ADSP-21566WCBCZ4RL [ADI]

SHARC Single Core High Performance DSP (Up to 1 GHz);
ADSP-21566WCBCZ4RL
型号: ADSP-21566WCBCZ4RL
厂家: ADI    ADI
描述:

SHARC Single Core High Performance DSP (Up to 1 GHz)

文件: 总104页 (文件大小:2719K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC+ Single Core  
High Performance DSP (Up to 1 GHz)  
ADSP-21562/21563/21565/21566/21567/21569  
SYSTEM FEATURES  
MEMORY  
Enhanced SHARC+ high performance floating-point core  
Up to 1 GHz  
Large on-chip Level 2 (L2) SRAM with ECC protection, up to  
8 Mb (1 MB)  
One Level 3 (L3) interface optimized for low system power,  
providing 16-bit interface to DDR3/DDR3L SDRAM devices  
5 Mb (640 kB) Level 1 (L1) SRAM memory with parity  
(optional ability to configure as cache)  
32-bit, 40-bit, and 64-bit floating-point support  
32-bit fixed point  
Byte, short word, word, long word addressed  
Powerful DMA system  
On-chip memory protection  
Integrated safety features  
17 mm × 17 mm, 400-ball CSP_BGA (0.8 mm pitch), RoHS  
compliant  
ADDITIONAL FEATURES  
Security and Protection  
Crypto hardware accelerators  
Fast secure boot with IP protection  
Enhanced FIR and IIR accelerators running up to 1 GHz  
AEC-Q100 qualified for automotive applications  
APPLICATIONS  
120-lead LQFP_EP (0.4 mm pitch), RoHS compliant  
Low system power across automotive temperature range  
Automotive: audio amplifier, head unit, ANC/RNC, rear seat  
entertainment, digital cockpit, ADAS  
Consumer: speakers, sound bars, AVRs, conferencing sys-  
tems, mixing consoles, microphone arrays, headphones  
SYSTEM CONTROL  
SECURITY AND PROTECTION  
SHARC+ CORE  
SYSTEM PROTECTION UNIT (SPU)  
UP TO  
SYSTEM MEMORY  
PROTECTION UNIT (SMPU)  
1 GHz  
FLOATING-POINT  
DSP  
S
ENCRYPTION/DECRYPTION  
FAULT MANAGEMENT (FMU)  
PERIPHERALS  
ACCELERATORS  
SIGNAL ROUTING UNIT (SRU)  
FIR  
IIR  
2×2 PRECISION CLOCK  
GENERATORS  
DUAL CRC (WITH MemDMA)  
WATCHDOGS  
L1 SRAM (PARITY)  
(UP TO (UP TO  
1 GHz) 1 GHz)  
5 Mb (640 kB)  
SRAM/CACHE  
2x DAI  
2x PIN  
2×4 ASRC  
PAIRS  
FULL SPORT  
2×4  
OTP MEMORY  
BUFFER  
24–28  
THERMAL MONITOR UNIT (TMU)  
2×1 S/PDIF Rx/Tx  
6× I2C  
PROGRAM FLOW  
SYSTEM EVENT CONTROLLER  
(SEC)  
SYSTEM CROSSBAR AND DMA SUBSYSTEM  
1× SPI + 2× QUAD SPI +  
1× OCTAL SPI  
G
P
I
TRIGGER ROUTING UNIT (TRU)  
3× UARTs  
2× LINK PORTS  
22–40  
O
CLOCK, RESET, AND POWER  
L3 MEMORY  
INTERFACES  
SYSTEM  
L2 MEMORY  
CLOCK GENERATION UNIT (CGU)  
10× TIMERS + 1× COUNTER  
MLB 3-PIN  
CLOCK DISTRIBUTION UNIT (CDU)  
RESET CONTROL UNIT (RCU)  
DDR3/DDR3L  
BGA ONLY  
SRAM  
(ECC)  
UP TO 8 Mb (1 MB)  
HADC (4 CHAN, 12-BIT)  
2–4  
DYNAMIC POWER MANAGEMENT  
(DPM)  
16  
DEBUG UNIT  
DATA  
TM  
®
Arm CoreSight  
DEBUG AND TRACE  
SYSTEM WATCHPOINT UNIT  
(SWU)  
Figure 1. ADSP-21569 (Full-Featured Model) Processor Block Diagram  
SHARC, SHARC+, and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. B Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2021 Analog Devices, Inc. All rights reserved.  
www.analog.com  
ADSP-21562/21563/21565/21566/21567/21569  
TABLE OF CONTENTS  
System Features ....................................................... 1  
Memory ................................................................ 1  
Additional Features .................................................. 1  
Applications ........................................................... 1  
Table of Contents ..................................................... 2  
Revision History ...................................................... 3  
General Description ................................................. 4  
SHARC Processor ................................................. 5  
SHARC+ Core Architecture .................................... 7  
System Infrastructure ............................................. 9  
System Memory Map ............................................. 9  
Security Features ................................................ 12  
Security Features Disclaimer .................................. 13  
Safety Features ................................................... 13  
Processor Peripherals ........................................... 14  
System Acceleration ............................................ 17  
System Design .................................................... 17  
System Debug .................................................... 19  
Development Tools ............................................. 20  
Additional Information ........................................ 21  
Related Signal Chains .......................................... 21  
ADSP-2156x Detailed Signal Descriptions ................... 22  
400-Ball CSP_BGA Signal Descriptions ....................... 25  
GPIO Multiplexing for 400-Ball CSP_BGA Package ....... 31  
120-Lead LQFP Signal Descriptions ........................... 33  
GPIO Multiplexing for 120-Lead LQFP Package ............ 36  
ADSP-2156x Designer Quick Reference ...................... 37  
Specifications ........................................................ 45  
Operating Conditions ........................................... 45  
Electrical Characteristics ....................................... 48  
HADC .............................................................. 52  
TMU ................................................................ 52  
Absolute Maximum Ratings ................................... 53  
ESD Caution ...................................................... 53  
Timing Specifications ........................................... 54  
Output Drive Currents ......................................... 87  
Test Conditions .................................................. 88  
Environmental Conditions .................................... 89  
ADSP-2156x 400-Ball BGA Ball Assignments ................ 91  
Numerical by Ball Number .................................... 91  
Alphabetical by Pin Name ..................................... 94  
Configuration of the 400-Ball CSP_BGA ................... 97  
ADSP-2156x 120-Lead LQFP Lead Assignments ............ 98  
Numerical by Lead Number ................................... 98  
Alphabetical by Pin Name ..................................... 99  
Configuration of the 120-Lead LQFP Lead  
Configuration ................................................ 100  
Outline Dimensions .............................................. 101  
Surface-Mount Design ........................................ 102  
Automotive Products ............................................ 103  
Planned Automotive Production Products .................. 103  
Planned Production Products .................................. 104  
Ordering Guide ................................................... 104  
Rev. B  
|
Page 2 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
REVISION HISTORY  
2/2021—Rev. A to Rev. B  
Changes to Power-Up Reset Timing ........................... 54  
Changes to EZ-KIT Evaluation System ......................... 20  
Changes to OSPI Port—Master Timing ....................... 74  
Changes to JTAG Emulation Port Timing .................... 86  
Added missing IDD_IDLE, IDD_TYP, and IDD_INT parameters to  
Electrical Characteristics ........................................... 48  
Changes to figure captions for Figure 42 and Figure 43 in  
Output Drive Currents ............................................ 87  
Changes to footnotes 1 and 3 in Table 64, JTAG Emulation Port  
Timing ................................................................. 86  
Changes to figure captions for Figure 51 and Figure 52 in  
Capacitive Loading ................................................. 88  
Changes to Table 68, Automotive Products ................. 103  
Added Planned Automotive Production Products ......... 103  
Added Planned Production Products ......................... 104  
Changes to Ordering Guide ..................................... 104  
Changes to Environmental Conditions ........................ 89  
Changes to  
ADSP-2156x 400-Ball BGA Ball Assignments ................ 91  
Changes to  
ADSP-2156x 120-Lead LQFP Lead Assignments ............ 98  
12/2020—Rev. 0 to Rev. A  
Changes to Automotive Products .............................. 103  
Changes to Ordering Guide ..................................... 104  
Changes to Additional Features ................................... 1  
Changes to ADSP-21569 (Full-Featured Model) Processor  
Block Diagram ........................................................ 1  
Changes to Processor Features .................................... 4  
Changes to L1 Master and Slave Ports ........................... 6  
Added SHARC Fabric ............................................... 9  
Changes to Dynamic Memory Controller (DMC) ........... 14  
Added  
Housekeeping Analog-to-Digital Converter (HADC) ...... 16  
Added Thermal Monitoring Unit (TMU) ..................... 19  
Changes to Power Supplies ........................................ 19  
Changes to Power Domains ....................................... 19  
Changes to Power-Up and Power-Down Sequencing ....... 19  
Changes to Development Tools .................................. 20  
Changes to ADSP-2156x Detailed Signal Descriptions ..... 22  
Changes to  
ADSP-2156x 400-Ball CSP_BGA Signal Descriptions ...... 25  
Changes to Signal Multiplexing for Port A .................... 31  
Changes to Signal Multiplexing for Port C .................... 32  
Changes to  
ADSP-2156x 120-Lead LQFP Signal Descriptions ........... 33  
Changes to Signal Multiplexing for Port A .................... 36  
Changes to ADSP-2156x Designer Quick Reference ........ 37  
Changes to Operating Conditions ............................... 45  
Changes to Electrical Characteristics ........................... 48  
Added HADC ........................................................ 52  
Added TMU .......................................................... 52  
Changes to Absolute Maximum Ratings ....................... 53  
Added Maximum Duty Cycle for Input Transient Voltage for  
VDD_INT and VDD_EXT ........................................ 53  
Added  
Maximum Duty Cycle for Input Transient Voltage ......... 53  
Rev. B  
|
Page 3 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
GENERAL DESCRIPTION  
Reaching speeds of up to 1 GHz, the ADSP-2156x processors  
are members of the SHARC® family of products. The ADSP-  
2156x processor is based on the SHARC+® single core. The  
ADSP-2156x SHARC processors are members of the SIMD  
SHARC family of digital signal processors (DSPs) that feature  
Analog Devices, Inc., Super Harvard Architecture. These 32-  
bit/40-bit/64-bit floating-point processors are optimized for  
high performance audio/floating-point applications with large  
on-chip static random-access memory (SRAM), multiple inter-  
nal buses that eliminate input/output (I/O) bottlenecks, and  
innovative digital audio interfaces (DAI). New additions to the  
SHARC+ core include cache enhancements and branch predic-  
tion, while maintaining instruction set compatibility to previous  
SHARC products.  
By integrating a rich set of industry-leading system peripherals  
and memory (see Table 1), the SHARC+ processor is the plat-  
form of choice for applications that require programmability  
similar to reduced instruction set computing (RISC), multime-  
dia support, and leading edge signal processing in one  
integrated package. These applications span a wide array of  
markets, including automotive, professional audio, and indus-  
trial-based applications that require high floating-point  
performance.  
Table 1. Processor Features1  
Processor Feature  
SHARC+ Core (MHz Maximum)2  
SHARC L1 SRAM (kB)  
System Memory  
ADSP-21562 ADSP-21563 ADSP-21565 ADSP-21566 ADSP-21567 ADSP-21569  
400  
600, 800  
800, 1000  
400  
600, 800  
800, 1000  
640  
L2 SRAM (kB)  
256  
512  
N/A  
1024  
256  
512  
1
1024  
DDR3 and DDR3L Controller (16-Bit)  
DAI (Includes SRU)  
Full SPORTs  
S/PDIF Rx/Tx  
ASRCs  
2
2 × 4  
2 × 1  
2 × 4  
2 × 2  
Precision Clock Generators  
Buffers  
Hardware Accelerators  
FIR/IIR  
2 × 12  
2 × 14  
Yes  
Yes  
Security Crypto Engine  
I2C (TWI)  
4
6
SPI  
1
2
1
Quad SPI  
Octal SPI  
UARTs  
2
0
6
3
2
Link Port  
General-Purpose Timer3  
General-Purpose Counter  
Multichannel 12-bit ADC  
Watchdog Timer  
MLB 3-pin  
10  
1
2
2-ch  
4-ch  
Automotive models only  
GPIO Ports  
Port A to Port B  
22 + 24  
Port A to Port C  
40 + 28  
GPIO + DAI Pins  
Package Options  
120-lead LQFP_EP  
400-ball CSP_BGA  
1 N/A means not applicable.  
2 The values refer to different speed grades.  
3 Refer to Table 14 for internal timer signal routing.  
Rev. B  
|
Page 4 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
The SHARC processor supports a modified Harvard architec-  
SHARC PROCESSOR  
ture in combination with a hierarchical memory structure. L1  
The SHARC processor integrates a SHARC+ SIMD core, L1  
memory crossbar, I-cache/D-cache controller, L1 memory  
blocks, and the master/slave ports, as shown in Figure 2. The  
SHARC+ SIMD core block diagram is shown in Figure 3.  
memories typically operate at the full processor speed with little  
or no latency.  
I-CACHE  
D-CACHE  
D-CACHE  
B0
RAM  
S
SIMD Processor  
B3  
RAM  
B2  
RAM  
B1
RAM  
CCLK DOMAIN  
I/O (32)  
I/O (32)  
I/O (32)  
SLAVE  
PORT 1  
INTERNAL MEMORY INTERFACE (IMIF)  
I-CACHE/D-CACHE CONTROL  
SLAVE  
I/O (32)  
PORT 2  
(MDMA AND  
ACCELERATORS)  
SYSTEM FABRIC  
CORE  
MMR  
SYSCLK  
DOMAIN  
(32)  
DM (64)  
PM (64)  
CMD (64)  
CMI (64)  
MASTER  
PORT DATA  
SHARC+®  
SIMD CORE  
PS (64/48)  
MASTER  
PORT INSTRUCTION  
INTERRUPT  
SYSTEM  
EVENT  
CONTROLLER  
Figure 2. SHARC Processor Block Diagram  
The SRAM of the processor can be configured as a maximum of  
160k words of 32-bit data, 320k words of 16-bit data,  
106.7k words of 48-bit instructions (or 40-bit data), or combi-  
nations of different word sizes up to 5 Mb. All of the memory  
can be accessed as 8-bit, 16-bit, 32-bit, 48-bit, or 64-bit words.  
Support of a 16-bit floating-point storage format doubles the  
amount of data that can be stored on chip.  
L1 Memory  
Figure 4 shows the ADSP-2156x memory map. The SHARC+  
core has a tightly coupled 5 Mb L1 SRAM. The SHARC+ core  
can access code and data in a single cycle from this memory  
space.  
In the SHARC+ core private address space, the core has L1  
memory.  
Conversion between the 32-bit floating-point and 16-bit float-  
ing-point formats is performed in a single instruction. Whereas  
each memory block can store combinations of code and data,  
accesses are most efficient when one block stores data using the  
DM bus for transfers, and the other block stores instructions  
and data using the PM bus for transfers.  
SHARC+ core memory-mapped register (CMMR) address  
space is 0x0000 0000 through 0x0003 FFFF in normal word  
(32-bit). Each block can be configured for different combina-  
tions of code and data storage. Of the 5 Mb SRAM, up to 1 Mb  
can be configured for data memory (DM), program memory  
(PM), and instruction cache each. Each memory block supports  
single-cycle, independent accesses by the core processor and I/O  
processor. The memory architecture, in combination with its  
separate on-chip buses, allows two data transfers from the core  
and one from the direct memory access (DMA) engine in a  
single cycle.  
Using the DM and PM buses, with each bus dedicated to a  
memory block, assures single-cycle execution with two data  
transfers. In this case, the instruction must be available in the  
cache. The system configuration is flexible, but a typical config-  
uration is 512 kb DM, 128 kb PM, and 128 kb of instruction  
Rev. B  
|
Page 5 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
S
DEBUG  
TRACE  
BTB  
BP  
CONFLICT  
CACHE  
CEC  
FLAGS  
SIMD Core  
PM DATA 48  
DMD/PMD 64  
11-STAGE  
PROGRAM SEQUENCER  
PM ADDRESS 24  
DAG2  
16 × 32  
DAG1  
16 × 32  
PM ADDRESS 32  
SYSTEM  
I/F  
DM ADDRESS 32  
PM DATA 64  
TO  
IMIF  
USTAT  
PX  
DM DATA 64  
DATA  
SWAP  
PEx  
PEy  
DATA  
DATA  
ALU  
SHIFTER  
MULTIPLIER  
ALU  
SHIFTER MULTIPLIER  
REGISTER  
Rx  
16 × 40-BIT  
REGISTER  
Sx  
16 × 40-BIT  
ASTATy  
STYKy  
ASTATx  
STYKx  
MSB  
80-BIT  
MSF  
80-BIT  
MRB  
80-BIT  
MRF  
80-BIT  
Figure 3. SHARC+ SIMD Core Block Diagram  
cache, with the remaining L1 memory configured as SRAM.  
Each addressable memory space outside the L1 memory can be  
accessed either directly or via cache.  
L1 On-Chip Memory Bandwidth  
The internal memory architecture allows programs to have four  
accesses at the same time to any of the four blocks, assuming no  
block conflicts. The total bandwidth is realized using both the  
DMD and PMD buses (2 × 64-bits CCLK speed and 2 × 32-bit  
SYSCLK speed).  
The memory map in Table 2 gives the L1 memory address space  
and shows multiple L1 memory blocks offering a configurable  
mix of SRAM and cache.  
L1 Master and Slave Ports  
Instruction and Data Cache  
The SHARC+ core has two master/slave ports to and from the  
system fabric. One master port fetches instructions. The second  
master port drives data to the system world. Slave Port 1  
together with Slave Port 2 memory direct memory access (high  
speed MDMA) run conflict free access to the individual mem-  
ory blocks. For the slave port addresses, refer to the L1 memory  
address map in Table 2.  
The ADSP-2156x processors also include a traditional instruc-  
tion cache (I-cache) and two data caches (D-caches, one each  
for PM/DM) with parity support for all caches. These caches  
support one instruction access and two data accesses over the  
DM and PM buses per CCLK cycle. The cache controllers auto-  
matically manage the configured L1 memory. The system can  
configure part of the L1 memory for automatic management by  
the cache controllers. The sizes of these caches are inde-  
pendently configurable from 0 to 128 kB each. The memory not  
managed by the cache controllers is directly addressable by the  
processors. The controllers ensure the data coherence between  
Rev. B  
|
Page 6 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SHARC+ CORE ARCHITECTURE  
0x FFFF FFFF  
0x C000 0000  
RESERVED  
DMC0 (1GB)  
The ADSP-2156x processors are assembly code compatible with  
all previous SHARC processors featuring the SHARC or  
SHARC+ core, beginning with the first generation ADSP-2106x  
SHARC processors and including the ADSP-2116x, ADSP-  
2126x, ADSP-213xx, ADSP-214xx, and ADSP-SC5xx/ADSP-  
215xx processors.  
0x 8000 0000  
0x 6000 0000  
SPI2/OSPI0 FLASH ADDRESS SPACE (512MB)  
0x 5000 0000  
0x 4C00 0000  
0x 4800 0000  
0x 4400 0000  
The SIMD architecture featured on the ADSP-2156xprocessors  
is identical to all previous SIMD SHARC processors, namely the  
ADSP-2116x, ADSP-2126x, ADSP-213xx, ADSP-214xx, and  
ADSP-SC5xx/ADSP-215xx processors, as shown in Figure 3  
and as described in the following sections.  
RESERVED  
0x 4000 0000  
0x 3000 0000  
SYSTEM MMR  
RESERVED  
Single-Instruction, Multiple Data (SIMD) Computational  
Engine  
The SHARC+ core contains two computational processing ele-  
ments that operate as a single-instruction, multiple data (SIMD)  
engine.  
0x 2840 0000  
0x 2824 0000  
0x 202B FFFF  
0x 2028 0000  
SHARC1 L1 ADDRESS SPACE VIA SLAVE 1/SLAVE 2 PORTS  
RESERVED  
The processing elements are referred to as PEx and PEy, each  
containing an arithmetic logic unit (ALU), multiplier, shifter,  
and register file. PEx is always active, and PEy is enabled by set-  
ting the PEYEN mode bit in the mode control register  
(MODE1).  
RESERVED  
0x 2011 8000  
0x 2011 0000  
L2 BOOT ROM 2 (0.25Mb)  
L2 BOOT ROM 1 (0.25Mb)  
SIMD mode allows the processors to execute the same instruc-  
tion in both processing elements, but each processing element  
operates on different data. This architecture efficiently executes  
math intensive DSP algorithms. In addition to all the features of  
previous generation SHARC cores, the SHARC+ core also pro-  
vides a new and simpler way to execute an instruction only on  
the PEy data register.  
0x 2010 8000  
0x 2010 0000  
L2 BOOT ROM 0 (0.25Mb)  
L2 SRAM (8Mb)  
RESERVED  
0x 2000 0000  
0x 0039 FFFF  
L1 BLOCK 3 SRAM (1Mb)  
RESERVED  
SIMD mode also doubles the bandwidth between memory and  
the processing elements, as required for sustained computa-  
tional operation of two processing elements. When using the  
data address generators (DAGs) to transfer data in SIMD mode,  
two data values transfer with each memory or register file  
access.  
0x 0038 0000  
0x 0031 FFFF  
0x 0030 0000  
0x 002E FFFF  
L1 BLOCK 2 SRAM (1Mb)  
RESERVED  
L1 BLOCK 1 SRAM (1.5Mb)  
0x 002C 0000  
0x 0026 FFFF  
Independent Parallel Computation Units  
RESERVED  
Within each processing element is a set of pipelined computa-  
tional units. The computational units consist of a multiplier, an  
ALU, and a shifter. These units are arranged in parallel, maxi-  
mizing computational throughput. These computational units  
support IEEE 32-bit single-precision floating-point; 40-bit  
extended-precision floating-point; IEEE 64-bit double-preci-  
sion floating-point; and 32-bit fixed-point data formats.  
L1 BLOCK 0 SRAM (1.5Mb)  
0x 0024 0000  
0x 0000 0000  
RESERVED/CORE MMRs/  
OTHER MEMORY ALIASES  
Figure 4. ADSP-2156x Memory Map  
the two data caches. The caches provide user controllable fea-  
tures such as full and partial locking, range bound invalidation,  
and flushing.  
A multifunction instruction set supports parallel execution of  
ALU and multiplier operations. In SIMD mode, the parallel  
ALU and multiplier operations occur in both processing ele-  
ments per core.  
Core Memory-Mapped Registers (CMMR)  
The core memory-mapped registers control the L1 instruction  
and data cache, branch target buffer (BTB), parity error, system  
control, debug, and monitor functions.  
All processing operations take one cycle to complete. For all  
floating-point operations, the processor takes two cycles to  
complete in case of data dependency. Double-precision float-  
ing-point data take two to six cycles to complete. The processor  
stalls for the appropriate number of cycles for an interlocked  
pipeline plus data dependency check.  
Rev. B  
|
Page 7 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Additionally, the double-precision floating-point instruction set  
Core Timer  
is new to the SHARC+ core, as compared with the previous  
SHARC core.  
The SHARC+ processor core includes an extra timer. This extra  
timer is clocked by the internal processor clock and is typically  
used as a system tick clock for generating periodic operating  
system interrupts.  
Variable Instruction Set Architecture (VISA)  
In addition to supporting the standard 48-bit instructions from  
previous SHARC core processors, the SHARC+ core processors  
support 16-bit and 32-bit opcodes for many instructions, for-  
merly 48-bit in the ISA. This variable instruction set  
architecture (VISA) feature drops redundant or unused bits  
within the 48-bit instruction to create more efficient and com-  
pact code. The program sequencer supports fetching these  
16-bit and 32-bit instructions from both internal and external  
memories. VISA is not an operating mode; rather, it is address  
dependent (refer to the ISA/VISA address spaces in Table 5).  
Finally, the processor allows jumps between ISA and VISA  
instruction fetches.  
Data Register File  
Each processing element contains a general-purpose data regis-  
ter file. The register files transfer data between the computation  
units and the data buses, and store intermediate results. These  
10-port, 32-register register files (16 primary, 16 secondary),  
combined with the enhanced Harvard architecture of the pro-  
cessor, allow unconstrained data flow between computation  
units and internal memory. The registers in the PEx data regis-  
ter file are referred to as R0–R15 and in the PEy data register file  
as S0–S15.  
Context Switch  
Single-Cycle Fetch of Instructional Four Operands  
Many of the registers of the processor have secondary registers  
that can activate during interrupt servicing for a fast context  
switch. The data, DAG, and multiplier result registers have sec-  
ondary registers. The primary registers are active at reset,  
whereas control bits in MODE1 activate the secondary registers.  
The ADSP-2156x processors feature an enhanced Harvard  
architecture in which the DM bus transfers data and the PM bus  
transfers both instructions and data.  
With the separate program memory bus, data memory buses,  
and on-chip instruction conflict cache, the processor can simul-  
taneously fetch four operands (two over each data bus) and one  
instruction from the conflict cache in a single cycle.  
Universal Registers  
General-purpose tasks use the universal registers. The four uni-  
versal status (USTAT) registers allow easy bit manipulations  
(set, clear, toggle, test, XOR) for all control and status peripheral  
registers.  
Core Event Controller (CEC)  
The SHARC+ core event controller (CEC) can be configured to  
service various interrupts generated by the core (including  
arithmetic and circular buffer instruction flow exceptions) and  
system event controller (SEC) events (peripheral interrupt  
request, debug or monitor, and software-raised), responding  
only to interrupts enabled in the IMASK register. The output of  
the SEC is forwarded to the CEC to respond directly to any  
enabled system interrupts. For all SEC channels, the processor  
automatically stacks the arithmetic status (ASTATx and  
ASTATy) registers and mode (MODE1) register in parallel with  
interrupt servicing.  
The data bus exchange register (PX) permits data to pass  
between the 64-bit PM data bus and the 64-bit DM data bus or  
between the 40-bit register file and the PM or DM data bus.  
These registers contain hardware to handle the data width  
difference.  
Data Address Generators (DAG) With Zero Overhead  
Hardware Circular Buffer Support  
For indirect addressing and implementing circular data buffers  
in hardware, the ADSP-2156x processor uses two data address  
generators (DAGs). Circular buffers allow efficient program-  
ming of delay lines and other data structures required in digital  
signal processing and are commonly used in digital filters and  
fast Fourier transforms (FFT). The DAGs contain sufficient reg-  
isters to allow the creation of up to 32 circular buffers (16  
primary register sets and 16 secondary sets). The DAGs auto-  
matically handle address pointer wraparound, reduce overhead,  
increase performance, and simplify implementation. Circular  
buffers can start and end at any memory location.  
Instruction Conflict Cache  
The processors include a 32-entry instruction cache that enables  
three-bus operation for fetching an instruction and four data  
values. The cache is selective—only the instructions that require  
fetches conflict with the PM bus data access cache. This cache  
allows full speed execution of core looped operations, such as  
digital filter multiply accumulates and FFT butterfly processing.  
The conflict cache serves for bus conflicts within the SHARC+  
core only.  
Flexible Instruction Set Architecture (ISA)  
Addressing Spaces  
The flexible instruction set architecture (ISA), a 48-bit instruc-  
tion word, accommodates various parallel operations for  
concise programming. For example, the processors can condi-  
tionally execute a multiply, an add, and a subtract in both  
processing elements while branching and fetching up to four  
32-bit values from memory—all in a single instruction.  
In addition to traditionally supported long word, normal word,  
extended precision word, and short word addressing aliases, the  
processors support byte addressing for the data and instruction  
accesses. The enhanced ISA/VISA provides new instructions for  
accessing all sizes of data from byte space, as well as converting  
word addresses to byte addresses and byte addresses to word  
addresses.  
Rev. B  
|
Page 8 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
support concurrent access to the L2 memory ports. Memory  
accesses to the L2 memory space are multicycle accesses by the  
SHARC+ core.  
Branch Target Buffer (BTB)/Branch Predictor (BP)  
Implementation of a hardware-based branch predictor (BP) and  
branch target buffer (BTB) reduce branch delay. The program  
sequencer supports efficient branching using the BTB for condi-  
tional and unconditional instructions.  
The memory space is used for various situations including  
• Accelerator and peripheral sources and destination mem-  
ory to avoid accessing data in the external memory  
SHARC Fabric  
• A location for DMA descriptors  
The FIR/IIR accelerators on the ADSP-2156x processors are  
integrated closely with the SHARC+ core with the help of a ded-  
icated SHARC fabric and run at CCLK speed. This allows the  
FIR/IIR accelerator master ports to directly access the SHARC  
L1 memory with reduced latency, as these accesses do not go  
through the main system fabric. The SHARC+ core can also  
access the FIR/IIR accelerator MMR registers directly.  
• Storage for additional data for the SHARC+ core to avoid  
external memory latencies and reduce external memory  
bandwidth  
• Storage for data coefficient tables cached by the  
SHARC+ core  
See the System Memory Protection Unit (SMPU) section for  
options in limiting access by the core and DMA masters.  
Additional Features  
To enhance the reliability of the application, L1 data RAMs sup-  
port parity error detection for every byte, and illegal opcodes are  
also detected (core interrupts flag both errors). Master ports of  
the core also detect failed external accesses.  
One Time Programmable Memory (OTP)  
The processors feature 7 kb of one time programmable (OTP)  
memory that is memory-map accessible. This memory can be  
programmed with custom keys and supports secure boot and  
secure operation.  
SYSTEM INFRASTRUCTURE  
The following sections describe the system infrastructure of the  
ADSP-2156x processors.  
I/O Memory Space  
Mapped I/Os include SPI2 or OSPI0 memory address spaces  
(see Table 5).  
System L2 Memory  
A system L2 SRAM memory of up to 8 Mb (1 MB) is available to  
the SHARC+ core and the system DMA channels (see Table 3).  
The L2 SRAM block is subdivided into up to eight banks to  
SYSTEM MEMORY MAP  
Table 2. L1 Block 0, Block 1, Block 2, and Block 3 SHARC+® Addressing Memory Map (Private Address Space)  
Extended Precision/  
Short Word/  
Memory  
Long Word (64 Bits) ISA Code (48 Bits)  
Normal Word (32 Bits) VISA Code (16 Bits) Byte Access (8 Bits)  
L1 Block 0 SRAM 0x00048000–  
(1.5 Mb) 0x0004DFFF  
L1 Block 1 SRAM 0x00058000–  
(1.5 Mb) 0x0005DFFF  
L1 Block 2 SRAM 0x00060000–  
(1 Mb) 0x00063FFF  
L1 Block 3 SRAM 0x00070000–  
(1 Mb) 0x00073FFF  
0x00090000–  
0x00097FFF  
0x00090000–  
0x0009BFFF  
0x00120000–  
0x00137FFF  
0x00240000–  
0x0026FFFF  
0x000B0000–  
0x000B7FFF  
0x000B0000–  
0x000BBFFF  
0x00160000–  
0x00177FFF  
0x002C0000–  
0x002EFFFF  
0x000C0000–  
0x000C5554  
0x000C0000–  
0x000C7FFF  
0x00180000–  
0x0018FFFF  
0x00300000–  
0x0031FFFF  
0x000E0000–  
0x000E5554  
0x000E0000–  
0x000E7FFF  
0x001C0000–  
0x001CFFFF  
0x00380000–  
0x0039FFFF  
Rev. B  
|
Page 9 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 3. L2 Memory Addressing Map  
Byte Address Space  
SHARC+ Data Access  
Normal Word Address Space VISA Address Space  
ISA Address Space  
Memory1  
SHARC+ Data Address  
SHARC+ Instruction Fetch SHARC+ Instruction Fetch  
L2 RAM (2 Mb) 0x200C0000–  
0x200FFFFF  
0x08030000–  
0x0803FFFF  
0x00BE0000–  
0x00BFFFFF  
0x005E0000–  
0x005EAAAA  
L2 RAM (4 Mb) 0x20080000–  
0x200FFFFF  
0x08020000–  
0x0803FFFF  
0x00BC0000–  
0x00BFFFFF  
0x005D5556–  
0x005EAAAA  
L2 RAM (8 Mb) 0x20000000–  
0x200FFFFF  
0x08000000–  
0x0803FFFF  
0x00B80000–  
0x00BFFFFF  
0x005C0000–  
0x005EAAAA  
SHARC/DMA:  
L2 Boot ROM0 0x20100000–0x20107FFF  
0x08040000–  
0x08041FFF  
0x00B20000–  
0x00B23FFF  
0x00580000–  
0x00581555  
L2 Boot ROM1 0x20108000–  
0x2010FFFF  
0x08042000–  
0x08043FFF  
0x00B00000–  
0x00B03FFF  
0x00500000–  
0x00501555  
L2 Boot ROM2 0x20110000–  
0x20117FFF  
0x08044000–  
0x08045FFF  
0x00B40000–  
0x00B43FFF  
0x00540000–  
0x00541555  
1
The L2 RAM blocks are subdivided into banks—the 8 Mb L2 models have eight banks, the 4 Mb models have four banks, and there are two banks for the 2 Mb models.  
Table 4. SHARC+® L1 Memory Space  
Memory  
Block  
Byte Address Space SHARC+ Normal Word Address Space SHARC+  
L1 Memory Space Address via Slave1/Slave2 Port Block 0  
0x28240000–0x2826FFFF  
0x282C0000–0x282EFFFF  
0x28300000–0x2831FFFF  
0x28380000–0x2839FFFF  
0x0A090000–0x0A09BFFF  
0x0A0B0000–0x0A0BBFFF  
0x0A0C0000–0x0A0C7FFF  
0x0A0E0000–0x0A0E7FFF  
Block 1  
Block 2  
Block 3  
Table 5. Memory Map of Mapped I/Os1  
Byte Address Space  
SHARC+ Data Access  
Normal Word Address Space VISA Address Space  
ISA Address Space  
SHARC+ Data Access  
SHARC+ Instruction Fetch SHARC+ Instruction Fetch  
SPI2/OSPI0  
Memory  
(512 MB)  
0x60000000–0x600FFFFF  
0x60100000–0x602FFFFF  
0x60300000–0x6FFFFFFF  
0x00F80000–0x00FFFFFF  
0x00780000–0x007FFFFF  
Not applicable  
0x04000000–0x07FFFFFF  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0x70000000–0x7FFFFFFF Not applicable  
1 The SHARC+ VISA/ISA address space for instruction fetch and the normal word address space for data access do not cover the entire byte address space.  
Table 6. DMC Memory Map1  
Byte Address Space  
SHARC+ Data Access  
Normal Word Address Space VISA Address Space  
ISA Address Space  
SHARC+ Data Access  
0x10000000–0x17FFFFFF  
Not applicable  
SHARC+ Instruction Fetch SHARC+ Instruction Fetch  
DMC0 (1 GB) 0x80000000–0x805FFFFF  
0x80600000–0x809FFFFF  
Not applicable  
0x00400000–0x004FFFFF  
Not applicable  
Not applicable  
0x80A00000–0x80FFFFFF  
0x00800000–0x00AFFFFF  
Not applicable  
Not applicable  
0x81000000–0x9FFFFFFF  
Not applicable  
0xA0000000–0xBFFFFFFF  
Not applicable  
Not applicable  
1 The SHARC+ VISA/ISA address space for instruction fetch and the normal word address space for data access do not cover the entire byte address space.  
Rev. B  
|
Page 10 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
• The 1D DMA uses a linked list of four-word descriptor sets  
System Crossbars (SCBs)  
containing a link pointer, an address, a length, and a  
The system crossbars (SCBs) are the fundamental building  
blocks of a switch fabric style for on-chip system bus intercon-  
nection. The SCBs connect system bus masters to system bus  
slaves, providing concurrent data transfer between multiple bus  
masters and multiple bus slaves. A hierarchical model—built  
from multiple SCBs—provides a power and area efficient sys-  
tem interconnection.  
configuration  
• The 2D DMA uses an array of one-word descriptor sets,  
specifying only the base DMA address  
• The 2D DMA uses a linked list of multiword descriptor  
sets, specifying all configurable parameters  
Memory Direct Memory Access (MDMA)  
The SCBs provide the following features:  
The processor supports various memory direct memory access  
(MDMA) operations, including,  
• Highly efficient, pipelined bus transfer protocol for sus-  
tained throughput  
• Enhanced bandwidth MDMA channels with cyclic redun-  
dancy check (CRC) protection (32-bit bus width, run on  
SYSCLK)  
• Full-duplex bus operation for flexibility and reduced  
latency  
• Concurrent bus transfer support to allow multiple bus  
masters to access bus slaves simultaneously  
• Enhanced bandwidth MDMA channel (32-bit bus width,  
runs on SYSCLK)  
• Protection model (secure) support for selective bus inter-  
connect protection  
• Maximum bandwidth MDMA channel (64-bit bus width,  
runs on SYSCLK)  
Direct Memory Access (DMA)  
Extended Memory DMA  
The processors use direct memory access (DMA) to transfer  
data within memory spaces or between a memory space and a  
peripheral. The processors can specify data transfer operations  
and return to normal processing while the fully integrated DMA  
controller carries out the data transfers independent of proces-  
sor activity.  
Extended memory DMA supports various operating modes,  
such as delay line (which allows processor reads and writes to  
external delay line buffers and to the external memory), with  
limited core interaction and scatter/gather DMA (writes to and  
from noncontiguous memory blocks).  
Cyclic Redundancy Check (CRC) Protection  
DMA transfers can occur between memory and a peripheral or  
between one memory and another memory. Each memory to  
memory DMA stream uses two channels: the source channel  
and the destination channel.  
The cyclic redundancy check (CRC) protection modules allow  
system software to calculate the signature of code, data, or both  
in memory, the content of memory-mapped registers, or peri-  
odic communication message objects. Dedicated hardware  
circuitry compares the signature with precalculated values and  
triggers appropriate fault events.  
All DMA channels can transport data to and from all on-chip  
and off-chip memories. Programs can use two types of DMA  
transfers: descriptor-based or register-based. Register-based  
DMA allows the processors to program DMA control registers  
directly to initiate a DMA transfer. On completion, the DMA  
control registers automatically update with original setup values  
for continuous transfer. Descriptor-based DMA transfers  
require a set of parameters stored within memory to initiate a  
DMA sequence. Descriptor-based DMA transfers allow  
multiple DMA sequences to be chained together. Program a  
DMA channel to set up and start another DMA transfer auto-  
matically after the current sequence completes.  
For example, the system software initiates the signature calcula-  
tion of the entire memory contents every 100 ms and compares  
this with expected, precalculated values. If a mismatch occurs, a  
fault condition is generated through the processor core or the  
trigger routing unit.  
The CRC is a hardware module based on a CRC32 engine that  
computes the CRC value of the 32-bit data-words presented to  
it. The source channel of the memory to memory DMA (in  
memory scan mode) provides data. The data can be optionally  
forwarded to the destination channel (memory transfer mode).  
The main features of the CRC peripheral are as follows:  
The DMA engine supports the following DMA operations:  
• A single linear buffer that stops on completion  
• Memory scan mode  
• A linear buffer with negative, positive, or zero stride length  
• Memory transfer mode  
• A circular autorefreshing buffer that interrupts when each  
buffer becomes full  
• Data verify mode  
• A similar circular buffer that interrupts on fractional buf-  
fers, such as at the halfway point  
• Data fill mode  
• User-programmable CRC32 polynomial  
• Bit and byte mirroring option (endianness)  
• Fault and error interrupt mechanisms  
• The 1D DMA uses a set of identical ping pong buffers  
defined by a linked ring of two-word descriptor sets, each  
containing a link pointer and an address  
Rev. B  
|
Page 11 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
• 1D and 2D fill block to initialize an array with constants  
triggers). Slave endpoints can be configured to respond to trig-  
gers in various ways. Common applications enabled by the TRU  
include,  
• 32-bit CRC signature of a block of memory or an MMR  
block  
• Automatically triggering the start of a DMA sequence after  
a sequence from another DMA channel completes  
Event Handling  
The processors provide event handling that supports both nest-  
ing and prioritization. Nesting allows multiple event service  
routines to be active simultaneously. Prioritization ensures that  
servicing a higher priority event takes precedence over servicing  
a lower priority event.  
• Software triggering  
• Synchronization of concurrent activities  
SECURITY FEATURES  
The following sections describe the security features of the  
ADSP-2156x processors.  
The processors provide support for four different types of  
events:  
Cryptographic Hardware Accelerators  
• An emulation event causes the processors to enter emula-  
tion mode, allowing command and control of the  
processors through the JTAG interface.  
The ADSP-2156x processors support standards-based hardware  
accelerated encryption, decryption, authentication, and true  
random number generation.  
• A reset event resets the processors.  
Support for the hardware accelerated cryptographic ciphers  
includes the following:  
• An exception event occurs synchronously to program flow  
(in other words, the exception is taken before the instruc-  
tion is allowed to complete). Conditions triggered by the  
SHARC+ core, such as data alignment (SIMD or long  
word) or compute violations (fixed or floating point) and  
illegal instructions, cause core exceptions. Conditions trig-  
gered by the SEC, such as error correcting code (ECC),  
parity, watchdog, or system clock, cause system exceptions.  
• AES in ECB, CBC, ICM, and CTR modes with 128-bit,  
192-bit, and 256-bit keys  
• DES in ECB and CBC mode with 56-bit key  
• 3DES in ECB and CBC mode with 3x 56-bit key  
• ARC4 in stateful, stateless mode, up to 128-bit key  
• An interrupt event occurs asynchronously to program  
flow. Interrupts are caused by input signals, timers, and  
other peripherals, as well as by an explicit software  
instruction.  
Support for the hardware accelerated hash functions includes  
the following:  
• SHA-1  
• SHA-2 with 224-bit and 256-bit digests  
• HMAC transforms for SHA-1 and SHA-2  
• MD5  
System Event Controller (SEC)  
The SHARC+ core event controller receives interrupt requests  
from the system event controller (SEC). The SEC features  
include the following:  
Public key accelerator (PKA) is available to offload computation  
intensive public key cryptography operations.  
• Comprehensive system event source management, includ-  
ing interrupt enable, fault enable, priority, and source  
grouping  
Both a hardware-based nondeterministic random number gen-  
erator and pseudorandom number generator are available.  
• A distributed programming model where each system  
event source control and all status fields are independent of  
each other  
Secure boot is also available with 224-bit and 256-bit elliptic  
curve digital signatures ensuring integrity and authenticity of  
the boot stream. Optionally, ensuring confidentiality through  
AES-128 encryption is available.  
• Determinism where all system events have the same propa-  
gation delay and provide unique identification of a specific  
system event source  
Employ secure debug to allow only trusted users to access the  
system with debug tools.  
• A slave control port that provides access to all SEC registers  
for configuration, status, and interrupt and fault services  
CAUTION  
• Global locking that supports a register level protection  
model to prevent writes to locked registers  
This product includes security features that can be  
used to protect embedded nonvolatile memory  
contents and prevent execution of unauthorized  
code. When security is enabled on this device  
(either by the ordering party or the subsequent  
receiving parties), the ability of Analog Devices to  
conduct failure analysis on returned devices is  
limited. Contact Analog Devices for details on the  
failure analysis limitations for this device.  
• Fault management including fault action configuration,  
time out, external indication, and system reset  
Trigger Routing Unit (TRU)  
The trigger routing unit (TRU) provides system-level sequence  
control without core intervention. The TRU maps trigger  
masters (generators of triggers) to trigger slaves (receivers of  
Rev. B  
|
Page 12 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
transparently. If enabled, dual-bit errors can issue a system  
System Protection Unit (SPU)  
event or fault. ECC protection is fully transparent to the user,  
The system protection unit (SPU) guards against accidental or  
unwanted access to an MMR space of the peripheral by provid-  
ing a write protection mechanism. The user can choose and  
configure the protected peripherals as well as configure which of  
the three system MMR masters (SHARC+ core, memory DMA,  
and Arm® CoreSightTM debug) the peripherals are guarded  
against.  
even if L2 memory is read or written by 8-bit or 16-bit entities.  
Parity Protected Peripheral Memories  
Parity protection is added to the following peripheral memories:  
• ASRC  
• IIR  
The SPU is also part of the security infrastructure. Along with  
providing write protection functionality, the SPU is employed  
to define which resources in the system are secure or nonsecure  
as well as block access to secure resources from nonsecure  
masters.  
• FIR  
• CRYPTO  
• MLB  
• TRACE  
System Memory Protection Unit (SMPU)  
Cyclic Redundancy Check (CRC) Protected Memories  
The system memory protection unit (SMPU) provides memory  
protection against read and/or write transactions to defined  
regions of memory. There are SMPU units in the ADSP-2156x  
processors for each memory space, except for SHARC L1  
memory.  
Whereas parity bit and ECC protection mainly protect against  
random soft errors in L1 and L2 memory cells, the CRC engines  
can protect against systematic errors (pointer errors) and static  
content (instruction code) of L1, L2, and even L3 memories  
(DDR3, DDR3L). The processors feature two CRC engines that  
are embedded in the memory to memory DMA controllers.  
The SMPU is also part of the security infrastructure. It allows  
the user to protect against arbitrary read and/or write transac-  
tions and allows regions of memory to be defined as secure and  
prevent nonsecure masters from accessing those memory  
regions.  
CRC checksums can be calculated or compared automatically  
during memory transfers. Alternatively, single or multiple  
memory regions can be continuously scrubbed by a single DMA  
work unit as per DMA descriptor chain instructions. The CRC  
engine also protects data loaded during the boot process.  
SECURITY FEATURES DISCLAIMER  
Signal Watchdogs  
Analog Devices does not guarantee that the Security Features  
described herein provide absolute security. ACCORDINGLY,  
ANALOG DEVICES HEREBY DISCLAIMS ANY AND ALL  
EXPRESS AND IMPLIED WARRANTIES THAT THE  
SECURITY FEATURES CANNOT BE BREACHED,  
COMPROMISED, OR OTHERWISE CIRCUMVENTED AND  
IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR  
ANY LOSS, DAMAGE, DESTRUCTION, OR RELEASE OF  
DATA, INFORMATION, PHYSICAL PROPERTY, OR  
INTELLECTUAL PROPERTY.  
The 10 general-purpose timers feature modes to monitor off-  
chip signals. The watchdog period mode monitors whether  
external signals toggle with a period within an expected range.  
The watchdog width mode monitors whether the pulse widths  
of external signals are within an expected range. Both modes  
help detect undesired toggling or lack of toggling of system level  
signals.  
System Event Controller (SEC)  
Besides system events, the system event controller (SEC) further  
supports fault management, including fault action configura-  
tion as timeout, internal indication by system interrupt, or  
external indication through the SYS_FAULT pin and system  
reset.  
SAFETY FEATURES  
The ADSP-2156x processors are designed to support functional  
safety applications. Whereas the level of safety is mainly domi-  
nated by the system concept, the following primitives are  
provided by the processors to build a robust safety concept.  
Memory Error Controller (MEC)  
Multiparity Bit Protected SHARC+ Core L1 Memories  
The memory error controller (MEC) manages memory par-  
ity/ECC errors and warnings from the cores and peripherals  
and sends out interrupts and triggers.  
In the SHARC+ core L1 memory space, whether SRAM or  
cache, multiple parity bits protect each word to detect the single  
event upsets that occur in all RAMs. Parity also protects the  
cache tags and BTB.  
Error Correcting Code (ECC) Protected L2 Memories  
Error correcting code (ECC) corrects single event upsets. A sin-  
gle error correct/double error detect (SEC/DED) code protects  
the L2 memory. By default, ECC is enabled, but it can be dis-  
abled on a per bank basis. Single-bit errors correct  
Rev. B  
|
Page 13 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SPORT provides two transmit data signals, and the other half  
SPORT provides two receive data signals. The frame sync and  
clock are shared.  
PROCESSOR PERIPHERALS  
The following sections describe the peripherals of the ADSP-  
2156x processors.  
Serial ports operate in the following six modes:  
• Standard DSP serial mode  
• Multichannel time division multiplexing (TDM) mode  
• I2S mode  
Dynamic Memory Controller (DMC)  
The 16-bit dynamic memory controller (DMC) interfaces to  
• DDR3 (JESD79-3), 512 Mb to 8 Gb  
• DDR3L (JESD79-3-1A), 512 Mb to 8 Gb  
See Table 6 for the DMC memory map.  
• Packed I2S mode  
• Left justified mode  
Digital Audio Interface (DAI)  
• Right justified mode  
The processors support two digital audio interface (DAI) units.  
The DAI can connect various peripherals to any of the DAI  
pins.  
Asynchronous Sample Rate Converter (ASRC)  
The asynchronous sample rate converter (ASRC) contains eight  
ASRC blocks. The ASRC provides up to 140 dB signal-to-noise  
ratio (SNR). The ASRC block performs synchronous or asyn-  
chronous sample rate conversion across independent stereo  
channels, without using internal processor resources. The ASRC  
blocks can also be configured to operate together to convert  
multichannel audio data without phase mismatches. Finally, the  
ASRC can clean up audio data from jittery clock sources such as  
the S/PDIF receiver.  
The application code makes these connections using the signal  
routing unit (SRU), shown in Figure 1.  
The SRU is a matrix routing unit (or group of multiplexers) that  
enables the peripherals provided by the DAI to interconnect  
under software control. This functionality allows easy use of the  
DAI associated peripherals for a wider variety of applications by  
using a larger set of algorithms than is possible with nonconfig-  
urable signal paths.  
S/PDIF-Compatible Digital Audio Receiver/Transmitter  
The DAI includes the peripherals described in the following sec-  
tions (SPORTs, ASRC, S/PDIF, and PCG). DAI Pin Buffer 20  
and DAI Pin Buffer 19 can change the polarity of the input sig-  
nals. Most signals of the peripherals belonging to different DAIs  
cannot be interconnected, with few exceptions.  
The Sony/Philips Digital Interface Format (S/PDIF) is a stan-  
dard audio data transfer format that allows the transfer of digital  
audio signals from one device to another. There are two S/PDIF  
transmit/receive blocks on the processor. The digital audio  
interface carries three types of information: audio data, nonau-  
dio data (compressed data), and timing information.  
The DAI_PINx pin buffers may also be used as GPIO pins. DAI  
input signals allow the triggering of interrupts on the rising  
edge, falling edge, or both.  
The S/PDIF interface supports one stereo channel or com-  
pressed audio streams. The S/PDIF transmitter and receiver are  
AES3 compatible and support the sample rate from 24 kHz to  
192 kHz. The S/PDIF receiver supports professional jitter  
standards.  
See the ADSP-2156x SHARC+ Processor Hardware Reference  
manual for complete information on the use of the DAIs and  
SRUs.  
Serial Port (SPORT)  
The S/PDIF receiver/transmitter has no separate DMA chan-  
nels. The S/PDIF transmitter receives audio data in serial format  
and converts it into a biphase encoded signal. The serial data  
input to the transmitter can be formatted as left justified, I2S, or  
right justified with word widths of 16, 18, 20, or 24 bits. The  
S/PDIF receiver converts a biphase encoded signal into I2S serial  
format.The serial data, clock, and frame sync outputs/inputs  
from/to the S/PDIF receiver/transmitter are routed through the  
SRU. They can be connected to various peripherals, such as the  
SPORTs, external pins, and the precision clock generators  
(PCGs), and are controlled by the SRU control registers.  
The processors feature eight synchronous serial ports  
(SPORTs), providing an inexpensive interface to a wide variety  
of digital and mixed-signal peripheral devices. These devices  
include Analog Devices AD19xx and ADAU19xx families of  
audio codecs, analog-to-digital converters (ADCs) and digital-  
to-analog converters (DACs). Two data lines, a clock, and a  
frame sync comprise a SPORT half. The data lines can be pro-  
grammed to either transmit or receive data, and each SPORT  
half has a dedicated DMA channel.  
An individual SPORT module consists of two independently  
configurable SPORT halves with identical functionality. Two  
bidirectional data lines—primary (0) and secondary (1)—are  
available per SPORT half and are configurable as either trans-  
mitters or receivers. Therefore, each SPORT half permits two  
unidirectional streams into or out of the same SPORT. This  
bidirectional functionality provides greater flexibility for serial  
communications. For full-duplex configuration, one half  
Precision Clock Generators (PCG)  
The precision clock generators (PCG) consist of four units: Unit  
A and Unit B located in the DAI0 block, and Unit C and Unit D  
located in the DAI1 block. The PCG can generate a pair of sig-  
nals (clock and frame sync) derived from a clock input signal  
(SCLK0, SYS_CLKIN0, or DAI pin buffer). Each unit can also  
output to the pin buffers of the opposite DAI unit. All units are  
Rev. B  
|
Page 14 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
identical in functionality and operate independently of each  
Octal Serial Peripheral Interface (OSPI) Port  
other. The two signals generated by each unit are normally used  
as a serial bit clock/frame sync pair.  
The octal serial peripheral interface (OSPI) port provides an  
increased external memory data bus width (up to eight bits in  
parallel). The OSPI port supports DDR modes of operation,  
which enable the transfer of up to 16 bits of data each clock  
cycle. The OSPI port provides overall data throughput and per-  
formance improvement, including faster boot time.  
Universal Asynchronous Receiver/Transmitter  
(UART) Ports  
The processors provide full-duplex universal asynchronous  
receiver/transmitter (UART) ports, fully compatible with PC  
standard UARTs. Each UART port provides a simplified UART  
interface to other peripherals or hosts, supporting full-duplex,  
DMA supported, asynchronous transfers of serial data. A UART  
port includes support for five to eight data bits as well as no par-  
ity, even parity, or odd parity.  
Features of the OSPI port include:  
• Support for single-, dual-, quad-, or octal-I/O transfers  
• Multiple modes of operation including direct and software  
triggered instruction generator (STIG)  
• Support for execute in place (XIP): continuous mode  
• Programmable page and block sizes  
• Programmable write protected regions  
• Programmable memory timing  
Optionally, an additional address bit can be transferred to inter-  
rupt only addressed nodes in multidrop bus (MDB) systems. A  
frame is terminated by a configurable number of stop bits.  
The UART ports support automatic hardware flow control  
through the clear to send (CTS) input and request to send (RTS)  
output with programmable assertion first in, first out (FIFO)  
levels.  
• Support for DDR commands  
Link Port (LP)  
To help support the Local Interconnect Network (LIN) proto-  
cols, a special command causes the transmitter to queue a break  
command of programmable bit length into the transmit buffer.  
Similarly, the number of stop bits can be extended by a pro-  
grammable interframe space.  
Two 8-bit wide link ports (LP) for the BGA package can connect  
to the link ports of other DSPs or peripherals. Link ports are  
bidirectional and have eight data lines, an acknowledge line, and  
a clock line.  
Timers  
Serial Peripheral Interface (SPI) Ports  
The processors include several timers that are described in the  
following sections.  
The processors have four industry-standard SPI-compatible  
ports that allow the processors to communicate with multiple  
SPI-compatible devices.  
General-Purpose (GP) Timers (TIMER)  
There is one general-purpose (GP) timer unit, providing 10  
general-purpose programmable timers. Each timer has an exter-  
nal pin that can be configured as PWM or timer output, as an  
input to clock the timer, or as a mechanism for measuring pulse  
widths and periods of external events. These timers can be syn-  
chronized to an external clock input on the TM_TMR[n] pins,  
an external TM_CLK input pin, or to the internal SCLK0.  
The baseline SPI peripheral is a synchronous, 4-wire interface  
consisting of two data pins, one device select pin, and a gated  
clock pin. The two data pins allow full-duplex operation to  
other SPI-compatible devices. An extra two (optional) data pins  
are provided to support quad-SPI operation. Enhanced modes  
of operation, such as flow control, fast mode, and dual-I/O  
mode (DIOM), are also supported. DMA mode allows for trans-  
ferring several words with minimal central processing unit  
(CPU) interaction.  
These timer units can be used in conjunction with the UARTs to  
measure the width of the pulses in the data stream to provide a  
software autobaud detect function for the respective serial  
channels.  
With a range of configurable options, the SPI ports provide a  
glueless hardware interface with other SPI-compatible devices  
in master mode, slave mode, and multimaster environments.  
The SPI peripheral includes programmable baud rates, clock  
phase, and clock polarity. The peripheral can operate in a  
multimaster environment by interfacing with several other  
devices, acting as either a master device or a slave device. In a  
multimaster environment, the SPI peripheral uses open-drain  
outputs to avoid data bus contention. The flow control features  
enable slow slave devices to interface with fast master devices by  
providing an SPI ready pin (SPI_RDY), which flexibly controls  
the transfers.  
The GP timers can generate interrupts to the processor core,  
providing periodic events for synchronization to either the sys-  
tem clock or to external signals. Timer events can also trigger  
other peripherals via the TRU (for instance, to signal a fault).  
Each timer can also be started and stopped by any TRU master  
without core intervention.  
Watchdog Timer (WDT)  
Two on-chip software watchdog timers (WDT) can be used by  
the SHARC+ core. A software watchdog can improve system  
availability by forcing the processors to a known state, via a gen-  
eral-purpose interrupt, or a fault, if the timer expires before  
being reset by software.  
The baud rate and clock phase and polarities of the SPI port are  
programmable. The port has integrated DMA channels for both  
transmit and receive data streams.  
Rev. B  
|
Page 15 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
The programmer initializes the count value of the timer, enables  
HADC_VIN0  
the appropriate interrupt, then enables the timer. Thereafter,  
the software must reload the counter before it counts down to  
HADC_VIN1  
ADC SAMPLING CAP  
zero from the programmed value, protecting the system from  
HADC_VIN2  
remaining in an unknown state where software that normally  
HADC_VIN3  
resets the timer stops running due to an external noise condi-  
tion or software error.  
General-Purpose Counters (CNT)  
A 32-bit general-purpose counter (CNT) is provided that can  
operate in general-purpose up/down count modes and can  
sense 2-bit quadrature or binary codes as typically emitted by  
industrial drives or manual thumbwheels. Count direction is  
controlled by a level-sensitive input pin or by two edge  
detectors.  
HADC_REFN  
Figure 5. Channel Multiplex of HADC Input Pins for BGA Package  
Figure 6 shows the channel multiplex diagram for the HADC  
input pins for the LQFP package (ADSP-21562, ADSP-21563,  
and ADSP-21565).  
A third counter input can provide flexible zero marker support  
and can input the push button signal of thumbwheel devices. All  
three CNT0 pins have a programmable debouncing circuit.  
Internal signals forwarded to a GP timer enable the timer to  
measure the intervals between count events. Boundary registers  
enable auto-zero operation or simple system warning by inter-  
rupts when programmed count values are exceeded.  
HADC_VIN0  
HADC_VIN1  
ADC SAMPLING CAP  
Housekeeping Analog-to-Digital Converter (HADC)  
The housekeeping analog-to-digital converter (HADC) pro-  
vides a general-purpose, multichannel successive  
approximation ADC. It supports the following set of features:  
• 12-bit ADC core with built in sample and hold.  
HADC_REFN  
• Four single-ended input channels for the BGA package;  
two single-ended input channels for the LQFP package.  
Figure 6. Channel Multiplex of HADC Input Pins for LQFP Package  
• Throughput rates up to 1 MSPS.  
Figure 7 shows the input impedance of the HADC, represented  
with internal resistance and capacitance. The VIN signal rep-  
resents the HADC input pins (HADC_VINx).  
• Single external reference with analog inputs between  
0 V and 1.8 V.  
• Selectable ADC clock frequency including the ability to  
program a prescaler.  
MAX RESISTANCE (INCLUDING CHANNEL-MUX)  
• Adaptable conversion type; allows single or continuous  
conversion with option of autoscan.  
1kȍ  
VIN  
• Autosequencing capability with up to four autoconversions  
in a single session. Each conversion can be programmed to  
select one to four input channels.  
PIN + PAD  
2.5pF  
ADC SAMPLING CAP  
10pF  
• Four data registers for the BGA package and two data regis-  
ters for the LQFP package (all individually addressable) to  
store conversion values.  
Figure 7. HADC Internal Circuit Schematic  
Figure 5 shows the channel multiplex diagram for the HADC  
input pins for the BGA package (ADSP-21566, ADSP-21567,  
and ADSP-21569).  
Media Local Bus (MediaLB)  
The automotive models have a MediaLB (MLB) slave interface  
that allows the processors to function as a media local bus  
device. It includes support for 3-pin media local bus protocols.  
The MLB 3-pin configuration supports speeds up to 1024 × FS.  
The MLB also supports up to 64 logical channels with up to  
468 bytes of data per MLB frame.  
The MLB interface supports MOST25, MOST50, and MOST150  
data rates and operates in slave mode only.  
Rev. B  
|
Page 16 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
2-Wire Controller Interface (TWI)  
SYSTEM ACCELERATION  
The processors include 2-wire interface (TWI) modules that  
provide a simple exchange method of control data between mul-  
tiple devices. The TWI module is compatible with the widely  
used I2C bus standard. The TWI module offers the capabilities  
of simultaneous master and slave operation and support for  
both 7-bit addressing and multimedia data arbitration. The  
TWI interface utilizes two pins for transferring clock  
(TWI_SCL) and data (TWI_SDA) and supports the protocol at  
speeds up to 400 kbps. The TWI interface pins are compatible  
with 3.3 V logic levels.  
The following sections describe the system acceleration blocks  
of the ADSP-2156x processors.  
Finite Impulse Response (FIR) Accelerator  
The finite impulse response (FIR) accelerator consists of a  
1024 word coefficient memory, a 1024 word deep delay line for  
the data, and four multiplier-accumulator (MAC) units. A con-  
troller manages the accelerator. The FIR accelerator runs at the  
core clock frequency. The FIR accelerator can access all memory  
spaces and can run concurrently with the IIR accelerator on the  
processor.  
Additionally, the TWI module is fully compatible with serial  
camera control bus (SCCB) functionality for easier control of  
various CMOS camera sensor devices.  
Infinite Impulse Response (IIR) Accelerator  
The infinite impulse response (IIR) accelerator consists of a  
1440 word coefficient memory for storage of biquad coeffi-  
cients, a data memory for storing the intermediate data, and one  
MAC unit. A controller manages the accelerator. The IIR  
accelerator runs at the core clock frequency. The IIR accelerator  
can access all memory spaces and run concurrently with the  
other accelerators on the processor.  
General-Purpose I/O (GPIO)  
Each general-purpose port pin can be individually controlled by  
manipulating the port control, status, and interrupt registers:  
• The GPIO direction control register specifies the direction  
of each individual GPIO pin as input or output.  
• GPIO control and status registers have a write-one-to-  
modify mechanism that allows any combination of individ-  
ual GPIO pins to be modified in a single instruction,  
without affecting the level of any other GPIO pins.  
In addition to operating at core clock, the FIR/IIR accelerators  
support various enhanced features, including the ability to halt  
the accelerator for dynamic queuing of unlimited FIR/IIR chan-  
nels, selective interrupt generation for each channel, and trigger  
master/slave support.  
• GPIO interrupt mask registers allow each individual GPIO  
pin to function as an interrupt to the processors. GPIO pins  
defined as inputs can be configured to generate hardware  
interrupts, whereas output pins can be triggered by soft-  
ware interrupts.  
SYSTEM DESIGN  
The following sections provide an introduction to system design  
features and power supply issues.  
• GPIO interrupt sensitivity registers specify whether indi-  
vidual pins are level or edge sensitive and specify, if edge  
sensitive, whether the rising edge or both the rising and  
falling edges of the signal are significant.  
Clock Management  
The processors provide three operating modes, each with a dif-  
ferent performance and power profile. Control of clocking to  
each of the processor peripherals reduces power consumption.  
The processors do not support any low power operation modes.  
Control of clocking to each of the processor peripherals can  
reduce the power consumption.  
Pin Interrupts  
Every port pin on the processors can request interrupts in either  
an edge sensitive or a level sensitive manner with programmable  
polarity. Interrupt functionality is decoupled from GPIO opera-  
tion. Three system-level interrupt channels (PINT0–PINT2) are  
reserved for this purpose. Each of these interrupt channels can  
manage up to 32 interrupt pins. The assignment from pin to  
interrupt is not performed on a pin by pin basis. Rather, groups  
of eight pins (half ports) are flexibly assigned to interrupt  
channels.  
Reset Control Unit (RCU)  
Reset is the initial state of the whole processor, or the core, and  
is the result of a hardware or software triggered event. In this  
state, all control registers are set to default values and functional  
units are idle. Exiting a full system reset begins with the core  
ready to boot.  
Every pin interrupt channel features a special set of 32-bit mem-  
ory-mapped registers that enable half port assignment and  
interrupt management. This functionality includes masking,  
identification, and clearing of requests. These registers also  
enable access to the respective pin states and use of the interrupt  
latches, regardless of whether the interrupt is masked. Most  
control registers feature multiple MMR address entries to write-  
one-to-set or write-one-to-clear them individually.  
The reset control unit (RCU) controls how all the functional  
units enter and exit reset. Differences in functional require-  
ments and clocking constraints define how reset signals are  
generated. Programs must guarantee that none of the reset  
functions put the system into an undefined state or cause  
resources to stall. This requirement is particularly important  
when the core resets (programs must ensure that there is no  
pending system activity involving the core when it is reset).  
From a system perspective, reset is defined by both the reset tar-  
get and the reset source.  
Rev. B  
|
Page 17 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
The reset target is defined as the following:  
SHARC® PROCESSOR  
• System reset—all functional units except the RCU are set to  
default states.  
TO PLL  
CIRCUITRY  
• Hardware reset—all functional units are set to default states  
without exception. History is lost.  
• Core only reset—affects the core only. When in reset state,  
the core is not accessed by any bus master.  
SYS_CLKIN0  
ꢃꢄꢄNȍ*  
SYS_XTAL0  
The reset source is defined as the following:  
• System reset—can be triggered by software (writing to the  
RCU_CTL register) or by another functional unit, such as  
the dynamic power management (DPM) unit or any of the  
SEC, TRU, or emulator inputs.  
ꢀꢁꢂNȍ*  
27pF*  
27pF*  
• Hardware reset—the SYS_HWRST input signal asserts  
active (pulled down).  
NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING  
ON THE CRYSTAL AND LAYOUT. ANALYZE CAREFULLY. VALID  
FREQUENCY RANGE IS 20 MHz TO 30 MHz FOR SYS_CLKIN0.  
• Core only reset—can be triggered by software (writing to  
the RCU_CTL register).  
Figure 8. External Crystal Connection  
• Trigger request (peripheral).  
For fundamental frequency operation, use the circuit shown in  
Figure 8. A parallel resonant, fundamental frequency, micro-  
processor grade crystal is connected across the SYS_CLKIN0  
pin and the SYS_XTAL0 pin.  
Clock Generation Unit (CGU)  
The ADSP-2156x processors support two independent PLLs.  
Each PLL is part of a clock generation unit (CGU). Each CGU is  
driven externally by the same clock source, thus providing flexi-  
bility in determining the internal clocking frequencies for each  
clock domain.  
The two capacitors and the series resistor, shown in Figure 8,  
fine tune phase and amplitude of the sine frequency. The capac-  
itor and resistor values shown in Figure 8 are typical values  
only. The capacitor values are dependent upon the load  
capacitance recommendations of the crystal manufacturer and  
the physical layout of the printed circuit board (PCB). The resis-  
tor value depends on the drive level specified by the crystal  
manufacturer. The user must verify the customized values based  
on careful investigations on multiple devices over the required  
temperature range.  
Frequencies generated by each CGU are derived from a com-  
mon multiplier with different divider values available for each  
output.  
The CGU generates all on-chip clocks and synchronization sig-  
nals. Multiplication factors are programmed to define the  
PLLCLK frequency.  
Programmable values divide the PLLCLK frequency to generate  
the core clock (CCLK), the system clocks, the DDR3/DDR3L  
clock (DCLK), and the output clock (OCLK). For more infor-  
mation on clocking, see the ADSP-2156x SHARC+ Processor  
Hardware Reference manual.  
Clock Distribution Unit (CDU)  
The two clock generation units each provide outputs that feed a  
clock distribution unit (CDU). The clock outputs  
CLKO0–CLKO1 and the clock generation unit outputs are con-  
nected to various targets. For more information, refer to the  
ADSP-2156x SHARC+ Processor Hardware Reference manual.  
Writing to the CGU control registers does not affect the behav-  
ior of the PLL immediately. Registers are first programmed with  
a new value and the PLL logic executes the changes to ensure a  
smooth transition from the current conditions to the new  
conditions.  
Clock Out/External Clock  
The SYS_CLKOUT output pin has programmable options to  
output divided down versions of the on-chip clocks. By default,  
the SYS_CLKOUT pin drives a buffered version of the  
SYS_ CLKIN0 input. Refer to the ADSP-2156x SHARC+ Pro-  
cessor Hardware Reference manual to change the default  
mapping of clocks.  
System Crystal Oscillator  
The processor can be clocked by an external crystal (see  
Figure 8), a sine wave input, or a buffered, shaped clock derived  
from an external clock oscillator. If using an external clock, it  
must be compatible with the VIHCLKIN and VILCLKIN specifica-  
tions and must not be halted, changed, or operated below the  
specified frequency during normal operation (see the Operating  
Conditions section). When using an external clock, the clock  
signal is connected to the SYS_CLKIN0 pin of the processor and  
the SYS_XTAL0 pin must be left unconnected. Alternatively,  
because the processor includes an on-chip oscillator circuit, an  
external crystal can be used.  
Booting  
The processors have several mechanisms for automatically load-  
ing internal and external memory after a reset. The boot mode is  
defined by the SYS_BMODE[n] input pins. There are two cate-  
gories of boot modes. In master boot mode, the processors  
actively load data from serial memories. In slave boot modes,  
the processors receive data from external host devices.  
Rev. B  
|
Page 18 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
The boot modes are shown in Table 7. These modes are imple-  
The power dissipated by a processor is largely a function of the  
clock frequency and the square of the operating voltage. For  
example, reducing the clock frequency by 25% results in a 25%  
reduction in dynamic power dissipation.  
mented by the SYS_BMODE[n] bits of the reset configuration  
register and are sampled during power-on resets and software  
initiated resets.  
Table 7. Boot Modes  
Table 8. Power Domains  
SYS_BMODE[n] Setting1  
Boot Mode  
No boot  
Power Domain  
All Internal Logic  
DDR3/DDR3L  
HADC/TMU  
VDD Range  
VDD_INT  
000  
001  
010  
011  
100  
1012  
110  
111  
SPI2 master  
SPI2 slave  
VDD_DMC  
VDD_ANA  
UART0 slave  
Link0 slave  
Octal SPI master  
Reserved  
All Other I/O (Includes SYS, JTAG, and VDD_EXT  
Ports Pins Except SYS_CLKIN0)  
1
SYS_CLKIN0  
VDD_REF  
1 VDD_REF requires a minimum of 10 nF and 100 nF decoupling capacitance to  
meet source/sink requirements.  
Reserved  
1 SYS_BMODE2 pin is applicable only for the BGA package.  
2 Though octal SPI master boot is not supported on the LQFP package, it is  
available through the ROM API.  
Power-Up and Power-Down Sequencing  
At all times (including during power-up/power-down sequenc-  
ing), the VDD_REF, VDD_ANA, and VDD_EXT supplies must  
stay within the VDELTA_EXT_REF specification listed in the Oper-  
ating Conditions table. SYS_XTAL0 oscillations (SYS_CLKIN0)  
start when power is applied to the VDD_REF pins. The rising  
edge of SYS_HWRST initiates the PLL locking sequence. The  
rising edge of SYS_HWRST must occur after all voltage supplies  
and SYS_CLKIN0 oscillations are valid. For further details and  
information, see the Power-Up Reset Timing section.  
In the ADSP-2156x processors, the SHARC+ core controls the  
boot process, including loading all internal and external mem-  
ory. The option for secure boot is available on all models.  
Thermal Monitoring Unit (TMU)  
The thermal monitoring unit (TMU) provides on-chip tem-  
perature measurement for applications that require substantial  
power consumption. The TMU is integrated into the processor  
die and digital infrastructure using an MMR-based system  
access to measure the die temperature variations in real-time.  
Target Board JTAG Emulator Connector  
The Analog Devices DSP tools product line of JTAG emulators  
uses the IEEE 1149.1 JTAG test access port of the processors to  
monitor and control the target board processor during emula-  
tion. The Analog Devices DSP tools product line of JTAG  
emulators provides emulation at full processor speed, allowing  
inspection and modification of memory, registers, and proces-  
sor stacks. The processor JTAG interface ensures the emulator  
does not affect target system loading or timing.  
TMU features include the following:  
• On-chip temperature sensing  
• Programmable over temperature and under temperature  
limits  
• Programmable conversion rate  
• Averaging feature available  
For information on JTAG emulator operation, see the appropri-  
ate emulator hardware user’s guide at SHARC Processors  
Software and Tools.  
Power Supplies  
The processors have separate power supply connections for  
• Internal (VDD_INT)  
SYSTEM DEBUG  
• External I/O (VDD_EXT)  
The processors include various features that allow easy system  
debug. These are described in the following sections.  
• External I/O Reference (VDD_REF)  
• HADC/TMU (VDD_ANA)  
• DMC (VDD_DMC)  
System Watchpoint Unit (SWU)  
The system watchpoint unit (SWU) is a single module that con-  
nects to a single system bus and provides transaction  
monitoring. One SWU is attached to the bus going to each  
system slave. The SWU provides ports for all system bus address  
channel signals. Each SWU contains four match groups of  
registers with associated hardware. These four SWU match  
groups operate independently but share common event (for  
example, interrupt and trigger) outputs.  
Power Management  
As shown in Table 8, the processors support five different power  
domains, which maximizes flexibility while maintaining com-  
pliance with industry standards and conventions.  
Rev. B  
|
Page 19 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
When a SOM board is mounted to a SOM carrier board,  
Debug Access Port (DAP)  
embedded system evaluation can be performed. The EZ-KIT  
SOM carrier board provides an evaluation platform for various  
system peripherals including audio, S/PDIF, CAN, MLB, USB,  
10/100/1000 Ethernet, and A2B, as well as an OSPI flash mem-  
ory. The EZ-KIT SOM carrier board also features the USB  
Debug Agent, which allows for debug and evaluation of the full  
system (including the processor/memory on the SOM module)  
without an emulator.  
The debug access port (DAP) provides IEEE 1149.1 JTAG inter-  
face support through the JTAG debug. The DAP provides an  
optional instrumentation trace for both the core and system. It  
provides a trace stream that conforms to MIPI System Trace  
Protocol version 2 (STPv2).  
DEVELOPMENT TOOLS  
Analog Devices supports its processors with a complete line of  
software and hardware development tools, including an inte-  
grated development environment, evaluation products,  
emulators, and a variety of software add-ins.  
For further information, see:  
www.analog.com/cces  
www.analog.com/EV-21569-SOM  
www.analog.com/EV-SOMCRR-EZKIT  
Integrated Development Environments (IDEs)  
For C/C++ software writing and editing, code generation, and  
debug support, Analog Devices offers the CrossCore® Embed-  
ded Studio (CCES) integrated development environment (IDE).  
Software Add-Ins for CCES  
Analog Devices offers software add-ins which seamlessly inte-  
grate with CCES to extend the capabilities and reduce  
development time. Add-ins include BSPs for evaluation hard-  
ware, various middleware packages, and algorithmic modules.  
Documentation, help, configuration dialogs, and coding exam-  
ples present in these add-ins are viewable through the CCES  
IDE upon add-in installation.  
CCES is based on the Eclipse framework. Supporting most Ana-  
log Devices processor families, CCES is the IDE of choice for  
processors, including multicore devices.  
CCES seamlessly integrates available software add-ins to sup-  
port real-time operating systems, file systems, TCP/IP stacks,  
USB stacks, algorithmic software modules, and evaluation hard-  
ware board support packages (BSPs). For more information,  
visit www.analog.com/cces.  
Board Support Packages (BSPs) for Evaluation Hardware  
Software support for the EZ-KIT evaluation systems is provided  
by software add-ins called board support packages (BSPs). The  
BSPs contain the required drivers, pertinent release notes, and  
select example code for the given evaluation hardware. A down-  
load link for a specific BSP is located on the web page for the  
associated SOM product.  
EZ-KIT Evaluation System  
For processor evaluation, Analog Devices provides an EZ-KIT®  
evaluation system (EV-21569-EZKIT), which is a bundle com-  
prised of a System on Module (SOM) board (EV-21569-SOM)  
and an EZ-KIT SOM carrier board (EV-SOMCRR-EZKIT).  
Middleware Packages  
SOM boards are small and low cost. The EV-21569-SOM board  
has the ADSP-21569 processor, SDRAM and QSPI flash memo-  
ries, JTAG debug connection, FTDI USB-to-UART, and USB  
power. SOM boards can be used alone or in combination with a  
SOM carrier board. SOM carrier boards have high speed con-  
nectors for the SOM, a comprehensive set of peripherals, and an  
on-board emulator. Each SOM carrier board also comes with a  
power supply.  
Analog Devices offers middleware add-ins such as real-time  
operating systems, file systems, USB stacks, and TCP/IP stacks.  
For more information, see the Operating Systems and Middle-  
ware page.  
Algorithmic Modules  
To speed development, Analog Devices offers add-ins that per-  
form popular audio and video processing algorithms. These are  
available for use with CCES. For more information, visit the  
Design Center.  
The USB controller on the SOM carrier board connects to the  
USB port of the user’s PC, enabling CCES to emulate the on-  
board processor in circuit. This permits users to download, exe-  
cute, and debug programs. It also supports in-circuit  
programming of the on-board flash memory device to store  
user-specific boot code, enabling standalone operation.  
Designing an Emulator-Compatible DSP Board (Target)  
For embedded system test and debug, Analog Devices provides  
a family of emulators. On each JTAG DSP, Analog Devices sup-  
plies an IEEE 1149.1 JTAG test access port (TAP). In-circuit  
emulation is facilitated by use of this JTAG interface. The  
emulator accesses the internal features of the processor via the  
TAP, allowing the developer to load code, set breakpoints, and  
view variables, memory, and registers.  
Each EZ-KIT purchased includes an evaluation license for  
CCES. The CCES evaluation license type restricts CCES features  
to specific evaluation systems. With the full CCES license type  
(sold separately), engineers can develop software for any of the  
CCES-supported evaluation boards (including the SOM when  
used standalone or when connected to a different carrier board)  
or any custom system designed around supported Analog  
Devices processors. The full CCES license type also enables use  
of ICE-2000 or ICE-1000 emulators for higher performance  
debugging via JTAG.  
The processor must be halted to send data and commands, but  
after an operation is completed by the emulator, the DSP system  
is set to run at full speed with no impact on system timing. The  
emulators require the target board to include a header that sup-  
ports connection of the JTAG port of the DSP to the emulator.  
Rev. B  
|
Page 20 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see Analog Devices JTAG  
Emulation Technical Reference (EE-68).  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the ADSP-2156x  
architecture and functionality. For detailed information on the  
core architecture and instruction set, refer to the SHARC+ Core  
Programming Reference.  
RELATED SIGNAL CHAINS  
A signal chain is a series of signal conditioning electronic com-  
ponents that receive input (data acquired from sampling either  
real-time phenomena or from stored data) in tandem, with the  
output of one portion of the chain supplying input to the next.  
Signal chains are often used in signal processing applications to  
gather and process data or to apply system controls based on  
analysis of real-time phenomena.  
Analog Devices eases signal processing system development by  
providing signal processing components that are designed to  
work together. A tool for viewing relationships between specific  
applications and related components is available at  
www.analog.com\circuits.  
The application signal chains page in the Circuits from the Lab®  
site (www.analog.com\circuits) provides the following:  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
• Drill down links for components in each chain to selection  
guides and application information  
• Reference designs applying best practice design techniques  
Rev. B  
|
Page 21 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
ADSP-2156x DETAILED SIGNAL DESCRIPTIONS  
Table 9 provides a detailed description of each pin.  
Table 9. ADSP-2156x Detailed Signal Descriptions  
Signal Name  
C0_FLG[n]  
CNT_DG  
Direction  
InOut  
Description  
SHARC Core 0 Flag Pin.  
Input  
Count Down and Gate. Depending on the mode of operation, this input acts either as a count down  
signal or a gate signal.  
Count down—this input causes the GP counter to decrement.  
Gate—stops the GP counter from incrementing or decrementing.  
CNT_UD  
Input  
Count Up and Direction. Depending on the mode of operation, this input acts either as a count up  
signal or a direction signal.  
Count up—this input causes the GP counter to increment.  
Direction—selects whether the GP counter is incrementing or decrementing.  
CNT_ZM  
Input  
InOut  
Count Zero Marker. Input that connects to the zero marker output of a rotary device or detects the  
pressing of a pushbutton.  
DAI_PIN[nn]  
Pin n. The digital applications interface (DAI0) connects various peripherals to any of the DAI0_PINxx  
pins. Programs make these connections using the signal routing unit (SRU).  
DMC_A[nn]  
DMC_BA[n]  
Output  
Output  
Address n. Address bus.  
Bank Address n. Defines which internal bank an activate, read, write, or precharge command is  
applied to on the dynamic memory. Bank Address n also defines which mode registers (MR, EMR,  
EMR2, and/or EMR3) load during the load mode register command.  
DMC_CAS  
Output  
Column Address Strobe. Defines the operation for external dynamic memory to perform in  
conjunction with other DMC command signals. Connect to the CAS input of dynamic memory.  
DMC_CK  
Output  
Output  
Output  
Output  
InOut  
Clock. Outputs DCLK to external dynamic memory.  
DMC_CK  
Clock (Complement). Complement of DMC_CK.  
DMC_CKE  
DMC_CS[n]  
DMC_DQ[nn]  
DMC_LDM  
Clock Enable. Active high clock enable. Connects to the CKE input of the dynamic memory.  
Chip Select n. Commands are recognized by the memory only when this signal is asserted.  
Data n. Bidirectional data bus.  
Output  
Data Mask for Lower Byte. Mask for DMC_DQ07:DMC_DQ00 write data when driven high. Sampled  
on both edges of the data strobe by the dynamic memory.  
DMC_LDQS  
InOut  
Data Strobe for Lower Byte. DMC_DQ07:DMC_DQ00 data strobe. Output with write data. Input with  
read data. Can be single-ended or differential depending on register settings.  
DMC_LDQS  
DMC_ODT  
InOut  
Data Strobe for Lower Byte (Complement). Complement of DMC_LDQS.  
Output  
On Die Termination. Enables dynamic memory termination resistances when driven high (assuming  
the memory is properly configured). ODT is enabledor disabled regardless of read or write commands.  
DMC_RAS  
Output  
Row Address Strobe. Defines the operation for external dynamic memory to perform in conjunction  
with other DMC command signals. Connect to the RAS input of dynamic memory.  
DMC_RESET  
DMC_RZQ  
DMC_UDM  
Output  
InOut  
Reset.  
External Calibration Resistor Connection.  
Output  
Data Mask for Upper Byte. Mask for DMC_DQ15:DMC_DQ08 write data when driven high. Sampled  
on both edges of the data strobe by the dynamic memory.  
DMC_UDQS  
InOut  
Data Strobe for Upper Byte. DMC_DQ15:DMC_DQ08 data strobe. Output with write data. Input with  
read data. Can be single-ended or differential depending on register settings.  
DMC_UDQS  
DMC_VREF  
DMC_WE  
InOut  
Input  
Data Strobe for Upper Byte (Complement). Complement of DMC_UDQS.  
Voltage Reference. Connects to half of the VDD_DMC voltage. Applies to the DMC0_VREF pins.  
Output  
Write Enable. Defines the operation for external dynamic memory to perform in conjunction with  
other DMC command signals. Connect to the WE input of dynamic memory.  
HADC_EOC_DOUT  
Output  
End of Conversion/Serial Data Out. Transitions high for one cycle of the HADC internal clock at the  
end of every conversion. Alternatively, HADC serial data out can be seen by setting the appropriate  
bit in HADC_CTL.  
Rev. B  
|
Page 22 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 9. ADSP-2156x Detailed Signal Descriptions (Continued)  
Signal Name  
HADC_VIN[n]  
HADC_VREFN  
Direction  
Input  
Description  
Analog Input at Channel n. Analog voltage inputs for digital conversion.  
Input  
Ground Reference for ADC. Connect to an external voltage reference that meets data sheet  
specifications.  
HADC_VREFP  
Input  
External Reference for ADC. Connect to an external voltage reference that meets data sheet  
specifications.  
JTG_TCK  
JTG_TDI  
JTG_TDO  
JTG_TMS  
JTG_TRST  
LP_ACK  
Input  
Input  
Output  
Input  
Input  
InOut  
JTAG Clock. JTAG test access port clock.  
JTAG Serial Data In. JTAG test access port data input.  
JTAG Serial Data Out. JTAG test access port data output.  
JTAG Mode Select. JTAG test access port mode select.  
JTAG Reset. JTAG test access port reset.  
Acknowledge. Provides handshaking. When the link port is configured as a receiver, LP_ACK is an  
output. When the link port is configured as a transmitter, LP_ACK is an input.  
LP_CLK  
InOut  
Clock. When the link port is configured as a receiver, LP_CLK is an input. When the link port is  
configured as a transmitter, LP_CLK is an output.  
LP_D[n]  
InOut  
InOut  
InOut  
InOut  
Output  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
Data n. Data bus. Input when receiving, output when transmitting.  
Single-Ended Clock.  
MLB_CLK  
MLB_DAT  
MLB_SIG  
OSPI_CLK  
OSPI_D2  
OSPI_D3  
OSPI_D4  
OSPI_D5  
OSPI_D6  
OSPI_D7  
OSPI_MISO  
Single-Ended Data.  
Single-Ended Signal.  
SPI Master Clock Output. SPI master clock output.  
Data 2. Transfers serial data in quad and octal modes.  
Data 3. Transfers serial data in quad and octal modes.  
Data 4. Transfers serial data in octal mode.  
Data 5. Transfers serial data in octal mode.  
Data 6. Transfers serial data in octal mode.  
Data 7. Transfers serial data in octal mode.  
Master In, Slave Out. Transfers serial data. Operates in the same direction as SPI_MOSI in dual and  
quad modes.  
OSPI_MOSI  
InOut  
Master Out, Slave In. Transfers serial data. Operates in the same direction as SPI_MISO in dual and  
quad modes.  
OSPI_SEL[n]  
P_[nn]  
Output  
InOut  
Slave Select Output n. Used in master mode to enable the desired slave.  
Position n. General-purpose input/output. See the ADSP-2156x SHARC+ Processor Hardware  
Reference manual for programming information.  
SPI_CLK  
SPI_D2  
Output  
InOut  
InOut  
InOut  
SPI Master Clock Output. SPI master clock output.  
Data 2. Transfers serial data in quad modes.  
SPI_D3  
Data 3. Transfers serial data in quad modes. Open-drain when ODM mode is enabled.  
SPI_MISO  
Master In, Slave Out. Transfers serial data. Operates in the same direction as SPI_MOSI in dual and  
quad modes. Open-drain when ODM mode is enabled.  
SPI_MOSI  
InOut  
Master Out, Slave In. Transfers serial data. Operates in the same direction as SPI_MISO in dual and  
quad modes. Open-drain when ODM mode is enabled.  
SPI_RDY  
SPI_SEL[n]  
SPI_SS  
InOut  
Output  
Input  
Ready. Optional flow signal. Output in slave mode, input in master mode.  
Slave Select Output n. Used in master mode to enable the desired slave.  
Slave Select Input.  
Slave mode—acts as the slave select input.  
Master mode—optionally serves as an error detection input for the SPI when there are multiple  
masters.  
SPT_ACLK  
SPT_AD0  
InOut  
InOut  
Channel A Clock. Data and frame sync are driven or sampled with respect to this clock. This signal  
can be either internally or externally generated.  
Channel A Data 0. Primary bidirectional data I/O. This signal can be configured as an output to  
transmit serial data or as an input to receive serial data.  
Rev. B  
|
Page 23 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 9. ADSP-2156x Detailed Signal Descriptions (Continued)  
Signal Name  
Direction  
Description  
SPT_AD1  
InOut  
Channel A Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to  
transmit serial data or as an input to receive serial data.  
SPT_AFS  
SPT_ATDV  
SPT_BCLK  
SPT_BD0  
SPT_BD1  
SPT_BFS  
InOut  
Output  
InOut  
InOut  
InOut  
InOut  
Output  
Channel A Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either  
generated internally or externally.  
Channel A Transmit Data Valid. This signal is optional and only active when SPORT is configured in  
multichannel transmit mode. It is asserted during enabled slots.  
Channel B Clock. Data and frame sync are driven or sampled with respect to this clock. This signal  
can be either internally or externally generated.  
Channel B Data 0. Primary bidirectional data I/O. This signal can be configured as an output to  
transmit serial data or as an input to receive serial data.  
Channel B Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to  
transmit serial data or as an input to receive serial data.  
Channel B Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either  
generated internally or externally.  
SPT_BTDV  
Channel B Transmit Data Valid. This signal is optional and only active when SPORT is configured in  
multichannel transmit mode. It is asserted during enabled slots.  
SYS_BMODE[n]  
SYS_CLKIN0  
Input  
Boot Mode Control n. Selects the boot mode of the processor.  
Input  
Clock/Crystal Input.  
SYS_CLKOUT  
Output  
Processor Clock Output. Outputs internal clocks. Clocks may be divided down. See the ADSP-2156x  
SHARC+ Processor Hardware Reference manual for more details.  
SYS_FAULT  
SYS_FAULT  
InOut  
InOut  
Active, High, Fault Output. Indicates internal faults or senses external faults depending on the  
operating mode.  
Active, Low, Fault Output. Indicates internal faults or senses external faults depending on the  
operating mode.  
SYS_HWRST  
SYS_RESOUT  
SYS_XTAL0  
TM_ACI[n]  
TM_ACLK[n]  
TM_CLK  
Input  
Processor Hardware Reset Control. Resets the device when asserted.  
Reset Output. Indicates the device is in the reset state.  
Crystal Output.  
Output  
Output  
Input  
Alternate Capture Input n. Provides an additional input for WIDCAP, WATCHDOG, and PININT modes.  
Alternate Clock n. Provides an additional time base for an individual timer.  
Clock. Provides an additional global time base for all GP timers.  
Timer n. The main input/output signal for each timer.  
Trace Clock. Clock output.  
Input  
Input  
TM_TMR[n]  
TRACE_CLK  
TRACE_D[nn]  
TWI_SCL  
InOut  
Output  
Output  
InOut  
InOut  
Input  
Trace Data n. Unidirectional data bus.  
Serial Clock. Clock output when master, clock input when slave.  
Serial Data. Receives or transmits data.  
TWI_SDA  
UART_CTS  
UART_RTS  
UART_RX  
Clear to Send. Flow control signal.  
Output  
Input  
Request to Send. Flow control signal.  
Receive. Receives input. Typically connects to a transceiver that meets the electrical requirements of  
the device with which it is communicating.  
UART_TX  
Output  
Transmit. Transmits output. Typically connects to a transceiver that meets the electrical requirements  
of the device with which it is communicating.  
Rev. B  
|
Page 24 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
400-BALL CSP_BGA SIGNAL DESCRIPTIONS  
The processor pin definitions are shown in Table 10 for the  
400-ball CSP_BGA package. The columns in this table provide  
the following information:  
• The pin name column identifies the name of the package  
pin (at power-on reset) on which the signal is located (if a  
single function pin) or is multiplexed (if a general-purpose  
I/O pin).  
• The signal name column includes the signal name for every  
pin and the GPIO multiplexed pin function, where  
applicable.  
• The DAI pins and their associated signal routing units  
(SRUs) connect inputs and outputs of the DAI peripherals  
(SPORT, ASRC, S/PDIF, and PCG). See the ADSP-2156x  
SHARC+ Processor Hardware Reference manual for com-  
plete information on the use of the DAI and SRUs.  
• The description column provides a descriptive name for  
each signal.  
• The port column shows whether a signal is multiplexed  
with other signals on a general-purpose I/O port pin.  
Table 10. ADSP-2156x 400-Ball CSP_BGA Signal Descriptions  
Signal Name  
C0_FLG0  
Description  
SHARC Core 0 Flag Pin  
SHARC Core 0 Flag Pin  
SHARC Core 0 Flag Pin  
SHARC Core 0 Flag Pin  
CNT0 Count Down and Gate  
CNT0 Count Up and Direction  
CNT0 Count Zero Marker  
DAI0 Pin 1  
Port  
Pin Name  
PA_12  
A
C0_FLG1  
A
PA_13  
C0_FLG2  
B
PB_03  
C0_FLG3  
B
PB_02  
CNT0_DG  
B
PB_05  
CNT0_UD  
B
PB_03  
CNT0_ZM  
B
PB_04  
DAI0_PIN01  
DAI0_PIN02  
DAI0_PIN03  
DAI0_PIN04  
DAI0_PIN05  
DAI0_PIN06  
DAI0_PIN07  
DAI0_PIN08  
DAI0_PIN09  
DAI0_PIN10  
DAI0_PIN11  
DAI0_PIN12  
DAI0_PIN19  
DAI0_PIN20  
DAI1_PIN01  
DAI1_PIN02  
DAI1_PIN03  
DAI1_PIN04  
DAI1_PIN05  
DAI1_PIN06  
DAI1_PIN07  
DAI1_PIN08  
DAI1_PIN09  
DAI1_PIN10  
DAI1_PIN11  
DAI1_PIN12  
DAI1_PIN19  
DAI1_PIN20  
DMC0_A00  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
DAI0_PIN01  
DAI0_PIN02  
DAI0_PIN03  
DAI0_PIN04  
DAI0_PIN05  
DAI0_PIN06  
DAI0_PIN07  
DAI0_PIN08  
DAI0_PIN09  
DAI0_PIN10  
DAI0_PIN11  
DAI0_PIN12  
DAI0_PIN19  
DAI0_PIN20  
DAI1_PIN01  
DAI1_PIN02  
DAI1_PIN03  
DAI1_PIN04  
DAI1_PIN05  
DAI1_PIN06  
DAI1_PIN07  
DAI1_PIN08  
DAI1_PIN09  
DAI1_PIN10  
DAI1_PIN11  
DAI1_PIN12  
DAI1_PIN19  
DAI1_PIN20  
DMC0_A00  
DAI0 Pin 2  
DAI0 Pin 3  
DAI0 Pin 4  
DAI0 Pin 5  
DAI0 Pin 6  
DAI0 Pin 7  
DAI0 Pin 8  
DAI0 Pin 9  
DAI0 Pin 10  
DAI0 Pin 11  
DAI0 Pin 12  
DAI0 Pin 19  
DAI0 Pin 20  
DAI1 Pin 1  
DAI1 Pin 2  
DAI1 Pin 3  
DAI1 Pin 4  
DAI1 Pin 5  
DAI1 Pin 6  
DAI1 Pin 7  
DAI1 Pin 8  
DAI1 Pin 9  
DAI1 Pin 10  
DAI1 Pin 11  
DAI1 Pin 12  
DAI1 Pin 19  
DAI1 Pin 20  
DMC0 Address 0  
Rev. B  
|
Page 25 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 10. ADSP-2156x 400-Ball CSP_BGA Signal Descriptions (Continued)  
Signal Name  
DMC0_A01  
DMC0_A02  
DMC0_A03  
DMC0_A04  
DMC0_A05  
DMC0_A06  
DMC0_A07  
DMC0_A08  
DMC0_A09  
DMC0_A10  
DMC0_A11  
DMC0_A12  
DMC0_A13  
DMC0_A14  
DMC0_A15  
DMC0_BA0  
DMC0_BA1  
DMC0_BA2  
DMC0_CAS  
DMC0_CK  
Description  
Port  
Pin Name  
DMC0 Address 1  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
DMC0_A01  
DMC0_A02  
DMC0_A03  
DMC0_A04  
DMC0_A05  
DMC0_A06  
DMC0_A07  
DMC0_A08  
DMC0_A09  
DMC0_A10  
DMC0_A11  
DMC0_A12  
DMC0_A13  
DMC0_A14  
DMC0_A15  
DMC0_BA0  
DMC0_BA1  
DMC0_BA2  
DMC0_CAS  
DMC0_CK  
DMC0 Address 2  
DMC0 Address 3  
DMC0 Address 4  
DMC0 Address 5  
DMC0 Address 6  
DMC0 Address 7  
DMC0 Address 8  
DMC0 Address 9  
DMC0 Address 10  
DMC0 Address 11  
DMC0 Address 12  
DMC0 Address 13  
DMC0 Address 14  
DMC0 Address 15  
DMC0 Bank Address Input 0  
DMC0 Bank Address Input 1  
DMC0 Bank Address Input 2  
DMC0 Column Address Strobe  
DMC0 Clock  
DMC0_CK  
DMC0 Clock (Complement)  
DMC0 Clock Enable  
DMC0 Chip Select 0  
DMC0 Data 0  
DMC0_CK  
DMC0_CKE  
DMC0_CS0  
DMC0_DQ00  
DMC0_DQ01  
DMC0_DQ02  
DMC0_DQ03  
DMC0_DQ04  
DMC0_DQ05  
DMC0_DQ06  
DMC0_DQ07  
DMC0_DQ08  
DMC0_DQ09  
DMC0_DQ10  
DMC0_DQ11  
DMC0_DQ12  
DMC0_DQ13  
DMC0_DQ14  
DMC0_DQ15  
DMC0_LDM  
DMC0_LDQS  
DMC0_LDQS  
DMC0_ODT  
DMC0_RAS  
DMC0_RESET  
DMC0_RZQ  
DMC0_UDM  
DMC0_UDQS  
DMC0_CKE  
DMC0_CS0  
DMC0_DQ00  
DMC0_DQ01  
DMC0_DQ02  
DMC0_DQ03  
DMC0_DQ04  
DMC0_DQ05  
DMC0_DQ06  
DMC0_DQ07  
DMC0_DQ08  
DMC0_DQ09  
DMC0_DQ10  
DMC0_DQ11  
DMC0_DQ12  
DMC0_DQ13  
DMC0_DQ14  
DMC0_DQ15  
DMC0_LDM  
DMC0_LDQS  
DMC0_LDQS  
DMC0_ODT  
DMC0_RAS  
DMC0_RESET  
DMC0_RZQ  
DMC0_UDM  
DMC0_UDQS  
DMC0 Data 1  
DMC0 Data 2  
DMC0 Data 3  
DMC0 Data 4  
DMC0 Data 5  
DMC0 Data 6  
DMC0 Data 7  
DMC0 Data 8  
DMC0 Data 9  
DMC0 Data 10  
DMC0 Data 11  
DMC0 Data 12  
DMC0 Data 13  
DMC0 Data 14  
DMC0 Data 15  
DMC0 Data Mask for Lower Byte  
DMC0 Data Strobe for Lower Byte  
DMC0 Data Strobe for Lower Byte (Complement)  
DMC0 On-die Termination  
DMC0 Row Address Strobe  
DMC0 Reset (DDR3 Only)  
DMC0 External Calibration Resistor Connection  
DMC0 Data Mask for Upper Byte  
DMC0 Data Strobe for Upper Byte  
Rev. B  
|
Page 26 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 10. ADSP-2156x 400-Ball CSP_BGA Signal Descriptions (Continued)  
Signal Name  
DMC0_UDQS  
DMC0_VREF  
DMC0_WE  
HADC0_EOC_DOUT  
HADC0_VIN0  
HADC0_VIN1  
HADC0_VIN2  
HADC0_VIN3  
HADC0_VREFN  
HADC0_VREFP  
JTG_TCK  
Description  
Port  
Pin Name  
DMC0_UDQS  
DMC0_VREF0, DMC0_VREF1  
DMC0_WE  
PA_11  
DMC0 Data Strobe for Upper Byte (Complement)  
DMC0 Voltage Reference  
DMC0 Write Enable  
HADC0 End of Conversion / Serial Data Out  
HADC0 Analog Input at channel 0  
HADC0 Analog Input at channel 1  
HADC0 Analog Input at channel 2  
HADC0 Analog Input at channel 3  
HADC0 Ground Reference for ADC  
HADC0 External Reference for ADC  
JTAG Clock  
Not Muxed  
Not Muxed  
Not Muxed  
A
Not Muxed  
HADC0_VIN0  
HADC0_VIN1  
HADC0_VIN2  
HADC0_VIN3  
HADC0_VREFN  
HADC0_VREFP  
JTG_TCK  
JTG_TDI  
JTG_TDO  
JTG_TMS  
JTG_TRST  
PB_04  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
JTG_TDI  
JTAG Serial Data In  
JTAG Serial Data Out  
JTAG Mode Select  
JTAG Reset  
Not Muxed  
JTG_TDO  
Not Muxed  
JTG_TMS  
Not Muxed  
JTG_TRST  
LP0_ACK  
Not Muxed  
LP0 Acknowledge  
LP0 Clock  
B
B
B
B
B
B
B
B
B
B
B
C
B
C
C
C
C
C
C
C
B
B
B
A
A
A
A
A
A
A
A
A
A
LP0_CLK  
PB_06  
LP0_D0  
LP0 Data 0  
PB_07  
LP0_D1  
LP0 Data 1  
PB_08  
LP0_D2  
LP0 Data 2  
PB_09  
LP0_D3  
LP0 Data 3  
PB_10  
LP0_D4  
LP0 Data 4  
PB_11  
LP0_D5  
LP0 Data 5  
PB_12  
LP0_D6  
LP0 Data 6  
PB_13  
LP0_D7  
LP0 Data 7  
PB_14  
LP1_ACK  
LP1 Acknowledge  
LP1 Clock  
PB_02  
LP1_CLK  
PC_07  
LP1_D0  
LP1 Data 0  
PB_15  
LP1_D1  
LP1 Data 1  
PC_00  
LP1_D2  
LP1 Data 2  
PC_01  
LP1_D3  
LP1 Data 3  
PC_02  
LP1_D4  
LP1 Data 4  
PC_03  
LP1_D5  
LP1 Data 5  
PC_04  
LP1_D6  
LP1 Data 6  
PC_05  
LP1_D7  
LP1 Data 7  
PC_06  
MLB0_CLK  
MLB0_DAT  
MLB0_SIG  
OSPI0_CLK  
OSPI0_D2  
OSPI0_D3  
OSPI0_D4  
OSPI0_D5  
OSPI0_D6  
OSPI0_D7  
OSPI0_MISO/D1  
OSPI0_MOSI/D0  
OSPI0_SEL1  
MLB0 Single-Ended Clock  
MLB0 Single-Ended Data  
MLB0 Single-Ended Signal  
OSPI0 Clock  
PB_02  
PB_00  
PB_01  
PA_04  
OSPI0 Data 2  
PA_02  
OSPI0 Data 3  
PA_03  
OSPI0 Data 4  
PA_06  
OSPI0 Data 5  
PA_07  
OSPI0 Data 6  
PA_08  
OSPI0 Data 7  
PA_09  
OSPI0 Master In, Slave Out  
OSPI0 Master Out, Slave In  
OSPI0 Slave Select Output 1  
PA_00  
PA_01  
PA_05  
Rev. B  
|
Page 27 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 10. ADSP-2156x 400-Ball CSP_BGA Signal Descriptions (Continued)  
Signal Name  
OSPI0_SEL2  
OSPI0_SEL3  
SPI0_CLK  
Description  
Port  
Pin Name  
PC_04  
OSPI0 Slave Select Output 2  
OSPI0 Slave Select Output 3  
SPI0 Clock  
C
C
PC_05  
A
PA_06  
SPI0_MISO  
SPI0_MOSI  
SPI0_RDY  
SPI0_SEL1  
SPI0_SEL2  
SPI0_SEL3  
SPI0_SEL4  
SPI0_SS  
SPI0 Master In, Slave Out  
SPI0 Master Out, Slave In  
SPI0 Ready  
A
PA_07  
A
PA_08  
B
PB_11  
SPI0 Slave Select Output 1  
SPI0 Slave Select Output 2  
SPI0 Slave Select Output 3  
SPI0 Slave Select Output 4  
SPI0 Slave Select Input  
SPI1 Clock  
A
PA_09  
B
PB_05  
B
PB_14  
B
PB_15  
A
PA_09  
SPI1_CLK  
A
PA_10  
SPI1_D2  
SPI1 Data 2  
A
PA_14  
SPI1_D3  
SPI1 Data 3  
A
PA_15  
SPI1_MISO  
SPI1_MOSI  
SPI1_RDY  
SPI1_SEL1  
SPI1_SEL2  
SPI1_SEL3  
SPI1_SEL4  
SPI1_SEL5  
SPI1_SEL6  
SPI1_SEL7  
SPI1_SS  
SPI1 Master In, Slave Out  
SPI1 Master Out, Slave In  
SPI1 Ready  
A
PA_11  
A
PA_12  
C
PC_06  
SPI1 Slave Select Output 1  
SPI1 Slave Select Output 2  
SPI1 Slave Select Output 3  
SPI1 Slave Select Output 4  
SPI1 Slave Select Output 5  
SPI1 Slave Select Output 6  
SPI1 Slave Select Output 7  
SPI1 Slave Select Input  
SPI2 Clock  
A
PA_13  
B
PB_10  
B
PB_13  
C
PC_00  
B
PB_06  
C
PC_02  
B
PB_08  
A
PA_13  
SPI2_CLK  
A
PA_04  
SPI2_D2  
SPI2 Data 2  
A
PA_02  
SPI2_D3  
SPI2 Data 3  
A
PA_03  
SPI2_MISO  
SPI2_MOSI  
SPI2_RDY  
SPI2_SEL1  
SPI2_SEL2  
SPI2_SEL3  
SPI2_SEL4  
SPI2_SEL5  
SPI2_SEL6  
SPI2_SEL7  
SPI2_SS  
SPI2 Master In, Slave Out  
SPI2 Master Out, Slave In  
SPI2 Ready  
A
PA_00  
A
PA_01  
B
PB_05  
SPI2 Slave Select Output 1  
SPI2 Slave Select Output 2  
SPI2 Slave Select Output 3  
SPI2 Slave Select Output 4  
SPI2 Slave Select Output 5  
SPI2 Slave Select Output 6  
SPI2 Slave Select Output 7  
SPI2 Slave Select Input  
Boot Mode Control Pin 0  
Boot Mode Control Pin 1  
Boot Mode Control Pin 2  
Clock/Crystal Input  
A
PA_05  
B
PB_03  
B
PB_12  
C
PC_01  
B
PB_07  
C
PC_03  
B
PB_09  
A
PA_05  
SYS_BMODE0  
SYS_BMODE1  
SYS_BMODE2  
SYS_CLKIN0  
SYS_CLKOUT  
SYS_FAULT  
SYS_FAULT  
SYS_HWRST  
SYS_RESOUT  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
C
SYS_BMODE0  
SYS_BMODE1  
SYS_BMODE2  
SYS_CLKIN0  
SYS_CLKOUT  
PC_07  
Processor Clock Output  
Active, High, Fault Output  
Active, Low, Fault Output  
Processor Hardware Reset Control  
Reset Output  
Not Muxed  
Not Muxed  
Not Muxed  
SYS_FAULT  
SYS_HWRST  
SYS_RESOUT  
Rev. B  
|
Page 28 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 10. ADSP-2156x 400-Ball CSP_BGA Signal Descriptions (Continued)  
Signal Name  
SYS_XTAL0  
TM0_ACI0  
Description  
Port  
Pin Name  
SYS_XTAL0  
PA_07  
PA_14  
PB_11  
PB_00  
PA_11  
PA_06  
PA_08  
PA_02  
PB_02  
PB_01  
PA_10  
PA_12  
PA_13  
PB_03  
PB_04  
PB_05  
PB_08  
PB_09  
PC_05  
PC_07  
PB_06  
PB_07  
PB_08  
PB_09  
PB_10  
PC_00  
PC_01  
PC_02  
PC_03  
PA_10  
PA_11  
PB_00  
PB_01  
PA_14  
PA_15  
PA_02  
PA_03  
PC_00  
PC_01  
PC_02  
PC_03  
PA_09  
PA_08  
PA_07  
PA_06  
PB_01  
PB_00  
Crystal Output  
Not Muxed  
TIMER0 Alternate Capture Input 0  
TIMER0 Alternate Capture Input 1  
TIMER0 Alternate Capture Input 2  
TIMER0 Alternate Capture Input 3  
TIMER0 Alternate Capture Input 4  
TIMER0 Alternate Clock 1  
TIMER0 Alternate Clock 2  
TIMER0 Alternate Clock 3  
TIMER0 Alternate Clock 4  
TIMER0 Clock  
A
A
B
B
A
A
A
A
B
B
A
A
A
B
B
B
B
B
C
C
B
B
B
B
B
C
C
C
C
A
A
B
B
A
A
A
A
C
C
C
C
A
A
A
A
B
B
TM0_ACI1  
TM0_ACI2  
TM0_ACI3  
TM0_ACI4  
TM0_ACLK1  
TM0_ACLK2  
TM0_ACLK3  
TM0_ACLK4  
TM0_CLK  
TM0_TMR0  
TM0_TMR1  
TM0_TMR2  
TM0_TMR3  
TM0_TMR4  
TM0_TMR5  
TM0_TMR6  
TM0_TMR7  
TM0_TMR8  
TM0_TMR9  
TRACE0_CLK  
TRACE0_D00  
TRACE0_D01  
TRACE0_D02  
TRACE0_D03  
TRACE0_D04  
TRACE0_D05  
TRACE0_D06  
TRACE0_D07  
TWI0_SCL  
TIMER0 Timer 0  
TIMER0 Timer 1  
TIMER0 Timer 2  
TIMER0 Timer 3  
TIMER0 Timer 4  
TIMER0 Timer 5  
TIMER0 Timer 6  
TIMER0 Timer 7  
TIMER0 Timer 8  
TIMER0 Timer 9  
TRACE0 Trace Clock  
TRACE0 Trace Data 0  
TRACE0 Trace Data1  
TRACE0 Trace Data2  
TRACE0 Trace Data 3  
TRACE0 Trace Data4  
TRACE0 Trace Data5  
TRACE0 Trace Data6  
TRACE0 Trace Data 7  
TWI0 Serial Clock  
TWI0_SDA  
TWI1_SCL  
TWI0 Serial Data  
TWI1 Serial Clock  
TWI1_SDA  
TWI2_SCL  
TWI1 Serial Data  
TWI2 Serial Clock  
TWI2_SDA  
TWI3_SCL  
TWI2 Serial Data  
TWI3 Serial Clock  
TWI3_SDA  
TWI4_SCL  
TWI3 Serial Data  
TWI4 Serial Clock  
TWI4_SDA  
TWI5_SCL  
TWI4 Serial Data  
TWI5 Serial Clock  
TWI5_SDA  
UART0_CTS  
UART0_RTS  
UART0_RX  
UART0_TX  
UART1_CTS  
UART1_RTS  
TWI5 Serial Data  
UART0 Clear to Send  
UART0 Request to Send  
UART0 Receive  
UART0 Transmit  
UART1 Clear to Send  
UART1 Request to Send  
Rev. B  
|
Page 29 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 10. ADSP-2156x 400-Ball CSP_BGA Signal Descriptions (Continued)  
Signal Name  
UART1_RX  
UART1_TX  
UART2_CTS  
UART2_RTS  
UART2_RX  
UART2_TX  
Description  
Port  
A
Pin Name  
PA_14  
PA_15  
PB_14  
PB_13  
PB_11  
PB_12  
UART1 Receive  
UART1 Transmit  
UART2 Clear to Send  
UART2 Request to Send  
UART2 Receive  
A
B
B
B
UART2 Transmit  
B
Rev. B  
|
Page 30 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
GPIO MULTIPLEXING FOR 400-BALL CSP_BGA PACKAGE  
Table 11 through Table 13 identify the pin functions that are  
multiplexed on the general-purpose I/O pins of the 400-ball  
CSP_BGA package.  
Table 11. Signal Multiplexing for Port A  
Multiplexed  
Function 0  
Multiplexed  
Function 1  
Multiplexed  
Function 2  
Multiplexed  
Function 3  
Multiplexed  
Function Input Tap  
Signal Name  
PA_00  
PA_01  
PA_02  
PA_03  
PA_04  
PA_05  
PA_06  
PA_07  
PA_08  
PA_09  
PA_10  
PA_11  
PA_12  
PA_13  
PA_14  
PA_15  
SPI2_MISO  
SPI2_MOSI  
SPI2_D2  
OSPI0_MISO/D1  
OSPI0_MOSI/D0  
OSPI0_D2  
TWI3_SCL  
TWI3_SDA  
TM0_ACLK3  
SPI2_D3  
OSPI0_D3  
SPI2_CLK  
SPI2_SEL1  
SPI0_CLK  
SPI0_MISO  
SPI0_MOSI  
SPI0_SEL1  
TWI0_SCL  
TWI0_SDA  
C0_FLG0  
OSPI0_CLK  
OSPI0_SEL1  
UART0_TX  
UART0_RX  
UART0_RTS  
UART0_CTS  
SPI1_CLK  
SPI2_SS  
OSPI0_D4  
TM0_ACLK1  
TM0_ACI0  
TM0_ACLK2  
SPI0_SS  
OSPI0_D5  
OSPI0_D6  
OSPI0_D7  
TM0_TMR0  
HADC0_EOC_DOUT  
TM0_TMR1  
TM0_TMR2  
UART1_RX  
UART1_TX  
SPI1_MISO  
SPI1_MOSI  
SPI1_SEL1  
SPI1_D2  
TM0_ACI4  
C0_FLG1  
SPI1_SS  
TWI2_SCL  
TWI2_SDA  
TM0_ACI1  
SPI1_D3  
Table 12. Signal Multiplexing for Port B  
Multiplexed  
Multiplexed  
Function 1  
Multiplexed  
Function 2  
Multiplexed  
Function 3  
Multiplexed  
Function Input Tap  
Signal Name  
PB_00  
PB_01  
PB_02  
PB_03  
PB_04  
PB_05  
PB_06  
PB_07  
PB_08  
PB_09  
PB_10  
PB_11  
PB_12  
PB_13  
PB_14  
PB_15  
Function 0  
MLB0_DAT  
MLB0_SIG  
MLB0_CLK  
TM0_TMR3  
TM0_TMR4  
TM0_TMR5  
LP0_CLK  
LP0_D0  
TWI1_SCL  
TWI1_SDA  
C0_FLG3  
UART1_RTS  
UART1_CTS  
LP1_ACK  
TM0_ACI3  
TM0_CLK  
TM0_ACLK4  
CNT0_UD  
CNT0_ZM  
CNT0_DG  
C0_FLG2  
SPI2_SEL2  
LP0_ACK  
SPI1_RDY  
SPI2_RDY  
SPI1_SEL5  
SPI2_SEL5  
SPI1_SEL7  
SPI2_SEL7  
SPI1_SEL2  
SPI0_RDY  
SPI2_SEL3  
SPI1_SEL3  
SPI0_SEL3  
SPI0_SEL4  
SPI0_SEL2  
TRACE0_CLK  
TRACE0_D00  
TRACE0_D01  
TRACE0_D02  
TRACE0_D03  
UART2_RX  
LP0_D1  
TM0_TMR6  
TM0_TMR7  
LP0_D2  
LP0_D3  
LP0_D4  
TM0_ACI2  
LP0_D5  
UART2_TX  
LP0_D6  
UART2_RTS  
UART2_CTS  
LP0_D7  
LP1_D0  
Rev. B  
|
Page 31 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 13. Signal Multiplexing for Port C  
Multiplexed  
Function 0  
Multiplexed  
Function 1  
Multiplexed  
Function 2  
Multiplexed  
Function 3  
Multiplexed  
Function Input Tap  
Signal Name  
PC_00  
LP1_D1  
LP1_D2  
LP1_D3  
LP1_D4  
LP1_D5  
LP1_D6  
LP1_D7  
LP1_CLK  
TWI4_SCL  
TWI4_SDA  
TWI5_SCL  
TWI5_SDA  
OSPI0_SEL2  
OSPI0_SEL3  
SPI1_RDY  
TRACE0_D04  
TRACE0_D05  
TRACE0_D06  
TRACE0_D07  
SPI1_SEL4  
SPI2_SEL4  
SPI1_SEL6  
SPI2_SEL6  
PC_01  
PC_02  
PC_03  
PC_04  
PC_05  
TM0_TMR8  
TM0_TMR9  
PC_06  
PC_07  
SYS_FAULT1  
1 The default PC_07 pin function is SYS_FAULT until the PORTC_FER and PORTC_MUX registers are explicitly programmed to change it.  
Table 14 shows the internal timer signal routing. This table applies to both the 400-ball CSP_BGA and 120-lead LQFP packages.  
Table 14. Internal Timer Signal Routing  
Timer Input Signal  
TM0_ACLK0  
TM0_ACI5  
TM0_ACLK5  
TM0_ACI6  
TM0_ACLK6  
TM0_ACI7  
TM0_ACLK7  
TM0_ACI8  
Internal Source  
SYS_CLKIN0  
DAI0_PB04_O  
DAI0_PB03_O  
DAI1_PB04_O  
DAI1_PB03_O  
CNT0_TO signal  
SYS_CLKIN0  
DAI0_PB06_O  
DAI0_PB05_O  
DAI1_PB06_O  
DAI1_PB05_O  
TM0_ACLK8  
TM0_ACI9  
TM0_ACLK9  
Rev. B  
|
Page 32 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
120-LEAD LQFP SIGNAL DESCRIPTIONS  
The processor pin definitions are shown Table 15 for the  
120-lead LQFP package. The columns in this table provide the  
following information:  
• The pin name column identifies the name of the package  
pin (at power on reset) on which the signal is located (if a  
single function pin) or is multiplexed (if a general-purpose  
I/O pin).  
• The signal name column includes the signal name for every  
pin and the GPIO multiplexed pin function, where  
applicable.  
• The DAI pins and their associated signal routing units  
(SRUs) connect inputs and outputs of the DAI peripherals  
(SPORT, ASRC, S/PDIF, and PCG). See the Digital Audio  
Interface (DAI) chapter of the ADSP-2156x SHARC+ Pro-  
cessor Hardware Reference manual for complete  
• The description column provides a descriptive name for  
each signal.  
• The port column shows whether or not a signal is multi-  
plexed with other signals on a general-purpose I/O port  
pin.  
information on the use of the DAIs and SRUs.  
Table 15. ADSP-2156x 120-Lead LQFP Signal Descriptions  
Signal Name  
C0_FLG0  
Description  
Port  
Pin Name  
PA_12  
SHARC Core 0 Flag Pin  
SHARC Core 0 Flag Pin  
SHARC Core 0 Flag Pin  
SHARC Core 0 Flag Pin  
CNT0 Count Down and Gate  
CNT0 Count Up and Direction  
CNT0 Count Zero Marker  
DAI0 Pin 1  
A
C0_FLG1  
A
PA_13  
C0_FLG2  
B
PB_03  
C0_FLG3  
B
PB_02  
CNT0_DG  
B
PB_05  
CNT0_UD  
B
PB_03  
CNT0_ZM  
B
PB_04  
DAI0_PIN01  
DAI0_PIN02  
DAI0_PIN03  
DAI0_PIN04  
DAI0_PIN05  
DAI0_PIN06  
DAI0_PIN07  
DAI0_PIN08  
DAI0_PIN09  
DAI0_PIN10  
DAI0_PIN19  
DAI0_PIN20  
DAI1_PIN01  
DAI1_PIN02  
DAI1_PIN03  
DAI1_PIN04  
DAI1_PIN05  
DAI1_PIN06  
DAI1_PIN07  
DAI1_PIN08  
DAI1_PIN09  
DAI1_PIN10  
DAI1_PIN19  
DAI1_PIN20  
HADC0_EOC_DOUT  
HADC0_VIN0  
HADC0_VIN1  
HADC0_VREFN  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
A
DAI0_PIN01  
DAI0_PIN02  
DAI0_PIN03  
DAI0_PIN04  
DAI0_PIN05  
DAI0_PIN06  
DAI0_PIN07  
DAI0_PIN08  
DAI0_PIN09  
DAI0_PIN10  
DAI0_PIN19  
DAI0_PIN20  
DAI1_PIN01  
DAI1_PIN02  
DAI1_PIN03  
DAI1_PIN04  
DAI1_PIN05  
DAI1_PIN06  
DAI1_PIN07  
DAI1_PIN08  
DAI1_PIN09  
DAI1_PIN10  
DAI1_PIN19  
DAI1_PIN20  
PA_11  
DAI0 Pin 2  
DAI0 Pin 3  
DAI0 Pin 4  
DAI0 Pin 5  
DAI0 Pin 6  
DAI0 Pin 7  
DAI0 Pin 8  
DAI0 Pin 9  
DAI0 Pin 10  
DAI0 Pin 19  
DAI0 Pin 20  
DAI1 Pin 1  
DAI1 Pin 2  
DAI1 Pin 3  
DAI1 Pin 4  
DAI1 Pin 5  
DAI1 Pin 6  
DAI1 Pin 7  
DAI1 Pin 8  
DAI1 Pin 9  
DAI1 Pin 10  
DAI1 Pin 19  
DAI1 Pin 20  
HADC0 End of Conversion / Serial Data Out  
HADC0 Analog Input at channel 0  
HADC0 Analog Input at channel 1  
HADC0 Ground Reference for ADC  
Not Muxed  
Not Muxed  
Not Muxed  
HADC0_VIN0  
HADC0_VIN1  
HADC0_VREFN  
Rev. B  
|
Page 33 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 15. ADSP-2156x 120-Lead LQFP Signal Descriptions (Continued)  
Signal Name  
HADC0_VREFP  
JTG_TCK  
Description  
Port  
Pin Name  
HADC0_VREFP  
JTG_TCK  
JTG_TDI  
JTG_TDO  
JTG_TMS  
JTG_TRST  
PB_02  
HADC0 External Reference for ADC  
JTAG Clock  
Not Muxed  
Not Muxed  
JTG_TDI  
JTAG Serial Data In  
JTAG Serial Data Out  
JTAG Mode Select  
JTAG Reset  
Not Muxed  
JTG_TDO  
Not Muxed  
JTG_TMS  
Not Muxed  
JTG_TRST  
MLB0_CLK  
MLB0_DAT  
MLB0_SIG  
OSPI0_CLK  
OSPI0_D2  
OSPI0_D3  
OSPI0_D4  
OSPI0_D5  
OSPI0_D6  
OSPI0_D7  
OSPI0_MISO/D1  
OSPI0_MOSI/D0  
OSPI0_SEL1  
SPI0_CLK  
Not Muxed  
MLB0 Single-Ended Clock  
MLB0 Single-Ended Data  
MLB0 Single-Ended Signal  
OSPI0 Clock  
B
B
PB_00  
B
PB_01  
A
PA_04  
OSPI0 Data 2  
A
PA_02  
OSPI0 Data 3  
A
PA_03  
OSPI0 Data 4  
A
PA_06  
OSPI0 Data 5  
A
PA_07  
OSPI0 Data 6  
A
PA_08  
OSPI0 Data 7  
A
PA_09  
OSPI0 Master In, Slave Out  
OSPI0 Master Out, Slave In  
OSPI0 Slave Select Output 1  
SPI0 Clock  
A
PA_00  
A
PA_01  
A
PA_05  
A
PA_06  
SPI0_MISO  
SPI0_MOSI  
SPI0_SEL1  
SPI0_SEL2  
SPI0_SS  
SPI0 Master In, Slave Out  
SPI0 Master Out, Slave In  
SPI0 Slave Select Output 1  
SPI0 Slave Select Output 2  
SPI0 Slave Select Input  
SPI1 Clock  
A
PA_07  
A
PA_08  
A
PA_09  
B
PB_05  
A
PA_09  
SPI1_CLK  
A
PA_10  
SPI1_D2  
SPI1 Data 2  
A
PA_14  
SPI1_D3  
SPI1 Data 3  
A
PA_15  
SPI1_MISO  
SPI1_MOSI  
SPI1_RDY  
SPI1_SEL1  
SPI1_SS  
SPI1 Master In, Slave Out  
SPI1 Master Out, Slave In  
SPI1 Ready  
A
PA_11  
A
PA_12  
B
PB_04  
SPI1 Slave Select Output 1  
SPI1 Slave Select Input  
SPI2 Clock  
A
PA_13  
A
PA_13  
SPI2_CLK  
A
PA_04  
SPI2_D2  
SPI2 Data 2  
A
PA_02  
SPI2_D3  
SPI2 Data 3  
A
PA_03  
SPI2_MISO  
SPI2_MOSI  
SPI2_RDY  
SPI2_SEL1  
SPI2_SEL2  
SPI2_SS  
SPI2 Master In, Slave Out  
SPI2 Master Out, Slave In  
SPI2 Ready  
A
PA_00  
A
PA_01  
B
PB_05  
SPI2 Slave Select Output 1  
SPI2 Slave Select Output 2  
SPI2 Slave Select Input  
Boot Mode Control  
Boot Mode Control  
Clock/Crystal Input  
Processor Clock Output  
Active-Low Fault Output  
Processor Hardware Reset Control  
A
PA_05  
B
PB_03  
A
PA_05  
SYS_BMODE0  
SYS_BMODE1  
SYS_CLKIN0  
SYS_CLKOUT  
SYS_FAULT  
SYS_HWRST  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
Not Muxed  
SYS_BMODE0  
SYS_BMODE1  
SYS_CLKIN0  
SYS_CLKOUT  
SYS_FAULT  
SYS_HWRST  
Rev. B  
|
Page 34 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 15. ADSP-2156x 120-Lead LQFP Signal Descriptions (Continued)  
Signal Name  
SYS_RESOUT  
SYS_XTAL0  
TM0_ACI0  
TM0_ACI1  
TM0_ACI3  
TM0_ACI4  
TM0_ACLK1  
TM0_ACLK2  
TM0_ACLK3  
TM0_ACLK4  
TM0_CLK  
Description  
Port  
Pin Name  
SYS_RESOUT  
SYS_XTAL0  
PA_07  
PA_14  
PB_00  
PA_11  
PA_06  
PA_08  
PA_02  
PB_02  
PB_01  
PA_10  
PA_12  
PA_13  
PB_03  
PB_04  
PB_05  
PA_10  
PA_11  
PB_00  
PB_01  
PA_14  
PA_15  
PA_02  
PA_03  
PA_09  
PA_08  
PA_07  
PA_06  
PB_01  
PB_00  
PA_14  
PA_15  
Reset Output  
Not Muxed  
Crystal Output  
Not Muxed  
TIMER0 Alternate Capture Input 0  
TIMER0 Alternate Capture Input 1  
TIMER0 Alternate Capture Input 3  
TIMER0 Alternate Capture Input 4  
TIMER0 Alternate Clock 1  
TIMER0 Alternate Clock 2  
TIMER0 Alternate Clock 3  
TIMER0 Alternate Clock 4  
TIMER0 Clock  
A
A
B
A
A
A
A
B
B
A
A
A
B
B
B
A
A
B
B
A
A
A
A
A
A
A
A
B
B
A
A
TM0_TMR0  
TM0_TMR1  
TM0_TMR2  
TM0_TMR3  
TM0_TMR4  
TM0_TMR5  
TWI0_SCL  
TWI0_SDA  
TWI1_SCL  
TWI1_SDA  
TWI2_SCL  
TWI2_SDA  
TWI3_SCL  
TWI3_SDA  
UART0_CTS  
UART0_RTS  
UART0_RX  
UART0_TX  
UART1_CTS  
UART1_RTS  
UART1_RX  
UART1_TX  
TIMER0 Timer 0  
TIMER0 Timer 1  
TIMER0 Timer 2  
TIMER0 Timer 3  
TIMER0 Timer 4  
TIMER0 Timer 5  
TWI0 Serial Clock  
TWI0 Serial Data  
TWI1 Serial Clock  
TWI1 Serial Data  
TWI2 Serial Clock  
TWI2 Serial Data  
TWI3 Serial Clock  
TWI3 Serial Data  
UART0 Clear to Send  
UART0 Request to Send  
UART0 Receive  
UART0 Transmit  
UART1 Clear to Send  
UART1 Request to Send  
UART1 Receive  
UART1 Transmit  
Rev. B  
|
Page 35 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
GPIO MULTIPLEXING FOR 120-LEAD LQFP PACKAGE  
Table 16 and Table 17 identify the pin functions that are multi-  
plexed on the general-purpose I/O pins of the 120-lead LQFP  
package.  
Table 16. Signal Multiplexing for Port A  
Signal Name Multiplexed Function 0  
Multiplexed Function 1  
OSPI0_MISO/D1  
OSPI0_MOSI/D0  
OSPI0_D2  
Multiplexed Function 2  
Multiplexed Function Input Tap  
PA_00  
PA_01  
PA_02  
PA_03  
PA_04  
PA_05  
PA_06  
PA_07  
PA_08  
PA_09  
PA_10  
PA_11  
PA_12  
PA_13  
PA_14  
PA_15  
SPI2_MISO  
SPI2_MOSI  
SPI2_D2  
TWI3_SCL  
TWI3_SDA  
TM0_ACLK3  
SPI2_D3  
OSPI0_D3  
SPI2_CLK  
SPI2_SEL1  
SPI0_CLK  
SPI0_MISO  
SPI0_MOSI  
SPI0_SEL1  
TWI0_SCL  
TWI0_SDA  
C0_FLG0  
OSPI0_CLK  
OSPI0_SEL1  
UART0_TX  
SPI2_SS  
OSPI0_D4  
TM0_ACLK1  
TM0_ACI0  
TM0_ACLK2  
SPI0_SS  
UART0_RX  
OSPI0_D5  
UART0_RTS  
UART0_CTS  
SPI1_CLK  
OSPI0_D6  
OSPI0_D7  
TM0_TMR0  
HADC0_EOC_DOUT  
TM0_TMR1  
TM0_TMR2  
UART1_RX  
UART1_TX  
SPI1_MISO  
SPI1_MOSI  
SPI1_SEL1  
TM0_ACI4  
C0_FLG1  
SPI1_SS  
TWI2_SCL  
TWI2_SDA  
SPI1_D2  
TM0_ACI1  
SPI1_D3  
Table 17. Signal Multiplexing for Port B  
Signal Name Multiplexed Function 0  
Multiplexed Function 1  
TWI1_SCL  
Multiplexed Function 2  
UART1_RTS  
Multiplexed Function Input Tap  
TM0_ACI3  
PB_00  
PB_01  
PB_02  
PB_03  
PB_04  
PB_05  
MLB0_DAT  
MLB0_SIG  
MLB0_CLK  
TM0_TMR3  
TM0_TMR4  
TM0_TMR5  
TWI1_SDA  
UART1_CTS  
TM0_CLK  
C0_FLG3  
TM0_ACLK4  
C0_FLG2  
SPI2_SEL2  
SPI0_SEL2  
CNT0_UD  
SPI1_RDY  
CNT0_ZM  
SPI2_RDY  
CNT0_DG  
Rev. B  
|
Page 36 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
ADSP-2156x DESIGNER QUICK REFERENCE  
Table 18 provides a quick reference summary of pin related  
information for circuit board design. The columns in this table  
provide the following information:  
• The reset termination column specifies the termination  
present when the processor is in the reset state.  
• The reset drive column specifies the active drive on the sig-  
nal when the processor is in the reset state.  
• The signal name column includes the signal name for every  
pin and the GPIO multiplexed pin function, where  
applicable.  
• The power domain column specifies the power supply  
domain in which the signal resides.  
• The type column identifies the I/O type or supply type of  
the pin. The abbreviations used in this column are analog  
(a), supply (s), ground (g) and Input, Output, and InOut.  
• The description and notes column identifies any special  
requirements or characteristics for a signal. These recom-  
mendations apply whether or not the hardware block  
associated with the signal is featured on the product. If no  
special requirements are listed, the signal can be left uncon-  
nected if it is not used. For multiplexed GPIO pins, this  
column identifies the functions available on the pin.  
• The driver type column identifies the driver type used by  
the corresponding pin. The driver types are defined in the  
Output Drive Currents section of this data sheet.  
• The internal termination column specifies the termination  
present after the processor is powered up (both during  
reset and after reset).  
Table 18. ADSP-2156x Designer Quick Reference  
Driver Internal  
Type Termination  
Reset  
Termination Reset Drive Power Domain Description and Notes  
Signal Name  
Type  
DAI0_PIN01  
InOut  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Programmable  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
Desc: DAI0 Pin 1  
Notes: See note2  
Desc: DAI0 Pin 2  
Notes: See note2  
Desc: DAI0 Pin 3  
Notes: See note2  
Desc: DAI0 Pin 4  
Notes: See note2  
Desc: DAI0 Pin 5  
Notes: See note2  
Desc: DAI0 Pin 6  
Notes: See note2  
Desc: DAI0 Pin 7  
Notes: See note2  
Desc: DAI0 Pin 8  
Notes: See note2  
Desc: DAI0 Pin 9  
Notes: See note2  
Desc: DAI0 Pin 10  
Notes: See note2  
Desc: DAI0 Pin 11  
Notes: See note2  
Desc: DAI0 Pin 12  
Notes: See note2  
Desc: DAI0 Pin 19  
Notes: See note2  
Desc: DAI0 Pin 20  
Notes: See note2  
Desc: DAI1 Pin 1  
Notes: See note2  
pull-up/pull-down1  
DAI0_PIN02  
DAI0_PIN03  
DAI0_PIN04  
DAI0_PIN05  
DAI0_PIN06  
DAI0_PIN07  
DAI0_PIN08  
DAI0_PIN09  
DAI0_PIN10  
DAI0_PIN11  
DAI0_PIN12  
DAI0_PIN19  
DAI0_PIN20  
DAI1_PIN01  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Rev. B  
|
Page 37 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 18. ADSP-2156x Designer Quick Reference (Continued)  
Driver Internal  
Reset  
Signal Name  
Type  
Type Termination  
Termination Reset Drive Power Domain Description and Notes  
DAI1_PIN02  
InOut  
A
A
A
A
A
A
A
A
A
A
A
A
A
Programmable  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
L
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
Desc: DAI1 Pin 2  
pull-up/pull-down1  
Notes: See note2  
Desc: DAI1 Pin 3  
DAI1_PIN03  
DAI1_PIN04  
DAI1_PIN05  
DAI1_PIN06  
DAI1_PIN07  
DAI1_PIN08  
DAI1_PIN09  
DAI1_PIN10  
DAI1_PIN11  
DAI1_PIN12  
DAI1_PIN19  
DAI1_PIN20  
DMC0_A00  
DMC0_A01  
DMC0_A02  
DMC0_A03  
DMC0_A04  
DMC0_A05  
DMC0_A06  
DMC0_A07  
DMC0_A08  
DMC0_A09  
DMC0_A10  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
Programmable  
pull-up/pull-down1  
Notes: See note2  
Desc: DAI1 Pin 4  
Programmable  
pull-up/pull-down1  
Notes: See note2  
Desc: DAI1 Pin 5  
Programmable  
pull-up/pull-down1  
Notes: See note2  
Desc: DAI1 Pin 6  
Programmable  
pull-up/pull-down1  
Notes: See note2  
Desc: DAI1 Pin 7  
Programmable  
pull-up/pull-down1  
Notes: See note2  
Desc: DAI1 Pin 8  
Programmable  
pull-up/pull-down1  
Notes: See note2  
Desc: DAI1 Pin 9  
Programmable  
pull-up/pull-down1  
Notes: See note2  
Desc: DAI1 Pin 10  
Notes: See note2  
Desc: DAI1 Pin 11  
Notes: See note2  
Desc: DAI1 Pin 12  
Notes: See note2  
Desc: DAI1 Pin 19  
Notes: See note2  
Desc: DAI1 Pin 20  
Notes: See note2  
Desc: DMC0 Address 0  
Notes: No notes  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Programmable  
pull-up/pull-down1  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
L
Desc: DMC0 Address 1  
Notes: No notes  
L
Desc: DMC0 Address 2  
Notes: No notes  
L
Desc: DMC0 Address 3  
Notes: No notes  
L
Desc: DMC0 Address 4  
Notes: No notes  
L
Desc: DMC0 Address 5  
Notes: No notes  
L
Desc: DMC0 Address 6  
Notes: No notes  
L
Desc: DMC0 Address 7  
Notes: No notes  
L
Desc: DMC0 Address 8  
Notes: No notes  
L
Desc: DMC0 Address 9  
Notes: No notes  
L
Desc: DMC0 Address 10  
Notes: No notes  
Rev. B  
|
Page 38 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 18. ADSP-2156x Designer Quick Reference (Continued)  
Driver Internal  
Reset  
Signal Name  
Type  
Type Termination  
Termination Reset Drive Power Domain Description and Notes  
DMC0_A11  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
Output B  
Output C  
Output C  
Output B  
Output B  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
L
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
Desc: DMC0 Address 11  
Notes: No notes  
DMC0_A12  
DMC0_A13  
DMC0_A14  
DMC0_A15  
DMC0_BA0  
DMC0_BA1  
DMC0_BA2  
DMC0_CAS  
DMC0_CK  
L
Desc: DMC0 Address 12  
Notes: No notes  
L
Desc: DMC0 Address 13  
Notes: No notes  
L
Desc: DMC0 Address 14  
Notes: No notes  
L
Desc: DMC0 Address 15  
Notes: No notes  
L
Desc: DMC0 Bank Address Input 0  
Notes: No notes  
L
Desc: DMC0 Bank Address Input 1  
Notes: No notes  
L
Desc: DMC0 Bank Address Input 2  
Notes: No notes  
L
Desc: DMC0 column address strobe  
Notes: No notes  
L
Desc: DMC0 clock  
Notes: No notes  
DMC0_CK  
H
Desc: DMC0 clock (complement)  
Notes: No notes  
DMC0_CKE  
DMC0_CS0  
DMC0_DQ00  
L
Desc: DMC0 clock enable  
Notes: No notes  
L
Desc: DMC0 Chip Select 0  
Notes: No notes  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
B
B
B
B
B
B
B
Internal logic  
None  
Desc: DMC0 Data 0  
ensures that input  
signal does not float  
Notes: No notes  
DMC0_DQ01  
DMC0_DQ02  
DMC0_DQ03  
DMC0_DQ04  
DMC0_DQ05  
DMC0_DQ06  
Internal logic  
ensures that input  
signal does not float  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
Desc: DMC0 Data 1  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 2  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 3  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 4  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 5  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 6  
Notes: No notes  
Rev. B  
|
Page 39 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 18. ADSP-2156x Designer Quick Reference (Continued)  
Driver Internal  
Reset  
Signal Name  
Type  
Type Termination  
Termination Reset Drive Power Domain Description and Notes  
DMC0_DQ07  
InOut  
B
B
B
B
B
B
B
B
B
Internal logic  
ensures that input  
signal does not float  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
L
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
Desc: DMC0 Data 7  
Notes: No notes  
DMC0_DQ08  
DMC0_DQ09  
DMC0_DQ10  
DMC0_DQ11  
DMC0_DQ12  
DMC0_DQ13  
DMC0_DQ14  
DMC0_DQ15  
DMC0_LDM  
DMC0_LDQS  
DMC0_LDQS  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 8  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 9  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 10  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 11  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 12  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 13  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 14  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 Data 15  
Notes: No notes  
Output B  
None  
Desc: DMC0 data mask for lower  
byte  
Notes: No notes  
InOut  
InOut  
C
C
Internal logic  
ensures that input  
signal does not float  
None  
None  
Desc: DMC0 data strobe for lower  
byte  
Notes: No notes  
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 data strobe for lower  
byte (complement)  
Notes: No notes  
DMC0_ODT  
DMC0_RAS  
DMC0_RESET  
DMC0_RZQ  
Output B  
Output B  
Output B  
None  
None  
None  
None  
None  
None  
None  
None  
L
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
Desc: DMC0 on-die termination  
Notes: No notes  
L
Desc: DMC0 row address strobe  
Notes: No notes  
L
Desc: DMC0 reset (DDR3 only)  
Notes: No notes  
a
B
None  
Desc: DMC0 external calibration  
resistor connection  
Notes: 34 Ω external pull-down  
must be added  
DMC0_UDM  
Output B  
None  
None  
L
VDD_DMC  
Desc: DMC0 data mask for upper  
byte  
Notes: No notes  
Rev. B  
|
Page 40 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 18. ADSP-2156x Designer Quick Reference (Continued)  
Driver Internal  
Reset  
Signal Name  
Type  
Type Termination  
Termination Reset Drive Power Domain Description and Notes  
DMC0_UDQS  
InOut  
C
Internal logic  
ensures that input  
signal does not float  
None  
None  
None  
None  
VDD_DMC  
VDD_DMC  
Desc: DMC0 data strobe for upper  
byte  
Notes: No notes  
DMC0_UDQS  
InOut  
a
C
Internal logic  
ensures that input  
signal does not float  
Desc: DMC0 data strobe for upper  
byte (complement)  
Notes: No notes  
DMC0_VREF  
DMC0_WE  
GND  
None  
None  
None  
none  
None  
None  
None  
none  
None  
L
VDD_DMC  
VDD_DMC  
Desc: DMC0 voltage reference  
Notes: No notes  
Output B  
g
Desc: DMC0 write enable  
Notes: No notes  
None  
none  
Desc: Ground  
Notes: No notes  
HADC0_VIN0  
a
a
a
a
s
NA  
VDD_ANA  
VDD_ANA  
VDD_ANA  
VDD_ANA  
VDD_ANA  
VDD_ANA  
Desc: HADC0 Analog Input at  
channel 0  
Notes: Connect to GND if not used3.  
HADC0_VIN1  
HADC0_VIN2  
HADC0_VIN3  
HADC0_VREFN  
HADC0_VREFP  
NA  
NA  
NA  
NA  
NA  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
Desc: HADC0 Analog Input at  
channel 1  
Notes: Connect to GND if not used3  
Desc: HADC0 Analog Input at  
channel 2  
Notes: Connect to GND if not used3  
Desc: HADC0 Analog Input at  
channel 3  
Notes: Connect to GND if not used3  
Desc: HADC0 Ground Reference for  
ADC  
Notes: Connect to GND if not used3  
s
Desc: HADC0 External Reference  
for ADC  
Notes: Connect to VDD_REF if  
HADC/TMU is not used.  
JTG_TCK  
JTG_TDI  
JTG_TDO  
Input  
Input  
Pull-up  
Pull-up  
None  
Pull-up  
Pull-up  
None  
None  
None  
VDD_EXT  
VDD_EXT  
Desc: JTAG clock  
Notes: See note2  
Desc: JTAG serial data in  
Notes: See note2  
Output A  
High-Zwhen VDD_EXT  
JTG_TRST is  
Desc: JTAG serial data out  
Notes: No notes  
low, not  
affected by  
SYS_HWRST  
JTG_TMS  
JTG_TRST  
PA_00  
InOut  
Input  
InOut  
InOut  
A
Pull-up  
Pull-up  
Pull-down  
None  
None  
None  
None  
None  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
Desc: JTAG mode select  
Notes: See note2  
Pull-down  
Desc: JTAG reset  
Notes: See note2  
A
A
Programmable  
Desc: Port A Position 0  
Notes: See note2  
pull-up/pull-down1  
PA_01  
Programmable  
None  
Desc: Port A Position 1  
Notes: See note2  
pull-up/pull-down1  
Rev. B  
|
Page 41 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 18. ADSP-2156x Designer Quick Reference (Continued)  
Driver Internal  
Reset  
Signal Name  
Type  
Type Termination  
Termination Reset Drive Power Domain Description and Notes  
PA_02  
InOut  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Programmable  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
Desc: Port A Position 2  
Notes: See note2  
pull-up/pull-down1  
PA_03  
PA_04  
PA_05  
PA_06  
PA_07  
PA_08  
PA_09  
PA_10  
PA_11  
PA_12  
PA_13  
PA_14  
PA_15  
PB_00  
PB_01  
PB_02  
PB_03  
PB_04  
PB_05  
PB_06  
PB_07  
PB_08  
PB_09  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
Programmable  
Desc: Port A Position 3  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 4  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 5  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 6  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 7  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 8  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 9  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 10  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 11  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 12  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 13  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 14  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port A Position 15  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 0  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 1  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 2  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 3  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 4  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 5  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 6  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 7  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 8  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 9  
Notes: See note2  
pull-up/pull-down1  
Rev. B  
|
Page 42 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 18. ADSP-2156x Designer Quick Reference (Continued)  
Driver Internal  
Reset  
Signal Name  
Type  
Type Termination  
Termination Reset Drive Power Domain Description and Notes  
PB_10  
InOut  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Programmable  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
Desc: Port B Position 10  
Notes: See note2  
pull-up/pull-down1  
PB_11  
PB_12  
PB_13  
PB_14  
PB_15  
PC_00  
PC_01  
PC_02  
PC_03  
PC_04  
PC_05  
PC_06  
PC_07  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
InOut  
Programmable  
Desc: Port B Position 11  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 12  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 13  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 14  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port B Position 15  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port C Position 0  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port C Position 1  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port C Position 2  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port C Position 3  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port C Position 4  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port C Position 5  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port C Position 6  
Notes: See note2  
pull-up/pull-down1  
Programmable  
Desc: Port C Position 7 (default is  
SYS_FAULT)  
pull-up/pull-down1  
Notes:Externalpull-downrequired  
to keep signal in deasserted state  
SYS_BMODE0  
SYS_BMODE1  
SYS_BMODE2  
SYS_CLKIN0  
SYS_CLKOUT  
SYS_FAULT  
Input NA  
Input NA  
Input NA  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_REF  
VDD_EXT  
VDD_EXT  
Desc: Boot Mode Control 0  
Notes: Cannot be left unconnected  
Desc: Boot Mode Control 1  
Notes: Cannot be left unconnected  
Desc: Boot Mode Control 2  
Notes: Cannot be left unconnected  
Desc: Clock/crystal input  
Notes: Cannot be left unconnected  
Desc: Processor clock output  
Notes: No notes  
a
NA  
A
a
InOut  
A
Desc: Active low fault output  
Notes: External pull-up required to  
keep signal in deasserted state  
SYS_HWRST  
SYS_RESOUT  
Input NA  
Output A  
None  
None  
None  
None  
None  
L
VDD_EXT  
VDD_EXT  
Desc: Processor hardware reset  
control  
Notes: Cannot be left unconnected  
Desc: Reset output  
Notes: No notes  
Rev. B  
|
Page 43 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 18. ADSP-2156x Designer Quick Reference (Continued)  
Driver Internal  
Reset  
Signal Name  
Type  
Type Termination  
Termination Reset Drive Power Domain Description and Notes  
SYS_XTAL0  
a
NA  
None  
none  
None  
none  
None  
none  
VDD_REF  
Desc: Crystal output  
Notes: Leave unconnected if an  
oscillator provides SYS_CLKIN0  
VDD_ANA  
s
Desc: Analog VDD  
Notes: VDD_REF can be used to  
sourcetheVDD_ANApowersupply  
for HADC and TMU.  
VDD_DMC  
VDD_EXT  
VDD_INT  
VDD_REF  
s
s
s
s
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Desc: DMC voltage domain  
Notes: No notes  
Desc: External voltage domain  
Notes: No notes  
Desc: Internal voltage domain  
Notes: No notes  
Desc: External voltage reference  
Notes: VDD_REF can be used to  
sourcetheVDD_ANApowersupply  
for HADC and TMU.  
1 Disable by default.  
2 When present, the internal pull-up/pull-down design holds the internal path from the pins at the expected logic levels. To pull up or pull down the external pads to the expected  
logic levels, use external resistors.  
3 All HADC0_VINx pins and the HADC0_VREFN pin can be connected directly to GND if HADC and TMU are not used.  
Rev. B  
|
Page 44 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SPECIFICATIONS  
For information about product specifications, contact your Analog Devices, Inc., representative.  
OPERATING CONDITIONS  
Parameter  
Conditions  
Min  
Nominal  
Max  
Unit  
VDD_INT  
VDD_EXT  
VDD_ANA  
Internal (Core) Supply Voltage  
External (I/O) Supply Voltage  
Analog Power Supply Voltage  
DDR3L Controller Supply Voltage  
DDR3 Controller Supply Voltage  
External (I/O) Reference Supply Voltage  
DDR3 Reference Voltage  
400 MHz ≤ CCLK ≤ 1 GHz 0.95  
1.00  
3.30  
1.80  
1.350  
1.500  
1.80  
1.05  
3.47  
1.89  
1.418  
1.575  
1.89  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3.13  
1.71  
1
VDD_DMC  
1.283  
1.425  
1.71  
2
VDD_REF  
3
VDDR_VREF  
0.49 × VDD_DMC  
0.50 × VDD_DMC 0.51 × VDD_DMC  
+1.89  
4
VDELTA_EXT_REF (VDD_EXT – VDD_REF) and (VDD_EXT – VDD_ANA  
)
–1.89  
5
VHADC_REF  
HADC Reference Voltage  
HADC Input Voltage  
1.71  
1.80  
VDD_ANA  
VHADC0_VINx  
0
VHADC_REF + 0.09  
6
VIH  
High Level Input Voltage  
High Level Clock Input Voltage  
Low Level Input Voltage  
Low Level Clock Input Voltage  
Low Level Input Voltage  
Low Level Input Voltage  
High Level Input Voltage  
High Level Input Voltage  
VDD_EXT = 3.47 V  
VDD_REF = 1.89 V  
VDD_EXT = 3.13 V  
VDD_REF = 1.71 V  
VDD_DMC = 1.283 V  
VDD_DMC = 1.425 V  
VDD_DMC = 1.418 V  
VDD_DMC = 1.575 V  
2.0  
2
VIHCLKIN  
0.65 × VDD_REF  
VDD_REF  
6
VIL  
0.8  
2
VILCLKIN  
–0.30  
+0.35 × VDD_REF  
7
VIL_DDR3L  
VDDR_VREF – 0.175 V  
7
VIL_DDR3  
VDDR_VREF – 0.175 V  
7
VIH_DDR3L  
VDDR_VREF + 0.175  
VDDR_VREF + 0.175  
V
V
7
VIH_DDR3  
CONSUMER GRADE  
TJ  
Junction Temperature  
400-Ball CSP_BGA  
0
0
110  
110  
°C  
TJ  
Junction Temperature  
120-Lead LQFP_EP  
°C  
INDUSTRIAL GRADE  
TJ  
Junction Temperature  
400-Ball CSP_BGA  
–40  
–40  
+125  
+125  
°C  
°C  
TJ  
Junction Temperature  
120-Lead LQFP_EP  
AUTOMOTIVE GRADE8  
TJ  
Junction Temperature  
400-Ball CSP_BGA  
–40  
–40  
+125  
+125  
°C  
°C  
TJ  
Junction Temperature  
120-Lead LQFP_EP  
1 Applies to DDR3L/DDR3 signals.  
2 Applies to SYS_CLKIN0 pin.  
3 Applies to DMC0_VREF pins.  
4 See Figure 11.  
5 VHADC_VREF must always be less than VDD_ANA  
.
6 Parameter value applies to all input and bidirectional pins except the DMC pins.  
7 This parameter applies to all DMC0 pins.  
8 Automotive application use profile only. Not supported for nonautomotive use. Contact Analog Devices for more information.  
Rev. B  
|
Page 45 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Clock Related Operating Conditions  
Table 19 describes the core clock, system clock, and peripheral clock timing requirements. The data presented in the table applies to all  
speed grades except where noted.  
Table 19. Clock Operating Conditions  
Parameter  
fCCLK  
Conditions  
Min  
400  
200  
30  
Typ  
Max  
1000  
500  
Unit  
MHz  
MHz  
MHz  
Core Clock (CCLK) Frequency  
SYSCLK Frequency1  
fCCLK = 2 × fSYSCLK  
fSYSCLK  
fSCLK0  
SCLK0 Frequency  
fSYSCLK = N × fSCLK0  
125  
where N = 2 or 4 or 6  
fSCLK1  
fDCLK  
SCLK1 Frequency  
DDR3 Clock (DCLK) Frequency2  
fSYSCLK ≥ fSCLK1  
250  
667  
MHz  
MHz  
All combinations are supported 300  
except for:  
[fCCLK > 800 MHz and Tj < 0°C and  
fCCLK:fDCLK = 2:1]  
fOCLK  
Output Clock (OCLK) Frequency3  
125  
MHz  
%
fSYS_CLKOUTJ SYS_CLKOUT Period Jitter4, 5  
fLCLKTPROG Programmed Link Port Transmit Clock  
fLCLKREXT  
External Link Port Receive Clock6, 7  
1
125  
125  
62.5  
MHz  
MHz  
MHz  
fLCLKREXT ≤ fOCLK_0  
fSPTCLKPROG Programmed SPT Clock When Transmitting Data  
and Frame Sync  
fSPTCLKPROG Programmed SPT Clock When Receiving Data or  
Frame Sync  
31.25  
62.5  
MHz  
MHz  
MHz  
fSPTCLKEXT  
External SPT Clock When Receiving Data and  
Frame Sync6, 7  
fSPTCLKEXT ≤ fSCLK0  
fSPTCLKEXT ≤ fSCLK0  
fSPTCLKEXT  
External SPT Clock Transmitting Data or  
Frame Sync6, 7  
31.25  
fSPICLKPROG Programmed SPI Clock When Transmitting Data  
fSPICLKPROG Programmed SPI Clock When Receiving Data  
fSPICLKPROG Programmed SPI Clock When Transmitting Data  
fSPICLKPROG Programmed SPI Clock When Receiving Data  
fSPICLK:fSCLK0 ratio = 1:1  
fSPICLK:fSCLK0 ratio = 1:1  
fSPICLK:fSCLK0 ratio = 1:2  
fSPICLK:fSCLK0 ratio = 1:2  
fSPICLKEXT ≤ fCDU_CLKO0  
fSPICLKEXT ≤ fCDU_CLKO0  
fTMRCLKEXT ≤ fSCLK0 / 4  
75  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
75  
62.5  
62.5  
62.5  
45  
fSPICLKEXT  
fSPICLKEXT  
fTMRCLKEXT  
External SPI Clock When Receiving Data6, 7  
External SPI Clock When Transmitting Data6, 7  
External Timer Clock (TMx_CLK)  
31.25  
1 When using MLB, there is a requirement that the fSYSCLK value must be a minimum of 100 MHz for 3-pin mode and for all supported speeds.  
2 To ensure proper operation of the DDR3/3L, all the DDR3/3L guidelines must be strictly followed. See ADSP-2156x Board Design Guidelines for Dynamic Memory Controller  
(EE-418).  
3 fOCLK must not exceed fSCLK0 when selected as SYS_CLKOUT.  
4 SYS_CLKOUT jitter is dependent on the application system design including pin switching activity, board layout, and the jitter characteristics of the SYS_CLKIN source. Due  
to the dependency on these factors, the measured jitter may be higher or lower than this typical specification for each end application.  
5 The value in the Typ field is the percentage of the SYS_CLKOUT period.  
6 The maximum achievable frequency for any peripheral in external clock mode is dependent on being able to meet the setup and hold times in the ac timing specifications  
section for that peripheral.  
7 The peripheral external clock frequency must also be less than or equal to the frequency that clocks the peripheral.  
Rev. B  
|
Page 46 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 20. Phase-Locked Loop (PLL) Operating Conditions  
Parameter  
Min  
Max  
Unit  
fPLLCLK  
PLL Clock Frequency  
1.20  
2.00  
GHz  
CCLK  
CSEL  
SYSCLK  
SCLK0  
SYSSEL  
S0SEL  
PLLCLK  
PLL  
SYS_CLKIN  
S1SEL  
DCLK  
DSEL  
OSEL  
SCLK1  
S1SELEX  
OUTCLK  
S1SELEXEN  
REFER TO THE ADSP-2156x SHARC+ PROCESSOR HARDWARE REFERENCE  
FOR INFORMATION ABOUT ALLOWED DIVIDER VALUES AND PROGRAMMING MODELS.  
Figure 9. Clock Relationships and Divider Values  
Rev. B  
|
Page 47 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
ELECTRICAL CHARACTERISTICS  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
High Level Output Voltage  
Low Level Output Voltage  
VDD_EXT = minimum,  
2.4  
V
(IOH = –2.0 mA, DS1)1, (IOH = –4.0 mA, DS2)2  
VOL  
VDD_EXT = minimum,  
0.4  
V
(IOL = 2.0 mA, DS1)1, (IOL = 4.0 mA, DS2)2  
3
VOH_XTAL  
High Level Output Voltage  
Low Level Output Voltage  
VDD_REF = minimum, IOH = –1.0 mA  
VDD_REF = minimum, IOL = 1.0 mA  
1.26  
V
V
V
3
VOL_XTAL  
0.45  
0.32  
4
VOH_DDR3L High Level Output Voltage for VDD_DDR = minimum, IOH = –1.0 mA  
0.963  
DDR3L Drive Strength =100 Ω  
4
VOL_DDR3L  
Low Level Output Voltage for VDD_DDR = minimum, IOL = 1.0 mA  
DDR3L Drive Strength =100 Ω  
V
V
V
5
VOH_DDR3  
High Level Output Voltage for VDD_DDR = minimum, IOH = –1.0 mA  
DDR3 Drive Strength = 100 Ω  
1.105  
5
VOL_DDR3  
Low Level Output Voltage for VDD_DDR = minimum, IOL = 1.0 mA  
DDR3 Drive Strength = 100 Ω  
0.32  
6
IIH  
High Level Input Current  
Low Level Input Current  
VDD_EXT = maximum, VIN = VDD_EXT maximum  
VDD_EXT = maximum, VIN = 0 V  
10  
μA  
μA  
μA  
6
IIL  
10  
7
IIL_PU  
Low Level Input Current  
Pull-Up  
VDD_EXT = maximum, VIN = 0 V  
200  
8
IIH_PD  
High Level Input Current  
Pull-Down  
VDD_EXT = maximum, VIN = VDD_EXT maximum  
200  
10  
μA  
μA  
9
IOZH  
Three-State Leakage Current VDD_EXT/VDD_DDR = maximum,  
VIN = VDD_EXT/VDD_DDR maximum  
9
IOZL  
Three-State Leakage Current VDD_EXT/VDD_DDR = maximum, VIN = 0 V  
10  
5
μA  
pF  
10  
CIN  
Input Capacitance  
TJ = 25°C  
IDD_IDLE  
VDD_INT Current in Idle  
fCCLK = 1000 MHz  
ASFSHARC = 0.35  
654  
mA  
f
SYSCLK = 500 MHz  
fSCLK0 = 125 MHz  
SCLK1 = 250 MHz  
f
(Other clocks are disabled)  
No peripheral or DMA activity  
TJ = 25°C  
VDD_INT = 1.0 V  
IDD_TYP  
VDD_INT Current  
fCCLK = 1000 MHz  
ASFSHARC = 1.0  
1157  
mA  
fSYSCLK = 500 MHz  
fSCLK0 = 125 MHz  
fSCLK1 = 250 MHz  
(Other clocks are disabled)  
DMA data rate = 456 MB/s  
TJ = 25°C  
VDD_INT = 1.0 V  
Rev. B  
|
Page 48 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IDD_IDLE  
VDD_INT Current in Idle  
fCCLK = 800 MHz  
ASFSHARC = 0.35  
535  
mA  
f
SYSCLK = 400 MHz  
fSCLK0 = 100 MHz  
SCLK1 = 228.6 MHz  
f
(Other clocks are disabled)  
No peripheral or DMA activity  
TJ = 25°C  
VDD_INT = 1.0 V  
IDD_TYP  
IDD_IDLE  
IDD_TYP  
VDD_INT Current  
fCCLK = 800 MHz  
ASFSHARC = 1.0  
946  
417  
735  
mA  
mA  
mA  
f
SYSCLK = 400 MHz  
fSCLK0 = 100 MHz  
SCLK1 = 228.6 MHz  
f
(Other clocks are disabled)  
DMA data rate = 456 MB/s  
TJ = 25°C  
VDD_INT = 1.0 V  
VDD_INT Current in Idle  
fCCLK = 600 MHz  
ASFSHARC = 0.35  
f
SYSCLK = 300 MHz  
fSCLK0 = 75 MHz  
SCLK1 = 240 MHz  
f
(Other clocks are disabled)  
No peripheral or DMA activity  
TJ = 25°C  
VDD_INT = 1.0 V  
VDD_INT Current  
fCCLK = 600 MHz  
ASFSHARC = 1.0  
f
SYSCLK = 300 MHz  
fSCLK0 = 75 MHz  
SCLK1 = 240 MHz  
f
(Other clocks are disabled)  
DMA data rate = 456 MB/s  
TJ = 25°C  
VDD_INT = 1.0 V  
Rev. B  
|
Page 49 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IDD_IDLE  
VDD_INT Current in Idle  
fCCLK = 400 MHz  
ASFSHARC = 0.35  
311  
mA  
f
SYSCLK = 200 MHz  
fSCLK0 = 100 MHz  
SCLK1 = 250 MHz  
f
(Other clocks are disabled)  
No peripheral or DMA activity  
TJ = 25°C  
VDD_INT = 1.0 V  
IDD_TYP  
VDD_INT Current  
fCCLK = 400 MHz  
ASFSHARC = 1.0  
536  
mA  
f
SYSCLK = 200 MHz  
fSCLK0 = 100 MHz  
SCLK1 = 250 MHz  
f
(Other clocks are disabled)  
DMA data rate = 456 MB/s  
TJ = 25°C  
VDD_INT = 1.0 V  
11  
IDD_INT  
VDD_INT Current  
fCCLK 0 MHz  
IDD_INT_TOT  
mA  
fSCLK0/1 0 MHz  
See equation in  
the Total  
Internal Power  
Dissipation  
section.  
1 Applies to all output and bidirectional pins operating at less than or equal to 62.5 MHz, except DMC and SYS_XTAL0.  
2 Applies to all output and bidirectional pins operating above 62.5 MHz and less than or equal to 125 MHz, except DMC.  
3 Applies to SYS_XTAL0 pin.  
4 Applies to all DMC output and bidirectional signals in DDR3L mode.  
5 Applies to all DMC output and bidirectional signals in DDR3 mode.  
6 Applies to input pins: SYS_BMODE2-0, SYS_CLKIN, and SYS_HWRST.  
7 Applies to input pins with internal pull-ups: JTG_TDI, JTG_TMS, and JTG_TCK.  
8 Applies to JTAG_TRST signal.  
9 Applies to signals: PA15 to PA0, PB15 to PB0, PC7 to PC0, DAI0_PINx, DAI1_PINx, DMC0_DQx, DMC0_LDQS, DMC0_UDQS, DMC0_LDQS, DMC0_UDQS,  
SYS_FAULT, and JTG_TDO.  
10Applies to all signal pins.  
11See “Estimating Power for ADSP-2156x SHARC+ Processors” (EE-414) for further information.  
Rev. B  
|
Page 50 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Application Dependent Current  
Total Internal Power Dissipation  
Total power dissipation has two components:  
• Static, including leakage current  
The application dependent currents include the dynamic cur-  
rent in the core clock domain of the SHARC+ core, as well as  
the dynamic current in the accelerator block.  
• Dynamic, due to transistor switching characteristics for  
each clock domain  
Dynamic current consumed by the core is subject to an activity  
scaling factor (ASF) that represents application code running on  
the processor core (see Table 22). The ASF is combined with the  
CCLK frequency and VDD_INT dependent dynamic current data  
in Table 23 to calculate this portion of the total dynamic power  
dissipation component.  
Many operating conditions can also affect power dissipation,  
including temperature, voltage, operating frequency, and pro-  
cessor activity. The following equation describes the internal  
current consumption.  
I
DD_INT_TOT = IDD_INT_STATIC + IDD_INT_CCLK_SHARC_DYN  
DD_INT_DCLK_DYN + IDD_INT_SYSCLK_DYN  
+
I
DD_INT_CCLK_SHARC_DYN = Table 23 × ASFSHARC  
I
+
+
Table 22. Activity Scaling Factors for the SHARC+® Core  
(ASFSHARC  
I
I
DD_INT_SCLK0_DYN + IDD_INT_SCLK1_DYN  
DD_INT_OCLK_DYN + IDD_INT_ACCL_DYN  
+
)
IDD_INT_DMA_DR_DYN  
IDD_INT Power Vector  
IDD-LS  
ASF  
0.21  
0.35  
0.68  
0.81  
0.92  
1.00  
1.09  
where IDD_INT_STATIC is the sole contributor to the static power  
dissipation component and is specified as a function of voltage  
(VDD_INT) and junction temperature (TJ) in Table 21.  
IDD-IDLE  
IDD-NOP  
Table 21. Static Current—IDD_INT_STATIC (mA)  
IDD-TYP_3070  
IDD-TYP_5050  
IDD-TYP_7030  
IDD-PEAK_100  
Voltage (VDD_INT  
)
TJ (°C)  
–45  
0.95 V  
12  
1.00 V  
15  
1.05 V  
18  
–40  
13  
15  
19  
–20  
17  
21  
27  
Table 23. Dynamic Current for SHARC+®Core  
(mA, with ASF = 1.00)  
–10  
21  
26  
32  
0
26  
32  
39  
Voltage (VDD_INT  
)
+10  
+25  
+40  
+55  
+70  
+85  
+100  
+105  
+115  
+125  
33  
40  
49  
fCCLK (MHz)  
0.95 V  
1.00 V 1.05 V  
48  
58  
70  
400  
271  
285  
299  
337  
374  
412  
449  
487  
524  
561  
599  
636  
674  
711  
749  
71  
84  
102  
148  
217  
318  
465  
530  
683  
880  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000  
305  
339  
373  
406  
440  
474  
508  
542  
576  
610  
643  
677  
321  
357  
392  
428  
463  
499  
535  
570  
606  
642  
677  
713  
105  
157  
235  
347  
397  
515  
665  
124  
184  
272  
401  
457  
591  
762  
The other eight addends in the IDD_INT_TOT equation comprise  
the dynamic power dissipation component and fall into four  
broad categories: application dependent currents, clock cur-  
rents, currents from high speed peripheral operation, and data  
transmission currents.  
Rev. B  
|
Page 51 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Clock Current  
HADC DC Accuracy  
The dynamic clock currents provide the total power dissipated  
by all transistors switching in the clock paths. The power dissi-  
pated by each clock domain is dependent on voltage (VDD_INT),  
operating frequency, and a unique scaling factor.  
Table 25. HADC DC Accuracy1  
Parameter  
Typ  
10  
10  
2
Unit2  
Bits  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Resolution  
IDD_INT_SYSCLK_DYN (mA) = 0.626 × fSYSCLK (MHz) ×  
VDD_INT (V)  
No Missing Codes (NMC)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Offset Error  
I
DD_INT_SCLK0_DYN (mA) = 0.23 × fSCLK0 (MHz) × VDD_INT (V)  
1
I
V
DD_INT_SCLK1_DYN (mA) = 0.018 × fSCLK1 (MHz) ×  
5
DD_INT (V)  
Offset Error Matching  
Gain Error  
5
I
I
DD_INT_DCLK_DYN (mA) = 0.125 × fDCLK (MHz) × VDD_INT (V)  
DD_INT_OCLK_DYN (mA) = 0.048 × fOCLK (MHz) × VDD_INT (V)  
3
Gain Error Matching  
3
1 See the Operating Conditions section for the HADC0_VINx specification.  
Data Transmission Current  
2 LSB = HADC0_VREFP ÷ 1024.  
The data transmission current represents the power dissipated  
when moving data throughout the system via DMA. This cur-  
rent is proportional to the data rate. Refer to the power  
calculator available with Estimating Power for ADSP-2156x  
SHARC+ Processors (EE-414) to estimate IDD_INT_DMA_DR_DYN  
based on the bandwidth of the data transfer.  
HADC Timing Specifications  
Table 26. HADC Timing Specifications  
Parameter  
Typ  
Max  
Unit  
μs  
Conversion Time1  
Throughput Range  
TWAKEUP  
20 × TSAMPLE  
HADC  
1
MSPS  
HADC Electrical Characteristics  
100  
μs  
1 Refer to the ADSP-2156x SHARC+ Processor Hardware Reference for additional  
information about TSAMPLE  
Table 24. HADC Electrical Characteristics  
.
Parameter  
Conditions  
Typ Unit  
IDD_HADC_IDLE  
Current consumption on  
VDD_HADC  
2.0 mA  
TMU  
TMU Characteristics  
HADC is powered on, but not  
converting  
Table 27. TMU Characteristics  
IDD_HADC_ACTIVE  
Current consumption on  
VDD_HADC during a conversion  
2.5 mA  
40 μA  
Parameter  
Resolution  
Accuracy  
Typ  
1
Unit  
°C  
IDD_HADC_POWERDOWN Current consumption on  
VDD_HADC  
6
°C  
Analog circuitry of the HADC is  
powered down  
Table 28. TMU Gain and Offset  
Junction Temperature Range TMU_GAIN  
TMU_OFFSET  
–40°C to +40°C  
40°C to 85°C  
Contact Analog Devices, Inc.  
Contact Analog Devices, Inc.  
Contact Analog Devices, Inc.  
85°C to 125°C  
Rev. B  
|
Page 52 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 30. Maximum Duty Cycle for Input Transient Voltage  
for VDD_INT and VDD_EXT  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed in Table 29 may cause perma-  
nent damage to the product. This is a stress rating only;  
functional operation of the product at these or any other condi-  
tions above those indicated in the operational section of this  
specification is not implied. Operation beyond the maximum  
operating conditions for extended periods may affect product  
reliability.  
VDD_INT (V)1  
1.120  
VDD_EXT (V)1  
Maximum Duty Cycle2  
5%  
1.103  
10%  
20%  
30%  
50%  
75%  
100%  
1.086  
1.077  
1.065  
Table 29. Absolute Maximum Ratings  
1.056  
Parameter  
Rating  
1.050  
3.470  
Internal (Core) Supply Voltage  
–0.3 V to +1.05 V  
1 The individual values cannot be combined for analysis of a single instance of  
overshoot or undershoot. The worst case observed value must fall within one of  
the voltages specified and the total duration of the overshoot or undershoot  
(exceeding the 100% case) must be less than or equal to the corresponding duty  
cycle.  
(VDD_INT  
External (I/O) Supply Voltage  
(VDD_EXT  
External (I/O) Reference Supply  
Voltage (VDD_REF  
)
–0.3 V to +3.47 V  
–0.3 V to +1.89 V  
–1.89 V to +1.89 V  
–0.3 V to +1.60 V  
–0.3 V to +1.89 V  
)
2 Duty cycle refers to the percentage of time the signal exceeds the value for the  
100% case. This is equivalent to the measured duration of a single instance of  
overshoot or undershoot as a percentage of the period of occurrence.  
)
(VDD_EXT – VDD_REF) and  
(VDD_EXT – VDD_ANA) (VDELTA_EXT_REF  
)
Table 31. Maximum Duty Cycle for Input Transient Voltage  
DDR3 Controller Supply Voltage  
3.3 V VIN Max (V)1 1.8 V VIN Max (V)1 Maximum Duty Cycle2  
(VDD_DMC  
)
3.47  
1.89  
100%  
Analog Supply Voltage (VDD_ANA  
)
1 The individual values cannot be combined for analysis of a single instance of  
overshoot or undershoot. The worst case observed value must fall within one of  
the voltages specified and the total duration of the overshoot or undershoot  
(exceeding the 100% case) must be less than or equal to the corresponding duty  
cycle.  
HADC Reference Voltage (VHADC_REF) –0.3 V to +1.89 V  
DDR3 Input Voltage1  
Digital Input Voltage1, 2  
TWI Input Voltage1, 3  
Output Voltage Swing  
Analog Input Voltage4  
–0.3 V to +1.60 V  
–0.3 V to +3.47 V  
2 Duty cycle refers to the percentage of time the signal exceeds the value for the  
100% case. This is equivalent to the measured duration of a single instance of  
overshoot or undershoot as a percentage of the period of occurrence.  
–0.3 V to +3.47 V  
–0.3 V to VDD_EXT +0.5 V  
–0.2 V to VDD_ANA +0.09 V  
6 mA (maximum)  
–65C to +150C  
I
OH/IOL Current per Signal2  
ESD CAUTION  
Storage Temperature Range  
Junction Temperature While Biased 125C  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
1 Applies only when the related power supply (VDD_DMC or VDD_EXT) is within  
specification. When the power supply is below specification, the range is the  
voltage being applied to that power domain 0.2 V.  
2 Applies to 100% transient duty cycle.  
3 Applies to TWI_SCL and TWI_SDA.  
4 Applies only when VDD_ANA is within specifications and ≤ 1.8 V. When VDD_ANA  
is within specifications and > 1.8 V, the maximum rating is 1.89 V. When  
VDD_ANA is below specifications, the range is VDD_ANA 0.09 V.  
Rev. B  
|
Page 53 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
TIMING SPECIFICATIONS  
Power-Up Reset Timing  
Table 32 and Figure 10 show the relationship between power supply startup and processor reset timing, as relating to the clock generation  
unit (CGU) and the reset control unit (RCU).  
In Figure 10, the VDD_SUPPLIES are VDD_INT, VDD_EXT, VDD_DMC, VDD_REF, and VDD_ANA. The VDELTA_EXT_REF specification must be met  
at all times, including during power-up reset and when powering down the device (Figure 11).  
Table 32. Power-Up Reset Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tRST_IN_PWR  
SYS_HWRST Deasserted after VDD_SUPPLIES (VDD_INT, VDD_EXT, VDD_DMC, VDD_REF  
,
11 × tCKIN  
ns  
VDD_ANA) and SYS_CLKIN0 are Stable and Within Specification  
SYS_HWRST  
tRST_IN_PWR  
SYS_CLKIN0  
V
DD_SUPPLIES  
Figure 10. Power-Up Reset Timing  
V
DD_EXT  
V
DD_EXT 
ޤ
 V  
AND VDD_EXT 
ޤ
 V  
DD_REF  
MUST NOT EXCEED V  
DD_ANA  
AT ANY TIME.  
DELTA_EXT_REF  
V
DD_REF,  
V
DD_ANA  
0V  
POWER-UP  
OPERATIONAL  
POWER-DOWN  
Figure 11. Power-Up and Power-Down Voltage Delta Requirement  
Rev. B  
|
Page 54 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Clock and Reset Timing  
Table 33 and Figure 12 describe clock and reset operations related to the CGU and RCU. Per the CCLK, SYSCLK, SCLKx, DCLK, and  
OCLK timing specifications in Table 19 (Clock Operating Conditions), combinations of SYS_CLKIN0 and clock multipliers must not  
select clock rates in excess of the maximum instruction rate of the processor.  
Table 33. Clock and Reset Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
fCKIN  
SYS_CLKIN0 Frequency (Crystal)1, 2  
SYS_CLKIN0 Frequency (External SYS_CLKIN0)1, 2  
SYS_CLKIN0 Low Pulse1  
SYS_CLKIN0 High Pulse1  
RESET Asserted Pulse Width Low3  
20  
30  
30  
MHz  
MHz  
ns  
20  
tCKINL  
tCKINH  
tWRST  
16.67  
16.67  
11 × tCKIN  
ns  
ns  
1 Applies to PLL bypass mode and PLL nonbypass mode.  
2 The tCKIN period (see Figure 12) equals 1/fCKIN  
.
3 Applies after power-up sequence is complete. See Table 32 and Figure 10 for power-up reset timing.  
fCKIN  
SYS_CLKIN0  
tCKINL  
tCKINH  
tWRST  
SYS_HWRST  
Figure 12. Clock and Reset Timing  
Dynamic Memory Controller (DMC)—Clock, Control, Write and Read Cycle Timing  
The DMC clock, control, write and read timings comply with the JEDEC standards. To ensure proper operation of the DDR3/3L, all  
DDR3/3L guidelines must be strictly followed. See ADSP-2156x Board Design Guidelines for Dynamic Memory Controller (EE-418).  
Rev. B  
|
Page 55 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Link Ports (LPs)  
In LP receive mode, the LP clock is supplied externally and is called fLCLKREXT, therefore the period can be represented by  
1
tLCLKREXT  
=
---------------  
fLCLKREXT  
In LP transmit mode, the programmed LP clock (fLCLKTPROG) frequency in megahertz is set by the following equation where VALUE is a  
field in the LP_DIV register that can be set from 1 to 255:  
fOCLK_0  
VALUE 2  
fLCLKTPROG  
=
---------------------  
In the case where VALUE = 0, fLCLKTPROG = fOCLK_0. For all settings of VALUE, the following equation is true:  
1
tLCLKTPROG  
=
------------------  
fLCLKTPROG  
Calculation of the link receiver data setup and hold relative to the link clock is required to determine the maximum allowable skew that  
can be introduced in the transmission path length difference between LPx_Dx and LPx_CLK. Setup skew is the maximum delay that can  
be introduced in LPx_Dx relative to LPx_CLK (setup skew = tLCLKTWH minimum – tDLDCH – tSLDCL). Hold skew is the maximum delay  
that can be introduced in LPx_CLK relative to LPx_Dx (hold skew = tLCLKTWL minimum – tHLDCH – tHLDCL). See Table 35 for LP transmit  
timing.  
Table 34. LPs—Receive1  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
fLCLKREXT  
tSLDCL  
LPx_CLK Frequency  
125  
MHz  
ns  
Data Setup Before LPx_CLK Low  
Data Hold After LPx_CLK Low  
LPx_CLK Period2  
LPx_CLK Width Low2  
LPx_CLK Width High2  
1.5  
tHLDCL  
1.4  
ns  
tLCLKEW  
tLCLKRWL  
tLCLKRWH  
tLCLKREXT – 1  
0.5 × tLCLKREXT  
0.5 × tLCLKREXT  
ns  
ns  
ns  
Switching Characteristic  
tDLALC  
LPx_ACK Low Delay After LPx_CLK Low3  
1.5 × tOCLK_0 + 4  
2.5 × tOCLK_0 + 12  
ns  
1 Specifications apply to LP0 and LP1.  
2 This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external LPx_CLK. For the external  
LPx_CLK ideal maximum frequency, see the fLCLKRTEXT specification in Table 19.  
3 LPx_ACK goes low with tDLALC relative to rise of LPx_CLK after first byte, but does not go low if the link buffer of the receiver is not about to fill.  
Rev. B  
|
Page 56 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
tLCLKEW  
tLCLKRWH  
tLCLKRWL  
LPx_CLK  
tHLDCL  
tSLDCL  
LPx_D7–0  
IN  
tDLALC  
LPx_ACK (OUT)  
Figure 13. LPs—Receive  
Table 35. LPs—Transmit1  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSLACH  
tHLACH  
Switching Characteristics  
LPx_ACK Setup Before LPx_CLK Low  
2 × tOCLK_0 + 13.5  
–2.5  
ns  
ns  
LPx_ACK Hold After LPx_CLK Low  
tDLDCH  
tHLDCH  
tLCLKTWL  
Data Delay After LPx_CLK High  
2.23  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold After LPx_CLK High  
LPx_CLK Width Low  
–1.04  
2
0.4 × tLCLKTPROG  
0.4 × tLCLKTPROG  
0.6 × tLCLKTPROG  
0.6 × tLCLKTPROG  
2
tLCLKTWH  
LPx_CLK Width High  
2
tLCLKTW  
LPx_CLK Period  
N × tLCLKTPROG – 0.7  
tOCLK_0 + 4  
tDLACLK  
LPx_CLK Low Delay After LPx_ACK High  
2 × tOCLK_0 + 1 × tLPCLK + 10  
1 Specifications apply to LP0 and LP1.  
2 See Table 19 for details on the minimum period that can be programmed for fLCLKTPROG  
.
LAST BYTE  
FIRST BYTE  
1
tLCLKTWH tLCLKTWL  
TRANSMITTED  
TRANSMITTED  
LPx_CLK  
tDLDCH  
tHLDCH  
LPx_Dx  
(DATA)  
OUT  
tSLACH  
tHLACH  
tDLACLK  
LPx_ACK (IN)  
NOTES  
The t  
and tHLACH specifications apply only to the LPx_CLK falling edge. If these specifications are met,  
LPx_CSLLACKH extends and the dotted LPx_CLK falling edge does not occur as shown. The position of the  
dotted falling edge can be calculated using the tLCLKTWH specification. tLCLKTWH Min must be used for tSLACH  
and tLCLKTWH Max for tHLACH  
.
Figure 14. LPs—Transmit  
Rev. B  
|
Page 57 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Serial Ports (SPORTs)  
To determine whether a device is compatible with the SPORT at clock speed n, the following specifications must be confirmed: frame sync  
delay and frame sync setup and hold; data delay and data setup and hold; and serial clock (SPTx_CLK) width. In Figure 15, either the ris-  
ing edge or the falling edge of SPTx_A/BCLK (external or internal) can be used as the active sampling edge.  
When externally generated, the SPORT clock is called fSPTCLKEXT  
:
1
tSPTCLKEXT  
=
-----------------------  
fSPTCLKEXT  
When internally generated, the programmed SPORT clock (fSPTCLKPROG) frequency in megahertz is set by the following equation:  
fSCLK0  
CLKDIV + 1  
fSPTCLKPROG  
=
------------------------  
1
tSPTCLKPROG  
=
---------------------------  
fSPTCLKPROG  
where CLKDIV is a field in the SPORT_DIV register that can be set from 0 to 65,535.  
Table 36. SPORTs—External Clock1  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSFSE  
Frame Sync Setup Before SPTx_CLK  
2
ns  
(Externally Generated Frame Sync in Either Transmit or Receive  
Mode)2  
tHFSE  
Frame Sync Hold After SPTx_CLK  
3
ns  
(Externally Generated Frame Sync in Either Transmit or Receive  
Mode)2  
tSDRE  
Receive Data Setup Before Receive SPTx_CLK2  
Receive Data Hold After SPTx_CLK2  
SPTx_CLK Width3  
2
ns  
ns  
ns  
ns  
tHDRE  
3
tSPTCLKW  
tSPTCLK  
0.5 × tSPTCLKEXT – 1.5  
tSPTCLKEXT – 1.5  
SPTx_CLK Period3  
Switching Characteristics  
tDFSE  
Frame Sync Delay After SPTx_CLK  
11  
11  
ns  
ns  
(Internally Generated Frame Sync in Either Transmit or Receive  
Mode)4  
tHOFSE  
Frame Sync Hold After SPTx_CLK  
2
2
(Internally Generated Frame Sync in Either Transmit or Receive  
Mode)4  
tDDTE  
tHDTE  
Transmit Data Delay After Transmit SPTx_CLK4  
Transmit Data Hold After Transmit SPTx_CLK4  
ns  
ns  
1 Specifications apply to all four SPORTs.  
2 Referenced to sample edge.  
3 This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the ideal maximum external SPTx_CLK.  
For the external SPTx_CLK ideal maximum frequency, see the fSPTCLKEXT specification in Table 19.  
4 Referenced to drive edge.  
Rev. B  
|
Page 58 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 37. SPORTs—Internal Clock1  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSFSI  
Frame Sync Setup Before SPTx_CLK  
12  
(Externally Generated Frame Sync in Either Transmit or  
ns  
ns  
Receive Mode)2  
tHFSI  
Frame Sync Hold After SPTx_CLK  
(Externally Generated Frame Sync in Either Transmit or  
Receive Mode)2  
–0.5  
tSDRI  
tHDRI  
Switching Characteristics  
Receive Data Setup Before SPTx_CLK2  
Receive Data Hold After SPTx_CLK2  
3.4  
2
ns  
ns  
tDFSI  
Frame Sync Delay After SPTx_CLK (Internally Generated  
3.5  
3.5  
ns  
ns  
Frame Sync in Transmit or Receive Mode)3  
tHOFSI  
Frame Sync Hold After SPTx_CLK (Internally Generated  
Frame Sync in Transmit or Receive Mode)3  
Transmit Data Delay After SPTx_CLK3  
Transmit Data Hold After SPTx_CLK3  
SPTx_CLK Width4  
–3  
tDDTI  
ns  
ns  
ns  
ns  
tHDTI  
–3  
tSPTCLKIW  
tSPTCLKWI  
0.5 × tSPTCLKPROG – 2  
tSPTCLKPROG – 1.5  
SPTx_CLK Period4  
1 Specifications apply to all four SPORTs.  
2 Referenced to the sample edge.  
3 Referenced to drive edge.  
4 See Table 19 for details on the minimum period that can be programmed for fSPTCLKPROG  
.
Rev. B  
|
Page 59 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
DATA RECEIVE—INTERNAL CLOCK  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE  
SAMPLE EDGE  
DRIVE EDGE SAMPLE EDGE  
tSPTCLKIW  
tSPTCLKW  
SPTx_A/BCLK  
(SPORT CLOCK)  
SPTx_A/BCLK  
(SPORT CLOCK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
SPTx_A/BFS  
(FRAME SYNC)  
SPTx_A/BFS  
(FRAME SYNC)  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
SPTx_A/BDx  
(DATA CHANNEL A/B)  
SPTx_A/BDx  
(DATA CHANNEL A/B)  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSPTCLKIW  
tSPTCLKW  
SPTx_A/BCLK  
(SPORT CLOCK)  
SPTx_A/BCLK  
(SPORT CLOCK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
SPTx_A/BFS  
(FRAME SYNC)  
SPTx_A/BFS  
(FRAME SYNC)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
SPTx_A/BDx  
(DATA CHANNEL A/B)  
SPTx_A/BDx  
(DATA CHANNEL A/B)  
Figure 15. SPORTs  
Rev. B  
|
Page 60 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 38. SPORTs—Enable and Three-State1  
Parameter  
Min  
1
Max  
Unit  
Switching Characteristics  
tDDTEN  
tDDTTE  
tDDTIN  
tDDTTI  
Data Enable From External Transmit SPTx_CLK2  
ns  
ns  
ns  
ns  
Data Disable From External Transmit SPTx_CLK2  
Data Enable From Internal Transmit SPTx_CLK2  
Data Disable From Internal Transmit SPTx_CLK2  
14  
–2.5  
2.8  
1 Specifications apply to all four SPORTs.  
2 Referenced to drive edge.  
DRIVE EDGE  
DRIVE EDGE  
SPTx_CLK  
(SPORT CLOCK EXTERNAL)  
tDDTEN  
tDDTTE  
SPTx_A/BDx  
(DATA CHANNEL A/B)  
DRIVE EDGE  
DRIVE EDGE  
SPTx_CLK  
(SPORT CLOCK INTERNAL)  
tDDTIN  
tDDTTI  
SPTx_A/BDx  
(DATA CHANNEL A/B)  
Figure 16. SPORTs—Enable and Three-State  
Rev. B  
|
Page 61 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
The SPTx_TDV output signal becomes active in SPORT multichannel mode. During transmit slots (enabled with active channel selection  
registers) the SPTx_TDV is asserted for communication with external devices.  
Table 39. SPORTs—Transmit Data Valid (TDV)1  
Parameter  
Min  
2
Max  
Unit  
Switching Characteristics  
tDRDVEN  
tDFDVEN  
tDRDVIN  
tDFDVIN  
Data Valid Enable Delay From Drive Edge of External Clock2  
ns  
ns  
ns  
ns  
Data Valid Disable Delay From Drive Edge of External Clock2  
Data Valid Enable Delay From Drive Edge of Internal Clock2  
Data Valid Disable Delay From Drive Edge of Internal Clock2  
14  
–2.5  
3.5  
1 Specifications apply to all four SPORTs.  
2 Referenced to drive edge.  
DRIVE EDGE  
DRIVE EDGE  
SPTx_CLK  
(SPORT EXTERNAL CLOCK)  
tDRDVEN  
tDFDVEN  
SPTx_A/BTDV  
DRIVE EDGE  
DRIVE EDGE  
SPTx_CLK  
(SPORT INTERNAL CLOCK)  
tDRDVIN  
tDFDVIN  
SPTx_A/BTDV  
Figure 17. SPORTs—Transmit Data Valid Internal and External Clock  
Rev. B  
|
Page 62 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 40. SPORTs—External Late Frame Sync1  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDDTLFSE  
DataDelayFromLateExternalTransmitFrameSyncorExternalReceiveFrame  
14  
ns  
ns  
Sync with SPORT_MCTL_A/B bits MCE = 1, MFD = 02  
tDDTENFS  
Data Enable for SPORT_MCTL_A/B bits MCE = 1, MFD = 02  
0.5  
1 Specifications apply to all four SPORTs.  
2 The tDDTLFSE and tDDTENFS parameters apply to left justified as well as standard serial mode and MCE = 1, MFD = 0.  
DRIVE  
SAMPLE  
DRIVE  
SPTx_A/BCLK  
(SPORT CLOCK)  
tHFSE/I  
tSFSE/I  
SPTx_A/BFS  
(FRAME SYNC)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
SPTx_A/BDx  
(DATA CHANNEL A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 18. External Late Frame Sync  
Rev. B  
|
Page 63 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Asynchronous Sample Rate Converter (ASRC)—Serial Input Port  
The ASRC input signals are routed from the DAI0_PINx pins using the SRU. Therefore, the timing specifications provided in Table 41 are  
valid at the DAI0_PINx pins.  
Table 41. ASRC, Serial Input Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
Frame Sync Setup Before Serial Clock Rising Edge  
4
ns  
ns  
ns  
ns  
ns  
ns  
1
tSRCHFS  
Frame Sync Hold After Serial Clock Rising Edge  
Data Setup Before Serial Clock Rising Edge  
Data Hold After Serial Clock Rising Edge  
Clock Width  
5.5  
1
tSRCSD  
4
1
tSRCHD  
tSRCCLKW  
tSRCCLK  
5.5  
tSCLK0 – 1  
2 × tSCLK0  
Clock Period  
1
The serial clock, data, and frame sync signals can originate from any of the DAI pins. The serial clock and frame sync signals can also originate via PCG or SPORTs. The  
input of the PCG can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
DAI0_PIN20–1  
(SCLK0)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI0_PIN20–1  
(FS)  
tSRCSD  
tSRCHD  
DAI0_PIN20–1  
(SDATA)  
Figure 19. ASRC Serial Input Port Timing  
Rev. B  
|
Page 64 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Asynchronous Sample Rate Converter (ASRC)—Serial Output Port  
For the serial output port, the frame sync is an input and it must meet setup and hold times with regard to SCLK0 on the output port. The  
serial data output has a hold time and delay specification with regard to the serial clock. The serial clock rising edge is the sampling edge,  
and the falling edge is the drive edge.  
Table 42. ASRC, Serial Output Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
Frame Sync Setup Before Serial Clock Rising Edge  
4
ns  
ns  
ns  
ns  
1
tSRCHFS  
tSRCCLKW  
tSRCCLK  
Frame Sync Hold After Serial Clock Rising Edge  
5.5  
Clock Width  
Clock Period  
tSCLK0 – 1  
2 × tSCLK0  
Switching Characteristics  
1
tSRCTDD  
Transmit Data Delay After Serial Clock Falling Edge  
Transmit Data Hold After Serial Clock Falling Edge  
13  
ns  
ns  
1
tSRCTDH  
1
1 The serial clock, data, and frame sync signals can originate from any of the DAI pins. The serial clock and frame sync signals can also originate via PCG or SPORTs. The input  
of the PCG can be either CLKIN, SCLK0, or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
DAI0_PIN20–1  
(SCLK0)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI0_PIN20–1  
(FS)  
tSRCTDD  
tSRCTDH  
DAI0_PIN20–1  
(SDATA)  
Figure 20. ASRC Serial Output Port Timing  
Rev. B  
|
Page 65 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SPI Port—Master Timing  
SPI0, SPI1, and SPI2  
Table 43 and Figure 21 describe the SPI port master operations.  
When internally generated, the programmed SPI clock (fSPICLKPROG) frequency in megahertz is set by the following equation:  
fCDU_CLKO0  
BAUD + 1  
fSPICLKPROG  
=
---------------------  
1
tSPICLKPROG  
=
--------------------------  
fSPICLKPROG  
where BAUD is a field in the SPIx_CLK register that can be set from 0 to 65,535.  
Note that  
• In dual-mode data transmit, the SPIx_MISO signal is also an output.  
• In quad-mode data transmit, the SPIx_MISO, SPIx_D2, and SPIx_D3 signals are also outputs.  
• In dual-mode data receive, the SPIx_MOSI signal is also an input.  
• In quad-mode data receive, the SPIx_MOSI, SPIx_D2, and SPIx_D3 signals are also inputs.  
• Quad mode is supported by SPI1 and SPI2.  
• CPHA is a configuration bit in the SPI_CTL register.  
Table 43. SPI Port—Master Timing1  
Parameter  
Timing Requirements  
tSSPIDM  
Min  
Max  
Unit  
Data Input Valid to SPIx_CLK Edge (Data Input Setup)  
SPIx_CLK Sampling Edge to Data Input Invalid  
3.5  
2
ns  
ns  
tHSPIDM  
Switching Characteristics  
tSDSCIM  
SPIx_SEL Low to First SPI_CLK Edge for CPHA = 12  
SPIx_SEL Low to First SPI_CLK Edge for CPHA = 02  
SPIx_CLK High Period3  
SPIx_CLK Low Period3  
SPIx_CLK Period3  
Last SPIx_CLK Edge to SPIx_SEL High for CPHA = 12  
Last SPIx_CLK Edge to SPIx_SEL High for CPHA = 02  
Sequential Transfer Delay2, 4  
tSPICLKPROG – 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.5 × tSPICLKPROG – 5  
0.5 × tSPICLKPROG – 1.5  
0.5 × tSPICLKPROG – 1.5  
tSPICLKPROG – 1.5  
tSPICHM  
tSPICLM  
tSPICLK  
tHDSM  
1.5 × tSPICLKPROG – 5  
tSPICLKPROG – 5  
tSPITDM  
tSPICLKPROG – 1.5  
tDDSPIDM  
tHDSPIDM  
SPIx_CLK Edge to Data Out Valid (Data Out Delay)  
SPIx_CLK Edge to Data Out Invalid (Data Out Hold)  
2.7  
–3.75  
1 All specifications apply to SPI0, SPI1, and SPI2.  
2 Specification assumes the LEADX and LAGX bits in the SPI_DLY register are 1.  
3 See Table 19 for details on the minimum period that can be programmed for tSPICLKPROG  
4 Applies to sequential mode with STOP ≥ 1.  
.
Rev. B  
|
Page 66 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SPIx_SEL  
(OUTPUT)  
tSDSCIM  
tSPICLM  
tSPICHM  
tSPICLK  
tHDSM  
tSPITDM  
SPIx_CLK  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
DATA OUTPUTS  
(SPIx_MOSI)  
tSSPIDM  
CPHA = 1  
tHSPIDM  
DATA INPUTS  
(SPIx_MISO)  
tHDSPIDM  
tDDSPIDM  
DATA OUTPUTS  
(SPIx_MOSI)  
tSSPIDM  
tHSPIDM  
CPHA = 0  
DATA INPUTS  
(SPIx_MISO)  
Figure 21. SPI Port—Master Timing  
Rev. B  
|
Page 67 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SPI Port—Slave Timing  
SPI0, SPI1, and SPI2  
Table 44 and Figure 22 describe SPI port slave operations. Note that  
• In dual-mode data transmit, the SPIx_MOSI signal is also an output.  
• In quad-mode data transmit, the SPIx_MOSI, SPIx_D2, and SPIx_D3 signals are also outputs.  
• In dual-mode data receive, the SPIx_MISO signal is also an input.  
• In quad-mode data receive, the SPIx_MISO, SPIx_D2, and SPIx_D3 signals are also inputs.  
• In SPI slave mode, the SPI clock is supplied externally and is called fSPICLKEXT  
:
1
tSPICLKEXT  
=
----------------------  
fSPICLKEXT  
• Quad mode is supported by SPI1 and SPI2.  
• CPHA is a configuration bit in the SPI_CTL register.  
Table 44. SPI Port—Slave Timing1  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSPICHS  
tSPICLS  
tSPICLK  
tHDS  
SPIx_CLK High Period2  
SPIx_CLK Low Period2  
SPIx_CLK Period2  
0.5 × tSPICLKEXT – 1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 × tSPICLKEXT – 1.5  
tSPICLKEXT – 1.5  
Last SPIx_CLK Edge to SPIx_SS Not Asserted  
Sequential Transfer Delay  
5
tSPITDS  
tSDSCI  
tSSPID  
tHSPID  
tSPICLKEXT – 1.5  
SPIx_SS Assertion to First SPIx_CLK Edge  
Data Input Valid to SPIx_CLK Edge (Data Input Setup)  
SPIx_CLK Sampling Edge to Data Input Invalid  
11.7  
2
1.6  
Switching Characteristics  
tDSOE  
SPIx_SS Assertion to Data Out Active  
0
0
14.12  
12.6  
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPID  
tHDSPID  
SPIx_SS Deassertion to Data High Impedance  
SPIx_CLK Edge to Data Out Valid (Data Out Delay)  
SPIx_CLK Edge to Data Out Invalid (Data Out Hold)  
14.16  
1.5  
1 All specifications apply to SPI0, SPI1, and SPI2.  
2 This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPIx_CLK. For the external  
SPIx_CLK ideal maximum frequency, see the fSPICLKTEXT specification in Table 19.  
Rev. B  
|
Page 68 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SPIx_SS  
(INPUT)  
tSDSCI  
tSPICLS  
tSPICHS  
tSPICLK  
tHDS  
tSPITDS  
SPIx_CLK  
(INPUT)  
tDSOE  
tDDSPID  
tHDSPID  
tDDSPID  
tDSDHI  
DATA OUTPUTS  
(SPIx_MISO)  
CPHA = 1  
tSSPID  
tHSPID  
DATA INPUTS  
(SPIx_MOSI)  
tDSOE  
tHDSPID  
tDDSPID  
tDSDHI  
DATA OUTPUTS  
(SPIx_MISO)  
tHSPID  
CPHA = 0  
tSSPID  
DATA INPUTS  
(SPIx_MOSI)  
Figure 22. SPI Port—Slave Timing  
Rev. B  
|
Page 69 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SPI Port—SPIx_RDY Slave Timing  
SPIx_RDY provides flow control. CPOL, CPHA, and FCCH are configuration bits in the SPIx_CTL register.  
Table 45. SPI Port—SPIx_RDY Slave Timing1  
Parameter  
Conditions  
Min  
Max  
Unit  
Switching Characteristic  
tDSPISCKRDYS SPIx_RDY Deassertion From Last Valid Input SPIx_CLK Edge  
FCCH = 0  
FCCH = 1  
3 × tCDU_CLKO0  
4 × tCDU_CLKO0  
4 × tCDU_CLKO0 + 10 ns  
5 × tCDU_CLKO0 + 10 ns  
1 All specifications apply to all three SPIs.  
tDSPISCKRDYS  
SPIx_CLK  
(CPOL = 0)  
CPHA = 0  
SPIx_CLK  
(CPOL = 1)  
SPIx_CLK  
(CPOL = 0)  
CPHA = 1  
SPIx_CLK  
(CPOL = 1)  
SPIx_RDY (O)  
Figure 23. SPIx_RDY Deassertion from Valid Input SPIx_CLK Edge in Slave Mode  
Rev. B  
|
Page 70 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SPI Port—Open Drain Mode (ODM) Timing  
In Figure 24 and Figure 25, the outputs can be SPIx_MOSI, SPIx_MISO, SPIx_D2, and/or SPIx_D3, depending on the mode of operation.  
CPOL and CPHA are configuration bits in the SPI_CTL register.  
Table 46. SPI Port—ODM Master Mode Timing1  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tHDSPIODMM  
tDDSPIODMM  
SPIx_CLK Edge to High Impedance From Data Out Valid  
SPIx_CLK Edge to Data Out Valid From High Impedance  
–1.5  
ns  
ns  
6
1 All specifications apply to all three SPIs.  
tHDSPIODMM  
tHDSPIODMM  
SPIx_CLK  
(CPOL = 0)  
SPIx_CLK  
(CPOL = 1)  
OUTPUT  
(CPHA = 1)  
OUTPUT  
(CPHA = 0)  
tDDSPIODMM  
tDDSPIODMM  
Figure 24. ODM Master Mode  
Table 47. SPI Port—ODM Slave Mode1  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tHDSPIODMS  
tDDSPIODMS  
SPIx_CLK Edge to High Impedance From Data Out Valid  
SPIx_CLK Edge to Data Out Valid From High Impedance  
0
ns  
ns  
11  
1 All specifications apply to all three SPIs.  
tHDSPIODMS  
tHDSPIODMS  
SPIx_CLK  
(CPOL = 0)  
SPIx_CLK  
(CPOL = 1)  
OUTPUT  
(CPHA = 1)  
OUTPUT  
(CPHA = 0)  
tDDSPIODMS  
tDDSPIODMS  
Figure 25. ODM Slave Mode  
Rev. B  
|
Page 71 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
SPI Port—SPIx_RDY Master Timing  
SPIx_RDY is used to provide flow control. CPOL and CPHA are configuration bits in the SPIx_CTL register, whereas LEADX, LAGX,  
and STOP are configuration bits in the SPIx_DLY register.  
Table 48. SPI Port—SPIx_RDY Master Timing1  
Parameter  
Conditions  
Min  
Max  
Unit  
Timing Requirement  
tSRDYSCKM  
Setup Time for SPIx_RDY  
(2 + 2 × BAUD2) × tCDU_CLKO0 + 11  
ns  
Deassertion Before Last Valid  
Data SPIx_CLK Edge  
Switching Characteristic  
3
tDRDYSCKM Assertion of SPIx_RDY to First  
BAUD = 0, CPHA = 0 4.5 × tCDU_CLKO0  
BAUD = 0, CPHA = 1 4 × tCDU_CLKO0  
5.5 × tCDU_CLKO0 + 11  
5 × tCDU_CLKO0 + 11  
ns  
ns  
SPIx_CLK Edge of Next Transfer  
BAUD > 0, CPHA = 0 (1 + 1.5 × BAUD2) × tCDU_CLKO0 (2+ 2.5×BAUD2)×tCDU_CLKO0 +11 ns  
BAUD > 0, CPHA = 1 (1 + 1 × BAUD2) × tCDU_CLKO0 (2 + 2 × BAUD2) × tCDU_CLKO0 + 11 ns  
1 All specifications apply to all three SPIs.  
2 BAUD value is set using the SPIx_CLK.BAUD bits. BAUD value = SPIx_CLK.BAUD bits + 1.  
3 Specification assumes the LEADX, LAGX, and STOP bits in the SPI_DLY register are zero.  
tSRDYSCKM  
SPIx_RDY  
SPIx_CLK  
(CPOL = 0)  
SPIx_CLK  
(CPOL = 1)  
Figure 26. SPIx_RDY Setup Before SPIx_CLK  
Rev. B  
|
Page 72 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
tDRDYSCKM  
SPIx_RDY  
SPIx_CLK  
(CPOL = 0)  
CPHA = 0  
SPIx_CLK  
(CPOL = 1)  
SPIx_CLK  
(CPOL = 0)  
CPHA = 1  
SPIx_CLK  
(CPOL = 1)  
Figure 27. SPIx_CLK Switching Diagram after SPIx_RDY Assertion  
Rev. B  
|
Page 73 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
OSPI Port—Master Timing  
OSPI0  
Table 49 and Figure 28 describe the OSPI port master operations. Slave mode is not supported for OSPI.  
When internally generated, the programmed SPI clock (fSPICLKPROG) frequency in megahertz is set by the following equation:  
f
SYSCLK  
f
=
----------------------  
SPICLKPROG  
PRG_MBD  
1
t
=
--------------------------------------  
f
SPICLKPROG  
SPICLKPROG  
where PRG_MBD is the master mode baud rate divisor.  
Note that  
• In dual-mode data transmit, the OSPI0_MISO signal is also an output.  
• In quad-mode data transmit, the OSPI0_MISO, OSPI0_D2, and OSPI0_D3 signals are also outputs.  
• In octal-mode data transmit, the OSPI0_MISO, OSPI0_D2, OSPI0_D3, OSPI0_D4, OSPI0_D5, OSPI0_D6, and OSPI0_D7 signals  
are also outputs.  
• In dual-mode data receive, the OSPI0_MOSI signal is also an input.  
• In quad-mode data receive, the OSPI0_MOSI, OSPI0_D2, and OSPI0_D3 signals are also inputs.  
• In octal-mode data receive, the OSPI0_MISO, OSPI0_D2, OSPI0_D3, OSPI0_D4, OSPI0_D5, OSPI0_D6, and OSPI0_D7 signals are  
also outputs.  
• CPHA is a configuration bit in the OSPI0_CTL register.  
Table 49. OSPI0 Port—Master Timing1  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM Data Input Valid to OSPI0_CLK Sampling tSYSCLK + 2  
Edge (Data Input Setup) 2  
ns  
ns  
tHSPIDM OSPI0_CLK Sampling Edge to Data Input  
Invalid (Data Input Hold)2  
1
Switching Characteristics  
tSDSCIM OSPI0_SEL Low to First OSPI0_CLK Edge3 0.5 × tSPICLKPROG + PRG_CSSOT × tSYSCLK – 1.5  
ns  
ns  
ns  
ns  
ns  
tSPICHM OSPI0_CLK High Period4  
0.5 × tSPICLKPROG – 1.5  
0.5 × tSPICLKPROG – 1.5  
tSPICLKPROG – 1.5  
tSPICLM  
tSPICLK  
tHDSM  
OSPI0_CLK Low Period4  
OSPI0_CLK Period4  
Last OSPI0_CLK Edge to OSPI0_SEL  
High for Mode = 05  
PRG_CSEOT × tSYSCLK – 1  
Last OSPI0_CLK Edge to OSPI0_SEL  
High for Mode = 35, 6  
PRG_CSEOT × tSYSCLK + 0.5 × tSPICLKPROG – 1  
ns  
tDDSPIDM OSPI0_CLK Edge to Data Out Valid to  
Driving Edge (Data Out Delay)7  
(PRG_WRHLD + 1) × tSYSCLK + 2.5 ns  
ns  
tHDSPIDM OSPI0_CLK Edge to Data Out Invalid to  
Driving Edge (Data Out Hold)7  
PRG_WRHLD × tSYSCLK – 1  
tPD  
OSPI0_CLK Internal to OSPI0_CLK Output 2.2  
Delay (Propagation Delay)  
5.5  
ns  
1 All specifications apply to OSPI0 only.  
2
tSSPIDM and tHSPIDM specifications are characterized for OSPI0_RDC settings of 2 for DDR mode and 4 for SDR mode.  
3 PRG_CSSOT = chip select start of transfer (defined in OSPI0_DLY[7:0]).  
4 See Table 19 for details on the minimum period that can be programmed for tSPICLKPROG  
5 PRG_CSEOT = chip select end of transfer (defined in OSPI0_DLY[15:8]).  
6 Mode = clock phase and clock polarity bits (defined inOSPI0_CTL[2:1]).  
.
7 PRG_WRHLD = transmit delay to improve output hold (defined in OSPI0_RDC[19:16]).  
Rev. B  
|
Page 74 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
OSPI0_SEL  
(OUTPUT)  
OSPI0_CLK  
(INTERNAL)  
tPD  
tSDSCIM  
tSPICLM  
tSPICHM  
tSPICLK  
tHDSM  
OSPI0_CLK  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
DATA OUTPUTS  
(OSPI0_MOSI)  
tSSPIDM  
CPHA = 1  
tHSPIDM  
DATA INPUTS  
(OSPI0_MISO)  
tHDSPIDM  
tDDSPIDM  
DATA OUTPUTS  
(OSPI0_MOSI)  
tSSPIDM  
tHSPIDM  
CPHA = 0  
DATA INPUTS  
(OSPI0_MISO)  
Figure 28. OSPI Port—Master Timing  
Rev. B  
|
Page 75 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Precision Clock Generator (PCG) (Direct Pin Routing)  
This timing is only valid when the SRU is configured such that the precision clock generator (PCG) takes inputs directly from the DAI  
pins (via pin buffers) and sends outputs directly to the DAI pins. For the other cases, where the PCG inputs and outputs are not directly  
routed to/from DAI pins (via pin buffers), there is no timing data available. All timing parameters and switching characteristics apply to  
external DAI pins (DAI0_PINx).  
Table 50. PCG (Direct Pin Routing)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tPCGIP  
tSTRIG  
Input Clock Period  
tSCLK0 × 2  
ns  
ns  
PCG Trigger Setup Before Falling Edge of PCG Input 4.5  
Clock  
tHTRIG  
PCG Trigger Hold After Falling Edge of PCG Input  
Clock  
3
ns  
Switching Characteristics  
tDPCGIO  
PCGOutputClockandFrameSyncActiveEdgeDelay 2  
After PCG Input Clock  
10  
ns  
ns  
tDTRIGCLK  
PCG Output Clock Delay After PCG Trigger  
PCG Frame Sync Delay After PCG Trigger  
Output Clock Period  
2 + (2.5 × tPCGIP  
)
13.5 + (2.5 × tPCGIP)  
1
tDTRIGFS  
2.5 + ((2.5 + D – PH) × tPCGIP  
2 × tPCGIP – 1  
)
13.5 + ((2.5 + D – PH) × tPCGIP) ns  
ns  
2
tPCGOW  
1 D = FSxDIV, PH = FSxPHASE. For more information, see the ADSP-2156x SHARC+ Processor Hardware Reference.  
2 Normal mode of operation.  
tSTRIG  
tHTRIG  
DAI0_PIN20–1  
PCG_TRIGx_I  
DAI0_PIN20–1  
PCG_EXTx_I  
(CLKIN)  
tDPCGIO  
tPCGIP  
DAI0_PIN20–1  
PCG_CLKx_O  
tDTRIGCLK  
tPCGOW  
tDPCGIO  
DAI0_PIN20–1  
PCG_FSx_O  
tDTRIGFS  
Figure 29. PCG (Direct Pin Routing)  
Rev. B  
|
Page 76 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
General-Purpose IO Port Timing  
Table 51 and Figure 30 describe I/O timing, related to the general-purpose ports (PORT).  
Table 51. General-Purpose Port Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tWFI  
General-Purpose Port Pin Input Pulse Width  
2 × tSCLK0 – 1.5  
ns  
tWFI  
GPIO INPUT  
Figure 30. General-Purpose Port Timing  
General-Purpose I/O Timer Cycle Timing  
Table 52, Table 53, and Figure 31 describe timer expired operations related to the general-purpose timer (TIMER0). The width value is the  
timer period assigned in the TMx_TMRn_WIDTH register and can range from 1 to 232 – 1. When externally generated, the TMx_CLK  
clock is called fTMRCLKEXT  
:
1
tTMRCLKEXT  
=
------------------------  
fTMRCLKEXT  
Table 52. Timer Cycle Timing—Internal Mode  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tWL  
Timer Pulse Width Input Low (Measured In SCLK0 Cycles)1 2 × tSCLK0  
Timer Pulse Width Input High (Measured In SCLK0 Cycles)1 2 × tSCLK0  
ns  
ns  
tWH  
Switching Characteristic  
tHTO  
Timer Pulse Width Output (Measured In SCLK0 Cycles)2  
tSCLK0 × WIDTH – 1.7  
tSCLK0 × WIDTH + 1.5  
ns  
1 The minimum pulse width applies for timer signals in width capture and external clock modes.  
2 WIDTH refers to the value in the TMRx_WIDTH register (it can vary from 2 to 232 – 1).  
Table 53. Timer Cycle Timing—External Mode  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tWL  
Timer Pulse Width Input Low (Measured In EXT_CLK Cycles)1 2 × tEXT_CLK  
Timer Pulse Width Input High (Measured In EXT_CLK Cycles)1 2 × tEXT_CLK  
ns  
ns  
ns  
tWH  
tEXT_CLK  
Timer External Clock Period2  
tTMRCLKEXT  
Switching Characteristic  
tHTO  
Timer Pulse Width Output (Measured In EXT_CLK Cycles)3  
tEXT_CLK × WIDTH – 1.5  
tEXT_CLK × WIDTH + 1.5  
ns  
1 The minimum pulse width applies for timer signals in width capture and external clock modes.  
2 This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external TMR_CLK. For the external  
TMR_CLK maximum frequency, see the fTMRCLKEXT specification in Table 19.  
3 WIDTH refers to the value in the TMRx_WIDTH register (it can vary from 1 to 232 – 1).  
Rev. B  
|
Page 77 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
TMR OUTPUT  
tHTO  
TMR INPUT  
tWH, tWL  
Figure 31. Timer Cycle Timing  
DAIx Pin to DAIx Pin Direct Routing (DAI0 Block and DAI1 Block)  
Table 54 and Figure 32 describe I/O timing related to the digital audio interface (DAI) for direct pin connections only (for example,  
DAIx_PB01_I to DAIx_PB02_O).  
Table 54. DAI Pin to DAI Pin Routing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tDPIO  
Delay DAI Pin Input Valid to DAI Output Valid  
1.5  
12  
ns  
DAIx_PINn  
DAIx_PINm  
tDPIO  
Figure 32. DAI Pin to DAI Pin Direct Routing  
Up/Down Counter/Rotary Encoder Timing  
Table 55 and Figure 33 describe timing related to the general-purpose counter (CNT).  
Table 55. Up/Down Counter/Rotary Encoder Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tWCOUNT  
Up/Down Counter/Rotary Encoder Input Pulse Width  
2 × tSCLK0  
ns  
CNT0_UD  
CNT0_DG  
CNT0_ZM  
tWCOUNT  
Figure 33. Up/Down Counter/Rotary Encoder Timing  
Rev. B  
|
Page 78 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Universal Asynchronous Receiver-Transmitter (UART) Ports—Receive and Transmit Timing  
The UART ports receive and transmit operations are described in the ADSP-2156x SHARC+ Processor Hardware Reference.  
Sony/Philips Digital Interface (S/PDIF) Transmitter  
Serial data input to the S/PDIF transmitter can be formatted as left justified, I2S, or right justified with word widths of 16, 18, 20, or 24 bits.  
The following sections provide timing for the transmitter.  
S/PDIF Transmitter Serial Input Waveforms  
Table 56 and Figure 34 show the right justified mode. Frame sync is high for the left channel and low for the right channel. Data is valid on  
the rising edge of the serial clock. The MSB is delayed the minimum in 24-bit output mode or the maximum in 16-bit output mode from a  
frame sync transition, so that when there are 64 serial clock periods per frame sync period, the LSB of the data is right justified to the next  
frame sync transition.  
Table 56. S/PDIF Transmitter Right Justified Mode  
Parameter  
Timing Requirement  
tRJD  
Conditions  
Nominal  
Unit  
Frame Sync to MSB Delay in Right Justified Mode  
16-bit word mode  
18-bit word mode  
20-bit word mode  
24-bit word mode  
16  
14  
12  
8
SCLK0  
SCLK0  
SCLK0  
SCLK0  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
FS  
DAI_P20–1  
SCLK0  
tRJD  
DAI_P20–1  
SDATA  
LSB  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 34. Right Justified Mode  
Rev. B  
|
Page 79 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Table 57 and Figure 35 show the default I2S justified mode. The frame sync is low for the left channel and high for the right channel. Data  
is valid on the rising edge of the serial clock. The MSB is left justified to the frame sync transition but with a delay.  
Table 57. S/PDIF Transmitter I2S Mode  
Parameter  
Timing Requirement  
tI2SD  
Nominal  
Unit  
Frame Sync to MSB Delay in I2S Mode  
1
SCLK0  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
(FS)  
DAI_P20–1  
(SCLK0)  
tI2SD  
DAI_P20–1  
(SDATA)  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 35. I2S Justified Mode  
Table 58 and Figure 36 show the left justified mode. The frame sync is high for the left channel and low for the right channel. Data is valid  
on the rising edge of the serial clock. The MSB is left justified to the frame sync transition with no delay.  
Table 58. S/PDIF Transmitter Left Justified Mode  
Parameter  
Timing Requirement  
tLJD  
Nominal  
Unit  
Frame Sync to MSB Delay in Left Justified Mode  
0
SCLK0  
DAI_P20–1  
(FS)  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
(SCLK0)  
tLJD  
DAI_P20–1  
(SDATA)  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 36. Left Justified Mode  
Rev. B  
|
Page 80 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
S/PDIF Transmitter Input Data Timing  
The timing requirements for the S/PDIF transmitter are given in Table 59. Input signals are routed to the DAI0_PINx pins using the SRU.  
Therefore, the timing specifications provided below are valid at the DAI0_PINx pins.  
Table 59. S/PDIF Transmitter Input Data Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
Frame Sync Setup Before Serial Clock Rising Edge  
3.4  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
Frame Sync Hold After Serial Clock Rising Edge  
Data Setup Before Serial Clock Rising Edge  
Data Hold After Serial Clock Rising Edge  
Transmit Clock Width  
1
tSISD  
3
1
tSIHD  
3
tSITXCLKW  
tSITXCLK  
tSISCLKW  
tSISCLK  
9
Transmit Clock Period  
20  
36  
80  
Clock Width  
Clock Period  
1 The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. The input of the  
PCG can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSITXCLKW  
tSITXCLK  
DAI0_PIN20–1  
(TxCLK)  
tSISCLK  
tSISCLKW  
DAI0_PIN20–1  
(SCLK0)  
tSISFS  
tSIHFS  
DAI0_PIN20–1  
(FS)  
tSISD  
tSIHD  
DAI0_PIN20–1  
(SDATA)  
Figure 37. S/PDIF Transmitter Input Timing  
Oversampling Clock (TxCLK) Switching Characteristics  
The S/PDIF transmitter requires an oversampling clock input. This high frequency clock (TxCLK) input is divided down to generate the  
internal biphase clock.  
Table 60. Oversampling Clock (TxCLK) Switching Characteristics  
Parameter  
Max  
Unit  
Switching Characteristics  
fTXCLK_384  
fTXCLK_256  
fFS  
Frequency for TxCLK = 384 × Frame Sync  
Oversampling ratio × frame sync ≤ 1/tSITXCLK  
MHz  
MHz  
kHz  
Frequency for TxCLK = 256 × Frame Sync  
Frame Rate (FS)  
49.2  
192.0  
Rev. B  
|
Page 81 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
S/PDIF Receiver  
The following section describes timing as it relates to the S/PDIF receiver.  
Internal Digital PLL Mode  
In the internal digital PLL mode, the internal digital PLL generates the 512 × FS clock.  
Table 61. S/PDIF Receiver Internal Digital PLL Mode Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSI  
Frame Sync Delay After Serial Clock  
Frame Sync Hold After Serial Clock  
Transmit Data Delay After Serial Clock  
Transmit Data Hold After Serial Clock  
5
5
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
tHDTI  
–2  
–2  
DRIVE EDGE  
SAMPLE EDGE  
DAI0_PIN20–1  
(SCLK0)  
tDFSI  
tHOFSI  
DAI0_PIN20–1  
(FS)  
tDDTI  
tHDTI  
DAI0_PIN20–1  
(DATA CHANNEL A/B)  
Figure 38. S/PDIF Receiver Internal Digital PLL Mode Timing  
Rev. B  
|
Page 82 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
MediaLB (MLB)  
All the numbers shown in Table 62 are applicable for all MLB speed modes (1024 FS, 512 FS, and 256 FS) for the 3-pin protocol, unless  
otherwise specified. Refer to the Media Local Bus Specification Version 4.2 for more details.  
Table 62. 3-Pin MLB Interface Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
tMLBCLK  
MLB Clock Period  
1024 FS  
20.3  
40  
81  
ns  
ns  
ns  
512 FS  
256 FS  
tMCKL  
MLBCLK Low Time  
1024 FS  
6.1  
14  
30  
ns  
ns  
ns  
512 FS  
256 FS  
tMCKH  
MLBCLK High Time  
1024 FS  
9.3  
14  
30  
ns  
ns  
ns  
512 FS  
256 FS  
tMCKR  
MLBCLK Rise Time (VIL to VIH)  
1024 FS  
1
3
ns  
ns  
512 FS/256 FS  
tMCKF  
MLBCLK Fall Time (VIH to VIL)  
1024 FS  
1
3
ns  
ns  
512 FS/256 FS  
1
tMPWV  
MLBCLK Pulse Width Variation  
1024 FS  
0.7  
2.0  
nspp  
nspp  
512 FS/256  
tDSMCF  
tDHMCF  
tMCFDZ  
tMCDRV  
DAT/SIG Input Setup Time  
1
2
0
ns  
ns  
ns  
ns  
DAT/SIG Input Hold Time  
DAT/SIG Output Time to Three-State  
DAT/SIG Output Data Delay From MLBCLK Rising Edge  
15  
8
2
tMDZH  
Bus Hold Time  
1024 FS  
512 FS/256  
2
4
ns  
ns  
CMLB  
DAT/SIG Pin Load  
1024 FS  
40  
60  
pf  
pf  
512 FS/256  
1 Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in nanoseconds peak-to-peak.  
2 Board designs must ensure the high impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while  
meeting the maximum capacitive load listed.  
Rev. B  
|
Page 83 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
MLB_SIG/  
MLB_DAT  
VALID  
(Rx, Input)  
tDHMCF  
tDSMCF  
tMCKH  
tMCKL  
MLB_CLK  
tMCKR  
tMCKF  
tMLBCLK  
tMCFDZ  
tMCDRV  
tMDZH  
MLB_SIG/  
MLB_DAT  
(Tx, Output)  
VALID  
Figure 39. MLB Timing (3-Pin Interface)  
Rev. B  
|
Page 84 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Program Trace Macrocell (PTM) Timing  
Table 63 and Figure 40 provide I/O timing related to the PTM.  
Table 63. TRACE0 Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDTRD  
tHTRD  
tPTRCK  
TRACE0 Data Delay From Trace Clock Maximum  
TRACE0 Data Hold From Trace Clock Minimum  
TRACE0 Clock Period Minimum  
0.5 × tSCLK0 + 3  
ns  
ns  
ns  
0.5 × tSCLK0 – 2  
2 × tSCLK0 – 1  
t
PTRCK  
TRACE0_CLK  
t
t
HTRD  
t
HTRD  
TRACE0_DX  
D0  
D1  
t
DTRD  
DTRD  
Figure 40. Trace Timing  
Rev. B  
|
Page 85 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Debug Interface (JTAG Emulation Port) Timing  
Table 64 and Figure 41 provide I/O timing related to the debug interface (JTAG emulator port).  
Table 64. JTAG Emulation Port Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
JTG_TCK Period  
20  
4
ns  
ns  
ns  
ns  
ns  
TCK  
tSTAP  
JTG_TDI, JTG_TMS Setup Before JTG_TCK High  
JTG_TDI, JTG_TMS Hold After JTG_TCK High  
System Inputs Setup Before JTG_TCK High1  
System Inputs Hold After JTG_TCK High1  
JTG_TRST Pulse Width (Measured in JTG_TCK Cycles)2  
tHTAP  
4
tSSYS  
4
tHSYS  
4
tTRSTW  
4
Switching Characteristics  
tDTDO  
tDSYS  
JTG_TDO Delay From JTG_TCK Low  
System Outputs Delay After JTG_TCK Low3  
12  
17  
ns  
ns  
1 System Inputs = DAI0_PIN20-19, DAI0_PIN12-1, DAI1_PIN20-19, DAI1_PIN12-1, DMC0_A15-0, DMC0_DQ15-0, DMC0_RESET, PA_15-0, PB_15-0, PC_7-0,  
SYS_BMODE2-0, SYS_FAULT.  
2 50 MHz maximum.  
3 System Outputs = DMC0_A15-0, DMC0_BA2-0, DMC0_CAS, DMC0_CK, DMC0_CKE, DMC0_CS0, DMC0_DQ15-0, DMC0_LDM, DMC0_LDQS, DMC0_ODT,  
DMC0_RAS, DMC0_RESET, DMC0_UDM, DMC0_UDQS, DMC0_WE, PA_15-0, PB_15-0, PC_7-0, SYS_CLKOUT, SYS_FAULT, SYS_RESOUT.  
tTCK  
JTG_TCK  
tSTAP  
tHTAP  
JTG_TMS  
JTG_TDI  
tDTDO  
JTG_TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 41. JTAG Port Timing  
Rev. B  
|
Page 86 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
OUTPUT DRIVE CURRENTS  
20  
Figure 42 through Figure 47 show typical current voltage char-  
acteristics for the output drivers of the ADSP-2156x processors.  
The curves represent the current drive capability of the output  
drivers as a function of output voltage.  
V
V
V
= 1.575V AT –40°C  
= 1.500V AT +25°C  
= 1.425V AT +125°C  
18  
16  
14  
12  
10  
8
DD  
DD  
DD  
V
OH  
50  
V
V
V
= 3.47V AT –40°C  
= 3.30V AT +25°C  
= 3.13V AT +125°C  
DD  
DD  
DD  
40  
30  
6
V
OH  
20  
4
10  
2
0
0
V
OL  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
–10  
–20  
–30  
–40  
–50  
SOURCE VOLTAGE (V)  
Figure 44. Driver Type B and Driver Type C (DDR3 Drive Strength 100 Ω)  
0
V
V
V
= 1.575V AT –40°C  
= 1.500V AT +25°C  
= 1.425V AT +125°C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
DD  
DD  
DD  
–2  
–4  
SOURCE VOLTAGE (V)  
Figure 42. Driver Type A Current for All Pins Operating  
at Less Than or Equal to 62.5 MHz (3.3 V VDD_EXT  
V
OL  
)
–6  
–8  
50  
40  
V
V
V
= 3.47V AT –40°C  
DD  
DD  
DD  
= 3.30V AT +25°C  
= 3.13V AT +125°C  
–10  
–12  
–14  
–16  
V
OH  
30  
20  
10  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
V
SOURCE VOLTAGE (V)  
–10  
–20  
–30  
–40  
–50  
OL  
Figure 45. Driver Type B and Driver Type C (DDR3 Drive Strength 100 Ω)  
18  
16  
14  
12  
10  
8
V
V
V
= 1.418V AT –40°C  
= 1.350V AT +25°C  
= 1.285V AT +125°C  
DD  
DD  
DD  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
SOURCE VOLTAGE (V)  
OH  
Figure 43. Driver Type A Current for All Pins Operating Above  
62.5 MHz and Less Than or Equal to125 MHz (3.3 V VDD_EXT  
)
6
4
2
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
SOURCE VOLTAGE (V)  
Figure 46. Driver Type B and Driver Type C (DDR3L Drive Strength100 Ω)  
Rev. B  
|
Page 87 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
0
REFERENCE  
SIGNAL  
V
V
V
= 1.418V AT –40°C  
= 1.350V AT +25°C  
= 1.285V AT +125°C  
DD  
DD  
DD  
–2  
–4  
tDIS  
tENA  
V
OL  
–6  
–8  
–10  
–12  
–14  
OUTPUT STOPS DRIVING  
OUTPUT STARTS DRIVING  
HIGH IMPEDANCE STATE  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
Figure 49. Output Enable/Disable  
SOURCE VOLTAGE (V)  
Figure 47. Driver Type B and Driver Type C (DDR3L Drive Strength 100 Ω)  
Output Disable Time Measurement  
Output pins are considered disabled when they stop driving,  
enter a high impedance state, and start to decay from the output  
high or low voltage. The output disable time, tDIS, is the interval  
from when a reference signal reaches a high or low voltage level  
to the point when the output stops driving, as shown on the left  
side of Figure 49).  
TEST CONDITIONS  
All timing parameters appearing in this data sheet were mea-  
sured under the conditions described in this section. Figure 48  
shows the measurement point for ac measurements (except out-  
put enable/disable). The measurement point, VMEAS, is  
VDD_EXT/2 for VDD_EXT (nominal) = 3.3 V.  
Capacitive Loading  
Output delays and holds are based on standard capacitive loads  
of an average of 6 pF on all pins (see Figure 50). VLOAD is equal  
to VDD_EXT/2. Figure 51 through Figure 54 show how output  
rise time varies with capacitance. The delay and hold specifica-  
tions given must be derated by a factor derived from these  
figures. The graphs in Figure 51 through Figure 54 cannot be  
linear outside the ranges shown.  
INPUT  
OR  
OUTPUT  
V
V
MEAS  
MEAS  
Figure 48. Voltage Reference Levels for AC Measurements  
(Except Output Enable/Disable)  
TESTER PIN ELECTRONICS  
Output Enable Time Measurement  
50:  
V
LOAD  
T1  
Output pins are considered enabled when they make a transi-  
tion from a high impedance state to the point when they start  
driving.  
DUT  
OUTPUT  
45:  
70:  
ZO = 50:ꢀ(impedance)  
TD = 4.04 r 1.18 ns  
The output enable time, tENA, is the interval from the point  
when a reference signal reaches a high or low voltage level to the  
point when the output starts driving, as shown on the right side  
of Figure 49. If multiple pins are enabled, the measurement  
value is that of the first pin to start driving.  
50:  
0.5pF  
4pF  
2pF  
400:  
NOTES:  
THE WORST-CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED  
FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE  
EFFECT AND MUST BE CONSIDERED.THE TRANSMISSION LINE (TD) IS FOR  
LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.  
ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN  
SYSTEM REQUIREMENT. IF NECESSARY,THE SYSTEM CAN INCORPORATE  
EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.  
Figure 50. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
Rev. B  
|
Page 88 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
6
5
4
3
2
1
0
1.2  
tRISE = 3.3V AT +25°C  
tFALL = 3.3V AT +25°C  
tRISE = 3.135V AT +125°C  
tFALL = 3.135V AT +125°C  
tRISE = 3.465V AT –40°C  
tFALL = 3.465V AT –40°C  
tRISE = 1.35V AT +25°C  
tFALL = 1.35V AT +25°C  
tRISE = 1.283V AT +125°C  
1.0  
tFALL = 1.283V AT +125°C  
tRISE = 1.418V AT –40°C  
tFALL = 1.418V AT –40°C  
0.8  
0.6  
0.4  
0.2  
0
0
5
10  
15  
20  
25  
30  
0
1
2
3
4
5
6
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 51. Driver Type A Rise and Fall Times (10% to 90%) vs. Load  
Capacitance for All Pins Operating Above 62.5 MHz and  
Less Than or Equal to 125 MHz  
Figure 54. Driver Type B and Driver Type C Rise and Fall Times  
(10% to 90%) vs. Load Capacitance for DDR3L at 100 Ω  
ENVIRONMENTAL CONDITIONS  
8
The ADSP-2156x processor is rated for performance over the  
temperature range specified in Operating Conditions.  
tRISE = 3.3V AT +25°C  
tFALL = 3.3V AT +25°C  
7
tRISE = 3.135V AT +125°C  
tFALL = 3.135V AT +125°C  
The JESD51 package thermal characteristics in this section are  
provided for package comparison and estimation purposes only.  
They are not intended for accurate system temperature calcula-  
tion. System thermal simulation is required for accurate  
temperature analysis that accounts for all specific 3D system  
design features, including, but not limited to other heat sources,  
use of heat-sinks, and the system enclosure. Thermal models are  
available under the Tools and Simulations tab of the product  
page.  
6
5
4
3
2
1
0
tRISE = 3.465V AT –40°C  
tFALL = 3.465V AT –40°C  
In Table 65 and Table 66, airflow measurements comply with  
JEDEC standards JESD51-2 and JESD51-6, and the junction-to-  
board measurement complies with JESD51-8. Test board design  
complies with JEDEC standards JESD51-7 (for leaded surface  
mount packages). The junction-to-case measurement complies  
with MIL- STD-883 (Method 1012.1). All measurements use a  
2S2P JEDEC test board.  
0
5
10  
15  
20  
25  
30  
LOAD CAPACITANCE (pF)  
Figure 52. Driver Type A Rise and Fall Times (10% to 90%) vs. Load  
Capacitance for All Pins Operating at Less Than or Equal to 62.5 MHz  
1.2  
To estimate the junction temperature of a single device while on  
a JEDEC 2S2P PCB, use:  
tRISE = 1.5V AT +25°C  
tFALL = 1.5V AT +25°C  
tRISE = 1.425V AT +125°C  
1.0  
tFALL = 1.425V AT +125°C  
TJ = TCASE + (JT × PD)  
where:  
tRISE = 1.575V AT –40°C  
tFALL = 1.575V AT –40°C  
0.8  
TJ is the junction temperature (°C).  
0.6  
0.4  
0.2  
0
T
CASE is the case temperature (°C) measured at the top center of  
the package.  
JT is the typical value (junction-to-top of package characteri-  
zation parameter) from Table 65 and Table 66.  
PD is the power dissipation (see the Total Internal Power Dissi-  
pation section for the method to calculate PD).  
0
1
2
3
4
5
6
LOAD CAPACITANCE (pF)  
Figure 53. Driver Type B and Driver Type C Typical Rise and Fall Times  
(10% to 90%) vs. Load Capacitance for DDR3 at 100 Ω  
Rev. B  
|
Page 89 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Values of JA are provided for package comparison and PCB  
design considerations. JA can be used for a first-order approxi-  
mation of TJ by the equation:  
TJ = TA + (JA × PD)  
where TA is the ambient temperature (°C).  
Values of JC are provided for package comparison and PCB  
design considerations when an external heat sink is required.  
Note that the thermal characteristics values provided in  
Table 65 and Table 66 are modeled values.  
Table 65. Thermal Characteristics for 400 CSP_BGA  
Parameter Conditions  
Typical Unit  
JA  
JA  
JA  
JC  
JT  
JT  
JT  
0 linear m/s air flow  
13.72  
12.90  
12.54  
3.39  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1 linear m/s air flow  
2 linear m/s air flow  
0 linear m/s air flow  
1 linear m/s air flow  
2 linear m/s air flow  
0.06  
0.08  
0.08  
Table 66. Thermal Characteristics for 120 LQFP_EP  
Parameter Conditions Typical Unit  
JA  
JA  
JA  
JC  
JT  
JT  
JT  
0 linear m/s air flow  
11.08  
10.21  
9.86  
6.87  
0.20  
0.30  
0.36  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1 linear m/s air flow  
2 linear m/s air flow  
0 linear m/s air flow  
1 linear m/s air flow  
2 linear m/s air flow  
Rev. B  
|
Page 90 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
ADSP-2156x 400-BALL BGA BALL ASSIGNMENTS  
The ADSP-2156x 400-Ball BGA Ball Assignments (Numerical  
by Ball Number) table lists the 400-ball BGA package by ball  
number.  
The ADSP-2156x 400-Ball BGA Ball Assignments (Alphabetical  
by Pin Name) table lists the 400-ball BGA package by pin name.  
ADSP-2156x 400-BALL BGA BALL ASSIGNMENTS (NUMERICAL BY BALL NUMBER)  
Ball No. Pin Name  
Ball No. Pin Name  
Ball No. Pin Name  
Ball No. Pin Name  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
GND  
C01  
C02  
C03  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
DMC0_LDM  
DMC0_DQ08  
GND  
E01  
E02  
E03  
E04  
E05  
E06  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
F01  
F02  
F03  
F04  
F05  
F06  
F07  
F08  
F09  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
DMC0_DQ05  
DMC0_DQ06  
GND  
G01  
G02  
G03  
G04  
G05  
G06  
G07  
G08  
G09  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
H01  
H02  
H03  
H04  
H05  
H06  
H07  
H08  
H09  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
DMC0_DQ04  
DMC0_DQ02  
GND  
DMC0_DQ11  
DMC0_DQ10  
DMC0_UDQS  
DMC0_DQ15  
DMC0_UDM  
PB_00  
GND  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
GND  
VDD_INT  
VDD_INT  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_REF  
VDD_REF  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_INT  
VDD_INT  
GND  
GND  
GND  
PB_03  
SYS_BMODE2  
SYS_HWRST  
JTG_TRST  
PB_05  
PB_01  
SYS_RESOUT  
JTG_TDO  
JTG_TMS  
JTG_TDI  
GND  
SYS_FAULT  
DMC0_WE  
DMC0_A14  
DMC0_A13  
DMC0_A10  
DMC0_A08  
DMC0_BA1  
DMC0_A07  
DMC0_A04  
GND  
GND  
GND  
GND  
GND  
DMC0_A03  
DMC0_A02  
DMC0_DQ07  
GND  
DMC0_BA2  
DMC0_CAS  
DMC0_LDQS  
DMC0_LDQS  
GND  
DMC0_RZQ  
DMC0_VREF  
DMC0_DQ03  
GND  
GND  
GND  
DMC0_DQ12  
DMC0_UDQS  
DMC0_DQ14  
DMC0_DQ13  
PB_04  
DMC0_DQ09  
GND  
GND  
VDD_INT  
VDD_INT  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_INT  
VDD_INT  
GND  
VDD_INT  
VDD_INT  
VDD_DMC  
VDD_DMC  
GND  
GND  
GND  
GND  
PB_02  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
GND  
SYS_BMODE1  
SYS_BMODE0  
JTG_TCK  
GND  
GND  
GND  
DMC0_RESET  
DMC0_A15  
DMC0_A12  
DMC0_A11  
DMC0_A09  
DMC0_BA0  
DMC0_A06  
GND  
GND  
GND  
GND  
GND  
VDD_DMC  
VDD_DMC  
VDD_INT  
VDD_INT  
GND  
GND  
GND  
GND  
GND  
DMC0_A00  
DMC0_A01  
DMC0_RAS  
DMC0_CS0  
DMC0_ODT  
DMC0_CKE  
DMC0_A05  
Rev. B  
|
Page 91 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Ball No. Pin Name  
Ball No. Pin Name  
Ball No. Pin Name  
Ball No. Pin Name  
J01  
J02  
J03  
J04  
J05  
J06  
J07  
J08  
J09  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
K01  
K02  
K03  
K04  
K05  
K06  
K07  
K08  
K09  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
L01  
L02  
L03  
L04  
L05  
L06  
L07  
L08  
DMC0_DQ01  
DMC0_DQ00  
GND  
L09  
GND  
N17  
N18  
N19  
N20  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
R01  
R02  
R03  
R04  
R05  
R06  
R07  
R08  
R09  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
T01  
T02  
T03  
T04  
GND  
T05  
T06  
T07  
T08  
T09  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
U01  
U02  
U03  
U04  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
V01  
V02  
V03  
V04  
V05  
V06  
V07  
V08  
V09  
V10  
V11  
V12  
VDD_EXT  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_EXT  
GND  
L10  
GND  
GND  
L11  
GND  
HADC0_VIN0  
HADC0_VIN1  
GND  
DMC0_VREF  
VDD_INT  
VDD_DMC  
VDD_DMC  
GND  
L12  
GND  
L13  
GND  
L14  
VDD_INT  
VDD_INT  
GND  
PA_02  
L15  
PA_01  
L16  
VDD_EXT  
VDD_REF  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_REF  
VDD_EXT  
GND  
GND  
L17  
GND  
GND  
L18  
HADC0_VREFN  
VDD_ANA  
HADC0_VREFP  
GND  
GND  
L19  
GND  
L20  
GND  
M01  
M02  
M03  
M04  
M05  
M06  
M07  
M08  
M09  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
N01  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
GND  
GND  
DAI1_PIN09  
DAI1_PIN06  
DAI1_PIN04  
GND  
SYS_CLKOUT  
VDD_EXT  
VDD_INT  
VDD_INT  
VDD_INT  
GND  
PA_10  
DMC0_CK  
DMC0_CK  
GND  
PA_08  
GND  
GND  
GND  
GND  
GND  
DAI1_PIN02  
GND  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
GND  
GND  
GND  
VDD_EXT  
VDD_INT  
VDD_INT  
VDD_DMC  
GND  
GND  
GND  
GND  
PA_04  
VDD_INT  
VDD_REF  
VDD_EXT  
GND  
GND  
PA_03  
VDD_EXT  
VDD_REF  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_REF  
VDD_EXT  
GND  
GND  
GND  
GND  
GND  
HADC0_VIN2  
HADC0_VIN3  
SYS_CLKIN0  
GND  
GND  
GND  
GND  
VDD_INT  
VDD_INT  
VDD_INT  
GND  
DAI1_PIN10  
DAI1_PIN07  
DAI1_PIN05  
PA_07  
PA_00  
VDD_EXT  
VDD_REF  
VDD_INT  
VDD_INT  
GND  
GND  
PA_09  
GND  
GND  
GND  
GND  
SYS_XTAL0  
GND  
GND  
PB_06  
GND  
DAI1_PIN03  
DAI1_PIN08  
DAI1_PIN01  
GND  
PB_09  
GND  
GND  
PB_12  
VDD_EXT  
VDD_INT  
VDD_INT  
VDD_INT  
GND  
GND  
PA_11  
GND  
DAI0_PIN02  
DAI0_PIN06  
DAI0_PIN09  
DAI0_PIN20  
VDD_INT  
VDD_REF  
VDD_EXT  
PA_05  
PA_06  
GND  
Rev. B  
|
Page 92 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Ball No. Pin Name  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
W01  
W02  
W03  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
Y01  
Y02  
Y03  
Y04  
Y05  
Y06  
Y07  
Y08  
Y09  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
PC_00  
PC_05  
GND  
GND  
DAI1_PIN19  
GND  
DAI1_PIN11  
DAI1_PIN12  
GND  
GND  
PB_08  
PB_07  
PB_13  
PA_12  
PA_14  
PA_15  
DAI0_PIN03  
DAI0_PIN05  
DAI0_PIN08  
DAI0_PIN12  
DAI0_PIN19  
PB_15  
PC_01  
PC_03  
PC_06  
DAI1_PIN20  
GND  
GND  
GND  
GND  
PB_10  
PB_11  
GND  
PA_13  
GND  
DAI0_PIN01  
DAI0_PIN04  
DAI0_PIN07  
DAI0_PIN10  
DAI0_PIN11  
GND  
PB_14  
PC_02  
GND  
PC_04  
PC_07  
GND  
GND  
Rev. B  
|
Page 93 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
ADSP-2156x 400-BALL BGA BALL ASSIGNMENTS (ALPHABETICAL BY PIN NAME)  
Pin Name  
Ball No. Pin Name  
Ball No. Pin Name  
Ball No. Pin Name  
Ball No.  
K13  
K17  
K18  
K19  
K20  
L02  
DAI0_PIN01  
DAI0_PIN02  
DAI0_PIN03  
DAI0_PIN04  
DAI0_PIN05  
DAI0_PIN06  
DAI0_PIN07  
DAI0_PIN08  
DAI0_PIN09  
DAI0_PIN10  
DAI0_PIN11  
DAI0_PIN12  
DAI0_PIN19  
DAI0_PIN20  
DAI1_PIN01  
DAI1_PIN02  
DAI1_PIN03  
DAI1_PIN04  
DAI1_PIN05  
DAI1_PIN06  
DAI1_PIN07  
DAI1_PIN08  
DAI1_PIN09  
DAI1_PIN10  
DAI1_PIN11  
DAI1_PIN12  
DAI1_PIN19  
DAI1_PIN20  
DMC0_A00  
DMC0_A01  
DMC0_A02  
DMC0_A03  
DMC0_A04  
DMC0_A05  
DMC0_A06  
DMC0_A07  
DMC0_A08  
DMC0_A09  
DMC0_A10  
DMC0_A11  
DMC0_A12  
DMC0_A13  
DMC0_A14  
DMC0_A15  
DMC0_BA0  
DMC0_BA1  
Y08  
V09  
W09  
Y09  
W10  
V10  
Y10  
W11  
V11  
Y11  
Y12  
W12  
W13  
V12  
R20  
P18  
R18  
T20  
U20  
T19  
U19  
R19  
T18  
U18  
V19  
V20  
V17  
W18  
D19  
D20  
C20  
C19  
A19  
B20  
B18  
A18  
A16  
B16  
A15  
B15  
B14  
A14  
A13  
B13  
B17  
A17  
DMC0_BA2  
DMC0_CAS  
DMC0_CK  
DMC0_CK  
DMC0_CKE  
DMC0_CS0  
DMC0_DQ00  
DMC0_DQ01  
DMC0_DQ02  
DMC0_DQ03  
DMC0_DQ04  
DMC0_DQ05  
DMC0_DQ06  
DMC0_DQ07  
DMC0_DQ08  
DMC0_DQ09  
DMC0_DQ10  
DMC0_DQ11  
DMC0_DQ12  
DMC0_DQ13  
DMC0_DQ14  
DMC0_DQ15  
DMC0_LDM  
DMC0_LDQS  
DMC0_LDQS  
DMC0_ODT  
DMC0_RAS  
DMC0_RESET  
DMC0_RZQ  
DMC0_UDM  
DMC0_UDQS  
DMC0_UDQS  
DMC0_VREF  
DMC0_VREF  
DMC0_WE  
GND  
E19  
E20  
J19  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
C16  
C17  
C18  
D02  
D04  
D05  
D06  
D07  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
E03  
E18  
F03  
F18  
G03  
G18  
H02  
H03  
H08  
H09  
H10  
H11  
H12  
H13  
H18  
J03  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J20  
H20  
F20  
J02  
L03  
J01  
L08  
G02  
H01  
G01  
E01  
E02  
D01  
C02  
D03  
A03  
A02  
B03  
B06  
B05  
A05  
C01  
F01  
F02  
H19  
F19  
B12  
G19  
A06  
A04  
B04  
G20  
J04  
L09  
L10  
L11  
L12  
L13  
L16  
L17  
M01  
M02  
M08  
M09  
M10  
M11  
M12  
M13  
M17  
M18  
N02  
N08  
N09  
N10  
N11  
N12  
N13  
N17  
N18  
P01  
P17  
P19  
P20  
R02  
R17  
T01  
T04  
T17  
U01  
U04  
U05  
J08  
J09  
J10  
A12  
A01  
A20  
B01  
B02  
B19  
C03  
C04  
C05  
C06  
C14  
C15  
J11  
J12  
GND  
J13  
GND  
J18  
GND  
K01  
K02  
K03  
K08  
K09  
K10  
K11  
K12  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Rev. B  
|
Page 94 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Pin Name  
GND  
Ball No. Pin Name  
Ball No. Pin Name  
Ball No. Pin Name  
Ball No.  
E17  
F04  
F05  
F16  
F17  
G04  
G05  
G16  
G17  
H04  
H05  
H16  
H17  
J05  
U16  
U17  
V03  
V04  
V15  
V16  
V18  
W01  
W02  
W19  
W20  
Y01  
Y02  
Y05  
Y07  
Y13  
Y16  
Y19  
Y20  
N19  
N20  
M19  
M20  
L18  
L20  
B11  
C13  
C11  
C12  
A10  
N03  
P03  
P02  
R03  
R01  
T02  
T03  
V01  
U03  
V02  
U02  
V08  
W06  
Y06  
W07  
W08  
A07  
C09  
PB_02  
B08  
C07  
B07  
C08  
V05  
W04  
W03  
V06  
Y03  
Y04  
V07  
W05  
Y14  
W14  
V13  
W15  
Y15  
W16  
Y17  
V14  
W17  
Y18  
B10  
B09  
A08  
N01  
M03  
A11  
A09  
C10  
L01  
L19  
F06  
F07  
F08  
F09  
F10  
F11  
F12  
F13  
F14  
F15  
G06  
G07  
G08  
G09  
G12  
G13  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
G14  
G15  
H06  
H07  
H14  
H15  
J06  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
GND  
PB_03  
GND  
PB_04  
GND  
PB_05  
GND  
PB_06  
GND  
PB_07  
GND  
PB_08  
GND  
PB_09  
J07  
GND  
PB_10  
K07  
D08  
D09  
D10  
D11  
K04  
L04  
M04  
M16  
N04  
N16  
P04  
P16  
R04  
R16  
T05  
T16  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
U13  
U14  
U15  
E04  
E05  
E06  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
GND  
PB_11  
GND  
PB_12  
GND  
PB_13  
GND  
PB_14  
GND  
PB_15  
GND  
PC_00  
J14  
GND  
PC_01  
J15  
GND  
PC_02  
J16  
GND  
PC_03  
J17  
GND  
PC_04  
K05  
K06  
K14  
K15  
K16  
L05  
L06  
L07  
L14  
L15  
M05  
M06  
M07  
M14  
N06  
N07  
N14  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
R06  
R07  
R08  
R09  
HADC0_VIN0  
HADC0_VIN1  
HADC0_VIN2  
HADC0_VIN3  
HADC0_VREFN  
HADC0_VREFP  
JTG_TCK  
JTG_TDI  
JTG_TDO  
JTG_TMS  
JTG_TRST  
PA_00  
PC_05  
PC_06  
PC_07  
SYS_BMODE0  
SYS_BMODE1  
SYS_BMODE2  
SYS_CLKIN0  
SYS_CLKOUT  
SYS_FAULT  
SYS_HWRST  
SYS_RESOUT  
SYS_XTAL0  
VDD_ANA  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
VDD_DMC  
PA_01  
PA_02  
PA_03  
PA_04  
PA_05  
PA_06  
PA_07  
PA_08  
PA_09  
PA_10  
PA_11  
PA_12  
PA_13  
PA_14  
PA_15  
PB_00  
PB_01  
Rev. B  
|
Page 95 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
Pin Name  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
Ball No.  
R10  
R11  
R12  
R13  
R14  
G10  
G11  
M15  
N05  
N15  
P05  
P15  
R05  
R15  
T06  
T07  
T08  
T09  
T10  
T11  
T12  
T13  
T14  
T15  
Rev. B  
|
Page 96 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
CONFIGURATION OF THE 400-BALL CSP_BGA  
Figure 55 shows an overview of signal placement on the 400-ball CSP_BGA.  
TOP VIEW  
A1 BALL  
CORNER  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
A
B
C
D
E
F
GND  
G
H
J
I/O SIGNALS  
V
DD_EXT  
K
L
V
DD_INT  
V
DD_DMC  
M
N
P
R
T
V
DD_REF  
V
DD_ANA  
DMC0_VREF  
U
V
W
Y
A1 BALL  
CORNER  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
BOTTOM VIEW  
Figure 55. 400-Ball CSP_BGA Configuration  
Rev. B  
|
Page 97 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
ADSP-2156x 120-LEAD LQFP LEAD ASSIGNMENTS  
The ADSP-2156x 120-Lead LQFP Lead Assignments (Numeri-  
cal by Lead Number) table lists the 120-lead LQFP package by  
lead number.  
The ADSP-2156x 120-Lead LQFP Lead Assignments (Alphabet-  
ical by Pin Name) table lists the 120-lead LQFP package by pin  
name.  
ADSP-2156x 120-LEAD LQFP LEAD ASSIGNMENTS (NUMERICAL BY LEAD NUMBER)  
Lead No. Pin Name  
Lead No. Pin Name  
Lead No. Pin Name  
Lead No. Pin Name  
1211  
GND  
1 Pin121 is the GND supply (see Figure 57)  
for the processor; this pad must connect  
to GND.  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
VDD_INT  
GND  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
DAI0_PIN01  
DAI0_PIN02  
DAI0_PIN03  
VDD_INT  
81  
HADC0_VIN0  
HADC0_VIN1  
HADC0_VREFP  
HADC0_VREFN  
VDD_ANA  
GND  
82  
VDD_INT  
VDD_INT  
SYS_CLKIN0  
SYS_XTAL0  
VDD_REF  
VDD_INT  
GND  
83  
84  
VDD_INT  
85  
DAI0_PIN04  
DAI0_PIN05  
DAI0_PIN06  
DAI0_PIN07  
VDD_EXT  
86  
87  
VDD_INT  
VDD_INT  
VDD_INT  
GND  
88  
89  
SYS_CLKOUT  
VDD_REF  
VDD_EXT  
VDD_INT  
PA_00  
90  
VDD_REF  
91  
VDD_INT  
GND  
DAI0_PIN08  
DAI0_PIN09  
DAI0_PIN10  
DAI0_PIN19  
DAI0_PIN20  
VDD_INT  
92  
93  
VDD_INT  
VDD_INT  
VDD_INT  
JTG_TDI  
94  
PA_01  
95  
PA_02  
96  
VDD_INT  
PA_03  
97  
JTG_TCK  
JTG_TMS  
JTG_TDO  
VDD_REF  
VDD_EXT  
SYS_FAULT  
JTG_TRST  
SYS_HWRST  
SYS_BMODE0  
SYS_BMODE1  
SYS_RESOUT  
PB_00  
GND  
98  
PA_04  
VDD_INT  
99  
PA_05  
VDD_INT  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
PA_06  
VDD_INT  
VDD_INT  
VDD_REF  
VDD_EXT  
PA_07  
GND  
DAI1_PIN20  
DAI1_PIN19  
DAI1_PIN10  
DAI1_PIN09  
VDD_REF  
PA_08  
PA_09  
PA_10  
VDD_EXT  
VDD_INT  
GND  
VDD_INT  
PB_01  
DAI1_PIN08  
DAI1_PIN07  
DAI1_PIN06  
DAI1_PIN05  
DAI1_PIN04  
DAI1_PIN03  
DAI1_PIN02  
DAI1_PIN01  
VDD_EXT  
VDD_INT  
VDD_EXT  
VDD_REF  
PB_02  
GND  
VDD_INT  
VDD_INT  
PA_11  
PB_03  
PA_12  
PB_04  
PA_13  
PB_05  
PA_14  
VDD_INT  
VDD_INT  
VDD_INT  
GND  
VDD_EXT  
VDD_REF  
PA_15  
VDD_REF  
VDD_INT  
Rev. B  
|
Page 98 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
ADSP-2156x 120-LEAD LQFP LEAD ASSIGNMENTS (ALPHABETICAL BY PIN NAME)  
Pin Name  
DAI0_PIN01  
DAI0_PIN02  
DAI0_PIN03  
DAI0_PIN04  
DAI0_PIN05  
DAI0_PIN06  
DAI0_PIN07  
DAI0_PIN08  
DAI0_PIN09  
DAI0_PIN10  
DAI0_PIN19  
DAI0_PIN20  
DAI1_PIN01  
DAI1_PIN02  
DAI1_PIN03  
DAI1_PIN04  
DAI1_PIN05  
DAI1_PIN06  
DAI1_PIN07  
DAI1_PIN08  
DAI1_PIN09  
DAI1_PIN10  
DAI1_PIN19  
DAI1_PIN20  
GND  
Lead No.  
41  
Pin Name  
PA_03  
Lead No.  
18  
Pin Name  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
VDD_REF  
Lead No.  
45  
42  
PA_04  
19  
57  
43  
PA_05  
20  
59  
46  
PA_06  
21  
60  
47  
PA_07  
25  
61  
48  
PA_08  
26  
69  
49  
PA_09  
27  
80  
52  
PA_10  
28  
87  
53  
PA_11  
34  
88  
54  
PA_12  
35  
89  
55  
PA_13  
36  
91  
56  
PA_14  
37  
93  
77  
PA_15  
40  
94  
76  
PB_00  
108  
109  
113  
114  
115  
116  
105  
106  
05  
95  
75  
PB_01  
110  
117  
118  
119  
07  
74  
PB_02  
73  
PB_03  
72  
PB_04  
71  
PB_05  
70  
SYS_BMODE0  
SYS_BMODE1  
SYS_CLKIN0  
SYS_CLKOUT  
SYS_FAULT  
SYS_HWRST  
SYS_RESOUT  
SYS_XTAL0  
VDD_ANA  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_EXT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
VDD_INT  
11  
66  
23  
65  
39  
64  
10  
51  
63  
102  
104  
107  
06  
67  
02  
79  
GND  
09  
100  
112  
GND  
30  
1 Pin121 is the GND supply (see Figure 57)  
for the processor; this pad must connect  
to GND.  
GND  
31  
85  
GND  
58  
12  
GND  
62  
24  
GND  
86  
38  
GND  
90  
50  
GND  
92  
68  
GND  
120  
1211  
81  
78  
GND  
101  
111  
01  
HADC0_VIN0  
HADC0_VIN1  
82  
HADC0_VREFN 84  
HADC0_VREFP 83  
03  
04  
JTG_TCK  
JTG_TDI  
JTG_TDO  
JTG_TMS  
JTG_TRST  
PA_00  
97  
96  
99  
98  
103  
14  
15  
16  
08  
13  
17  
22  
29  
32  
PA_01  
33  
PA_02  
44  
Rev. B  
|
Page 99 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
CONFIGURATION OF THE 120-LEAD LQFP LEAD CONFIGURATION  
Figure 56 shows the top view of the 120-lead LQFP lead configuration and Figure 57 shows the bottom view of the 120-lead LQFP lead  
configuration.  
LEAD 120  
LEAD 91  
LEAD 1  
LEAD 90  
LEAD 1  
INDICATOR  
120-LEAD LQFP  
TOP VIEW  
LEAD 30  
LEAD 61  
LEAD 31  
LEAD 60  
Figure 56. 120-Lead LQFP Lead Configuration (Top View)  
LEAD 91  
LEAD 120  
LEAD 90  
LEAD 1  
120-LEAD LQFP  
BOTTOM VIEW  
GND PAD  
(LEAD 121)  
LEAD 61  
LEAD 30  
LEAD 60  
LEAD 31  
Figure 57. 120-Lead LQFP Lead Configuration (Bottom View)  
Rev. B  
|
Page 100 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
OUTLINE DIMENSIONS  
Dimensions in Figure 58 (for the 400-ball BGA) and Figure 59 (for the 120-lead LQFP) are shown in millimeters.  
17.10  
17.00 SQ  
16.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
20 18 16 14 12 10  
19 17 15 13 11  
8
6
4
2
9
7
5
3
1
A
C
E
G
J
B
D
F
15.20  
H
K
M
P
T
BSC SQ  
L
N
R
U
W
0.80  
BSC  
V
Y
TOP VIEW  
0.90  
REF  
BOTTOM VIEW  
DETAIL A  
SIDE VIEW  
1.38  
1.28  
1.19  
0.99  
0.94  
0.89  
DETAIL A  
0.70  
SEATING  
PLANE  
0.390  
0.343  
0.300  
0.50  
0.45  
0.40  
COPLANARITY  
0.12  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-275-MMAB-1  
Figure 58. 400-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-400-3)  
Dimensions shown in millimeters  
Rev. B  
|
Page 101 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
16.20  
16.00 SQ  
15.80  
14.10  
14.00 SQ  
13.90  
11.60 REF  
SQ  
1.60  
0.75  
0.60  
0.45  
MAX  
PIN 1  
INDICATOR  
120  
91  
91  
120  
90  
1
90  
1
1.00 REF  
SEATING  
PLANE  
U-GROOVE  
PIN 1  
INDICATOR  
0.10 REF  
5.40 REF  
SQ  
12°  
1.45  
1.40  
1.35  
0.20  
0.15  
0.09  
7°  
30  
61  
61  
30  
0.15  
0°  
31  
60  
60  
31  
0.10  
0.05  
TOP VIEW  
(PINS DOWN)  
BOTTOM VIEW  
(PINS UP)  
0.08  
COPLANARITY  
0.23  
0.18  
0.13  
VIEW A  
0.40  
BSC  
LEAD PITCH  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
VIEW A  
ROTATED 90  
°
CCW  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MS-026-BEE-HD  
Figure 59. 120-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP]  
(SW-120-4)  
Dimensions shown in millimeters  
SURFACE-MOUNT DESIGN  
Table 67 is provided as an aid to PCB design. For industry-stan-  
dard design recommendations, refer to IPC-7351, Generic  
Requirements for Surface-Mount Design and Land Pattern  
Standard.  
Table 67. CSP_BGA Data for Use with Surface-Mount Design  
Package  
Package Ball Attach Type  
Package Solder Mask Opening  
Package Ball Pad Size  
BC-400-3  
Solder Mask Defined  
0.4 mm Diameter  
0.5 mm Diameter  
Rev. B  
|
Page 102 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
AUTOMOTIVE PRODUCTS  
The following models are available with controlled manufacturing to support the quality and reliability requirements of automotive appli-  
cations. Note that these automotive models may have specifications that differ from the nonautomotive models; therefore designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown in Table 68 are available  
for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information  
and to obtain the specific Automotive Reliability reports for these models.  
Table 68. Automotive Products  
Processor Instruction Temperature  
External  
Memory Port  
Package  
Option  
Model1, 2  
Rate (Max)  
600 MHz  
600 MHz  
400 MHz  
600 MHz  
1000 MHz  
Range3  
Package Description  
ADSP-21563WCSWZ6  
ADSP-21563WCSWZ6RL  
ADSP-21566WCBCZ4  
ADSP-21567WCBCZ6  
ADSP-21569WCBCZ10  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
0
0
1
1
1
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
BC-400-3  
BC-400-3  
BC-400-3  
1 Z =RoHS compliant part.  
2 RL = Supplied on Tape and Reel.  
3 Referenced temperature is junction temperature. See Operating Conditions for junction temperature (TJ) specification.  
PLANNED AUTOMOTIVE PRODUCTION PRODUCTS  
Processor Instruction Temperature  
External  
Memory Port  
Package  
Option  
Model1, 2  
Rate (Max)  
400 MHz  
400 MHz  
800 MHz  
800 MHz  
800 MHz  
800 MHz  
1000 MHz  
Range3  
Package Description  
ADSP-21562WCSWZ4  
ADSP-21562WCSWZ4RL  
ADSP-21563WCSWZ8  
ADSP-21563WCSWZ8RL  
ADSP-21565WCSWZ8  
ADSP-21565WCSWZ8RL  
ADSP-21565WCSWZ10  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
ADSP21565WCSWZ10RL 1000 MHz  
ADSP-21566WCBCZ4RL  
ADSP-21567WCBCZ6RL  
ADSP-21567WCBCZ8  
ADSP-21567WCBCZ8RL  
ADSP-21569WCBCZ8  
ADSP-21569WCBCZ8RL  
ADSP21569WCBCZ10RL  
400 MHz  
600 MHz  
800 MHz  
800 MHz  
800 MHz  
800 MHz  
1000 MHz  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
BC-400-3  
BC-400-3  
BC-400-3  
BC-400-3  
BC-400-3  
BC-400-3  
BC-400-3  
1 Z =RoHS compliant part.  
2 RL = Supplied on Tape and Reel.  
3 Referenced temperature is junction temperature. See Operating Conditions for junction temperature (TJ) specification.  
Rev. B  
|
Page 103 of 104  
|
February 2021  
ADSP-21562/21563/21565/21566/21567/21569  
PLANNED PRODUCTION PRODUCTS  
Temperature  
Range2  
External Memory  
Port  
0
Processor Instruction  
Rate (Max)  
Package  
Option  
Model1  
Package Description  
ADSP-21562BSWZ4  
ADSP-21562KSWZ4  
ADSP-21563BSWZ8  
ADSP-21565BSWZ8  
ADSP-21565BSWZ10  
ADSP-21565KSWZ10  
ADSP-21566BBCZ4  
ADSP-21567BBCZ6  
ADSP-21567BBCZ8  
ADSP-21569BBCZ8  
400 MHz  
400 MHz  
800 MHz  
800 MHz  
1000 MHz  
1000 MHz  
400 MHz  
600 MHz  
800 MHz  
800 MHz  
–40°C to +125°C  
0°C to +110°C  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
120-Lead LQFP_EP, Exposed Pad SW-120-4  
0
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
0°C to +110°C  
0
0
0
0
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
1
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
BC-400-3  
BC-400-3  
BC-400-3  
BC-400-3  
1
1
1
1 Z =RoHS compliant part.  
2 Referenced temperature is junction temperature. See Operating Conditions for junction temperature (TJ) specification.  
ORDERING GUIDE  
Processor Instruction Temperature  
External  
Memory Port  
Package  
Option  
Model1  
Rate (Max)  
800 MHz  
800 MHz  
400 MHz  
600 MHz  
800 MHz  
800 MHz  
1000 MHz  
1000 MHz  
Range2  
Package Description  
ADSP-21563KSWZ8  
ADSP-21565KSWZ8  
ADSP-21566KBCZ4  
ADSP-21567KBCZ6  
ADSP-21567KBCZ8  
ADSP-21569KBCZ8  
ADSP-21569BBCZ10  
ADSP-21569KBCZ10  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
0°C to +110°C  
–40°C to +125°C  
0°C to +110°C  
0
0
1
1
1
1
1
1
120-Lead LQFP_EP, Exposed Pad  
120-Lead LQFP_EP, Exposed Pad  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
Pad 400-Ball CSP_BGA  
SW-120-4  
SW-120-4  
BC-400-3  
BC-400-3  
BC-400-3  
BC-400-3  
BC-400-3  
BC-400-3  
1 Z =RoHS compliant part.  
2 Referenced temperature is junction temperature. See Operating Conditions for junction temperature (TJ) specification.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D21778-2/21(B)  
Rev. B  
| Page 104 of 104 | February 2021  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY