT Clock Rising Edge to Watchdog Timer  
RESET Falling Edge  
3
ns  
ns  
tRSTPW  
Reset Pulse Width  
64 × tWDTCLKPER  
tWDTCLKPER  
WDT_CLKIN  
tRST  
tRSTPW  
WDTRSTO  
Figure 13. Watchdog Timer Timing  
Pin to Pin Direct Routing (DAI and DPI)  
For direct pin connections only (for example DAI_PB01_I to  
DAI_PB02_O).  
Table 27. DAI/DPI Pin to Pin Routing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tDPIO  
Delay DAI/DPI Pin Input Valid to DAI/DPI Output Valid  
1.5  
12  
ns  
DAI_Pn  
DPI_Pn  
tDPIO  
DAI_Pm  
DPI_Pm  
Figure 14. DAI Pin to Pin Direct Routing  
Rev. H  
| Page 29 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
inputs and outputs are not directly routed to/from DAI pins (via  
pin buffers), there is no timing data available. All timing param-  
eters and switching characteristics apply to external DAI pins  
(DAI_P01 – DAI_P20).  
Precision Clock Generator (Direct Pin Routing)  
This timing is only valid when the SRU is configured such that  
the precision clock generator (PCG) takes its inputs directly  
from the DAI pins (via pin buffers) and sends its outputs  
directly to the DAI pins. For the other cases, where the PCG’s  
Table 28. Precision Clock Generator (Direct Pin Routing)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tPCGIW  
tSTRIG  
Input Clock Period  
tPCLK × 4  
ns  
ns  
PCGTrigger Setup BeforeFallingEdgeof PCG Input 4.5  
Clock  
tHTRIG  
PCG Trigger Hold After Falling Edge of PCG Input  
Clock  
3
ns  
ns  
Switching Characteristics  
tDPCGIO  
PCG Output Clock and Frame Sync Active Edge  
2.5  
10  
Delay After PCG Input Clock  
tDTRIGCLK  
PCG Output Clock Delay After PCG Trigger  
PCG Frame Sync Delay After PCG Trigger  
Output Clock Period  
2.5 + (2.5 × tPCGIP  
)
10 + (2.5 × tPCGIP  
)
ns  
ns  
ns  
tDTRIGFS  
2.5 + ((2.5 + D – PH) × tPCGIP  
2 × tPCGIP – 1  
)
10 + ((2.5 + D – PH) × tPCGIP)  
1
tPCGOW  
D = FSxDIV, PH = FSxPHASE. For more information, see the “Precision Clock Generators” chapter in the hardware reference manual.  
1 Normal mode of operation.  
tSTRIG  
tHTRIG  
DAI_Pn  
DPI_Pn  
PCG_TRIGx_I  
DAI_Pm  
DPI_Pm  
PCG_EXTx_I  
(CLKIN)  
tDPCGIO  
tPCGIP  
DAI_Py  
DPI_Py  
PCG_CLKx_O  
tDTRIGCLK  
tPCGOW  
tDPCGIO  
DAI_Pz  
DPI_Pz  
PCG_FSx_O  
tDTRIGFS  
Figure 15. Precision Clock Generator (Direct Pin Routing)  
Rev. H  
| Page 30 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Flags  
The timing specifications provided below apply to the  
DPI_P14–1, ADDR7–0, ADDR23–8, DATA7–0, and FLAG3–0  
pins when configured as FLAGS. See Table 11 on Page 14 for  
more information on flag use.  
Table 29. Flags  
Parameter  
Min  
Max  
Unit  
ns  
Timing Requirement  
1
tFIPW  
FLAGs IN Pulse Width  
2 × tPCLK + 3  
Switching Characteristic  
1
tFOPW  
FLAGs OUT Pulse Width  
2 × tPCLK – 3  
ns  
1 This is applicable when the Flags are connected to DPI_P14–1, ADDR7–0, ADDR23–8, DATA7–0 and FLAG3–0 pins.  
FLAG  
INPUTS  
tFIPW  
FLAG  
OUTPUTS  
tFOPW  
Figure 16. Flags  
Rev. H  
| Page 31 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
SDRAM Interface Timing (166 MHz SDCLK)  
The maximum frequency for SDRAM is 166 MHz. For informa-  
tion on SDRAM frequency and programming, see the hardware  
reference manual, Engineer-to-Engineer Note Interfacing  
SDRAM Memories to SHARC Processors (EE-286), and the  
SDRAM vendor data sheet.  
Table 30. SDRAM Interface Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
DATA Setup Before SDCLK  
DATA Hold After SDCLK  
0.7  
ns  
ns  
1.23  
Switching Characteristics  
1
tSDCLK  
SDCLK Period  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSDCLKH  
SDCLK Width High  
2.2  
2.2  
tSDCLKL  
SDCLK Width Low  
2
tDCAD  
Command, ADDR, Data Delay After SDCLK  
Command, ADDR, Data Hold After SDCLK  
Data Disable After SDCLK  
4
2
tHCAD  
1
tDSDAT  
5.3  
tENSDAT  
Data Enable After SDCLK  
0.3  
1 Systems should use the SDRAM model with a speed grade higher than the desired SDRAM controller speed. For example, to run the SDRAM controller at 166 MHz the  
SDRAM model with a speed grade of 183 MHz or above should be used. See Engineer-to-Engineer Note Interfacing SDRAM Memories to SHARC Processors (EE-286) for  
more information on hardware design guidelines for the SDRAM interface.  
2 Command pins include: SDCAS, SDRAS, SDWE, MSx, SDA10, SDCKE.  
tSDCLKH  
tSDCLK  
SDCLK  
tSSDAT  
tHSDAT  
tSDCLKL  
DATA (IN)  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
DATA (OUT)  
tDCAD  
tHCAD  
COMMAND/ADDR  
(OUT)  
Figure 17. SDRAM Interface Timing  
Rev. H  
| Page 32 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
AMI Read  
Use these specifications for asynchronous interfacing to memo-  
ries. Note that timing for AMI_ACK, ADDR, DATA, AMI_RD,  
AMI_WR, and strobe timing parameters only apply to asyn-  
chronous access mode.  
Table 31. AMI Read  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1, 2, 3  
tDAD  
tDRLD  
tSDS  
Address Selects Delay to Data Valid  
AMI_RD Low to Data Valid  
W + tSDCLK –5.4  
W – 3.2  
ns  
ns  
ns  
ns  
ns  
ns  
1, 3  
Data Setup to AMI_RD High  
2.5  
0
4, 5  
tHDRH  
Data Hold from AMI_RD High  
AMI_ACK Delay from Address, Selects  
AMI_ACK Delay from AMI_RD Low  
2, 6  
tDAAK  
tSDCLK 9.5 + W  
W – 7  
4
tDSAK  
Switching Characteristics  
tDRHA Address Selects Hold After AMI_RD High  
RHC + 0.20  
tSDCLK – 3.8  
W – 1.4  
ns  
ns  
ns  
ns  
4
tDARL  
tRW  
Address Selects to AMI_RD Low  
AMI_RD Pulse Width  
tRWR  
AMI_RD High to AMI_RD Low  
HI + tSDCLK – 1  
W = (number of wait states specified in AMICTLx register) × tSDCLK  
.
RHC = (number of Read Hold Cycles specified in AMICTLx register) × tSDCLK  
Where PREDIS = 0  
HI = RHC (if IC=0): Read to Read from same bank  
HI = RHC + tSDCLK (if IC>0): Read to Read from same bank  
HI = RHC + IC: Read to Read from different bank  
HI = RHC + Max (IC, (4 × tSDCLK)): Read to Write from same or different bank  
Where PREDIS = 1  
HI = RHC + Max (IC, (4 × tSDCLK)): Read to Write from same or different bank  
HI = RHC + (3 × tSDCLK): Read to Read from same bank  
HI = RHC + Max (IC, (3 × tSDCLK): Read to Read from different bank  
IC = (number of idle cycles specified in AMICTLx register) × tSDCLK  
H = (number of hold cycles specified in AMICTLx register) × tSDCLK  
1 Data delay/setup: System must meet tDAD, tDRLD, or tSDS.  
2 The falling edge of MSx, is referenced.  
3 The maximum limit of timing requirement values for tDAD and tDRLD parameters are applicable for the case where AMI_ACK is always high and when the ACK feature is not  
used.  
4 Note that timing for AMI_ACK, ADDR, DATA, AMI_RD, AMI_WR, and strobe timing parameters only apply to asynchronous access mode.  
5 Data hold: User must meet tHDRH in asynchronous access mode. See Test Conditions on Page 55 for the calculation of hold times given capacitive and dc loads.  
6 AMI_ACK delay/setup: User must meet tDAAK, or tDSAK, for deassertion of AMI_ACK (low).  
Rev. H  
| Page 33 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
AMI_ADDR  
AMI_MSx  
tDARL  
tRW  
tDRHA  
AMI_RD  
tDRLD  
tSDS  
tDAD  
tHDRH  
AMI_DATA  
tDSAK  
tRWR  
tDAAK  
AMI_ACK  
AMI_WR  
Figure 18. AMI Read  
Rev. H  
| Page 34 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
AMI Write  
Use these specifications for asynchronous interfacing to memo-  
ries. Note that timing for AMI_ACK, ADDR, DATA, AMI_RD,  
AMI_WR, and strobe timing parameters only apply to asyn-  
chronous access mode.  
Table 32. AMI Write  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1, 2  
tDAAK  
AMI_ACK Delay from Address, Selects  
AMI_ACK Delay from AMI_WR Low  
tSDCLK – 9.7 + W  
W – 6  
ns  
ns  
1, 3  
tDSAK  
Switching Characteristics  
2
tDAWH  
Address Selects to AMI_WR Deasserted  
tSDCLK – 3.1+ W  
tSDCLK – 3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
tDAWL  
tWW  
Address Selects to AMI_WR Low  
AMI_WR Pulse Width  
W – 1.3  
tDDWH  
tDWHA  
tDWHD  
tDATRWH  
Data Setup Before AMI_WR High  
Address Hold After AMI_WR Deasserted  
Data Hold After AMI_WR Deasserted  
Data Disable After AMI_WR Deasserted  
AMI_WR High to AMI_WR Low  
Data Disable Before AMI_RD Low  
Data Enabled to AMI_WR Low  
tSDCLK – 3.7+ W  
H + 0.15  
H
4
tSDCLK – 4.3 + H  
tSDCLK – 1.5+ H  
2 × tSDCLK – 6  
tSDCLK – 3.7  
tSDCLK + 4.9 + H  
5
tWWR  
tDDWR  
tWDE  
W = (number of wait states specified in AMICTLx register) × tSDCLK  
H = (number of hold cycles specified in AMICTLx register) × tSDCLK  
1 AMI_ACK delay/setup: System must meet tDAAK, or tDSAK, for deassertion of AMI_ACK (low).  
2 The falling edge of MSx is referenced.  
3 Note that timing for AMI_ACK, AMI_RD, AMI_WR, and strobe timing parameters only applies to asynchronous access mode.  
4 See Test Conditions on Page 55 for calculation of hold times given capacitive and dc loads.  
5 For Write to Write: tSDCLK + H, for both same bank and different bank. For Write to Read: 3 × tSDCLK + H, for the same bank and different banks.  
AMI_ADDR  
AMI_MSx  
tDAWH  
tDWHA  
tDAWL  
tWW  
AMI_WR  
tWWR  
tWDE  
tDATRWH  
tDDWH  
tDDWR  
AMI_DATA  
tDSAK  
tDWHD  
tDAAK  
AMI_ACK  
AMI_RD  
Figure 19. AMI Write  
Rev. H  
| Page 35 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Serial Ports  
In slave transmitter mode and master receiver mode, the maxi-  
mum serial port frequency is fPCLK/8. In master transmitter  
mode and slave receiver mode, the maximum serial port clock  
frequency is fPCLK/4. To determine whether communication is  
possible between two devices at clock speed n, the following  
specifications must be confirmed: 1) frame sync delay and frame  
sync setup and hold; 2) data delay and data setup and hold; and  
3) SCLK width.  
Serial port signals (SCLK, frame sync, Data Channel A, Data  
Channel B) are routed to the DAI_P20–1 pins using the SRU.  
Therefore, the timing specifications provided below are valid at  
the DAI_P20–1 pins.  
Table 33. Serial Ports—External Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSE  
Frame Sync Setup Before SCLK  
2.5  
(Externally Generated Frame Sync in either Transmit or Receive  
Mode)  
ns  
ns  
1
tHFSE  
Frame Sync Hold After SCLK  
(Externally Generated Frame Sync in either Transmit or Receive  
Mode)  
2.5  
1
tSDRE  
Receive Data Setup Before Receive SCLK  
Receive Data Hold After SCLK  
SCLK Width  
1.9  
ns  
ns  
ns  
ns  
1
tHDRE  
tSCLKW  
tSCLK  
2.5  
(tPCLK × 4) ÷ 2 – 1.5  
tPCLK × 4  
SCLK Period  
Switching Characteristics  
2
tDFSE  
Frame Sync Delay After SCLK  
(Internally Generated Frame Sync in either Transmit or Receive Mode)  
10.25  
9
ns  
2
tHOFSE  
Frame Sync Hold After SCLK  
(InternallyGeneratedFrameSyncineitherTransmitorReceiveMode)  
2
2
ns  
ns  
ns  
2
tDDTE  
Transmit Data Delay After Transmit SCLK  
2
tHDTE  
Transmit Data Hold After Transmit SCLK  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Table 34. Serial Ports—Internal Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSI  
Frame Sync Setup Before SCLK  
7
(Externally Generated Frame Sync in either Transmit or Receive Mode)  
ns  
1
1
tHFSI  
Frame Sync Hold After SCLK  
(Externally Generated Frame Sync in either Transmit or Receive Mode)  
2.5  
ns  
ns  
ns  
tSDRI  
Receive Data Setup Before SCLK  
Receive Data Hold After SCLK  
7
1
tHDRI  
2.5  
Switching Characteristics  
2
tDFSI  
Frame Sync Delay After SCLK (Internally Generated Frame Sync in Transmit Mode)  
Frame Sync Hold After SCLK (Internally Generated Frame Sync in Transmit Mode)  
4
ns  
ns  
ns  
ns  
ns  
ns  
2
tHOFSI  
–1  
–1  
–2  
2
tDFSIR  
Frame Sync Delay After SCLK (Internally Generated Frame Sync in Receive Mode)  
Frame Sync Hold After SCLK (Internally Generated Frame Sync in Receive Mode)  
Transmit Data Delay After SCLK  
9.75  
3.25  
2
tHOFSIR  
2
tDDTI  
2
tHDTI  
Transmit Data Hold After SCLK  
tSCKLIW  
Transmit or Receive SCLK Width  
2 × tPCLK – 1.5 2 × tPCLK + 1.5 ns  
1 Referenced to the sample edge.  
2 Referenced to drive edge.  
Rev. H  
| Page 36 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
DATA RECEIVE—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(FS)  
DAI_P20–1  
(FS)  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(FS)  
DAI_P20–1  
(FS)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
Figure 20. Serial Ports  
Rev. H  
| Page 37 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Table 35. Serial Ports—External Late Frame Sync  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
1
tDDTLFSE  
Data Delay from Late External Transmit Frame Sync or External  
8.5  
Receive Frame Sync with MCE = 1, MFD = 0  
ns  
ns  
1
tDDTENFS  
Data Enable for MCE = 1, MFD = 0  
0.5  
1 The tDDTLFSE and tDDTENFS parameters apply to left-justified, as well as DSP serial mode, and MCE = 1, MFD = 0.  
EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TRANSMIT FS  
SAMPLE DRIVE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
t
Figure 21. External Late Frame Sync1  
1 This figure reflects changes made to support left-justified mode.  
Rev. H  
| Page 38 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Table 36. Serial Ports—Enable and Three-State  
Parameter  
Min  
2
Max  
Unit  
Switching Characteristics  
1
tDDTEN  
Data Enable from External Transmit SCLK  
ns  
ns  
ns  
1
tDDTTE  
Data Disable from External Transmit SCLK  
11.5  
1
tDDTIN  
Data Enable from Internal Transmit SCLK  
–1.5  
1 Referenced to drive edge.  
DRIVE EDGE  
DRIVE EDGE  
DAI_P20–1  
(SCLK, EXT)  
tDDTEN  
tDDTTE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DRIVE EDGE  
DAI_P20–1  
(SCLK, INT)  
tDDTIN  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
Figure 22. Serial Ports—Enable and Three-State  
Rev. H  
| Page 39 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
The SPORTx_TDV_O output signal (routing unit) becomes  
active in SPORT multichannel mode. During transmit slots  
(enabled with active channel selection registers) the SPORTx-  
_TDV_O is asserted for communication with external devices.  
Table 37. Serial Ports—TDV (Transmit Data Valid)  
Parameter  
Switching Characteristics1  
Min  
3
Max  
Unit  
tDRDVEN  
tDFDVEN  
tDRDVIN  
tDFDVIN  
TDV Assertion Delay from Drive Edge of External Clock  
ns  
ns  
ns  
ns  
TDV Deassertion Delay from Drive Edge of External Clock  
TDV Assertion Delay from Drive Edge of Internal Clock  
TDV Deassertion Delay from Drive Edge of Internal Clock  
8
2
–1  
1 Referenced to drive edge.  
DRIVE EDGE  
DRIVE EDGE  
DAI_P20–1  
(SCLK, EXT)  
TDVx  
DAI_P20-1  
tDFDVEN  
tDRDVEN  
DRIVE EDGE  
DRIVE EDGE  
DAI_P20–1  
(SCLK, INT)  
TDVx  
DAI_P20-1  
tDFDVIN  
tDRDVIN  
Figure 23. Serial Ports—TDM Internal and External Clock  
Rev. H  
| Page 40 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Input Data Port (IDP)  
The timing requirements for the IDP are given in Table 38. IDP  
signals are routed to the DAI_P20–1 pins using the SRU. There-  
fore, the timing specifications provided below are valid at the  
DAI_P20–1 pins.  
Table 38. Input Data Port (IDP)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
Frame Sync Setup Before Serial Clock Rising Edge  
3.8  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
Frame Sync Hold After Serial Clock Rising Edge  
Data Setup Before Serial Clock Rising Edge  
Data Hold After Serial Clock Rising Edge  
Clock Width  
2.5  
1
tSISD  
2.5  
1
tSIHD  
tIDPCLKW  
tIDPCLK  
2.5  
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
Clock Period  
1
The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. PCG's input can  
be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tIDPCLK  
tIDPCLKW  
DAI_P20–1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20–1  
(FS)  
tSISD  
tSIHD  
DAI_P20–1  
(SDATA)  
Figure 24. IDP Master Timing  
Rev. H  
| Page 41 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
PDAP chapter of the hardware reference manual. Note that the  
20 bits of external PDAP data can be provided through the  
ADDR23–4 pins or over the DAI pins.  
Parallel Data Acquisition Port (PDAP)  
The timing requirements for the PDAP are provided in  
Table 39. PDAP is the parallel mode operation of Channel 0 of  
the IDP. For details on the operation of the PDAP, see the  
Table 39. Parallel Data Acquisition Port (PDAP)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSPHOLD  
PDAP_HOLD Setup Before PDAP_CLK Sample Edge  
PDAP_HOLD Hold After PDAP_CLK Sample Edge  
PDAP_DAT Setup Before PDAP_CLK Sample Edge  
PDAP_DAT Hold After PDAP_CLK Sample Edge  
Clock Width  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
1
tHPHOLD  
2.5  
1
tPDSD  
3.85  
1
tPDHD  
2.5  
tPDCLKW  
tPDCLK  
(tPCLK × 4) ÷ 2 – 3  
tPCLK × 4  
Clock Period  
Switching Characteristics  
tPDHLDD Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word  
tPDSTRB PDAP Strobe Pulse Width  
2 × tPCLK + 3  
ns  
ns  
2 × tPCLK – 1.5  
1
Source pins of PDAP_DATA are ADDR23–4 or DAI pins. Source pins for PDAP_CLK and PDAP_HOLD are 1) DAI pins; 2) CLKIN through PCG; 3) DAI pins through  
PCG; or 4) ADDR3–2 pins.  
SAMPLE EDGE  
tPDCLK  
tPDCLKW  
DAI_P20–1  
(PDAP_CLK)  
tHPHOLD  
tSPHOLD  
DAI_P20–1  
(PDAP_HOLD)  
tPDHD  
tPDSD  
DAI_P20–1/  
ADDR23–4  
(PDAP_DATA)  
tPDHLDD  
tPDSTRB  
DAI_P20–1  
(PDAP_STROBE)  
Figure 25. PDAP Timing  
Rev. H  
| Page 42 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Sample Rate Converter—Serial Input Port  
The ASRC input signals are routed from the DAI_P20–1 pins  
using the SRU. Therefore, the timing specifications provided in  
Table 40 are valid at the DAI_P20–1 pins.  
Table 40. ASRC, Serial Input Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
Frame Sync Setup Before Serial Clock Rising Edge  
4
ns  
ns  
ns  
ns  
ns  
ns  
1
tSRCHFS  
Frame Sync Hold After Serial Clock Rising Edge  
Data Setup Before Serial Clock Rising Edge  
Data Hold After Serial Clock Rising Edge  
Clock Width  
5.5  
1
tSRCSD  
4
1
tSRCHD  
tSRCCLKW  
tSRCCLK  
5.5  
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
Clock Period  
1
The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. PCG’s input  
can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
DAI_P20–1  
(SCLK)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI_P20–1  
(FS)  
tSRCSD  
tSRCHD  
DAI_P20–1  
(SDATA)  
Figure 26. ASRC Serial Input Port Timing  
Rev. H  
| Page 43 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
specification with regard to serial clock. Note that serial clock  
rising edge is the sampling edge, and the falling edge is the  
drive edge.  
Sample Rate Converter—Serial Output Port  
For the serial output port, the frame sync is an input, and it  
should meet setup and hold times with regard to SCLK on the  
output port. The serial data output has a hold time and delay  
Table 41. ASRC, Serial Output Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
Frame Sync Setup Before Serial Clock Rising Edge  
Frame Sync Hold After Serial Clock Rising Edge  
Clock Width  
4
ns  
ns  
ns  
ns  
1
tSRCHFS  
tSRCCLKW  
tSRCCLK  
5.5  
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
Clock Period  
Switching Characteristics  
1
tSRCTDD  
Transmit Data Delay After Serial Clock Falling Edge  
Transmit Data Hold After Serial Clock Falling Edge  
9.9  
ns  
ns  
1
tSRCTDH  
1
1 The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. PCG’s input  
can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
DAI_P20–1  
(SCLK)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI_P20–1  
(FS)  
tSRCTDD  
tSRCTDH  
DAI_P20–1  
(SDATA)  
Figure 27. ASRC Serial Output Port Timing  
Rev. H  
| Page 44 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Pulse-Width Modulation Generators (PWM)  
The following timing specifications apply when the  
ADDR23–8/DPI_14–1 pins are configured as PWM.  
Table 42. Pulse-Width Modulation (PWM) Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tPWMW  
tPWMP  
PWM Output Pulse Width  
PWM Output Period  
tPCLK – 2  
(216 – 2) × tPCLK  
(216 – 1) × tPCLK  
ns  
ns  
2 × tPCLK – 1.5  
tPWMW  
PWM  
OUTPUTS  
tPWMP  
Figure 28. PWM Timing  
S/PDIF Transmitter  
Serial data input to the S/PDIF transmitter can be formatted as  
left-justified, I2S, or right-justified with word widths of 16, 18,  
20, or 24 bits. The following sections provide timing for the  
transmitter.  
S/PDIF Transmitter-Serial Input Waveforms  
Figure 29 shows the right-justified mode. Frame sync is high for  
the left channel and low for the right channel. Data is valid on  
the rising edge of serial clock. The MSB is delayed the minimum  
in 24-bit output mode or the maximum in 16-bit output mode  
from a frame sync transition, so that when there are 64 serial  
clock periods per frame sync period, the LSB of the data is right-  
justified to the next frame sync transition.  
Table 43. S/PDIF Transmitter Right-Justified Mode  
Parameter  
Nominal  
Unit  
Timing Requirement  
tRJD  
Frame Sync to MSB Delay in Right-Justified Mode  
16-Bit Word Mode  
16  
14  
12  
8
SCLK  
SCLK  
SCLK  
SCLK  
18-Bit Word Mode  
20-Bit Word Mode  
24-Bit Word Mode  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
FS  
DAI_P20–1  
SCLK  
tRJD  
DAI_P20–1  
SDATA  
LSB  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 29. Right-Justified Mode  
Rev. H  
| Page 45 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Figure 30 shows the default I2S-justified mode. The frame sync  
is low for the left channel and HI for the right channel. Data is  
valid on the rising edge of serial clock. The MSB is left-justified  
to the frame sync transition but with a delay.  
Table 44. S/PDIF Transmitter I2S Mode  
Parameter  
Timing Requirement  
tI2SD  
Nominal  
Unit  
Frame Sync to MSB Delay in I2S Mode  
1
SCLK  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
FS  
DAI_P20–1  
SCLK  
tI2SD  
DAI_P20–1  
SDATA  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 30. I2S-Justified Mode  
Figure 31 shows the left-justified mode. The frame sync is high  
for the left channel and low for the right channel. Data is valid  
on the rising edge of serial clock. The MSB is left-justified to the  
frame sync transition with no delay.  
Table 45. S/PDIF Transmitter Left-Justified Mode  
Parameter  
Nominal  
Unit  
Timing Requirement  
tLJD  
Frame Sync to MSB Delay in Left-Justified Mode  
0
SCLK  
DAI_P20–1  
FS  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
SCLK  
tLJD  
DAI_P20–1  
SDATA  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 31. Left-Justified Mode  
Rev. H  
| Page 46 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
S/PDIF Transmitter Input Data Timing  
The timing requirements for the S/PDIF transmitter are given  
in Table 46. Input signals are routed to the DAI_P20–1 pins  
using the SRU. Therefore, the timing specifications provided  
below are valid at the DAI_P20–1 pins.  
Table 46. S/PDIF Transmitter Input Data Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
Frame Sync Setup Before Serial Clock Rising Edge  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
Frame Sync Hold After Serial Clock Rising Edge  
Data Setup Before Serial Clock Rising Edge  
Data Hold After Serial Clock Rising Edge  
Transmit Clock Width  
3
1
tSISD  
3
1
tSIHD  
3
tSITXCLKW  
tSITXCLK  
tSISCLKW  
tSISCLK  
9
Transmit Clock Period  
20  
36  
80  
Clock Width  
Clock Period  
1 The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. PCG’s input can  
be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSITXCLKW  
tSITXCLK  
DAI_P20–1  
(TxCLK)  
tSISCLK  
tSISCLKW  
DAI_P20–1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20–1  
(FS)  
tSISD  
tSIHD  
DAI_P20–1  
(SDATA)  
Figure 32. S/PDIF Transmitter Input Timing  
Oversampling Clock (TxCLK) Switching Characteristics  
The S/PDIF transmitter requires an oversampling clock input.  
This high frequency clock (TxCLK) input is divided down to  
generate the internal biphase clock.  
Table 47. Oversampling Clock (TxCLK) Switching Characteristics  
Parameter  
Max  
Unit  
MHz  
MHz  
kHz  
Frequency for TxCLK = 384 × Frame Sync  
Frequency for TxCLK = 256 × Frame Sync  
Frame Rate (FS)  
Oversampling Ratio × Frame Sync ≤ 1/tSITXCLK  
49.2  
192.0  
Rev. H  
|
Page 47 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
S/PDIF Receiver  
The following section describes timing as it relates to the  
S/PDIF receiver.  
Internal Digital PLL Mode  
In the internal digital phase-locked loop mode the internal PLL  
(digital PLL) generates the 512 × FS clock.  
Table 48. S/PDIF Receiver Internal Digital PLL Mode Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSI  
Frame Sync Delay After Serial Clock  
Frame Sync Hold After Serial Clock  
Transmit Data Delay After Serial Clock  
Transmit Data Hold After Serial Clock  
Transmit Serial Clock Width  
5
5
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
tHDTI  
–2  
–2  
1
tSCLKIW  
8 × tPCLK – 2  
1 SCLK frequency is 64 × FS where FS = the frequency of frame sync.  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
DAI_P20–1  
(SCLK)  
tDFSI  
tHOFSI  
DAI_P20–1  
(FS)  
tDDTI  
tHDTI  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
Figure 33. S/PDIF Receiver Internal Digital PLL Mode Timing  
Rev. H  
| Page 48 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
SPI Interface—Master  
The ADSP-2148x contains two SPI ports. Both primary and sec-  
ondary are available through DPI only. The timing provided in  
Table 49 and Table 50 applies to both.  
Table 49. SPI Interface Protocol—Master Switching and Timing Specifications  
Parameter  
Timing Requirements  
tSSPIDM  
Min  
Max  
Unit  
Data Input Valid to SPICLK Edge (Data Input Setup Time)  
SPICLK Last Sampling Edge to Data Input Not Valid  
8.2  
2
ns  
ns  
tHSPIDM  
Switching Characteristics  
tSPICLKM  
tSPICHM  
tSPICLM  
tDDSPIDM  
tHDSPIDM  
tSDSCIM  
tHDSM  
Serial Clock Cycle  
8 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
DPI Pin (SPI Device Select) Low to First SPICLK Edge  
Last SPICLK Edge to DPI Pin (SPI Device Select) High  
Sequential Transfer Delay  
2.5  
4 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 1.2  
tSPITDM  
DPI  
(OUTPUT)  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLKM  
tHDSM  
tSPITDM  
SPICLK  
(CP = 0,  
CP = 1)  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
MOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
tSSPIDM  
CPHASE = 1  
tHSPIDM  
MISO  
(INPUT)  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
CPHASE = 0  
MISO  
(INPUT)  
Figure 34. SPI Master Timing  
Rev. H  
| Page 49 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
SPI Interface—Slave  
Table 50. SPI Interface Protocol—Slave Switching and Timing Specifications  
Parameter  
Timing Requirements  
tSPICLKS  
Min  
Max  
Unit  
Serial Clock Cycle  
4 × tPCLK – 2  
2 × tPCLK – 2  
2 × tPCLK – 2  
2 × tPCLK  
ns  
ns  
ns  
ns  
tSPICHS  
Serial Clock High Period  
Serial Clock Low Period  
tSPICLS  
tSDSCO  
SPIDS Assertion to First SPICLK Edge  
CPHASE = 0  
CPHASE = 1  
tHDS  
Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0  
Data Input Valid to SPICLK edge (Data Input Set-up Time)  
SPICLK Last Sampling Edge to Data Input Not Valid  
SPIDS Deassertion Pulse Width (CPHASE=0)  
2 × tPCLK  
ns  
ns  
ns  
ns  
tSSPIDS  
2
tHSPIDS  
2
tSDPPW  
2 × tPCLK  
Switching Characteristics  
tDSOE  
SPIDS Assertion to Data Out Active  
0
0
0
0
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tDSOE  
SPIDS Assertion to Data Out Active (SPI2)  
7.5  
tDSDHI  
SPIDS Deassertion to Data High Impedance  
SPIDS Deassertion to Data High Impedance (SPI2)  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
SPIDS Assertion to Data Out Valid (CPHASE = 0)  
10.5  
10.5  
9.5  
1
tDSDHI  
tDDSPIDS  
tHDSPIDS  
tDSOV  
2 × tPCLK  
5 × tPCLK  
1 The timing for these parameters applies when the SPI is routed through the signal routing unit. For more information, see the “Serial Peripheral Interface Port” chapter of  
the hardware reference manual.  
SPIDS  
(INPUT)  
tSPICHS  
tSPICLS  
tSPICLKS  
tHDS  
tSDPPW  
SPICLK  
(CP = 0,  
CP = 1)  
(INPUT)  
tSDSCO  
tDSOE  
tDSDHI  
tHDSPIDS  
tDDSPIDS  
tDDSPIDS  
MISO  
(OUTPUT)  
tSSPIDS tHSPIDS  
CPHASE = 1  
MOSI  
(INPUT)  
tHDSPIDS  
tDSDHI  
MISO  
(OUTPUT)  
tDSOV  
tHSPIDS  
CPHASE = 0  
tSSPIDS  
MOSI  
(INPUT)  
Figure 35. SPI Slave Timing  
Rev. H  
| Page 50 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Media Local Bus  
All the numbers given are applicable for all speed modes  
(1024 FS, 512 FS and 256 FS for 3-pin; 512 FS and 256 FS for  
5-pin), unless otherwise specified. Refer to the MediaLB specifi-  
cation document revision 3.0 for more details.  
Table 51. MLB Interface, 3-Pin Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
3-Pin Characteristics  
tMLBCLK  
MLB Clock Period  
1024 FS  
20.3  
40  
81  
ns  
ns  
ns  
512 FS  
256 FS  
tMCKL  
MLBCLK Low Time  
1024 FS  
6.1  
14  
30  
ns  
ns  
ns  
512 FS  
256 FS  
tMCKH  
MLBCLK High Time  
1024 FS  
9.3  
14  
30  
ns  
ns  
ns  
512 FS  
256 FS  
tMCKR  
MLBCLK Rise Time (VIL to VIH)  
1024 FS  
1
3
ns  
ns  
512 FS/256 FS  
tMCKF  
MLBCLK Fall Time (VIH to VIL)  
1024 FS  
1
3
ns  
ns  
512 FS/256 FS  
1
tMPWV  
MLBCLK Pulse Width Variation  
1024 FS  
0.7  
2.0  
nspp  
nspp  
512 FS/256  
tDSMCF  
tDHMCF  
tMCFDZ  
tMCDRV  
DAT/SIG Input Setup Time  
1
2
0
ns  
ns  
ns  
ns  
DAT/SIG Input Hold Time  
DAT/SIG Output Time to Three-state  
DAT/SIG Output Data Delay From MLBCLK Rising Edge  
15  
8
2
tMDZH  
Bus Hold Time  
1024 FS  
512 FS/256  
2
4
ns  
ns  
CMLB  
DAT/SIG Pin Load  
1024 FS  
40  
60  
pf  
pf  
512 FS/256  
1 Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (pp).  
2 The board must be designed to ensure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be  
minimized while meeting the maximum capacitive load listed.  
Rev. H  
| Page 51 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
MLBSIG/  
MLBDAT  
VALID  
(Rx, Input)  
tDHMCF  
tDSMCF  
tMCKH  
tMCKL  
MLBCLK  
tMCKR  
tMCKF  
tMLBCLK  
tMCFDZ  
tMCDRV  
tMDZH  
MLBSIG/  
MLBDAT  
VALID  
(Tx, Output)  
Figure 36. MLB Timing (3-Pin Interface)  
Table 52. MLB Interface, 5-Pin Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
5-Pin Characteristics  
tMLBCLK  
MLB Clock Period  
512 FS  
40  
81  
ns  
ns  
256 FS  
tMCKL  
MLBCLK Low Time  
512 FS  
15  
30  
ns  
ns  
256 FS  
tMCKH  
MLBCLK High Time  
512 FS  
15  
30  
ns  
ns  
256 FS  
tMCKR  
tMCKF  
MLBCLK Rise Time (VIL to VIH)  
MLBCLK Fall Time (VIH to VIL)  
MLBCLK Pulse Width Variation  
DAT/SIG Input Setup Time  
DAT/SIG Input Hold Time  
6
6
2
ns  
ns  
1
tMPWV  
nspp  
ns  
2
tDSMCF  
3
5
tDHMCF  
tMCDRV  
ns  
DS/DO Output Data Delay From MLBCLK Rising Edge  
8
ns  
3
tMCRDL  
DO/SO Low From MLBCLK High  
512 FS  
256 FS  
10  
20  
ns  
ns  
CMLB  
DS/DO Pin Load  
40  
pf  
1 Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (pp).  
2 Gate Delays due to OR'ing logic on the pins must be accounted for.  
3 When a node is not driving valid data onto the bus, the MLBSO and MLBDO output lines shall remain low. If the output lines can float at anytime, including while in reset,  
external pull-down resistors are required to keep the outputs from corrupting the MediaLB signal lines when not being driven.  
Rev. H  
| Page 52 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
MLBSIG/  
MLBDAT  
VALID  
(Rx, Input)  
tDHMCF  
tDSMCF  
tMCKH  
tMCKL  
MLBCLK  
tMCKR  
tMCKF  
tMLBCLK  
tMCRDL  
tMCDRV  
VALID  
MLBSO/  
MLBDO  
(Tx, Output)  
Figure 37. MLB Timing (5-Pin Interface)  
MLBCLK  
tMPWV  
tMPWV  
Figure 38. MLB 3-Pin and 5-Pin MLBCLK Pulse Width Variation Timing  
Universal Asynchronous Receiver-Transmitter  
(UART) Ports—Receive and Transmit Timing  
For information on the UART port receive and transmit opera-  
tions, see the hardware reference manual.  
2-Wire Interface (TWI)—Receive and Transmit Timing  
For information on the TWI receive and transmit operations,  
see the hardware reference manual.  
Rev. H  
| Page 53 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
JTAG Test Access Port and Emulation  
Table 53. JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High  
System Inputs Hold After TCK High  
TRST Pulse Width  
6
1
tSSYS  
7
1
tHSYS  
tTRSTW  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
System Outputs Delay After TCK Low  
18  
4tCK  
10  
ns  
ns  
2
tDSYS  
tTCK ÷ 2 + 7  
1 System Inputs = DATA15–0, CLK_CFG1–0, RESET, BOOT_CFG2–0, DAI_Px, DPI_Px, and FLAG3–0.  
2 System Outputs = DAI_Px, DPI_Px ADDR23–0, AMI_RD, AMI_WR, FLAG3–0, SDRAS, SDCAS, SDWE, SDCKE, SDA10, SDDQM, SDCLK and EMU.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 39. IEEE 1149.1 JTAG Test Access Port  
Rev. H  
| Page 54 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
OUTPUT DRIVE CURRENTS  
TESTER PIN ELECTRONICS  
Figure 40 shows typical I-V characteristics for the output driv-  
50:  
V
ers of the ADSP-2148x, and Table 54 shows the pins associated  
LOAD  
T1  
DUT  
with each driver. The curves represent the current drive capabil-  
ity of the output drivers as a function of output voltage.  
OUTPUT  
45:  
70:  
ZO = 50:ꢀ(impedance)  
50:  
TD = 4.04 1.18 ns  
Table 54. Driver Types  
0.5pF  
4pF  
2pF  
Driver Type Associated Pins  
400:  
A
FLAG[0–3], AMI_ADDR[0–23], DATA[0–15],  
AMI_RD, AMI_WR, AMI_ACK, MS[1-0], SDRAS,  
SDCAS, SDWE, SDDQM, SDCKE, SDA10, EMU, TDO,  
RESETOUT, DPI[1–14], DAI[1–20], WDTRSTO,  
MLBDAT, MLBSIG, MLBSO, MLBDO, MLBCLK  
NOTES:  
THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED  
FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE  
EFFECT AND MUST BE CONSIDERED.THE TRANSMISSION LINE (TD) IS FOR  
LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.  
B
SDCLK  
ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN  
SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE  
EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.  
200  
150  
100  
Figure 41. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
VOH 3.13 V, 125 °C  
TYPE B  
CAPACITIVE LOADING  
TYPE A  
50  
0
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 41). Figure 45 and Figure 46 show  
graphically how output delays and holds vary with load capaci-  
tance. The graphs of Figure 43 through Figure 46 may not be  
linear outside the ranges shown for Typical Output Delay vs.  
Load Capacitance and Typical Output Rise Time (20% to 80%,  
V = Min) vs. Load Capacitance.  
TYPE A  
-
50  
100  
150  
-
-
TYPE B  
VOL 3.13 V, 125 °C  
-200  
0.5  
1.0  
1.5  
2.0  
2.5  
3.5  
0
3.0  
7
SWEEP (VDDEXT) VOLTAGE (V)  
6
TYPE A DRIVE FALL  
Figure 40. Typical Drive at Junction Temperature  
y = 0.0414x + 0.2661  
TYPE A DRIVE RISE  
y = 0.0341x + 0.3093  
5
TEST CONDITIONS  
4
The ac signal specifications (timing parameters) appear in  
Table 20 on Page 26 through Table 53 on Page 54. These include  
output disable time, output enable time, and capacitive loading.  
The timing specifications for the SHARC apply for the voltage  
reference levels in Figure 41.  
TYPE B DRIVE RISE  
y = 0.0153x + 0.2131  
3
2
Timing is measured on signals when they cross the 1.5 V level as  
described in Figure 42. All delays (in nanoseconds) are mea-  
sured between the point that the first signal reaches 1.5 V and  
the point that the second signal reaches 1.5 V.  
TYPE B DRIVE FALL  
y = 0.0152x + 0.1882  
1
0
0
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE (pF)  
Figure 43. Typical Output Rise/Fall Time (20% to 80%, VDD_EXT = Max)  
INPUT  
OR  
1.5V  
1.5V  
OUTPUT  
Figure 42. Voltage Reference Levels for AC Measurements  
Rev. H  
|
Page 55 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
THERMAL CHARACTERISTICS  
14  
The ADSP-2148x processor is rated for performance over the  
temperature range specified in Operating Conditions on  
12  
10  
8
TYPE A DRIVE FALL  
y = 0.0747x + 0.5154  
Page 18.  
The JESD51 package thermal characteristics in this section are  
provided for package comparison and estimation purposes only.  
They are not intended for accurate system temperature calcula-  
tion. System thermal simulation is required for accurate  
temperature analysis that accounts for all specific 3D system  
design features, including, but not limited to other heat sources,  
use of heat-sinks, and the system enclosure. Contact Analog  
Devices for package thermal models that are intended for use  
with thermal simulation tools.  
TYPE A DRIVE RISE  
y = 0.0571x + 0.5558  
TYPE B DRIVE FALL  
y = 0.0278x + 0.3138  
6
4
TYPE B DRIVE RISE  
y = 0.0258x + 0.3684  
2
0
0
25  
50  
75  
100  
125  
150  
175  
200  
In Table 55, Table 56, and Table 57, airflow measurements com-  
ply with JEDEC standards JESD51-2 and JESD51-6, and the  
junction-to-board measurement complies with JESD51-8. Test  
board design complies with JEDEC standards JESD51-7 (LQF-  
P_EP). The junction-to-case measurement complies with MIL-  
STD-883. All measurements use a 2S2P JEDEC test board.  
LOAD CAPACITANCE (pF)  
Figure 44. Typical Output Rise/Fall Time (20% to 80%, VDD_EXT = Min)  
4.5  
To estimate the junction temperature of a single device while on  
a JEDEC 2S2P PCB, use:  
TYPE A DRIVE FALL  
y = 0.0196x + 1.2945  
TYPE A DRIVE RISE  
y = 0.0152x + 1.7607  
4
3.5  
3
T = T  
+ P   
JT  
D
J
CASE  
TYPE B DRIVE RISE  
y = 0.0068x + 1.7614  
where:  
TJ = junction temperature °C  
2.5  
2
TYPE B DRIVE FALL  
y = 0.0074x + 1.421  
T
CASE = case temperature (°C) measured at the top center of the  
package  
1.5  
1
JT = junction-to-top (of package) characterization parameter  
is the typical value from Table 55, Table 56, and Table 57.  
0.5  
0
PD = power dissipation  
0
25  
50  
75  
100  
125  
150  
175  
200  
Values of JA are provided for package comparison and PCB  
design considerations. JA can be used for a first-order approxi-  
mation of TJ by the equation:  
LOAD CAPACITANCE (pF)  
Figure 45. Typical Output Rise/Fall Delay (VDD_EXT = Max)  
T = T + P   
J
A
JA  
D
9
8
7
6
5
4
3
2
1
0
where:  
TA = ambient temperature °C  
TYPE A DRIVE RISE  
TYPE A DRIVE FALL  
y = 0.0256x + 3.5859  
y = 0.0359x + 2.924  
TYPE B DRIVE RISE  
y = 0.0116x + 3.5697  
TYPE B DRIVE FALL  
y = 0.0136x + 3.1135  
0
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE (pF)  
Figure 46. Typical Output Rise/Fall Delay (VDD_EXT = Min)  
Rev. H  
|
Page 56 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Note that the thermal characteristics values provided in  
Table 55, Table 56, and Table 57 are modeled values.  
Thermal Diode  
The ADSP-2148x processors incorporate thermal diode/s to  
monitor the die temperature. The thermal diode of is a  
grounded collector, PNP Bipolar Junction Transistor (BJT). The  
THD_P pin is connected to the emitter and the THD_M pin is  
connected to the base of the transistor. These pins can be used  
by an external temperature sensor (such as ADM 1021A or  
LM86 or others) to read the die temperature of the chip.  
Table 55. Thermal Characteristics for 88-Lead LFCSP_VQ  
Parameter  
JA  
JMA  
JMA  
JC  
JT  
JMT  
JMT  
Condition  
Typical  
22.6  
18.2  
17.3  
7.9  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
The technique used by the external temperature sensor is to  
measure the change in VBE when the thermal diode is operated  
at two different currents. This is shown in the following  
equation:  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.22  
0.36  
0.44  
kT  
q
V = n   
In(N)  
-----  
Table 56. Thermal Characteristics for 100-Lead LQFP_EP  
BE  
Parameter  
JA  
JMA  
JMA  
JC  
JT  
JMT  
JMT  
Condition  
Typical  
17.8  
15.4  
14.6  
2.4  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
where:  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
n = multiplication factor close to 1, depending on process  
variations  
k = Boltzmann’s constant  
T = temperature (°C)  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.24  
0.37  
0.51  
q = charge of the electron  
N = ratio of the two currents  
The two currents are usually in the range of 10 micro Amperes  
to 300 micro Amperes for the common temperature sensor  
chips available.  
Table 57. Thermal Characteristics for 176-Lead LQFP_EP  
Parameter  
JA  
Condition  
Typical  
16.9  
14.6  
13.8  
2.3  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Table 58 contains the thermal diode specifications using the  
transistor model.  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
JMA  
JMA  
JC  
JT  
JMT  
JMT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.21  
0.32  
0.41  
Table 58. Thermal Diode Parameters – Transistor Model1  
Symbol  
Parameter  
Min  
10  
Typ  
Max  
300  
Unit  
μA  
2
IFW  
Forward Bias Current  
Emitter Current  
Transistor Ideality  
Series Resistance  
IE  
10  
300  
μA  
3, 4  
nQ  
1.012  
1.015  
0.2  
1.017  
0.28  
3, 5  
RT  
0.12  
Ω
1 See Engineer-to-Engineer Note Using the On-Chip Thermal Diode on Analog Devices Processors (EE-346).  
2 Analog Devices does not recommend operation of the thermal diode under reverse bias.  
3 Specified by design characterization.  
4 The ideality factor, nQ, represents the deviation from ideal diode behavior as exemplified by the diode equation: IC = IS × (e qVBE/nqkT –1) where IS = saturation current,  
q = electronic charge, VBE = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin).  
5 The series resistance (RT) can be used for more accurate readings as needed.  
Rev. H  
| Page 57 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
88-LEAD LFCSP_VQ LEAD ASSIGNMENT  
Table 59 lists the 88-Lead LFCSP_VQ package lead names.  
Table 59. 88-Lead LFCSP_VQ Lead Assignments (Numerical by Lead Number)  
Lead Name  
CLK_CFG1  
BOOT_CFG0  
VDD_EXT  
Lead No.  
Lead Name  
VDD_EXT  
Lead No.  
23  
Lead Name  
DAI_P10  
VDD_INT  
Lead No.  
45  
Lead Name  
VDD_INT  
FLAG0  
VDD_INT  
FLAG1  
FLAG2  
FLAG3  
GND  
Lead No.  
67  
1
2
DPI_P08  
DPI_P07  
DPI_P09  
DPI_P10  
DPI_P11  
DPI_P12  
DPI_P13  
DAI_P03  
DPI_P14  
VDD_INT  
24  
46  
68  
3
25  
VDD_EXT  
DAI_P20  
VDD_INT  
47  
69  
VDD_INT  
4
26  
48  
70  
BOOT_CFG1  
GND  
5
27  
49  
71  
6
28  
DAI_P08  
DAI_P04  
DAI_P14  
DAI_P18  
DAI_P17  
DAI_P16  
DAI_P15  
DAI_P12  
DAI_P11  
VDD_INT  
50  
72  
CLK_CFG0  
VDD_INT  
7
29  
51  
73  
8
30  
52  
GND  
74  
CLKIN  
9
31  
53  
VDD_EXT  
GND  
75  
XTAL  
10  
11  
12  
13  
32  
54  
76  
VDD_EXT  
33  
55  
VDD_INT  
TRST  
77  
VDD_INT  
DAI_P13  
DAI_P07  
DAI_P19  
DAI_P01  
DAI_P02  
VDD_INT  
34  
56  
78  
VDD_INT  
35  
57  
EMU  
79  
RESETOUT/RUNRSTIN 14  
36  
58  
TDO  
80  
VDD_INT  
15  
16  
17  
18  
19  
20  
21  
22  
37  
59  
VDD_EXT  
VDD_INT  
TDI  
81  
DPI_P01  
DPI_P02  
DPI_P03  
VDD_INT  
38  
GND  
60  
82  
39  
THD_M  
THD_P  
61  
83  
VDD_EXT  
40  
62  
TCK  
84  
VDD_INT  
41  
VDD_THD  
VDD_INT  
63  
VDD_INT  
RESET  
TMS  
85  
DPI_P05  
DPI_P04  
DPI_P06  
DAI_P06  
DAI_P05  
DAI_P09  
42  
64  
86  
43  
VDD_INT  
65  
87  
44  
VDD_INT  
66  
VDD_INT  
GND  
88  
89*  
* Lead no. 89 is the GND supply (see Figure 47 and Figure 48) for the processor; this pad must be robustly connected to GND for the processor  
to function.  
Rev. H  
| Page 58 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Figure 47 shows the top view of the 88-lead LFCSP_VQ pin  
configuration. Figure 48 shows the bottom view.  
LEAD 88  
LEAD 67  
LEAD 1  
LEAD 66  
LEAD 1 INDICATOR  
ADSP-2148x  
88-LEAD LFCSP_VQ  
TOP VIEW  
LEAD 22  
LEAD 45  
LEAD 23  
LEAD 44  
Figure 47. 88-Lead LFCSP_VQ Lead Configuration (Top View)  
LEAD 67  
LEAD 88  
LEAD 66  
LEAD 1  
ADSP-2148x  
88-LEAD LFCSP_VQ  
GND PAD  
LEAD 1 INDICATOR  
(LEAD 89)  
BOTTOM VIEW  
LEAD 45  
LEAD 22  
LEAD 44  
LEAD 23  
Figure 48. 88-Lead LFCSP_VQ Lead Configuration (Bottom View)  
Rev. H  
| Page 59 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
100-LEAD LQFP_EP LEAD ASSIGNMENT  
Table 60. 100-Lead LQFP_EP Lead Assignments (Numerical by Lead Number)  
Lead Name  
VDD_INT  
CLK_CFG1  
BOOT_CFG0  
VDD_EXT  
VDD_INT  
BOOT_CFG1  
GND  
Lead No.  
Lead Name  
VDD_EXT  
Lead No.  
26  
Lead Name  
DAI_P10  
VDD_INT  
Lead No.  
51  
Lead Name  
VDD_INT  
FLAG0  
VDD_INT  
VDD_INT  
FLAG1  
FLAG2  
FLAG3  
MLBCLK  
MLBDAT  
MLBDO  
VDD_EXT  
MLBSIG  
VDD_INT  
MLBSO  
TRST  
Lead No.  
76  
1
2
DPI_P08  
DPI_P07  
VDD_INT  
27  
52  
77  
3
28  
VDD_EXT  
DAI_P20  
VDD_INT  
53  
78  
4
29  
54  
79  
5
DPI_P09  
DPI_P10  
DPI_P11  
DPI_P12  
DPI_P13  
DAI_P03  
DPI_P14  
VDD_INT  
30  
55  
80  
6
31  
DAI_P08  
DAI_P04  
DAI_P14  
DAI_P18  
DAI_P17  
DAI_P16  
DAI_P15  
DAI_P12  
VDD_INT  
56  
81  
7
32  
57  
82  
DNC  
8*  
9*  
10  
11  
12  
13  
14  
15  
16  
33  
58  
83  
DNC  
34  
59  
84  
CLK_CFG0  
VDD_INT  
CLKIN  
35  
60  
85  
36  
61  
86  
37  
62  
87  
XTAL  
VDD_INT  
38  
63  
88  
VDD_EXT  
VDD_INT  
VDD_INT  
VDD_INT  
39  
64  
89  
DAI_P13  
DAI_P07  
DAI_P19  
DAI_P01  
DAI_P02  
VDD_INT  
40  
DAI_P11  
VDD_INT  
65  
90  
41  
66  
EMU  
91  
RESETOUT/RUNRSTIN 17  
42  
VDD_INT  
67  
TDO  
92  
VDD_INT  
18  
19  
20  
21  
22  
23  
24  
25  
43  
GND  
68  
VDD_EXT  
VDD_INT  
TDI  
93  
DPI_P01  
DPI_P02  
DPI_P03  
VDD_INT  
44  
THD_M  
THD_P  
69  
94  
45  
70  
95  
VDD_EXT  
46  
VDD_THD  
VDD_INT  
71  
TCK  
96  
VDD_INT  
47  
72  
VDD_INT  
RESET  
TMS  
97  
DPI_P05  
DPI_P04  
DPI_P06  
DAI_P06  
DAI_P05  
DAI_P09  
48  
VDD_INT  
73  
98  
49  
VDD_INT  
74  
99  
50  
VDD_INT  
75  
VDD_INT  
GND  
100  
101**  
MLB pins (pins 83, 84, 85, 87, and 89) are available for automotive models only. For non-automotive models, these pins should be connected  
to ground (GND).  
* Do not make any electrical connection to this pin.  
** Pin no. 101 (exposed pad) is the GND supply (see Figure 49 and Figure 50) for the processor; this pad must be robustly connected to GND.  
Rev. H  
| Page 60 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Figure 49 shows the top view of the 100-lead LQFP_EP lead  
configuration. Figure 50 shows the bottom view of the 100-lead  
LQFP_EP lead configuration.  
LEAD 100  
LEAD 76  
LEAD 1  
LEAD 75  
LEAD 1 INDICATOR  
ADSP-2148x  
100-LEAD LQFP_EP  
TOP VIEW  
LEAD 25  
LEAD 51  
LEAD 26  
LEAD 50  
Figure 49. 100-Lead LQFP_EP Lead Configuration (Top View)  
LEAD 76  
LEAD 100  
LEAD 75  
LEAD 1  
ADSP-2148x  
100-LEAD LQFP_EP  
GND PAD  
LEAD 1 INDICATOR  
(LEAD 101)  
BOTTOM VIEW  
LEAD 51  
LEAD 25  
LEAD 50  
LEAD 26  
Figure 50. 100-Lead LQFP_EP Lead Configuration (Bottom View)  
Rev. H  
| Page 61 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
176-LEAD LQFP_EP LEAD ASSIGNMENT  
Table 61. ADSP-21486 176-Lead LQFP_EP Lead Assignment (Numerical by Lead Number)  
Lead Name  
DNC  
MS0  
Lead No.  
1*  
2
3*  
4
5
6
7
8
Lead Name  
VDD_EXT  
DPI_P08  
DPI_P07  
VDD_INT  
DPI_P09  
DPI_P10  
DPI_P11  
DPI_P12  
DPI_P13  
DPI_P14  
DAI_P03  
DNC  
VDD_EXT  
DNC  
DNC  
DNC  
DNC  
VDD_INT  
DNC  
DNC  
VDD_INT  
DNC  
DNC  
VDD_INT  
DNC  
WDTRSTO  
DNC  
VDD_EXT  
DAI_P07  
DAI_P13  
DAI_P19  
DAI_P01  
DAI_P02  
VDD_INT  
DNC  
DNC  
DNC  
DNC  
DNC  
VDD_EXT  
VDD_INT  
DAI_P06  
DAI_P05  
DAI_P09  
Lead No.  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56*  
57  
58*  
59*  
60*  
61*  
62  
63*  
64*  
65  
66*  
67*  
68  
69*  
70  
71*  
72  
73  
74  
75  
76  
77  
78  
Lead Name  
DAI_P10  
VDD_INT  
VDD_EXT  
DAI_P20  
VDD_INT  
DAI_P08  
DAI_P14  
DAI_P04  
DAI_P18  
DAI_P17  
DAI_P16  
DAI_P12  
DAI_P15  
VDD_INT  
DAI_P11  
VDD_EXT  
VDD_INT  
BOOT_CFG2  
VDD_INT  
AMI_ACK  
GND  
THD_M  
THD_P  
Lead No.  
89  
90  
91  
92  
93  
94  
95  
96  
Lead Name  
VDD_INT  
FLAG0  
FLAG1  
FLAG2  
GND  
FLAG3  
GND  
GND  
VDD_EXT  
GND  
VDD_INT  
TRST  
GND  
EMU  
DATA0  
DATA1  
DATA2  
DATA3  
TDO  
DATA4  
VDD_EXT  
DATA5  
DATA6  
VDD_INT  
DATA7  
TDI  
Lead No.  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159*  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171*  
172*  
173  
174  
175*  
176  
177**  
DNC  
VDD_INT  
CLK_CFG1  
ADDR0  
BOOT_CFG0  
VDD_EXT  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
BOOT_CFG1  
GND  
9
97  
98  
99  
10  
11  
12  
13  
14  
15  
16  
17  
18*  
19*  
20  
21  
22  
23  
24  
25  
26  
27*  
28  
29  
30  
31  
32  
33  
34  
35  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
ADDR6  
ADDR7  
DNC  
DNC  
ADDR8  
ADDR9  
CLK_CFG0  
VDD_INT  
CLKIN  
XTAL  
ADDR10  
DNC  
VDD_EXT  
VDD_INT  
ADDR11  
ADDR12  
ADDR17  
ADDR13  
VDD_INT  
ADDR18  
VDD_THD  
VDD_INT  
VDD_INT  
MS1  
VDD_INT  
DNC  
VDD_EXT  
DATA8  
DATA9  
DATA10  
TCK  
DATA11  
DATA12  
DATA14  
DATA13  
VDD_INT  
DATA15  
DNC  
DNC  
RESET  
TMS  
DNC  
VDD_INT  
GND  
WDT_CLKO  
WDT_CLKIN  
VDD_EXT  
ADDR23  
ADDR22  
ADDR21  
VDD_INT  
ADDR20  
ADDR19  
VDD_EXT  
ADDR16  
ADDR15  
VDD_INT  
79*  
80*  
81*  
82*  
83*  
84  
85  
86  
87  
88  
RESETOUT/RUNRSTIN 36  
VDD_INT  
37  
38  
39  
40  
41  
42  
43  
44  
DPI_P01  
DPI_P02  
DPI_P03  
VDD_INT  
DPI_P05  
DPI_P04  
DPI_P06  
ADDR14  
AMI_WR  
AMI_RD  
* Do not make any electrical connection to this pin.  
**Leadno. 177(exposed pad) is the GND supply (seeFigure 51 and Figure 52) for theprocessor; thispadmustbe robustly connected toGND.  
Rev. H  
| Page 62 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Table 62. ADSP-21483, ADSP-21487, ADSP-21488, and ADSP-21489 176-Lead LQFP_EP Lead Assignment  
(Numerical by Lead Number)  
Lead Name  
SDDQM  
MS0  
Lead No.  
1
2
3
4
5
6
7
8
Lead Name  
VDD_EXT  
DPI_P08  
DPI_P07  
VDD_INT  
DPI_P09  
DPI_P10  
DPI_P11  
DPI_P12  
DPI_P13  
DPI_P14  
DAI_P03  
DNC  
VDD_EXT  
DNC  
DNC  
DNC  
DNC  
VDD_INT  
DNC  
DNC  
VDD_INT  
DNC  
DNC  
VDD_INT  
DNC  
WDTRSTO  
DNC  
VDD_EXT  
DAI_P07  
DAI_P13  
DAI_P19  
DAI_P01  
DAI_P02  
VDD_INT  
DNC  
DNC  
DNC  
DNC  
DNC  
VDD_EXT  
VDD_INT  
DAI_P06  
DAI_P05  
DAI_P09  
Lead No.  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56*  
57  
58*  
59*  
60*  
61*  
62  
63*  
64*  
65  
66*  
67*  
68  
69*  
70  
71*  
72  
73  
74  
75  
76  
77  
78  
Lead Name  
DAI_P10  
VDD_INT  
VDD_EXT  
DAI_P20  
VDD_INT  
DAI_P08  
DAI_P14  
DAI_P04  
DAI_P18  
DAI_P17  
DAI_P16  
DAI_P12  
DAI_P15  
VDD_INT  
DAI_P11  
VDD_EXT  
VDD_INT  
BOOT_CFG2  
VDD_INT  
AMI_ACK  
GND  
THD_M  
THD_P  
Lead No.  
89  
90  
91  
92  
93  
94  
95  
96  
Lead Name  
VDD_INT  
FLAG0  
FLAG1  
FLAG2  
GND  
FLAG3  
GND  
GND  
VDD_EXT  
GND  
VDD_INT  
TRST  
GND  
EMU  
DATA0  
DATA1  
DATA2  
DATA3  
TDO  
DATA4  
VDD_EXT  
DATA5  
DATA6  
VDD_INT  
DATA7  
TDI  
SDCLK  
VDD_EXT  
DATA8  
DATA9  
DATA10  
TCK  
DATA11  
DATA12  
DATA14  
DATA13  
VDD_INT  
DATA15  
SDWE  
SDRAS  
RESET  
TMS  
Lead No.  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177**  
SDCKE  
VDD_INT  
CLK_CFG1  
ADDR0  
BOOT_CFG0  
VDD_EXT  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
BOOT_CFG1  
GND  
9
97  
98  
99  
10  
11  
12  
13  
14  
15  
16  
17  
18*  
19*  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
ADDR6  
ADDR7  
DNC  
DNC  
ADDR8  
ADDR9  
CLK_CFG0  
VDD_INT  
CLKIN  
XTAL  
ADDR10  
SDA10  
VDD_EXT  
VDD_INT  
ADDR11  
ADDR12  
ADDR17  
ADDR13  
VDD_INT  
ADDR18  
VDD_THD  
VDD_INT  
VDD_INT  
MS1  
VDD_INT  
WDT_CLKO  
WDT_CLKIN  
VDD_EXT  
ADDR23  
ADDR22  
ADDR21  
VDD_INT  
ADDR20  
ADDR19  
VDD_EXT  
ADDR16  
ADDR15  
VDD_INT  
79*  
80*  
81*  
82*  
83*  
84  
85  
86  
87  
88  
RESETOUT/RUNRSTIN 36  
VDD_INT  
37  
38  
39  
40  
41  
42  
43  
44  
DPI_P01  
DPI_P02  
DPI_P03  
VDD_INT  
DPI_P05  
DPI_P04  
DPI_P06  
ADDR14  
AMI_WR  
AMI_RD  
SDCAS  
VDD_INT  
GND  
* Do not make any electrical connection to this pin.  
**Lead no. 177(exposed pad) is the GND supply (seeFigure 51 and Figure 52) for theprocessor; thispadmustbe robustly connected toGND.  
Rev. H  
| Page 63 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Table 63. Automotive Models ADSP-21488, and ADSP-21489 176-Lead LQFP_EP Lead Assignment (Numerical by Lead Number)  
Lead Name  
SDDQM  
MS0  
Lead No.  
1
2
3
4
5
6
7
8
Lead Name  
VDD_EXT  
DPI_P08  
DPI_P07  
VDD_INT  
DPI_P09  
DPI_P10  
DPI_P11  
DPI_P12  
DPI_P13  
DPI_P14  
DAI_P03  
DNC  
VDD_EXT  
DNC  
DNC  
DNC  
DNC  
VDD_INT  
DNC  
DNC  
VDD_INT  
DNC  
DNC  
VDD_INT  
DNC  
WDTRSTO  
DNC  
VDD_EXT  
DAI_P07  
DAI_P13  
DAI_P19  
DAI_P01  
DAI_P02  
VDD_INT  
DNC  
DNC  
DNC  
DNC  
DNC  
VDD_EXT  
VDD_INT  
DAI_P06  
DAI_P05  
DAI_P09  
Lead No.  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56*  
57  
58*  
59*  
60*  
61*  
62  
63*  
64*  
65  
66*  
67*  
68  
69*  
70  
71*  
72  
73  
74  
75  
76  
77  
78  
Lead Name  
DAI_P10  
VDD_INT  
VDD_EXT  
DAI_P20  
VDD_INT  
DAI_P08  
DAI_P14  
DAI_P04  
DAI_P18  
DAI_P17  
DAI_P16  
DAI_P12  
DAI_P15  
VDD_INT  
DAI_P11  
VDD_EXT  
VDD_INT  
BOOT_CFG2  
VDD_INT  
AMI_ACK  
GND  
THD_M  
THD_P  
Lead No.  
89  
90  
91  
92  
93  
94  
95  
96  
Lead Name  
VDD_INT  
FLAG0  
FLAG1  
FLAG2  
MLBCLK  
FLAG3  
MLBDAT  
MLBDO  
VDD_EXT  
MLBSIG  
VDD_INT  
TRST  
Lead No.  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177**  
SDCKE  
VDD_INT  
CLK_CFG1  
ADDR0  
BOOT_CFG0  
VDD_EXT  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
BOOT_CFG1  
GND  
9
97  
98  
99  
10  
11  
12  
13  
14  
15  
16  
17  
18*  
19*  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
MLBSO  
EMU  
DATA0  
DATA1  
DATA2  
DATA3  
TDO  
DATA4  
VDD_EXT  
DATA5  
DATA6  
VDD_INT  
DATA7  
TDI  
SDCLK  
VDD_EXT  
DATA8  
DATA9  
DATA10  
TCK  
DATA11  
DATA12  
DATA14  
DATA13  
VDD_INT  
DATA15  
SDWE  
ADDR6  
ADDR7  
DNC  
DNC  
ADDR8  
ADDR9  
CLK_CFG0  
VDD_INT  
CLKIN  
XTAL  
ADDR10  
SDA10  
VDD_EXT  
VDD_INT  
ADDR11  
ADDR12  
ADDR17  
ADDR13  
VDD_INT  
ADDR18  
VDD_THD  
VDD_INT  
VDD_INT  
MS1  
VDD_INT  
WDT_CLKO  
WDT_CLKIN  
VDD_EXT  
ADDR23  
ADDR22  
ADDR21  
VDD_INT  
ADDR20  
ADDR19  
VDD_EXT  
ADDR16  
ADDR15  
VDD_INT  
79*  
80*  
81*  
82*  
83*  
84  
85  
86  
87  
88  
RESETOUT/RUNRSTIN 36  
VDD_INT  
37  
38  
39  
40  
41  
42  
43  
44  
DPI_P01  
DPI_P02  
DPI_P03  
VDD_INT  
DPI_P05  
DPI_P04  
DPI_P06  
SDRAS  
RESET  
TMS  
SDCAS  
VDD_INT  
GND  
ADDR14  
AMI_WR  
AMI_RD  
* Do not make any electrical connection to this pin.  
**Leadno. 177(exposed pad) is the GND supply (seeFigure 51 and Figure 52) for theprocessor; thispadmustbe robustly connected toGND.  
Rev. H  
| Page 64 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Figure 51 shows the top view of the 176-lead LQFP_EP lead  
configuration. Figure 52 shows the bottom view of the 176-lead  
LQFP_EP lead configuration.  
LEAD 176  
LEAD 133  
LEAD 1  
LEAD 132  
LEAD 1 INDICATOR  
ADSP-2148x  
176-LEAD LQFP_EP  
TOP VIEW  
LEAD 44  
LEAD 89  
LEAD 45  
LEAD 88  
Figure 51. 176-Lead LQFP_EP Lead Configuration (Top View)  
LEAD 133  
LEAD 176  
LEAD 132  
LEAD 1  
ADSP-2148x  
176-LEAD LQFP_EP  
GND PAD  
LEAD 1 INDICATOR  
(LEAD 177)  
BOTTOM VIEW  
LEAD 89  
LEAD 44  
LEAD 88  
LEAD 45  
Figure 52. 176-Lead LQFP_EP Lead Configuration (Bottom View)  
Rev. H  
| Page 65 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
OUTLINE DIMENSIONS  
The ADSP-2148x processors are available in 88-lead  
LFCSP_VQ, 100-lead LQFP_EP, and 176-lead  
LQFP_EP RoHS compliant packages.  
12.10  
12.00 SQ  
11.90  
0.30  
0.23  
0.18  
0.60 MAX  
0.60  
MAX  
PIN 1  
67  
66  
88  
INDICATOR  
1
PIN 1  
INDICATOR  
0.50  
BSC  
11.85  
11.75 SQ  
11.65  
6.80  
6.70 SQ  
6.60  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
22  
45  
44  
23  
BOTTOM VIEW  
TOP VIEW  
10.50  
REF  
0.70  
0.65  
0.60  
12° MAX  
*
0.90  
0.85  
0.75  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.045  
0.025  
0.005  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
SEATING  
PLANE  
0.08  
0.138~0.194 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VRRD  
EXCEPT FOR MINIMUM THICKNESS AND LEAD COUNT.  
Figure 53. 88-Lead Lead Frame Chip Scale Package [LFCSP_VQ1]  
(CP-88-5)  
Dimensions shown in millimeters  
1 For information relating to the exposed pad on the CP-88-5 package, see the table endnote on Page 58.  
Rev. H  
| Page 66 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
16.20  
16.00 SQ  
15.80  
1.60  
14.20  
14.00 SQ  
13.80  
MAX  
0.75  
0.60  
0.45  
12.00 REF  
100  
76  
76  
100  
1
75  
75  
1
1.00 REF  
PIN 1  
SEATING  
PLANE  
EXPOSED  
PAD  
6.00 BSC  
SQ  
TOP VIEW  
BOTTOM VIEW  
(PINS UP)  
1.45  
1.40  
1.35  
(PINS DOWN)  
51  
25  
51  
25  
0.20  
0.09  
26  
50  
26  
50  
0.27  
0.22  
0.17  
VIEW A  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
“SURFACE-MOUNT DESIGN” IN  
THIS DATA SHEET.  
0.50  
BSC  
LEAD PITCH  
0.15  
0.05  
7°  
0°  
0.08  
COPLANARITY  
VIEW A  
COMPLIANT TO JEDEC STANDARDS MS-026-BED-HD  
ROTATED 90° CCW  
Figure 54. 100-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP]1  
(SW-100-2)  
Dimensions shown in millimeters  
1 For information relating to the exposed pad on the SW-100-2 package, see the table endnote on Page 60.  
26.20  
26.00 SQ  
25.80  
24.10  
24.00 SQ  
23.90  
1.60 MAX  
0.75  
0.60  
0.45  
21.50 REF  
133  
132  
133  
176  
176  
1
132  
1
1.00 REF  
SEATING  
PLANE  
PIN 1  
EXPOSED  
PAD  
6.00 BSC  
SQ  
1.45  
1.40  
1.35  
0.20  
0.15  
0.09  
0.15  
0.10  
0.05  
7°  
3.5°  
0°  
TOP VIEW  
BOTTOM VIEW  
(PINS UP)  
(PINS DOWN)  
44  
44  
89  
89  
0.08  
45  
88  
88  
45  
COPLANARITY  
0.27  
0.22  
0.17  
VIEW A  
0.50  
VIEW A  
BSC  
ROTATED 90° CCW  
LEAD PITCH  
FOR PROPER CONNECTION  
OF THE EXPOSED PAD, REFER  
TO “SURFACE-MOUNT DESIGN”  
IN THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MS-026-BGA-HD  
Figure 55. 176-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP]1  
(SW-176-2)  
Dimensions shown in millimeters  
1 For information relating to the exposed pad on the SW-176-2 package, see the table endnote on Page 62.  
Rev. H  
| Page 67 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
SURFACE-MOUNT DESIGN  
The exposed pad is required to be electrically and thermally  
connected to GND. Implement this by soldering the exposed  
pad to a GND PCB land that is the same size as the exposed pad.  
The GND PCB land should be robustly connected to the GND  
plane in the PCB for best electrical and thermal performance.  
No separate GND pins are provided in the package.  
Rev. H  
| Page 68 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
AUTOMOTIVE PRODUCTS  
The following models are available with controlled manufactur-  
ing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models  
may have specifications that differ from the commercial models;  
therefore designers should review the Specifications section of  
this data sheet carefully. Only the automotive grade products  
shown in Table 64 are available for use in automotive applica-  
tions. Contact your local Analog Devices account representative  
for specific product ordering information and to obtain the spe-  
cific Automotive Reliability reports for these models.  
Table 64. Automotive Products  
Processor  
Instruction  
Model1, 2, 3, 4  
Notes Temperature Range5 RAM  
Rate (Max)  
400 MHz  
400 MHz  
400 MHz  
300 MHz  
400 MHz  
300 MHz  
350 MHz  
400 MHz  
266 MHz  
300 MHz  
266 MHz  
266 MHz  
400 MHz  
300 MHz  
350 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
Package Description  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
88-Lead LFCSP_VQ  
88-Lead LFCSP_VQ  
88-Lead LFCSP_VQ  
88-Lead LFCSP_VQ  
88-Lead LFCSP_VQ  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
88-Lead LFCSP_VQ  
88-Lead LFCSP_VQ  
88-Lead LFCSP_VQ  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
Package Option  
SW-100-2  
SW-100-2  
SW-176-2  
CP-88-5  
6
AD21486WBSWZ4Axx  
AD21487WBSWZ4Axx  
AD21487WBSWZ4Bxx  
AD21488WBCPZ2202  
AD21488WBCPZ4202  
AD21488WBCPZ202  
AD21488WBCPZ302  
AD21488WBCPZ402  
AD21488WBSWZ1Axx  
AD21488WBSWZ2Axx  
AD21488WBSWZ1Bxx  
AD21488WBSWZ2Bxx  
AD21488WBSWZ4Bxx  
AD21489WBCPZ202  
AD21489WBCPZ302  
AD21489WBCPZ402  
AD21489WBSWZ4xx  
AD21489WBSWZ4xxRL  
AD21489WBSWZ4Bxx  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
5 Mbit  
5 Mbit  
5 Mbit  
2 Mbit  
2 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
2 Mbit  
3 Mbit  
3 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
6
6
CP-88-5  
CP-88-5  
CP-88-5  
CP-88-5  
SW-100-2  
SW-100-2  
SW-176-2  
SW-176-2  
SW-176-2  
CP-88-5  
CP-88-5  
CP-88-5  
SW-100-2  
SW-100-2  
SW-176-2  
1 Z =RoHS Compliant Part.  
2 W = automotive applications.  
3 xx denotes the current die revision.  
4 RL = Tape and Reel.  
5 Referenced temperature is junction temperature. See Operating Conditions on Page 18 for junction temperature (TJ) specification.  
6 This product contains IP from Dolby, DTS and DTLA. Proper software licenses required. Contact Analog Devices, Inc. for information.  
Rev. H  
| Page 69 of 71 | February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
ORDERING GUIDE  
Processor  
Instruction  
Model1, 2  
Notes Temperature Range3 RAM  
4
Rate (Max)  
300 MHz  
350 MHz  
350 MHz  
400 MHz  
400 MHz  
300 MHz  
300 MHz  
300 MHz  
300 MHz  
350 MHz  
350 MHz  
350 MHz  
350 MHz  
350 MHz  
400 MHz  
400 MHz  
400 MHz  
300 MHz  
300 MHz  
350 MHz  
350 MHz  
400 MHz  
400 MHz  
450 MHz  
450 MHz  
450 MHz  
350 MHz  
350 MHz  
350 MHz  
350 MHz  
350 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
Package Description  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
88-Lead LFCSP_VQ  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
Package Option  
SW-176-2  
SW-176-2  
SW-100-2  
SW-176-2  
SW-100-2  
SW-100-2  
SW-176-2  
SW-100-2  
SW-176-2  
SW-100-2  
SW-176-2  
SW-100-2  
SW-100-2  
SW-176-2  
SW-100-2  
SW-100-2  
CP-88-5  
ADSP-21483KSWZ-2B  
ADSP-21483KSWZ-3B  
ADSP-21483KSWZ-3AB  
ADSP-21483KSWZ-4B  
ADSP-21483KSWZ-4AB  
ADSP-21486KSWZ-2A  
ADSP-21486KSWZ-2B  
ADSP-21486KSWZ-2AB  
ADSP-21486KSWZ-2BB  
ADSP-21486KSWZ-3A  
ADSP-21486KSWZ-3B  
ADSP-21486KSWZ-3AB  
ADSP21486KSWZ3ABRL  
ADSP-21486KSWZ-3BB  
ADSP-21486KSWZ-4A  
ADSP-21486KSWZ-4AB  
ADSP-21487KCPZ-4  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +115°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +115°C  
0°C to +115°C  
0°C to +115C  
–40°C to +125°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110C  
–40°C to +125°C  
0°C to +110°C  
–40°C to +125°C  
0°C to +110°C  
–40°C to +125°C  
0°C to +110°C  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
3 Mbit  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
ADSP-21487KSWZ-2B  
ADSP-21487KSWZ-2BB  
ADSP-21487KSWZ-3B  
ADSP-21487KSWZ-3BB  
ADSP-21487KSWZ-4B  
ADSP-21487KSWZ-4BB  
ADSP-21487KSWZ-5B  
ADSP-21487KSWZ-5BB  
ADSP21487KSWZ5BBRL  
ADSP-21488BSWZ-3A  
ADSP-21488KSWZ-3A  
ADSP-21488KSWZ-3A1  
ADSP-21488KSWZ-3B  
ADSP-21488BSWZ-3B  
ADSP-21488KSWZ-4A  
ADSP-21488BSWZ-4A  
ADSP-21488KSWZ-4B  
ADSP-21488BSWZ-4B  
ADSP-21488KSWZ-4B1  
SW-176-2  
SW-176-2  
SW-176-2  
SW-176-2  
SW-176-2  
SW-176-2  
SW-176-2  
SW-176-2  
SW-176-2  
SW-100-2  
SW-100-2  
SW-100-2  
SW-176-2  
SW-176-2  
SW-100-2  
SW-100-2  
SW-176-2  
SW-176-2  
SW-176-2  
4
4
4
4
4
4, 5  
4, 5  
4, 5  
6
6
Rev. H  
|
Page 70 of 71  
|
February 2020  
ADSP-21483/ADSP-21486/ADSP-21487/ADSP-21488/ADSP-21489  
Processor  
Instruction  
Model1, 2  
Notes Temperature Range3 RAM  
Rate (Max)  
400 MHz  
350 MHz  
350 MHz  
350 MHz  
350 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
450 MHz  
Package Description  
88-Lead LFCSP_VQ  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
100-Lead LQFP_EP  
100-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
176-Lead LQFP_EP  
Package Option  
CP-88-5  
ADSP-21489KCPZ-4  
ADSP-21489KSWZ-3A  
ADSP-21489BSWZ-3A  
ADSP-21489KSWZ-3B  
ADSP-21489BSWZ-3B  
ADSP-21489KSWZ-4A  
ADSP-21489BSWZ-4A  
ADSP-21489KSWZ-4B  
ADSP-21489BSWZ-4B  
ADSP-21489KSWZ-5B  
0°C to +115°C  
0°C to +110°C  
–40°C to +125°C  
0°C to +110°C  
–40°C to +125°C  
0°C to +110°C  
–40°C to +125°C  
0°C to +110°C  
–40°C to +125°C  
0°C to +115°C  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
5 Mbit  
SW-100-2  
SW-100-2  
SW-176-2  
SW-176-2  
SW-100-2  
SW-100-2  
SW-176-2  
SW-176-2  
SW-176-2  
5
1 Z = RoHS compliant part.  
2 RL = Tape and Reel.  
3 Referenced temperature is junction temperature. See Operating Conditions on Page 18 for junction temperature (TJ) specification.  
4 The ADSP-21483, ADSP-21486, and ADSP-21487 models are available with factory programmed ROM including the latest multichannel audio decoding and post-processing  
algorithms from Dolby Labs and DTS. ROM contents may vary depending on chip version and silicon revision. Visit www.analog.com for complete information.  
5 See Engineer-to-Engineer Note Static Voltage Scaling for ADSP-2148x SHARC Processors (EE-357) for operating ADSP-2148x processors at 450 MHz.  
6 This product contains a –140 dB sample rate converter.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09018-2/20(H)  
Rev. H  
| Page 71 of 71 | February 2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY