ADSP-21MOD980N-000 [ADI]

MultiPort Internet Gateway Processor; 多端口网络网关处理器
ADSP-21MOD980N-000
型号: ADSP-21MOD980N-000
厂家: ADI    ADI
描述:

MultiPort Internet Gateway Processor
多端口网络网关处理器

文件: 总42页 (文件大小:554K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MultiPort Internet  
Gateway Processor  
a
ADSP-21mod980N  
Preliminary Technical Data  
PERFORMANCE FEATURES  
INTEGRATION FEATURES  
Complete Single Device Multi-Port Internet Gateway  
Processor (No External Memory Required)  
Implements Sixteen Modem Channels or Forty Voice  
Channels in One Package  
Each DSP Can Implement two V.34/V.90 Data/Fax  
Modem Channels (includes Datapump and  
Controller)  
ADSP-2100 Family Code-Compatible, with Instruction  
Set Extensions  
16 Mbits of On-Chip SRAM, Configured as 9 Mbits of  
Program Memory and 7 Mbits of Data Memory  
Dual-Purpose Program Memory, for Both Instruction  
and Data Storage  
352-Ball PBGA with a 35mm 
؋
 35mm footprint  
Low Power Version: 640 MIPS Sustained Performance,  
12.5 ns Instruction Time @ 1.9 Volts nominal  
(internal)  
Open Architecture Extensible to Voice-over-Network  
(VoN) and Other Applications  
Low Power Dissipation, 25 mW (typical) per Channel  
Powerdown Mode Featuring Low CMOS Standby Power  
Dissipation  
SYSTEM CONFIGURATION FEATURES  
16-Bit Internal DMA Port for High-Speed Access to  
On-Chip Memory (Mode-Selectable)  
Programmable Multichannel Serial Port Supports 24/32  
Channels  
Two Double-Buffered Serial Ports with Companding  
Hardware and Automatic Data Buffering  
Separate Reset Pins for Each Internal Processor  
21mod980N  
Host IDMA  
SPORT0  
SPORT1  
2188N  
DSP 1  
2188N  
DSP 2  
2188N  
DSP 3  
2188N  
DSP 4  
2188N  
DSP 7  
2188N  
DSP 8  
2188N  
DSP 6  
2188N  
DSP 5  
CONTROL  
Figure 1. MOD980N MultiPort Internet Gateway Processor Block Diagram  
REV. PrB 6/2001  
This information applies to a product under development. Its characteristics One Technology Way, P.O.Box 9106, Norwood, MA 02062-9106, U.S.A.  
and specifications are subject to change without notice. Analog Devices  
assumes no obligation regarding future manufacturing unless otherwise  
agreed to in writing.  
Tel:781/329-4700  
Fax:781/326-8703  
World Wide Web Site: http://www.analog.com  
©Analog Devices,Inc., 2001  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
GENERAL DESCRIPTION  
MODEM SOFTWARE  
The ADSP-21mod980N is a multi-port Internet gateway  
processor optimized for implementation of a complete  
V.34/V.90 digital modem. All datapump and controller  
functions can be implemented on a single device, offering  
the lowest power consumption and highest possible modem  
port density.  
The following software is available as object code from  
Analog Devices Inc.  
ADSP-21mod Family Dynamic Internet Voice  
AccessTM (DIVA) Voice Over Network Solution.  
ADSP-21mod980-210N Multiport Internet Gateway  
Processor Modem Solution.  
The ADSP-21mod980N combines the ADSP-2100 Family  
base architecture (three computational units, data address  
generators, and a program sequencer) with two serial ports,  
a 16-bit internal DMA port, a byte DMA port, a program-  
mable timer, Flag I/O, extensive interrupt capabilities, and  
on-chip program and data memory.  
A complete system implementation requires the  
ADSP-21mod980N device plus modem or voice software.  
The modem software executes general modem control,  
command sets, error correction, and data compression,  
data modulations (for example, V.34 and V.90), and host  
interface functions.The host interface allows system access  
to modem statistics, such as call progress, connect speed,  
retrain count, symbol rate, and other modulation  
parameters.  
The ADSP-21mod980N integrates 16 Mbits of on-chip  
memory, configured as 384 Kwords (24-bit) of program  
RAM, and 448 Kwords (16-bit) of data RAM. Power-down  
circuitry is also provided to reduce the average and standby  
power consumption of equipment which in turn reduces  
equipment cooling requirements. The ADSP-21mod980N  
is available in a 35 mm x 35 mm, 352-lead PBGA package.  
The modem datapump and controller software reside in  
on-chip SRAM and do not require additional memory. You  
can configure the ADSP-21mod980N dynamically by  
downloading software from the host through the 16-bit  
IDMA interface. This SRAM-based architecture provides a  
software upgrade path to other applications, such as  
voice-over-IP, and to future standards.  
Fabricated in a high-speed, low-power, CMOS process, the  
ADSP-21mod980N operates with a 12.5 ns instruction  
cycle time. Every instruction can execute in a single proces-  
sor cycle.  
The ADSP-21mod980N’s flexible architecture and com-  
prehensive instruction set allow the processor to perform  
multiple operations in parallel. In one processor cycle, the  
ADSP-21mod980N can:  
DEVELOPMENT SYSTEM  
Analog Devices' wide range of software and hardware devel-  
opment tools supports the ADSP-218x N Series. The DSP  
tools include an integrated development environment  
(IDE), an evaluation kit, and a serial port emulator.  
Generate the next program address  
Fetch the next instruction  
Perform one or two data moves  
Update one or two data address pointers  
Perform a computational operation  
VisualDSP® is an integrated development environment,  
allowing for fast and easy development, debug and deploy-  
ment. The VisualDSP project management environment  
lets programmers develop and debug an application. This  
environment includes an easy-to-use assembler that is based  
on an algebraic syntax; an archiver (librarian/library  
builder); a linker; a loader; a cycle-accurate, instruc-  
tion-level simulator; a C compiler; and a C run-time library  
that includes DSP and mathematical functions.  
This takes place while the processor continues to:  
Receive and transmit data through the two serial ports  
Receive and/or transmit data through the internal  
DMA port  
Receive and/or transmit data through the byte DMA  
port  
Debugging both C and assembly programs with the Visu-  
alDSP debugger, programmers can:  
Decrement timer  
• View mixed C and assembly code (interleaved source and  
object information)  
• Insert break points  
• Set conditional breakpoints on registers, memory, and  
stacks  
• Trace instruction execution  
• Fill and dump memory  
• Source level debugging  
2
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
The VisualDSP IDE lets programmers define and manage  
DSP software development. The dialog boxes and property  
pages let programmers configure and manage all of the  
ADSP-218x development tools, including the syntax high-  
lighting in the VisualDSP editor. This capability controls  
how the development tools process inputs and generate  
outputs.  
The ADSP-218x EZ-ICE ® Emulator provides an easier  
and more cost-effective method for engineers to develop  
and optimize DSP systems, shortening product develop-  
ment cycles for faster time-to-market. The  
ADSP-21mod980N integrates on-chip emulation support  
with a 14-pin ICE-Port interface. This interface provides a  
simpler target board connection that requires fewer  
mechanical clearance considerations than other  
ADSP-2100 Family EZ-ICEs. The ADSP-21mod980N  
device need not be removed from the target system when  
using the EZ-ICE, nor are any adapters needed. Due to the  
small footprint of the EZ-ICE connector, emulation can be  
supported in final board designs.The EZ-ICE performs a  
full range of functions, including:  
In-target operation  
Up to 20 breakpoints  
Single-step or full-speed operation  
Registers and memory values can be examined and  
altered  
PC upload and download functions  
Instruction-level emulation of program booting and  
execution  
Complete assembly and disassembly of instructions  
C source-level debugging  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of  
ADSP-21mod980N functionality. For specific information  
about the modem processors, refer to the ADSP-2188N  
data sheet. For additional information on the architecture  
and instruction set of the modem processors, refer to the  
ADSP-2100 Family Users Manual (3rd edition). For more  
information about the development tools, refer to the  
ADSP-2100 Family Development Tools Data Sheet.  
REV. PrB 6/2001  
3
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
ARCHITECTURE OVERVIEW  
Figure 2 on page 4 is a functional block diagram of the  
ADSP-21mod980N. It contains eight independent digital  
signal processors.  
17  
DATA<23:8>, A<0>  
IAD <15:0>,  
IDMA CNTL  
CLKIN  
20  
20  
IAD<15:0>, IDMA CNTL  
3
PF<0:2>/MODE A:C  
2188N  
2188N  
DSP 4  
2188N  
DSP 5  
2188N  
DSP 2  
2188N  
DSP 6  
2188N  
DSP 1  
2188N  
DSP 8  
2188N  
DSP 7  
DSP 3  
4
4
SPORT0A  
SPORT1  
SPORT0B  
4
8
EMULATOR  
SIGNALS ROUTED TO EACH RESPECTIVE DIE  
IDMA CNTL = IAL, IRD, IWR, IACK  
8
BR <8:1>  
INTERRUPTS = IRQE (PF4), IRQL0(PF5), IRQL1(PF6), IRQ2(PF7)  
8
BG <8:1>  
8
EMULATOR = EMS, EINT, ELIN, EBR, EBG, ECLK  
ELOUT, ERESET  
RESET <8:1>  
8
CLKOUT <8:1>  
SPORT0A, SPORT 0B  
8
EE <8:1>  
= RFS0, DR0, DT0, SCKL0  
8
IS <8:1>  
SPORT1 = RFS1, TFS1, DR1, SCKL1  
8
TFS0 <8:1>  
8
DT1 <8:1>  
32  
NOTE:  
INTERRUPTS <8:1>  
1. PWD AND PF3/MODE D ARE TIED HIGH  
SUBTOTAL = 177 SIGNAL BALLS  
109  
GND  
44  
VDDINT  
22  
VDDEXT  
SUBTOTAL = 175 POWER BALLS  
TOTAL = 352 BALLS  
Figure 2. ADSP-21mod980N Functional Block Diagram  
accessed through a single external pin. Other signals remain  
Every modem processor has:  
separate and they are accessed through separate external  
pins for each processor.  
A DSP core  
256K bytes of RAM  
Two serial ports  
An IDMA host.  
The arrangement of the eight modem processors in the  
ADSP-21mod980N makes one basic configuration possi-  
ble: a slave configuration. In this configuration, the data  
pins of all eight processors connect to a single bus structure.  
The signals of each modem processor are accessed through  
the external pins of the ADSP-21mod980N. Some signals  
are bussed with the signals of the other processors and are  
4
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
All eight modem processors have identical functions and  
have equal status. Each of the modem processors is con-  
nected to a common IDMA bus and each modem processor  
is configured to operate in the same mode (see the slave  
mode and the memory mode descriptions in Memory  
Architectureon page 10). The slave mode is considered to  
be the only mode of operation in the ADSP-21mod980N  
modem pool.  
SERIAL PORTS  
The ADSP-21mod980N has a multichannel serial port  
(SPORT) connected to each internal digital modem pro-  
cessor for serial communications.  
The following is a brief list of ADSP-21mod980N SPORT  
features. For additional information on the internal Serial  
Ports, refer to the ADSP-2100 Family Users Manual. Each  
SPORT:  
is bidirectional and has a separate, double-buffered  
transmit and receive section.  
can use an external serial clock or generate its own  
serial clock internally.  
has independent framing for the receive and transmit  
sections. Sections run in a frameless mode or with  
frame synchronization signals internally or externally  
generated. Frame sync signals are active high or  
inverted, with either of two pulse widths and timings.  
supports serial data word lengths from 3 to 16 bits and  
provides optional A-law and µ-law companding accord-  
ing to CCITT recommendation G.711.  
receive and transmit sections can generate unique  
interrupts on completing a data word transfer.  
can receive and transmit an entire circular buffer of  
data with one overhead cycle per data word. An inter-  
rupt is generated after a data buffer transfer.  
A multichannel interface selectively receives and transmits a  
24 or 32 word, time-division multiplexed, serial bitstream.  
PIN DESCRIPTIONS  
The ADSP-21mod980N is available in a 352-lead PBGA  
package. In order to maintain maximum functionality and  
reduce package size and pin count, some serial port, pro-  
grammable flag, interrupt and external bus pins have dual,  
multiplexed functionality. The external bus pins are config-  
ured during RESET only, while serial port pins are software  
configurable during program execution. Flag and interrupt  
functionality is retained concurrently on multiplexed pins.  
Table on page 6 lists the pin names and their functions. In  
cases where pin functionality is reconfigurable, the default  
state is shown in plain text; alternate functionality is shown  
in italics.  
REV. PrB 6/2001  
5
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Table 1. Common Mode Pins  
Pin Name(s)  
# of Pins  
Input/Output  
Function  
RESET  
BR  
8
I
Processor Reset Input  
8
I
Bus Request Input  
BG  
8
O
I
Bus Grant Output  
IRQ2 /  
PF7  
8
Edge- or Level-Sensitive Interrupt Request1  
Programmable I/O Pin  
8
I/O  
I
IRQL1 /  
PF6  
8
Level-Sensitive Interrupt Requests1  
Programmable I/O Pin  
8
I/O  
I
IRQL0 /  
PF5  
8
Level-Sensitive Interrupt Requests1  
Programmable I/O Pin  
8
I/O  
I
IRQE /  
PF4  
8
Edge-Sensitive Interrupt Requests1  
Programmable I/O Pin  
8
I/O  
I
Mode C /  
PF2  
1
Mode Select Input - Checked Only During RESET  
Programmable I/O Pin During Normal Operation  
Mode Select Input - Checked Only During RESET  
Programmable I/O Pin During Normal Operation  
Mode Select Input - Checked Only During RESET  
Programmable I/O Pin During Normal Operation  
Clock Input  
1
I/O  
I
Mode B /  
PF1  
1
1
I/O  
I
Mode A /  
PF0  
1
1
I/O  
I
CLKIN  
CLKOUT  
SPORT  
VDD and GND  
EZ-Port  
1
8
O
I/O  
I
Processor Clock Output  
28  
175  
16  
Serial Port I/O Pins2  
Power and Ground  
I/O  
For Emulation Use  
1
2
Interrupt/Flag Pins retain both functions concurrently. If IMASK is set to enable the corresponding interrupts, then the ADSP-21mod980N will vector  
to the appropriate interrupt vector address when the pin is asserted, either by external devices, or set as a programmable flag.  
SPORT configuration determined by the ADSP-21mod980N System Control Register. Software configurable.  
MEMORY INTERFACE PINS  
The ADSP-21mod980N modem pool is used in Slave  
Mode. In Slave Mode, the Modem Processors operate in  
host configuration. The operating mode is determined by  
the state of the Mode C pin during RESET and cannot be  
changed while the modem pool is running. See the Mem-  
ory Architecturesection for more information.  
6
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
IRQE is edge sensitive. The priorities and vector addresses  
of all interrupts are shown in Table on page 7. When the  
modem pool is reset, interrupt servicing is disabled.  
Table 2. Host Pins (Mode C = 1) Modem Processors 1-8  
# of  
Pins Output  
Input/  
Table 3. Interrupt Priority and Interrupt Vector  
Addresses  
Pin Name  
Function  
IAD[15:0]  
321  
1
I/O  
O
IDMA Port  
Address/Data Bus  
Interrupt Vector Address  
Source Of Interrupt  
(Hex)  
A0  
Address Pin for Exter-  
nal I/O, Program,  
Data, or Byte access  
RESET (or Power-Up  
with PUCR = 1)  
0x0000 (Highest Priority)  
0x002C  
Power Down  
(Nonmaskable)  
D[23:8]  
16  
I/O  
Data I/O Pins for Pro-  
gram, Data Byte and  
I/O spaces  
IRQ2  
0x0004  
0x0008  
0x000C  
0x0010  
0x0014  
0x0018  
0x001C  
0x0020  
21  
21  
21  
I
I
I
IDMA Write Enable  
IDMA Read Enable  
IRQL1  
IWR  
IRD  
IAL  
IRQL0  
SPORT0 Transmit  
SPORT0 Receive  
IRQE  
IDMA Address Latch  
Pin  
IS  
8
I
IDMA Selects  
IACK  
21  
O
IDMA Port Acknowl-  
edge Configurable in  
Mode D; Open Drain  
BDMA Interrupt  
SPORT1 Transmit or  
IRQ1  
1
There are two distinct IAD buses. One addresses DSPs 1-4 and the other  
communicates with DSPs 5-8. See Figure 2 for details.  
SPORT1 Receive or  
IRQ0  
0x0024  
INTERRUPTS  
Timer  
0x0028 (Lowest Priority)  
The interrupt controller allows each modem processor in  
the modem pool to respond individually to eleven possible  
interrupts and RESET with minimum overhead. The  
ADSP-21mod980N provides four dedicated external inter-  
rupt input pins, IRQ2, IRQL1, IRQL0, and IRQE (shared  
with the PF[7:4] pins) for each modem processor. The  
ADSP-21mod980N also supports internal interrupts from  
the timer, the byte DMA port, the serial port, software, and  
the power-down control circuit. The interrupt levels are  
internally prioritized and individually maskable (except  
power down and RESET). The IRQ2, IRQ1, and IRQ0  
input pins can be programmed to be either level- or  
edge-sensitive. IRQL0 and IRQL1 are level-sensitive and  
LOW POWER OPERATION  
The ADSP-21mod980N has three low power modes that  
significantly reduce the power dissipation when the device  
operates under standby conditions. These modes are:  
Power Down  
Idle  
Slow Idle  
The CLKOUT pin may also be disabled to reduce external  
power dissipation.  
POWER DOWN  
The ADSP-21mod980N modem pool has a low power fea-  
ture that lets the modem pool enter a very low power  
dormant state through software control. Here is a brief list  
REV. PrB 6/2001  
7
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
of power-down features. Refer to the ADSP-2100 Family  
Users Manual, System Interfacechapter, for detailed  
information about the power-down feature.  
When the IDLE (n) instruction is used in systems that have  
an externally generated serial clock (SCLK), the serial clock  
rate may be faster than the modem pools reduced internal  
clock rate. Under these conditions, interrupts must not be  
generated at a faster rate than can be serviced, due to the  
additional time the modem pool takes to come out of the  
idle state (a maximum of n cycles).  
Quick recovery from power down. The modem pool  
begins executing instructions in as few as 200 CLKIN  
cycles.  
Support for an externally generated TTL or CMOS  
processor clock. The external clock can continue run-  
ning during power down without affecting the lowest  
power rating and 200 CLKIN cycle recovery.  
SYSTEM CONFIGURATION  
Figure on page 9 shows the hardware interfaces for a typi-  
cal multichannel modem configuration with the  
Power down is initiated by the software power-down  
force bit. Interrupt support allows an unlimited num-  
ber of instructions to be executed before optionally  
powering down.  
ADSP-21mod980N. Other system design considerations  
such as host processing requirements, electrical loading,  
and overall bus timing must all be met. A line interface can  
be used to connect the multichannel subscriber or client  
data stream to the multichannel serial port of the  
ADSP-21mod980N. The IDMA port of the  
ADSP-21mod980N is used to give a host processor full  
access to the internal memory of the ADSP-21mod980N.  
This lets the host dynamically configure the  
ADSP-21mod980N by loading code and data into its inter-  
nal memory. This configuration also lets the host access  
server data directly from the ADSP-21mod980Ns internal  
memory. In this configuration, the Modem Processors  
should be put into host memory mode where Mode C = 1,  
Mode B = 0, and Mode A = 1.  
Context clear/save control allows the modem pool to  
continue where it left off or start with a clean context  
when leaving the power down state.  
The RESET pin also can be used to terminate power  
down.  
IDLE  
When the ADSP-21mod980N is in the Idle Mode, the  
modem pool waits indefinitely in a low power state until an  
interrupt occurs. When an unmasked interrupt occurs, it is  
serviced; execution then continues with the instruction fol-  
lowing the IDLE instruction. In Idle mode IDMA, BDMA  
and autobuffer cycle steals still occur.  
SLOW IDLE  
The IDLE instruction is enhanced on the  
ADSP-21mod980N to let the modem pools internal clock  
signal be slowed, further reducing power consumption. The  
reduced clock frequency, a programmable fraction of the  
normal clock rate, is specified by a selectable divisor given  
in the IDLE instruction.  
The format of the instruction is:  
IDLE (n);  
where n = 16, 32, 64, or 128. This instruction keeps the  
modem pool fully functional, but operating at the slower  
clock rate. While it is in this state, the modem pools other  
internal clock signals, such as SCLK, CLKOUT, and timer  
clock, are reduced by the same ratio. The default form of  
the instruction, when no clock divisor is given, is the stan-  
dard IDLE instruction.  
When the IDLE (n) instruction is used, it effectively slows  
down the modem pools internal clock and thus its response  
time to incoming interrupts. The one-cycle response time  
of the standard idle state is increased by n, the clock divisor.  
When an enabled interrupt is received, the  
ADSP-21mod980N will remain in the idle state for up to a  
maximum of n modem pool cycles (n = 16, 32, 64, or 128)  
before resuming normal operation.  
8
6/2001 REV. PrB  
PRELIMINARY TECHNICA L DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
T1/E1  
LINE  
T1/E1  
LINE  
T1/E1  
LINE  
INTERFACE  
INTERFACE  
INTERFACE  
SPORT  
SPORT  
SPORT  
21mod980N  
21mod980N  
21mod980N  
ST/CNTL IDMA  
ST/CNTL IDMA  
ST/CNTL IDMA  
Figure 3. Multichannel Modem Configuration  
CLOCK SIGNALS  
The CLKIN input cannot be halted, changed during oper-  
ation, or operated below the specified frequency during  
normal operation. The only exception is while the processor  
is in the power down state. For additional information, refer  
to Chapter 9, ADSP-2100 Family Users Manual for a  
detailed explanation of this power down feature.  
The ADSP-21mod980N is clocked by a TTL-compatible  
clock signal that runs at half the instruction rate; a 40 MHz  
input clock yields a 12.5 ns processor cycle, which is equiv-  
alent to 80 MHz. Normally, instructions are executed in a  
single processor cycle. All device timing is relative to the  
internal instruction clock rate, which is indicated by the  
CLKOUT signal when enabled. The clock input signal is  
connected to the processors CLKIN input.  
REV. PrB 6/2001  
9
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
A clock output (CLKOUT) signal is generated by the pro-  
cessor at the processors cycle rate. This can be enabled and  
disabled by the CLKODIS bit in the SPORT0 Autobuffer  
Control Register.  
Figure on page 11 shows Data Memory  
Table on page 11 shows the generation of address bits  
based on the DMOVLAY values. Access to external  
memory is not available  
RESET  
PM MODE B = 0  
The RESET signals initiate a reset of each modem proces-  
sor in the ADSP-21mod980N. The RESET signals must be  
asserted during the power-up sequence to assure proper ini-  
tialization. RESET during initial power-up must be held  
long enough to let the internal clocks stabilize. If RESETs  
are activated any time after power up, the clocks continue to  
run and do not require stabilization time.  
ALWAYS  
ACCESSIBLE  
AT ADDRESS  
0x0000 - 0x1FFF  
0x2000 -  
ACCESSIBLE WHEN  
0x3FFF  
PM O VLAY = 0  
The power-up sequence is defined as the total time required  
for the oscillator circuits to stabilize after a valid VDD is  
applied to the processors, and for the internal phase-locked  
loops (PLL) to lock onto the specific frequency. A mini-  
mum of 2000 CLKIN cycles ensures that the PLLs have  
locked, but this does not include the oscillatorsstart-up  
time. During this power-up sequence, the RESET signals  
should be held low. On any subsequent resets, the RESET  
signals must meet the minimum pulse width specification,  
0x2000 -  
0x3FFF  
0x2000 -  
ACCESSIBLE WHEN  
PM O VLAY = 4  
0x3FFF  
0x2000 -  
0x3FFF  
ACCESSIBLE WHEN  
PM O VLAY = 5  
ACCESSIBLE  
WHEN  
0x2000 -  
0x3FFF  
tRSP  
.
PM O VLAY = 6  
The RESET input contains some hysteresis; however, if you  
use an RC circuit to generate your RESET signals, the use  
of an external Schmidt triggers are recommended.  
INTERNAL  
MEMORY  
ACCESSIBLE  
WHEN  
PM O VLAY = 7  
The RESET for each individual modem processor sets the  
internal stack pointers to the empty stack condition, masks  
all interrupts and clears the MSTAT register. When a  
RESET is released, if there is no pending bus request and  
the modem processor is configured for booting, the  
boot-loading sequence is performed. The first instruction is  
fetched from on-chip program memory location 0x0000  
once boot loading completes.  
PROGRAM MEMORY  
ADDRESS  
MODE B=0  
0x3FFF  
8K INTERNAL  
PMOVLAY =  
0, 4, 5, 6, 7  
0x2000  
0x1FFF  
MEMORY ARCHITECTURE  
8K  
The ADSP-21mod980N provides a variety of memory and  
peripheral interface options for Modem Processor 1. The  
key functional groups are Program Memory, Data Memory,  
Byte Memory, and I/O. Refer to the following figures and  
tables for PM and DM memory allocations in the  
ADSP-21mod980N.  
INTERNAL  
0x0000  
Figure 4. Program Memory Map  
Table 4. PMOVLAY bits  
The ADSP-21mod980N modem pool operates in one  
memory mode: Slave Mode. The following figures and  
tables describe the memory of the ADSP-21mod980N:  
PMOVLAY Memory A13  
A[12:0]  
0, 4, 5, 6, 7 Internal  
Not  
Applicable  
Not Applicable  
Figure on page 10 shows Program Memory  
Table on page 10 shows the generation of address bits  
based on the PMOVLAY values  
10  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
DATA MEMORY  
Table 5. DMOVLAY bits  
ALWAYS  
ACCESSIBLE  
AT ADDRESS  
0x2000 - 0x3FFF  
DMOVLAY  
Memory A13  
A[12:0]  
0, 4, 5, 6, 7, 8 Internal  
Not  
Not  
0x0000 - 0x1FFF  
Applicable  
Applicable  
0x0000 - 0x1FFF  
MEMORY MAPPED REGISTERS (NEW TO THE  
ADSP-21MOD980N)  
ACCESSIBLE WHEN  
DM OVLAY = 0  
0x0000 - 0x1FFF  
The ADSP-21mod980N has three memory mapped regis-  
ters that differ from other ADSP-21xx Family DSPs. See  
Waitstate Control Registeron page 11. See  
Programmable Flag & Composite Select Control Regis-  
teron page 12. See System Control Registeron  
page 12. The slight modifications to these registers provide  
the ADSP-21mod980Ns waitstate and BMS control  
features.  
ACCESSIBLE WHEN  
DM OVLAY = 4  
0x0000 - 0x1FFF  
ACCESSIBLE WHEN  
DM OVLAY = 5  
0x0000 - 0x1FFF  
ACCESSIBLE WHEN  
DM OVLAY = 6  
0x0000 - 0x1FFF  
INTERNAL  
MEMORY  
ACCESSIBLE WHEN  
DM OVLAY = 7  
ACCESSIBLE WHEN  
DM OVLAY = 8  
DATA MEMORY  
ADDR  
0x3FFF  
32 MEMORY  
MAPPED  
REGISTERS  
0x3FE0  
0x3FDF  
INTERNAL  
8160 WORDS  
0x2000  
0x1FFF  
8K INTERNAL  
DMOVLAY =  
0, 4, 5, 6, 7, 8  
Figure 5. Data Memory Map  
.
15 14 13 12 11 10  
9
1
8
1
7
6
1
5
4
3
1
2
1
1
1
0
1
DM(0x3FFE)  
1
1
1
1
1
1
1
1
1
DWAIT  
IOWAIT3  
IOWAIT 2  
IOW AIT1  
IOWAIT0  
Wait State Mode Select  
0 = Normal mode (PWAIT, DWAIT, IOWAIT0-3 = N wait states, ranging from 0 to 7)  
1 = 2N+1 mode (PWAIT, DWAIT, IOWAIT0-3 = 2N+1 wait states, ranging from 0 to 15)  
Figure 6. Waitstate Control Register  
REV. PrB 6/2001  
11  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
15 14 13 12 11 10  
9
8
1
7
6
0
5
4
3
0
2
0
1
0
0
0
DM(0x3FE6)  
0
1
1
1
1
1
1
0
0
0
BMWAIT  
CMSSEL  
0 = Disable CMS  
1 = Enable CMS  
PFTYPE  
0 = Input  
1 = Output  
(where bit: 11-IOM, 10-BM, 9-DM, 8-PM)  
Figure 7. Programmable Flag1 & Composite Select Control Register  
1
Since they are multiplexed within the ADSP-21mod980N, PF[2:0] should be configured as an output for only one processor at a time. Bit [3] of DM  
(0x3FE6) must also be 0 to ensure that PF[3] is never an output.  
15 14 13 12 11 10  
9
0
8
0
7
6
0
5
4
3
0
2
1
1
1
0
1
DM(0x3FFF)  
0
0
0
0
0
1
0
0
0
SPORT0 Enable  
0 = Disable  
1 = Enable  
Reserved Set  
To 0  
RESERVED  
SET TO 0  
PWAIT  
Program Memory  
Wait States  
SPORT1 Enable  
0 = Disable  
1 = Enable  
SPORT1 Configure  
0 = FI, FO, IRQ0, IRQ1, SCLK  
1= SPORT1  
Disable BMS  
0 = Enable BMS  
1 = Disable BMS, except when  
memory strobes are three-stated  
Figure 8. System Control Register  
Table 6. ADSP-21mod980N Mode of Operation  
MODE C MODE B MODE A Booting Method  
IDMA feature is used to load internal memory as desired. Program execution is held off until internal  
1
0
1
1
program memory location 0x0000 is written to. Chip is configured in Slave Mode. IACK requires  
2
external pulldown.  
1
2
Considered standard operating settings. These configurations simplify your design and improve memory management.  
IDMA timing details and the correct usage of IACK are described in the ADSP-2100 Family User’s Manual.  
SLAVE MODE  
INTERNAL MEMORY DMA PORT (IDMA PORT)  
This section describes the Slave Mode memory configura-  
tion of the Modem Processors.  
The IDMA Port provides an efficient way for a host system  
and the ADSP-21mod980N to communicate. The port is  
used to access the on-chip program memory and data mem-  
ory of each modem processor with only one processor cycle  
per word overhead. The IDMA port cannot be used, how-  
12  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
ever, to write to the processors memory-mapped control  
registers. A typical IDMA transfer process is described as  
follows:  
specifies an on-chip memory location, the destination type  
specifies whether it is a DM or PM access. The falling edge  
of the address latch signal latches this value into the  
IDMAA register.  
1. Host starts IDMA transfer  
Once the address is stored, data can then be either read  
from, or written to, the ADSP-21mod980Ns on-chip  
memory. Asserting the select line (IS) and the appropriate  
read or write line (IRD and IWR respectively) signals the  
ADSP-21mod980N that a particular transaction is  
required. In either case, there is a one-processor-cycle delay  
for synchronization. The memory access consumes one  
additional processor cycle.  
2. Host uses IS and IAL control lines to latch either the  
DMA starting address (IDMAA) or the PM/DM  
OVLAY selection into the processors IDMA control  
registers.  
If IAD [15] = 1, the value of IAD [7:0] represents the  
IDMA overlay: IAD[14:8] must be set to 0.  
If IAD [15] = 0, the value of IAD [13:0] represents the  
starting address of internal memory to be accessed and  
IAD [14] reflects PM or DM for access.  
Once an access has occurred, the latched address is auto-  
matically incremented, and another access can occur.  
1. Host uses IS and IRD (or IWR) to read (or write) pro-  
cessor internal memory (PM or DM).  
Through the IDMAA register, the processor can also spec-  
ify the starting address and data format for DMA operation.  
Asserting the IDMA port select (IS) and address latch  
enable (IAL) directs the ADSP-21mod980N to write the  
address onto the IAD [14:0] bus into the IDMA Control  
Register. If IAD [15] is set to 0, IDMA latches the address.  
If IAD [15] is set to 1, IDMA latches OVLAY memory. The  
IDMAA register is memory mapped at address DM  
(0x3FE0). Note that the latched address (IDMAA) or over-  
lay register cannot be read back by the host. The IDMA  
OVERLAY register is memory mapped at address  
DM(0x3FE7). See Figure on page 13 for more informa-  
tion on IDMA memory mapping. When bit 14 in 0x3FE7  
is set to 1, then timing in Figure on page 35 applies for  
short reads. When bit 14 in 0x3FE7 is set to zero short  
reads use the timing shown in Figure on page 34.  
2. Host ends IDMA transfer.  
The IDMA port has a 16-bit multiplexed address and data  
bus and supports 24-bit program memory. The IDMA port  
is completely asynchronous and can be written to, while the  
ADSP-21mod980N is operating at full speed.  
The processor memory address is latched and then auto-  
matically incremented after each IDMA transaction. An  
external device can therefore access a block of sequentially  
addressed memory by specifying only the starting address of  
the block. This increases throughput as the address does  
not have to be sent for each memory access.  
IDMA Port access occurs in two phases. The first is the  
IDMA Address Latch cycle. When the acknowledge is  
asserted, a 14-bit address and 1-bit destination type can be  
driven onto the bus by an external device. The address  
IDMA OVERLAY  
15 14 13 12 11  
10  
0
9
8
7
6
5
0
4
0
3
2
1
0
DM(0x3FE7)  
0
0
0
0
0
0
0
0
0
0
0
0
0
RESERVED  
SET TO 0  
ID PMOVLAY  
ID DMOVLAY  
Short Read Only  
RESERVED  
ALW AYS SET  
TO 0  
Enable  
1 = Enable  
0 = Disable  
IDMA CONTROL (U=UNDEFINED AT RESET)  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
DM(0x3FE0)  
0
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
IDMAA  
ADDRESS  
RESERVED  
ALW AYS SET  
TO 0  
IDMAD  
Destination memory type:  
0=PM  
1=DM  
Figure 9. IDMA Control/OVLAY Registers  
REV. PrB 6/2001  
13  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
ALW AYS  
ALW AYS  
ACCESSIBLE  
AT ADDRESS  
0x0000 - 0x1FFF  
ACCESSIBLE  
AT ADDRESS  
0x2000 - 0x3FFF  
0x2000 - 0x3FFF  
0x2000 - 0x3FFF  
0x2000 - 0x3FFF  
0x2000 - 0x3FFF  
0x2000 - 0x3FFF  
0x0000 - 0x1FFF  
0x0000 - 0x1FFF  
0x0000 - 0x1FFF  
0x0000 - 0x1FFF  
0x0000 - 0x1FFF  
ACCESSIBLE W HEN  
PM OVLAY = 0  
ACCESSIBLE W HEN  
DM OVLAY = 0  
ACCESSIBLE W HEN  
PM OVLAY = 4  
ACCESSIBLE W HEN  
DM OVLAY = 4  
ACCESSIBLE W HEN  
PM OVLAY = 5  
ACCESSIBLE W HEN  
DM OVLAY = 5  
ACCESSIBLE W HEN  
PM OVLAY = 6  
ACCESSIBLE W HEN  
DM OVLAY = 6  
0x0000 - 0x1FFF  
ACCESSIBLE W HEN  
PM OVLAY = 7  
ACCESSIBLE W HEN  
DM OVLAY = 7  
ACCESSIBLE W HEN  
DM OVLAY = 8  
Figure 10. Direct Memory Access - PM and DM Memory Maps  
14  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
IDMA PORT BOOTING  
The ADSP-21mod980N boots programs through its Inter-  
nal DMA port.When Mode C = 1, Mode B = 0, and Mode  
A = 1, the ADSP-21mod980N boots from the IDMA port.  
IDMA feature can load as much on-chip memory as  
desired. Program execution is held off until on-chip pro-  
gram memory location 0 is written to.  
FLAG I/O PINS  
Each modem processor has eight general purpose program-  
mable input/output flag pins. They are controlled by two  
memory mapped registers. The PFTYPE register deter-  
mines the direction, 1 = output and 0 = input. The  
PFDATA register is used to read and write the values on the  
pins. Data being read from a pin configured as an input is  
synchronized to the ADSP-21mod980Ns clock. Bits that  
are programmed as outputs will read the value being out-  
put. The PF pins default to input during RESET.  
Note: Pins PF0, PF1, and PF2 are also used for device con-  
figuration during RESET. Since they are multiplexed  
within the ADSP-21mod980N, PF[2:0] should be config-  
ured as an output for only one processor at a time.  
REV. PrB 6/2001  
15  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
DESIGNING AN EZ-ICE-COMPATIBLE SYSTEM  
The EZ-ICE can emulate only one modem processor at a  
time. You must include hardware to select which processor  
in the ADSP-21mod980N you want to emulate. Figure on  
page 16 is a functional representation of the modem proces-  
sor selection hardware. You can use one ICE-Port  
connector with two ADSP-21mod980N processors without  
using additional buffers.  
The ADSP-21mod980N has on-chip emulation support  
and an ICE-Port, a special set of pins that interface to the  
EZ-ICE. These features allow in-circuit emulation without  
replacing the target system processor by using only a 14-pin  
connection from the target system to the EZ-ICE. Target  
systems must have a 14-pin connector to accept the  
EZ-ICEs in-circuit probe, a 14-pin plug.  
ADSP-21M OD980N  
ELOUT  
EBR  
EBG  
EINT  
ELIN  
ECLK  
EMS  
ERESET  
BG0  
GND  
EBG  
BG  
BR0  
1
2
RESET0  
EE0  
BR  
3
4
BG1  
EBR  
ENT  
BR1  
RESET1  
EE1  
5
6
KEY  
ELIN  
ECLK  
EMS  
ERESET  
BG2  
7
8
BR2  
ELOUT  
EE  
RESET2  
EE2  
9
10  
12  
14  
BG3  
11  
13  
BR3  
RESET3  
EE3  
RESET  
BG4  
BR4  
RESET4  
EE4  
BG5  
BR5  
RESET5  
EE5  
BG6  
BR6  
RESET6  
EE6  
BG7  
BR7  
RESET7  
EE7  
Figure 11. Selecting a Modem Processor in the ADSP-21mod980N  
Issuing the chip resetcommand during emulation causes  
the modem processor to perform a full chip reset, including  
a reset of its memory mode. Therefore, it is vital that the  
mode pins are set correctly PRIOR to issuing a chip reset  
command from the emulator user interface. As the mode  
pins share functionality with PF[2:0] on the  
16  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
ADSP-21mod980N, it may be necessary to reset the target  
hardware separately to insure the proper mode selection  
state on emulator chip reset. See the ADSP-2100 Family  
EZ-Tools data sheet for complete information on ICE  
products.  
Pin spacing should be 0.1 
؋
 0.1 inches. The pin strip  
header must have at least 0.15 inch clearance on all sides to  
accept the EZ-ICE probe plug.  
1
3
5
7
9
2
The ICE-Port interface consists of the following  
ADSP-21mod980N pins:  
BG  
GND  
4
EBG  
BR  
EBR  
6
8
EINT  
EE  
EBR  
EINT  
EBG  
KEY (NO PIN)  
ELIN  
ECLK  
ERESET  
ELIN  
EMS  
10  
12  
14  
ELOUT  
ECLK  
11  
13  
EMS  
EE  
RESET  
ERESET  
ELOUT  
These ADSP-21mod980N pins must be connected only to  
the EZ-ICE connector in the target system. These pins have  
no function except during emulation, and do not require  
pull-up or pull-down resistors. The traces for these signals  
between the ADSP-21mod980N and the connector must  
be kept as short as possibleno longer than 3 inches.  
TOP VIEW  
Figure 12. Target Board Connector for EZ-ICE  
Pin strip headers are available from vendors such as 3M,  
McKenzie, and Samtec.  
The following pins are also used by the EZ-ICE:  
TARGET MEMOR Y INTERF ACE  
BR  
For your target system to be compatible with the EZ-ICE  
emulator, it must comply with the memory interface guide-  
lines listed below.  
BG  
RESET  
GND  
TARGET SYSTEM INTERFACE SIGNALS  
When the EZ-ICE board is installed, the performance on  
some system signals change. Design your system to be com-  
patible with the following system interface signal changes  
introduced by the EZ-ICE board:  
The EZ-ICE uses the EE (emulator enable) signal to take  
control of the ADSP-21mod980N in the target system.  
This causes the processor to use its ERESET, EBR, and  
EBG pins instead of the RESET, BR, and BG pins. The BG  
output is three-stated. These signals do not need to be  
jumper-isolated in your system.  
EZ-ICE emulation introduces an 8 ns propagation  
delay between your target circuitry and the processor  
on the RESET signal.  
The EZ-ICE connects to your target system via a ribbon  
cable and a 14-pin female plug. The female plug is plugged  
onto the 14-pin connector (a pin strip header) on the target  
board.  
EZ-ICE emulation introduces an 8 ns propagation  
delay between your target circuitry and the processor  
on the BR signal.  
EZ-ICE emulation ignores RESET and BR when  
single-stepping.  
TARGET BOARD CONNECTOR FOR EZ-ICE PROBE  
The EZ-ICE connector (a standard pin strip header) is  
shown in Figure on page 17. You must add this connector  
to your target board design if you intend to use the EZ-ICE.  
Be sure to allow enough room in your system to fit the  
EZ-ICE probe onto the 14-pin connector.  
EZ-ICE emulation ignores RESET and BR when in  
Emulator Space (processor halted).  
EZ-ICE emulation ignores the state of target BR in cer-  
tain modes. As a result, the target system may take  
control of the processors external memory bus only if  
bus grant (BG) is asserted by the EZ-ICE boards  
processor.  
The 14-pin, 2-row pin strip header is keyed at the Pin 7  
locationyou must remove Pin 7 from the header. The pins  
must be 0.025 inch square and at least 0.20 inch in length.  
REV. PrB 6/2001  
17  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
ELECTRICAL SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
Parameter Description  
Min  
Max  
Unit  
VDDEXT  
VDDINT  
VINPUT  
TAMB  
External supply  
Internal supply  
Input Voltage  
2.98  
1.81  
3.63  
V
2.0  
V
VIL= 0.3  
0
VIH= +3.6  
+70  
V
Ambient temperature  
°C  
ELECTRICAL CHARACTERISTICS  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIH, Hi-Level Input Voltage1, 2  
VIH, Hi-Level CLKIN Voltage  
VIL, Lo-Level Input Voltage1, 3  
@ VDDINT = max  
@ VDDINT = max  
@ VDDINT = min  
@ VDDEXT = min  
1.5  
2.0  
V
V
V
V
0.7  
V
OH, Hi-Level Output Voltage1, 4, 5  
2.4  
IOH = 0.5 mA  
@ VDDEXT = min  
VDDEXT  
-0.3  
V
IOH = 100 µA6  
VOL, Lo-Level Output Voltage1, 4, 5  
IIH, Hi-Level Input Leakage Current3  
IIL, Lo-Level Input Leakage Current3  
IOZH, Three-State Leakage Current7  
@ VDDEXT = min  
0.4  
10  
10  
10  
10  
V
IOL = 2 mA  
@ VDDINT = max  
VIN = 3.6V  
A  
A  
A  
A  
@ VDDINT = max  
VIN = 0 V  
@ VDDEXT = max  
V
IN = 3.6V8  
I
OZL, Three-State Leakage Current7  
@ VDDEXT = max  
VIN = 0 V8  
18  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
IDD, Supply Current (Idle)  
@ VDDINT = 1.9V  
tCK = 12.5 ns  
50  
mA  
IDD, Supply Current (Dynamic)  
@ VDDINT = 1.9V  
t
TAMB = +25°C  
200  
800  
mA  
CK = 12.5 ns9  
IDD, Supply Current (Powerdown)10  
Lowest power mode  
µA  
pF  
CI, Input Pin Capacitance  
RESET, BR, IS, TFS0, PF[7:4]  
@ VIN = 2.5 V, fIN = 1.0 MHz,  
TAMB = +25°C  
8
CI, Input Pin Capacitance  
IWR, IRD, IAL, DR0, RFS0, SCLK0, IAD [15:0]  
@ VIN = 2.5 V, fIN = 1.0 MHz,  
TAMB = +25°C  
32  
64  
8
pF  
pF  
pF  
pF  
pF  
CI, Input Pin Capacitance  
TFS1, PF[2:0], CLKIN, DR1, RFS1, SCLK1  
@ VIN = 2.5 V, fIN = 1.0 MHz,  
TAMB = +25°C  
CO, Output Pin Capacitance1, 6, 7, 10, 11  
BG, CLKOUT, TFS0, PF[7:4], DT1  
@ VIN = 2.5 V, fIN = 1.0 MHz,  
TAMB= +25°C  
CO, Output Pin Capacitance1, 6, 7, 9, 10  
IAD [15:0], DT0, IACK, RFS0, SCLK0  
@ VIN = 2.5 V, fIN = 1.0 MHz,  
TAMB= +25°C  
32  
64  
CO, Output Pin Capacitance1, 6, 7, 9, 10  
@ VIN = 2.5 V, fIN = 1.0 MHz,  
SCLK1, TFS1, PF[2:0], DATA [23:8], A0, RFS1  
TAMB= +25°C  
1
Bidirectional pins: RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, IAD [15:0], PF[2:0], PF[7:4].  
Input only pins: RESET, BR, DR0, DR1, IS, IAL,IRD, IWR.  
Input only pins: CLKIN, RESET, BR, DR0, DR1.  
2
3
4
5
Output pins: BG, A0, DT0, DT1, CLKOUT, IACK.  
Although specified for TTL outputs, all ADSP-21mod980N outputs are CMOS-compatible and will drive to VDDEXT and GND, assuming no DC  
loads.  
6
Guaranteed but not tested.  
7
Three-statable pins: DT0, DT1, SCLK0, SCLK1, TFS0, TFS1, RFS0, RSF1, IAD[15:0].  
0 Volts on BR.  
8
9
Vin = 0V and 3V. For typical supply current figures refer to Power Dissipationsection.  
See the ADSP-2100 Family Users Manual for details.  
Output pin capacitance is the capacitive load for any three-stated output pin  
10  
11  
REV. PrB 6/2001  
19  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Description  
Min.  
Max  
Unit  
VDDINT  
VDDEXT  
Internal Supply Voltage  
External Supply Voltage  
Input Voltage1  
0.3  
+2.5  
V
0.3  
+4.6  
V
0.5  
+4.6  
V
Output Voltage Swing2  
Storage Temperature Range  
0.5  
VDDEXT + 0.5  
+150 °C  
V
65 °C  
°C  
1
Applies to bidirectional pins (D0:D23, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A1:A13, PF0:PF7) and input only pins (CLKIN, RESET, BR,  
DR0, DR1).  
2
Applies to output pins (BG, PWDACK, A0, DT0, DT1, CLKOUT).  
ESD SENSITIVITY  
CAUTION: ESD (electrostatic discharge) sensitive device. Electrostatic charges as high  
as 4000V readily accumulate on the human body and test equipment and can discharge  
without detection. Although the device features proprietary ESD protection circuitry,  
permanent damage may occur on devices subjected to high-energy electrostatic dis-  
charges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
20  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Assumptions:  
POWER DISSIPATION  
Assumptions:  
External data memory is accessed every fourth cycle  
with 50% of the address pins switching.  
To determine total power dissipation in a specific applica-  
tion, the following equation should be applied for each  
output:  
C 
؋
 VDD2 
؋
 f  
External data memory writes occur every fourth cycle  
with 50% of the data pins switching.  
Each address and data pin has a 64 pF total load at the  
pin.  
C = load capacitance  
f = output switching frequency  
Example:  
Application operates at VDDEXT = 3.3 V and tCK = 30 ns.  
Total Power Dissipation = PINT + (C 
؋
VDDEXT2 
؋
 f)  
P
INT= internal power dissipation from Figure 15  
In an application where an external host is accessing inter-  
nal memory and no other outputs are active, power  
dissipation is calculated as follows:  
(C 
؋
 VDDEXT2 
؋
 f) is calculated for each output, as in the  
example in Table 7.  
Table 7. Example Power Dissipation Calculation  
Parameters  
# of Pins  
× C (pF)  
× VDDEXT2 (V)  
× f (MHz)  
PD (mW)  
Address  
8
9
64  
64  
3.32  
3.32  
18.8  
18.8  
104.8  
117.9  
222.7  
Data Output, WR  
Total power dissipation for this example is:  
PD = PINT + 222.7 mW  
REV. PrB 6/2001  
21  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
ENVIRONMENTAL CONDITIONS  
MO D980N Core POW ER , IDLE  
120  
110  
100  
90  
Table 8. Thermal Resistance  
108m W  
96m W  
84m W  
Rating  
Symbol PBGA  
Description1  
VD D  
VD D  
=
=
2.0v  
1.9v  
Thermal Resistance  
(Case-to-  
Ambient)  
θCA  
θJA  
θJC  
23ºC  
/W  
84m W  
76m W  
80  
VD D  
=
1.8v  
70  
68m W  
60  
Thermal Resistance  
(Junction-to-  
Ambient)  
28.2ºC  
/W  
50  
55  
60  
65  
70  
75  
80  
85  
1/tC K  
-
M Hz  
Thermal Resistance  
(Junction-to-  
Case)  
5.2ºC  
/W  
M O D980N Core POW ER, DYNAM IC  
475  
1
Where the Ambient Temperature Rating (TAMB) is:  
440m W  
425  
375  
325  
275  
225  
175  
TAMB = TCASE (PD × θCA  
)
TCASE = Case Temperature in °C  
375m W  
336m W  
VD D  
=
2.0V  
PD = Power Dissipation in W  
336m W  
V D D  
=
=
1.9V  
1.8V  
V D D  
287m W  
256m W  
55  
60  
65  
70  
75  
80  
85  
1/tC K  
-
M Hz  
Figure 13. Power vs. Frequency  
22  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Output Disable Time  
TEST CONDITIONS  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured  
output high or low voltage to a high impedance state. The  
output disable time (tDIS) is the difference of tMEASURED and  
tDECAY, as shown in Figure 16. The time is the interval from  
when a reference signal reaches a high or low voltage level  
to when the output voltages have changed by 0.5 V from the  
measured output high or low voltage.  
INPUT  
1.5V  
2.0V  
1.5V  
OUTPUT  
The decay time, tDECAY, is dependent on the capacitive load,  
CL, and the current load, iL, on the output pin. It can be  
approximated by the following equation:  
0.8V  
Figure 14. Voltage Reference Levels for AC  
Measurements (Except Output Enable/Disable)  
CL × 0.5V  
-------------------------  
=
tDECAY  
iL  
I
OL  
from which  
tDIS = tMEASURED tDECAY  
TO  
OUTPUT  
PIN  
1.5V  
is calculated. If multiple pins (such as the data bus) are dis-  
abled, the measurement value is that of the last pin to stop  
driving.  
50pF  
Output Enable Time  
I
OH  
Output pins are considered to be enabled when they have  
made a transition from a high-impedance state to when they  
start driving. The output enable time (tENA) is the interval  
from when a reference signal reaches a high or low voltage  
level to when the output has reached a specified high or low  
trip point, as shown in Figure 16. If multiple pins (such as  
the data bus) are enabled, the measurement value is that of  
the first pin to start driving.  
Figure 15. Equivalent Loading for AC Measurements  
(Including All Fixtures)  
REFERENCE  
SIGNAL  
tMEASURED  
tDIS  
tENA  
V
V
OH  
OH  
(MEASURED)  
(MEASURED)  
V
V
(MEASURED) - 0.5V  
(MEASURED) +0.5V  
2.0V  
1.0V  
OH  
OL  
OUTPUT  
V
V
OL  
OL  
tDECAY  
(MEASURED)  
(MEASURED)  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE. TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE APPROXIMATELY 1.5V.  
Figure 16. Output Enable/Disable  
REV. PrB 6/2001  
23  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
TIMING SPECIFICATIONS  
30  
25  
؇
T = 85 C  
V
= 0V TO 2.0V  
DD  
This section contains timing information for the DSPs  
external signals.  
20  
15  
10  
5
General Notes  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of oth-  
ers. While addition or subtraction would yield meaningful  
results for an individual device, the values given in this data  
sheet reflect statistical variations and worst cases. Conse-  
quently, you cannot meaningfully add up parameters to  
derive longer times.  
0
50  
0
100  
150  
- pF  
200  
250  
300  
C
L
Timing Notes  
Figure 17. Typical Output Rise Time vs.Load Capacitance  
(at Maximum Ambient Operating Temperature)  
Switching characteristics specify how the processor changes  
its signals. You have no control over this timingcircuitry  
external to the processor must be designed for compatibility  
with these signal characteristics. Switching characteristics  
tell you what the processor will do in a given circumstance.  
You can also use switching characteristics to ensure that any  
timing requirement of a device connected to the processor  
(such as memory) is satisfied.  
18  
16  
14  
12  
10  
8
Timing requirements apply to signals that are controlled by  
circuitry external to the processor, such as the data input for  
a read operation. Timing requirements guarantee that the  
processor operates correctly with other devices.  
6
4
2
NOMINAL  
-2  
-4  
-6  
Frequency Dependency For Timing Specifications  
tCK is defined as 0.5 tCKI. The ADSP-21mod980N uses an  
input clock with a frequency equal to half the instruction  
rate. For example, a 40 MHz input clock (which is equiva-  
lent to 25 ns) yields a 12.5 ns processor cycle (equivalent to  
80 MHz). tCK values within the range of 0.5 tCKI period  
should be substituted for all relevant timing parameters to  
obtain the specification value.  
0
50  
100  
150  
200  
250  
C
- pF  
L
Figure 18. Typical Output Valid Delay or Hold vs.Load  
Capacitance, CL (at Maximum Ambient Operating  
Temperature)  
Example: tCKH = 0.5 tCK 2 ns = 0.5 (12.5 ns) 2 ns = 4.25  
ns  
Output Drive Currents  
Figure 14 shows typical I-V characteristics for the output  
drivers on the ADSP-21mod980N. The curves represent  
the current drive capability of the output drivers as a func-  
tion of output voltage  
Capacitive Loading  
Figure 16 and Figure 17 show the capacitive loading char-  
acteristics of the ADSP-21mod980N.  
24  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Clock and Reset Signals  
Table 9. Clock and Reset Signals  
Parameter Description  
Min.  
Max  
Unit  
Clock signals (Timing Requirements):  
tCKI  
CLKIN Period  
25.0  
8
40.0  
ns  
ns  
ns  
ns  
ns  
tCKIL  
CLKIN Width Low  
CLKIN Width High  
CLKIN rise time1  
CLKIN fall time  
tCKIH  
tCKRISE  
tCKFALL  
8
4
4
Clock signals (Switching Characteristics)2:  
tCKL  
CLKOUT Width Low  
0.5tCK - 3  
0.5tCK - 3  
0
ns  
ns  
ns  
tCKH  
tCKOH  
CLKOUT Width High  
CLKIN High to CLKOUT High  
8
Control Signals (Timing Requirements):  
3
tRSP  
tMS  
tMH  
RESET Width Low  
5tCK  
ns  
ns  
ns  
Mode Setup Before RESET High  
Mode Hold After RESET High  
4
5
1
2
3
t
and t  
are specified between the 10% and 90% points on the signal edge.  
CKFALL  
CKRISE  
If it is not needed by the application, CLKOUT should be disabled to reduce noise (DM(0x3FF3) bit 14).  
Applies after power-up sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including  
crystal oscillator start-up time).  
REV. PrB 6/2001  
25  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
tCKI  
tCKIH  
CLKIN  
tCKIL  
tCKOH  
tCKH  
CLKOUT  
tCKL  
PF(2:0)*  
RESET  
tMH  
tMS  
*PF2 is Mode C, PF1 is Mode B, PF0 is Mode A  
Figure 19. Clock and Reset Signals  
26  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Interrupts and Flags  
Table 10. Interrupts and Flags  
Parameter Description  
Timing Requirements:  
Min.  
Max  
Unit  
tIFS  
IRQx, FI, or PFx Setup before CLKOUT Low1, 2, 3, 4  
IRQx, FI, or PFx Hold after CLKOUT High1, 2, 3, 4  
0.25tCK + 10  
0.25tCK  
ns  
ns  
tIFH  
Switching Characteristics:  
tFOH  
Flag Output Hold after CLKOUT Low5  
tFOD  
Flag Output Delay from CLKOUT Low5  
0.5tCK - 5  
ns  
0.5tCK + 4 ns  
1
If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle; otherwise the signals will be  
recognized on the following cycle. (Refer to Interrupt Controller Operation in the Program Control chapter of the ADSP-2100 Family Users Manual for  
further information on interrupt servicing.)  
2
3
4
5
Edge-sensitive interrupts require pulse widths greater than 10 ns; level-sensitive interrupts must be held low until serviced.  
IRQx = IRQ0, IRQ1, IRQ2, IRQL0, IRQL1, IRQE.  
PFx = PF0, PF1, PF2, PF4, PF5, PF6, PF7.  
4
Flag Outputs = PFx, Flag_out .  
CLKOUT  
tIFH  
IRQx  
FI  
PFx  
tIFS  
Figure 20. Interrupts and Flags  
REV. PrB 6/2001  
27  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Serial Ports  
Table 11. Serial Ports  
Parameter  
Description  
Min.  
Max  
Unit  
Timing Requirements:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
30  
4
ns  
ns  
ns  
ns  
DR/TFS/RFS Setup before SCLK Low  
DR/TFS/RFS Hold after SCLK Low  
SCLKIN Width  
7
12  
Switching Characteristics:  
tCC  
CLKOUT High to SCLKOUT  
0.25tCK  
0
0.25tCK + 6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCDE  
tSCDV  
tRH  
SCLK High to DT Enable  
SCLK High to DT Valid  
12  
12  
TFS/RFSOUT Hold after SCLK High  
TFS/RFSOUT Delay from SCLK High  
DT Hold after SCLK High  
0
tRD  
tSCDH  
tTDE  
tTDV  
tSCDD  
tRDV  
0
0
TFS (Alt) to DT Enable  
TFS (Alt) to DT Valid  
12  
12  
12  
SCLK High to DT Disable  
RFS (Multichannel, Frame Delay Zero to DT Valid  
28  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
CLKOUT  
SCLK  
tCC  
tCC  
tSCK  
tSCP  
tSCP  
tSCS  
tSCH  
DR  
TFS  
RFS  
IN  
IN  
tRD  
tRH  
RFS  
TFS  
OUT  
OUT  
tSCDD  
tSCDV  
tSCDH  
tSCDE  
DT  
tTDE  
tTDV  
TFS  
OUT  
ALTERNATE  
FR AME MO DE  
tRDV  
RFS  
OUT  
MUL TIC HA NNE L  
M O DE,  
FRAM E DE LAY  
(M FD  
0
tTDE  
=
0)  
tTDV  
TFS  
IN  
ALTERNATE  
FR AME MO DE  
tRDV  
RFS  
IN  
M UL TIC HA NNE L  
M O DE,  
FRAM E DE LAY  
(M FD  
0
=
0)  
Figure 21. Serial Ports  
REV. PrB 6/2001  
29  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
IDMA Address Latch  
Table 12. IDMA Address Latch  
Parameter  
Description  
Min.  
Max  
Unit  
Timing Requirements:  
tIALP  
tIASU  
tIAH  
Duration of Address Latch1, 2, 3  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
IAD[15:0] Address Setup before Address Latch End2, 3  
IAD[15:0] Address Hold after Address Latch End2, 3  
IACK Low before Start of Address Latch2, 3, 4  
3
tIKA  
0
tIALS  
tIALD  
Start of Write or Read after Address Latch End2, 3, 4  
Address Latch Start after Address Latch End1, 2, 3  
3
2
1
2
3
4
Start of Address Latch = IS Low and IAL High.  
End of Address Latch = IS High or IAL Low.  
For IDMA, please refer to the ADSP-2100 Family Users Manual.  
Start of Write or Read = IS Low and IWR Low or IRD Low.  
IACK  
tIKA  
tIALD  
IAL  
tIALP  
tIALP  
IS  
IAD 15-0  
tIASU  
tIASU  
tIAH  
tIAH  
tIALS  
IRD  
OR  
IWR  
Figure 22. IDMA Address Latch  
30  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
IDMA Write, Short Write Cycle  
Table 13. IDMA Write, Short Write Cycle  
Parameter Description  
Timing Requirements:  
Min.  
Max  
Unit  
tIKW  
tIWP  
tIDSU  
tIDH  
IACK Low before Start of Write1, 2  
0
ns  
ns  
ns  
ns  
Duration of Write1, 2, 3  
10  
3
IAD[15:0] Data Setup before End of Write2, 3, 4, 5  
IAD[15:0] Data Hold after End of Write2, 3, 4, 5  
2
Switching Characteristics:  
tIKHW  
Start of Write to IACK High  
10  
ns  
1
2
3
4
5
Start of Write = IS Low and IWR Low.  
For IDMA, please refer to the ADSP-2100 Family Users Manual.  
End of Write = IS High or IWR High.  
If Write Pulse ends before IACK Low, use specifications tIDSU, tIDH  
.
If Write Pulse ends after IACK Low, use specifications tIKSU, tIKH  
.
tIKW  
IACK  
tIKHW  
IS  
tIW P  
IW R  
tIDH  
tIDSU  
IAD 15-0  
DATA  
Figure 23. IDMA Write, Short Write Cycle  
REV. PrB 6/2001  
31  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
IDMA Write, Long Write Cycle  
Table 14. IDMA Write, Long Write Cycle  
Parameter  
Description  
Min.  
Max  
Unit  
Timing Requirements  
tIKW  
tIKSU  
tIKH  
IACK Low before Start of Write1  
0
ns  
ns  
ns  
IAD[15:0] Data Setup before End of Write2, 3, 4  
IAD[15:0] Data Hold after End of Write2, 3, 4  
0.5tCK + 5  
0
Switching Characteristics:  
tIKLW  
Start of Write to IACK Low4  
tIKHW Start of Write to IACK High  
1.5tCK  
ns  
ns  
10  
1
2
3
4
Start of Write = IS Low and IWR Low.  
If Write Pulse ends before IACK Low, use specifications tIDSU, tIDH  
.
If Write Pulse ends after IACK Low, use specifications tIKSU, tIKH  
.
This is the earliest time for IACK Low from Start of Write. For IDMA Write cycle relationships, please refer to the ADSP-2100 Family Users Manual.  
tIKW  
IACK  
tIKHW  
tIKLW  
IS  
IW R  
tIKSU  
tIKH  
DATA  
IAD 15-0  
Figure 24. IDMA Write, Long Write Cycle  
32  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
IDMA Read, Long Read Cycle  
Table 15. IDMA Read, Long Read Cycle  
Parameter Description  
Min.  
Max  
Unit  
Timing Requirements:  
tIKR  
IACK Low before Start of Read1, 2  
tIRK  
End of Read after IACK Low2, 3  
Switching Characteristics:  
0
2
ns  
ns  
tIKHR  
tIKDS  
tIKDH  
tIKDD  
tIRDE  
tIRDV  
IACK High after Start of Read1, 2  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IAD[15:0 Data Setup before IACK Low2  
0.5tCK - 2  
0
IAD[15:0] Data Hold after End of Read2, 3  
IAD[15:0] Data Disabled after End of Read2, 3  
IAD[15:0] Previous Data Enabled after Start of Read2  
IAD[15:0] Previous Data Valid after Start of Read2  
10  
10  
0
1
tIRDH  
IAD[15:0] Previous Data Hold after Start of Read  
(DM/PM1)2, 4  
2tCK - 5  
tCK - 5  
2
tIRDH  
IAD[15:0] Previous Data Hold after Start of Read (PM2)2, 5  
ns  
1
2
3
4
5
Start of Read = IS Low and IRD Low.  
For IDMA, please refer to the ADSP-2100 Family Users Manual.  
End of Read = IS High or IRD High.  
DM read or first half of PM read.  
Second half of PM read.  
IACK  
tIKHR  
tIKR  
IS  
tIRK  
IRD  
tIKDS  
tIKDH  
tIRDE  
PREVIOUS  
DATA  
READ  
DATA  
IAD 15-0  
tIRDV  
tIKDD  
tIRDH  
Figure 25. IDMA Read, Long Read Cycle  
REV. PrB 6/2001  
33  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
IDMA Read, Short Read Cycle  
Table 16. IDMA Read, Short Read Cycle1  
Parameter  
Description  
Min.  
Max  
Unit  
Timing Requirements:  
tIKR  
IACK Low before Start of Read2  
tIRP Duration of Read  
Switching Characteristics:  
0
ns  
ns  
10  
tIKHR  
tIKDH  
tIKDD  
tIRDE  
tIRDV  
IACK High after Start of Read2, 3  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
IAD[15:0] Data Hold after End of Read3, 4  
0
0
IAD[15:0] Data Disabled after End of Read3, 4  
IAD[15:0] Previous Data Enabled after Start of Read3  
IAD[15:0] Previous Data Valid after Start of Read3  
1
tIRDH  
IAD[15:0] Previous Data Hold after Start of Read  
(DM/PM1)3,5  
2tCK - 5  
tCK - 5  
2
tIRDH  
IAD[15:0] Previous Data Hold after Start of Read (PM2)3, 6  
ns  
1
2
3
4
5
6
Timing applies to ADSP-21mod980N when Short Read Only mode is disabled. See Table on page 35.  
Start of Read = IS Low and IRD Low.  
For IDMA, please refer to the ADSP-2100 Family Users Manual.  
End of Read = IS High or IRD High.  
DM read or first half of PM read.  
Second half of PM read.  
IACK  
t
IKHR  
t
IKR  
IS  
IR D  
t
IRDE  
Previous Data  
New Read Data  
IAD[15:0]  
t
IRDV  
Figure 26. IDMA Read, Short Read Cycle  
34  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
IDMA Read - Short Read Cycle in Short Read Only Mode  
Table 17. IDMA Read - Short Read Cycle in Short Read Only Mode1  
Parameter  
Description  
Min.  
Max  
Unit  
Timing Requirements:  
tIKR  
IACK Low before Start of Read2, 4  
tIRP  
Duration of Read after IACK Low3, 4  
Switching Characteristics:  
0
ns  
ns  
10  
tIKHR  
tIKDH  
tIKDD  
tIRDE  
tIRDV  
IACK High after Start of Read2, 4  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
IAD[15:0] Previous Data Hold after End of Read3, 4  
IAD[15:0] Previous Data Disabled after End of Read3, 4  
IAD[15:0] Previous Data Enabled after Start of Read4  
IAD[15:0] Previous Data Valid after Start of Read4  
0
0
1
Short Read Only is enabled by setting Bit 14 of the IDMA Overlay Register to 1 (0x3FE7). Short Read Only can be enabled by the processor core writing  
to the register or by an external host writing to the register. Disabled by default.  
2
3
4
Start of Read = IS Low and IRD Low. Previous data remains until end of read.  
End of Read = IS High or IRD High.  
For IDMA, please refer to the ADSP-2100 Family Users Manual.  
IACK  
t
IKHR  
t
IKR  
IS  
IR D  
t
t
IKDH  
IRDE  
IAD[15:0]  
Previous Data  
t
t
IKDD  
RDV  
Figure 27. IDMA Read, Short Read Only Mode  
REV. PrB 6/2001  
35  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Table 18. Pinout by  
Signal Name (Continued)  
Table 18. Pinout by  
Signal Name (Continued)  
Table 18. Pinout by  
Signal Name (Continued)  
352-BALL PBGA  
PACKAGE PINOUT  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
CLKOUT_3  
CLKOUT_4  
CLKOUT_5  
CLKOUT_6  
CLKOUT_7  
CLKOUT_8  
D08  
C20  
AC1  
L24  
P4  
DT1_4  
DT1_5  
DT1_6  
DT1_7  
DT1_8  
EBG  
AF2  
T25  
U3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
H2  
A physical layout of all sig-  
nals is shown in the  
H3  
following tables. Figure on  
page 40 shows the signals  
on the left side of the device  
when viewed from the top.  
Figure on page 41 shows  
the signals on the right side  
of the device when viewed  
from the top. The pin num-  
ber for each signal is listed  
in Table on page 36.  
H4  
AD13  
AE20  
F26  
G26  
J23  
H23  
H24  
H25  
H26  
N1  
AD10  
AF15  
F23  
E25  
E24  
D26  
D25  
D24  
C26  
C25  
B26  
B24  
A25  
B23  
C23  
A24  
A23  
A22  
E1  
EBR  
D09  
ECLK  
EE_1  
Table 18. Pinout by  
Signal Name  
D10  
M4  
N2  
D11  
EE_2  
C13  
G23  
AE9  
T26  
Y2  
N3  
Signal Name  
Pin  
D12  
EE_3  
N4  
A0  
A2  
D13  
EE_4  
R23  
R24  
T3  
BG_1  
BG_2  
BG_3  
BG_4  
BG_5  
BG_6  
BG_7  
BG_8  
BR_1  
F3  
D14  
EE_5  
D14  
F25  
AC5  
R25  
R4  
D15  
EE_6  
D16  
EE_7  
AC13  
AE22  
J26  
T24  
U1  
D17  
EE_8  
D18  
EINT  
ELIN  
ELOUT  
EMS  
U2  
D19  
J25  
U23  
U24  
U25  
U26  
W1  
AD15  
AD25  
G4  
D20  
J24  
D21  
E23  
E26  
D19  
D20  
D23  
F1  
D22  
ERESET  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BR_2  
B13  
G25  
AC9  
N24  
U4  
D23  
BR_3  
DR0A  
DR0B  
DR1  
W2  
BR_4  
AF22  
AE7  
P2  
W3  
BR_5  
W4  
BR_6  
DT0A  
DT0B  
DT1_1  
DT1_2  
DT1_3  
F2  
AF1  
AF4  
AF8  
AF10  
AF12  
BR_7  
AE15  
AE26  
E3  
AF20  
P3  
F4  
BR_8  
G2  
CLKIN  
CLKOUT_1  
CLKOUT_2  
A12  
D21  
G3  
G1  
H1  
A10  
36  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Table 18. Pinout by  
Table 18. Pinout by  
Table 18. Pinout by  
Table 18. Pinout by  
Signal Name (Continued)  
Signal Name (Continued)  
Signal Name (Continued)  
Signal Name (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AF16  
AF17  
AF21  
AF23  
AF26  
B2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AD4  
AD5  
AD7  
AD8  
AD11  
AD12  
AD16  
AD17  
AD21  
AD22  
AD23  
AD24  
AE1  
GND  
A26  
AA23  
AA24  
AA25  
AA26  
AC4  
AC6  
AC8  
AC10  
W23  
T4  
IAD3_A  
IAD3_B  
IAD4_A  
IAD4_B  
IAD5_A  
IAD5_B  
IAD6_A  
IAD6_B  
IAD7_A  
IAD7_B  
IAD8_A  
IAD8_B  
IAD9_A  
IAD9_B  
IAL_A  
IAL_B  
IRD_A  
IRD_B  
IS_1  
D3  
GND  
W24  
C1  
GND  
GND  
W25  
D2  
GND  
GND  
W26  
V4  
B5  
GND  
B11  
B12  
B16  
B19  
B21  
B25  
C3  
GND  
M26  
Y4  
GND  
GND  
N26  
AD6  
M23  
Y3  
IACK_A  
IACK_B  
IAD0_A  
IAD0_B  
IAD1_A  
IAD1_B  
IAD10_A  
IAD10_B  
IAD11_A  
IAD11_B  
IAD12_A  
IAD12_B  
IAD13_A  
IAD13_B  
IAD14_A  
IAD14_B  
IAD15_A  
IAD15_B  
IAD2_A  
IAD2_B  
AC26  
B4  
AE2  
V26  
B1  
M24  
C8  
C5  
AE4  
C11  
C16  
C19  
C21  
C24  
D4  
AE8  
V23  
AA2  
L26  
V3  
Y25  
C4  
AE10  
AE12  
AE16  
AE17  
AE21  
AE23  
AE25  
A1  
Y24  
D6  
L23  
AA4  
M25  
E2  
IS_2  
A14  
F24  
AA3  
V25  
AC7  
AC16  
Y26  
D8  
IS_3  
D5  
IS_4  
D11  
D16  
AC12  
AC17  
AC21  
AC23  
AD2  
AD3  
IS_5  
AD26  
D1  
IS_6  
A5  
IS_7  
A11  
AC24  
E4  
IS_8  
A16  
IWR_A  
IWR_B  
PF0  
A19  
AC25  
C2  
Y23  
A6  
A20  
A21  
V24  
PF1  
B6  
REV. PrB 6/2001  
37  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Table 18. Pinout by  
Table 18. Pinout by  
Table 18. Pinout by  
Table 18. Pinout by  
Signal Name (Continued)  
Signal Name (Continued)  
Signal Name (Continued)  
Signal Name (Continued)  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
PF2  
C6  
PF7_6  
V2  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
C15  
C17  
D7  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
AE14  
AE19  
AF14  
AF19  
B7  
PF4_1  
PF4_2  
PF4_3  
PF4_4  
PF4_5  
PF4_6  
PF4_7  
PF4_8  
PF5_1  
PF5_2  
PF5_3  
PF5_4  
PF5_5  
PF5_6  
PF5_7  
PF5-8  
PF6_1  
PF6_2  
PF6_3  
PF6_4  
PF6_5  
PF6_6  
PF6_7  
PF6_8  
PF7_1  
PF7_2  
PF7_3  
PF7_4  
PF7_5  
M1  
PF7_7  
AF9  
AF18  
J1  
C10  
D18  
AC2  
L25  
T1  
PF7_8  
RESET_1  
RESET_2  
RESET_3  
RESET_4  
RESET_5  
RESET_6  
RESET_7  
RESET_8  
RFS0A  
D9  
D13  
C22  
AF6  
T23  
AA1  
AC11  
AC22  
J3  
D15  
D17  
D22  
K1  
B8  
B9  
AF7  
AD18  
M2  
B14  
K2  
B15  
K3  
B17  
D10  
C18  
AC3  
G24  
V1  
K4  
A3  
K23  
K24  
K25  
K26  
L1  
A4  
RFS0B  
AD20  
AE6  
P1  
AB1  
AB2  
AB3  
AB4  
AB23  
AB24  
AB25  
AB26  
AE13  
AF13  
AF24  
AF25  
B3  
RFS1  
SCLK0A  
SCLK0B  
SCLK1  
AE11  
AE18  
M3  
AE24  
AF5  
J2  
L2  
TFS0_1  
TFS0_2  
TFS0_3  
TFS0_4  
TFS0_5  
TFS0_6  
TFS0_7  
TFS0_8  
TFS1  
L3  
B10  
B18  
AD1  
R26  
T2  
C12  
B20  
AE5  
N23  
Y1  
L4  
A7  
A8  
A9  
A13  
A15  
A17  
AC14  
AC15  
AC19  
AD14  
AD19  
AD9  
AC18  
J4  
AF11  
AC20  
AF3  
B22  
C7  
P23  
D12  
A18  
AE3  
N25  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
P24  
P25  
C9  
P26  
C14  
38  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Table 18. Pinout by  
Signal Name (Continued)  
Signal Name  
Pin  
VDDINT  
VDDINT  
VDDINT  
R1  
R2  
R3  
REV. PrB 6/2001  
39  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
Signals by Pin Location—Top View, Left to Right  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
GND  
A0  
VDDINT  
VDDINT  
GND  
VDDINT  
IAD0_A  
IRD_A  
GND  
GND  
GND  
GND  
GND  
PF0  
PF1  
PF2  
IS_1  
VDDEXT VDDEXT VDDEXT CLKOUT_2 GND  
DT1_2  
GND  
VDDEXT  
BR_2  
B
IAD1_A  
IAD4_A  
IAD14_A  
DR0A  
GND  
VDDEXT VDDEXT VDDEXT PF6_2  
GND  
GND  
GND  
C
IAD2_A  
IAD6_A  
IAD13_A  
GND  
VDDEXT IAL_A  
VDDEXT IWR_A  
VDDEXT PF4_2  
VDDEXT PF5_2  
TFS0_2 EE_2  
D
E
IAD3_A  
CLKIN  
BG_1  
PF7_2  
RESET_2  
IAD15_A  
GND  
F
GND  
G
H
J
CLKOUT_1 GND  
GND  
BR_1  
GND  
GND  
GND  
GND  
RESET_1  
VDDEXT  
VDDEXT  
PF4_1  
TFS0_1  
RFS0A  
PF7_1  
K
VDDEXT VDDEXT VDDEXT  
VDDEXT VDDEXT VDDEXT  
L
M
N
P
PF5_1  
GND  
PF6_1  
GND  
EE_1  
GND  
GND  
SCLK0A  
VDDINT  
PF4_6  
DT0A  
VDDINT  
PF6_6  
GND  
DT1_1  
VDDINT  
GND  
CLKOUT_6  
BG_6  
R
T
IACK_A  
BR_6  
U
V
GND  
DT1_6  
IAD11_A  
GND  
PF5_6  
PF7_6  
GND  
IAD6_A  
GND  
W
Y
GND  
TFS0_6  
RESET_6  
VDDINT  
EE_6  
IAD9_A  
IS_4  
IAD7_A  
IAD12_A  
VDDINT  
GND  
AA  
AB  
AC  
AD  
AE  
AF  
IAD10_A  
VDDINT  
VDDINT  
PF5_4  
GND  
CLKOUT_4 PF4_4  
BG_4  
GND  
IS_6  
GND  
DR1  
GND  
GND  
GND  
GND  
BR_4  
PF6_7  
EE_4  
GND  
RESET_7 GND  
EE_7  
PF6_4  
GND  
GND  
GND  
GND  
DT1_4  
GND  
GND  
IAD8_A  
RFS1  
CLKOUT_7 GND  
GND  
GND  
GND  
DT1_7  
PF7_4  
TFS1  
GND  
TFS0_4  
SCLK1  
GND  
GND  
PF5_7  
VDDINT  
VDDINT  
GND  
RESET_4 PF4_7  
PF7_7  
TFS0_7  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
40  
6/2001 REV. PrB  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
OUTLINE DIMENSIONS 352 PLASTIC BALL GRID ARRAY  
Signals by Pin LocationTop View, Left to Right (Continued)  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
IS_2  
VDDEXT  
GND  
GND  
GND  
GND  
VDDEXT PF7_3  
VDDEXT PF6_3  
VDDEXT PF5_3  
VDDEXT PF4_3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D23  
D22  
D21  
D18  
GND  
D16  
A
VDDEXT VDDEXT  
VDDEXT VDDEXT  
TRS0_3  
VDDEXT D19  
D17  
GND  
D15  
B
CLKOUT_3 GND  
RESET_3  
D20  
GND  
D13  
D14  
C
BG_2  
VDDEXT  
GND  
DT1_3  
VDDEXT GND  
D12  
D11  
D
E
EMS  
D08  
D10  
D09  
ERESET  
EBG  
IS_3  
BG_3  
BR_3  
GND  
ELIN  
F
EE_3  
GND  
ECLK  
PF5_5  
GND  
ELOUT  
EBR  
G
H
J
GND  
EINT  
VDDEXT VDDEXT  
VDDEXT VDDEXT  
IAD10_B  
K
IAD11_B  
IAD8_B  
TFS0_5  
VDDINT  
GND  
CLKOUT_5 PF4_5  
L
IAD9_B  
BR_5  
IAD12_B  
PF7_5  
IAD6_B  
IAD7_B  
VDDINT  
PF6_5  
M
N
P
VDDINT  
GND  
VDDINT  
BG_5  
R
RESET_5  
GND  
GND  
DT1_5  
GND  
EE_5  
T
GND  
GND  
U
V
IAD1_B  
GND  
IAD2_B  
IAD3_B  
IRD_B  
GND  
IS_5  
IAD0_B  
IAD5_B  
IS_8  
IAD4_B  
IAL_B  
W
Y
IWR_B  
GND  
GND  
GND  
AA  
AB  
AC  
AD  
AE  
AF  
VDDINT  
GND  
VDDINT  
IAD14_B  
GND  
VDDINT  
IAD15_B  
BG_8  
VDDINT  
IACK_B  
IAD13_B  
BR_8  
VDDEXT VDDEXT  
VDDEXT BG_7  
VDDEXT BR_7  
IS_7  
GND  
GND  
GND  
GND  
PF6_8  
PF4_8  
PF5_8  
PF7_8  
VDDEXT TFS0_8  
VDDEXT RFS0B  
VDDEXT DT1_8  
VDDEXT DT0B  
GND  
GND  
GND  
GND  
RESET_8  
GND  
GND  
GND  
GND  
EE_8  
GND  
SCLK0B  
VDDINT  
GND  
VDDEXT CLKOUT_8 GND  
DR0B  
GND  
VDDINT  
GND  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
REV. PrB 6/2001  
41  
PRELIMINARY TECHNICAL DATA  
For current information contact Analog Devices at (800) ANALOGD  
ADSP-21mod980N  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
35.00 BSC SQ  
25  
23  
21  
19  
17  
15  
13  
11  
9
7
5
3
1
A
BALL A1  
B
INDICATOR  
C
D
E
F
G
H
J
K
L
M
N
TOP VIEW  
BOTTOM VIEW  
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
30.70  
1.27 BSC SQ  
BALL PITCH  
30.00 SQ  
29.50  
31.75 BSC SQ  
DETAIL A  
2.62  
2.37  
2.12  
1.22  
1.17  
1.12  
0.70  
0.60  
0.50  
NOTES:  
1. THE ACTUAL POSITION OF THE BALL GRID IS WITHIN 0.30  
OF THE IDEAL POSITION RELATIVE TO THE PACKAGE EDGES.  
2. THE ACTUAL POSITION OF EACH BALL IS WITHIN 0.15 OF ITS  
IDEAL POSITION RELATIVE TO THE BALL GRID.  
0.90  
0.70  
0.60  
0.50  
0.20 MAX  
SEATING  
PLANE  
0.75  
0.60  
BALL DIAMETER  
3. CENTER FIGURES ARE NOMINAL UNLESS OTHERWISE NOTED.  
DETAIL A  
Figure 28. 352-Lead metric Plastic Ball Grid Array (PBGA) (B-352)  
ORDERING GUIDE  
A complete modem requires the device listed in Table 19  
plus a software solution as described in MODEM SOFTWARE  
on page 2.  
Table 19. Ordering Guide  
Ambient Temperature  
Package  
Description  
Part Number  
Range  
Instruction Rate  
Package Option  
ADSP-21mod980N-000  
0ºC to +70ºC  
80 MHz  
352-Ball PBGA  
B-352  
42  
6/2001 REV. PrB  

相关型号:

ADSP-21MOD980N-210

ADSP-21mod980N-210: MultiPort Internet Gateway Processor Preliminary Data Sheet (Rev. PrB. 9/01)
ETC

ADSP-21MPS5X

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-21MSP50ABG-52

16-Bit Digital Signal Processor
ETC

ADSP-21MSP50AKG-52

IC 24-BIT, 13 MHz, MIXED DSP, CPGA144, PGA-144, Digital Signal Processor
ADI

ADSP-21MSP55ABS-52

IC 24-BIT, 13 MHz, OTHER DSP, PQFP100, PLASTIC, QFP-100, Digital Signal Processor
ADI

ADSP-21MSP55AKS-52

IC 24-BIT, 13 MHz, OTHER DSP, PQFP100, PLASTIC, QFP-100, Digital Signal Processor
ADI

ADSP-21MSP56ABS-52

IC 24-BIT, 13 MHz, OTHER DSP, PQFP100, PLASTIC, QFP-100, Digital Signal Processor
ADI

ADSP-21MSP56AKS-52

IC 24-BIT, 13 MHz, OTHER DSP, PQFP100, PLASTIC, QFP-100, Digital Signal Processor
ADI

ADSP-21MSP58

DSP Microcomputers
ADI

ADSP-21MSP5859

DSP Microcomputers
ADI

ADSP-21MSP58BST-104

DSP Microcomputers
ADI

ADSP-21MSP59

DSP Microcomputers
ADI