ADT6401 [ADI]

Low Cost, 2.7 V to 5.5 V, Pin-Selectable Temperature Switches in SOT-23; 低成本, 2.7 V至5.5 V ,引脚可选温度开关,采用SOT -23
ADT6401
型号: ADT6401
厂家: ADI    ADI
描述:

Low Cost, 2.7 V to 5.5 V, Pin-Selectable Temperature Switches in SOT-23
低成本, 2.7 V至5.5 V ,引脚可选温度开关,采用SOT -23

开关
文件: 总12页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, 2.7 V to 5.5 V, Pin-Selectable  
Temperature Switches in SOT-23  
ADT6401/ADT6402  
FEATURES  
FUN°TIONAL BLO°K DIAGRAM  
V
GND  
5
CC  
0.ꢀ5° ꢁtypical) threshold accuracy  
Pin-selectable trip points from  
4
Σ-Δ  
−4ꢀ5° to +ꢀ5° in 105° increments ꢁundertemperature)  
4ꢀ5° to 11ꢀ5° in 105° increments ꢁovertemperature)  
Maximum operating temperature of 12ꢀ5°  
Open-drain output ꢁADT6401)  
ADT6401  
TEMPERATURE-TO-  
DIGITAL CONVERTER  
COMPARATOR  
6
TOVER/TUNDER  
S2  
S1  
S0  
1
2
3
Push-pull output ꢁADT6402)  
Pin-selectable hysteresis of 25° and 105°  
Supply current of 30 μA ꢁtypical)  
TRIP POINT AND  
HYSTERESIS  
DECODING  
2ºC/10ºC  
Space-saving, 6-lead SOT-23 package  
APPLI°ATIONS  
Figure 1.  
Medical equipment  
Automotive  
°ell phones  
Hard disk drives  
Personal computers  
Electronic test equipment  
Domestic appliances  
Process control  
GENERAL DES°RIPTION  
The ADT6401/ADT6402 are trip point temperature switches  
available in a 6-lead SOT-23 package. Each part contains an  
internal band gap temperature sensor for local temperature  
sensing. When the temperature crosses the trip point setting,  
the logic output is activated. The ADT6401 logic output is  
active low and open-drain. The ADT6402 logic output is active  
high and push-pull. The temperature is digitized to a resolution  
of 0.125°C (11-bit). The pin-selectable trip point settings are  
10°C apart starting from −45°C to +5°C for undertemperature  
switching, and from 45°C to 115°C for overtemperature  
switching.  
When the ADT6401/ADT6402 are used for monitoring tempera-  
tures from −45°C to +5°C, the logic output pin becomes active  
when the temperature goes lower than the selected trip point  
temperature.  
PRODU°T HIGHLIGHTS  
1. Σ-Δ based temperature measurement gives high accuracy  
and noise immunity.  
2. Wide operating temperature range from −55°C to +125°C.  
3.  
0.5°C typical accuracy from −45°C to +115°C.  
4. Pin-selectable threshold settings from −45°C to +115°C in  
10°C increments.  
5. Supply voltage is 2.7 V to 5.5 V.  
These devices typically consume 30 μA of supply current. Hystere-  
sis is pin selectable at 2°C and 10°C. The temperature switch is  
specified to operate over the supply range of 2.7 V to 5.5 V.  
6. Supply current of 30 μA.  
7. Space-saving, 6-lead SOT-23 package.  
8. Pin-selectable temperature hysteresis of 2°C or 10°C.  
9. Temperature resolution of 0.125°C.  
When the ADT6401/ADT6402 are used for monitoring tempera-  
tures from 45°C to 115°C, the logic output pin becomes active  
when the temperature goes higher than the selected trip point  
temperature.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADT6401/ADT6402  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation .........................................................................9  
Circuit Information.......................................................................9  
Converter Details ..........................................................................9  
Pin-Selectable Trip Point and Hysteresis ...................................9  
Temperature Conversion........................................................... 10  
Applications Information.............................................................. 11  
Thermal Response Time ........................................................... 11  
Self-Heating Effects.................................................................... 11  
Supply Decoupling ..................................................................... 11  
Temperature Monitoring........................................................... 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Typical Application Circuits............................................................ 8  
REVISION HISTORY  
5/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
ADT6401/ADT6402  
SPECIFICATIONS  
TA = −55°C to +125°C, VCC = 2.7 V to 5.5 V, open-drain RPULL-UP = 10 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit Test °onditions/°omments  
TEMPERATURE SENSOR AND ADC  
Threshold Accuracy  
±0.ꢀ  
±0.ꢀ  
±0.ꢀ  
±0.ꢀ  
11  
30  
±00  
2
±±  
±4  
±4  
±±  
°C  
°C  
°C  
°C  
Bits  
ms  
ms  
°C  
TA = −4ꢀ°C to −2ꢀ°C  
TA = −1ꢀ°C to +1ꢀ°C  
TA = 3ꢀ°C to ±ꢀ°C  
TA = 7ꢀ°C to 11ꢀ°C  
ADC Resolution  
Temperature Conversion Time  
Update Rate  
Time necessary to complete a conversion  
Conversion started every ±00 ms  
Pin selectable, depends on S0, S1, S2 settings  
Pin selectable, depends on S0, S1, S2 settings  
Temperature Threshold Hysteresis  
10  
°C  
DIGITAL OUTPUT (OPEN-DRAIN)  
Output High Current, IOH  
Output Low Voltage, VOL  
10  
nA  
V
V
Leakage current, VCC = 2.7 V and VOH = ꢀ.ꢀ V  
IOL = 1.2 mA, VCC = 2.7 V  
IOL = 3.2 mA, VCC = 4.ꢀ V  
0.3  
0.4  
10  
1
Output Capacitance, COUT  
pF  
RPULL-UP = 10 kΩ  
DIGITAL OUTPUT (PUSH-PULL)  
Output Low Voltage, VOL  
0.3  
0.4  
V
V
V
V
IOL = 1.2 mA, VCC = 2.7 V  
IOL = 3.2 mA, VCC = 4.ꢀ V  
ISOURCE = ꢀ00 μA, VCC = 2.7 V  
ISOURCE = 800 μA, VCC = 4.ꢀ V  
Output High Voltage, VOH  
0.8 × VCC  
VCC − 1.ꢀ  
1
Output Capacitance, COUT  
10  
pF  
POWER REQUIREMENTS  
Supply Voltage  
Supply Current  
2.7  
ꢀ.ꢀ  
ꢀ0  
V
μA  
30  
1 Guaranteed by design and characterization.  
Rev. 0 | Page 3 of 12  
 
ADT6401/ADT6402  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VCC to GND  
−0.3 V to +7 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to +7 V  
−0.3 V to VCC + 0.3 V  
20 mA  
S0, S1, S2 Input Voltage to GND  
Open-Drain Output Voltage to GND  
Push-Pull Output Voltage to GND  
Input Current on All Pins  
Output Current on All Pins  
ESD rating (HBM)  
0.9  
20 mA  
1.ꢀ kV  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature, TJMAX  
±-Lead SOT-23 (RJ-±)  
−ꢀꢀ°C to +12ꢀ°C  
−±ꢀ°C to +1±0°C  
1ꢀ0.7°C  
Power Dissipation1  
WMAX = (TJMAX TA )/θJA  
2
Thermal Impedance3  
θJA, Junction-to-Ambient (Still Air)  
229.±°C/W  
IR Reflow Soldering (RoHS-Compliant  
Package)  
0.1  
Peak Temperature  
2±0°C (+0°C)  
SOT-23 PD @ 125°C = 0.107W  
0
Time at Peak Temperature  
Ramp-Up Rate  
Ramp-Down Rate  
20 sec to 40 sec  
3°C/sec maximum  
−±°C/sec maximum  
8 minute maximum  
–55 –40 –20  
0
20  
40  
60  
80  
100 120  
–50 –30 –10  
10  
30  
50  
70  
90 110 125  
TEMPERATURE (°C)  
Figure 2. SOT-23 Maximum Power Dissipation vs. Temperature  
Time 2ꢀ°C to Peak Temperature  
1 Values relate to package being used on a standard 2-layer PCB, which gives a  
worst-case θJA. Refer to Figure 2 for a plot of maximum power dissipation vs.  
ambient temperature (TA).  
ESD °AUTION  
2 TA = ambient temperature.  
3 Junction-to-case resistance is applicable to components featuring a  
preferential flow direction, for example, components mounted on a  
heat sink. Junction-to-ambient resistance is more useful for air-cooled,  
PCB-mounted components.  
Rev. 0 | Page 4 of 12  
 
 
 
 
ADT6401/ADT6402  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
S2  
S1  
S0  
1
2
3
6
5
4
TOVER/TUNDER  
GND  
S2  
S1  
S0  
1
2
3
6
5
4
TOVER/TUNDER  
GND  
ADT6401  
ADT6402  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
V
V
CC  
CC  
Figure 3. ADT6401 Pin Configuration  
Figure 4. ADT6402 Pin Configuration  
Table 3. Pin Function Descriptions  
Pin Number  
ADT6401  
ADT6402  
Mnemonic  
Description  
1
2
3
4
±
1
2
3
4
N/A  
S2  
S1  
S0  
VCC  
Select Pin for Trip Point and Hysteresis Values.  
Select Pin for Trip Point and Hysteresis Values.  
Select Pin for Trip Point and Hysteresis Values.  
Supply Input (2.7 V to ꢀ.ꢀ V).  
GND  
TOVER/TUNDER  
Ground.  
Open-Drain, Active Low Output. Pull-up resistor required. This pin goes low when  
the temperature of the part exceeds the pin-selectable threshold.  
N/A  
±
TOVER/TUNDER  
Push-Pull, Active High Output. This pin goes high when the temperature of the part  
exceeds the pin-selectable threshold.  
Rev. 0 | Page ꢀ of 12  
 
ADT6401/ADT6402  
TYPICAL PERFORMANCE CHARACTERISTICS  
35  
80  
70  
60  
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 300  
30  
25  
20  
15  
10  
5
2.7V  
3.3V  
5.5V  
0
–0.5 –0.4 –0.3 –0.2 –0.1 0.1  
0.2  
0.3  
0.4  
0.5  
–80 –60 –40 –20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE ACCURACY (°C)  
TEMPERATURE (°C)  
Figure 5. Trip Threshold Accuracy  
Figure 8. Output Sink Resistance vs. Temperature  
45  
40  
35  
30  
25  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
5V  
3.3V  
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0
1.6  
3.2  
4.8  
6.4  
8.0  
9.6  
11.2  
12.8  
0.8  
2.4  
4.0  
5.6  
7.2  
8.8  
10.4 12.0  
TEMPERATURE (°C)  
TIME (s)  
Figure 6. Operating Supply Current vs. Temperature  
Figure 9. Thermal Step Response in Perfluorinated Fluid  
180  
160  
140  
120  
100  
80  
140  
120  
100  
80  
60  
40  
20  
0
2.7V  
3.3V  
5.5V  
60  
40  
20  
0
–80 –60 –40 –20  
0
20  
40  
60  
80 100 120 140  
3.6  
10.8  
14.4 21.6 28.8  
TIME (s)  
18.0  
25.2 32.4 39.6  
46.8  
54.0 61.2  
0
7.2  
36.0 43.2 50.4 57.6  
TEMPERATURE (°C)  
Figure 10. Thermal Step Response in Still Air  
Figure 7. ADT6402 Output Source Resistance vs. Temperature  
Rev. 0 | Page ± of 12  
 
ADT6401/ADT6402  
11  
10  
9
10°C  
8
V
CC  
7
1
V
= 3.3V  
DD  
6
5
4
TOVER  
3
2
2°C  
2
1
0
CH1 2.0V  
CH2 2.0V  
M 10.0ms  
CH1  
50.0kS/s  
1.68V  
20.0µs/pt  
A
TEMPERATURE (°C)  
Figure 13. ADT6401 Start-Up Delay  
Figure 11. Hysteresis vs. Trip Temperature  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
CC  
1
TOVER  
–40ºC  
–10ºC  
+25ºC  
+75ºC  
+120ºC  
2
0
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6  
CH1 2.0V  
CH2 2.0V  
M 10.0µs  
CH1  
50.0MS/s  
1.68V  
20.0ns/pt  
V
(V)  
A
CC  
Figure 14. Operating Supply Current vs. Voltage Over Temperature  
Figure 12. ADT6401 Start-Up and Power-Down Delay  
Rev. 0 | Page 7 of 12  
ADT6401/ADT6402  
TYPICAL APPLICATION CIRCUITS  
3.3V  
3.3V  
12V  
0.1µF  
0.1µF  
100k  
V
V
V
CC  
CC  
CC  
ADT6402  
ADT6401  
S2  
MICROPROCESSOR  
INT  
S2  
S1  
S0  
S1  
S0  
TOVER  
TOVER  
GND  
GND  
GND  
TRIP POINT = 95°C  
HYSTERESIS = 2°C  
TRIP POINT = 65°C  
HYSTERESIS = 10°C  
Figure 15. Microprocessor Alarm  
Figure 16. Overtemperature Fan Control  
3.3V  
0.1µF  
V
CC  
ADT6402  
S2  
S1  
S0  
OVER TEMPERATURE  
TOVER  
GND  
TRIP POINT = +105°C  
HYSTERESIS = +2°C  
OUT OF RANGE  
0.1µF  
V
CC  
ADT6402  
S2  
S1  
S0  
UNDER TEMPERATURE  
TUNDER  
GND  
TRIP POINT = –35°C  
HYSTERESIS = +2°C  
Figure 17. Temperature Window Alarms  
Rev. 0 | Page 8 of 12  
 
ADT6401/ADT6402  
THEORY OF OPERATION  
°IR°UIT INFORMATION  
PIN-SELE°TABLE TRIP POINT AND HYSTERESIS  
The ADT6401/ADT6402 are 11-bit digital temperature sensors  
with a 12th bit acting as the sign bit. An on-board temperature  
sensor generates a voltage precisely proportional to absolute  
temperature, which is compared to an internal voltage reference  
and input to a precision digital modulator. The 12-bit output  
from the modulator is input into a digital comparator, where it  
is compared with a pin-selectable trip level. The output trip pin  
is activated if the temperature measured is greater than, or less  
than, the pin-selectable trip level. Overall accuracy for the  
ADT6401/ ADT6402 is 6°C (maximum) from −45°C to  
+115°C.  
The temperature trip point and hysteresis values for the  
ADT6401/ADT6402 are selected using Pin S0, Pin S1, and  
Pin S2. These three pins can be connected to VCC, tied to GND,  
or left floating. The ADT6401/ADT6402 decode the inputs on  
S0, S1, and S2 to determine the temperature trip point and  
hysteresis value, as outlined in Table 4.  
The ADT6401 overtemperature/undertemperature output is  
intended to interface to reset inputs of microprocessors. The  
ADT6402 is intended for driving circuits of applications, such  
as fan control circuits.  
Table 4. Selecting Trip Points and Hysteresis1  
The on-board temperature sensor has excellent accuracy and  
linearity over the entire rated temperature range without needing  
correction or calibration by the user. The ADT6401 has active  
low, open-drain output structures that can sink current. The  
ADT6402 has active high, push-pull output structures that can  
sink and source current. On power-up, the output becomes  
active when the first conversion is completed, which typically  
takes 30 ms.  
Temperature  
S2  
S1  
S0  
Trip Point  
+4ꢀ°C  
+ꢀꢀ°C  
+±ꢀ°C  
+7ꢀ°C  
+8ꢀ°C  
+9ꢀ°C  
+10ꢀ°C  
+11ꢀ°C  
+ꢀꢀ°C  
+±ꢀ°C  
+7ꢀ°C  
+8ꢀ°C  
+9ꢀ°C  
+10ꢀ°C  
+11ꢀ°C  
+ꢀ°C  
Hysteresis  
2°C  
2°C  
2°C  
2°C  
2°C  
2°C  
2°C  
2°C  
10°C  
10°C  
10°C  
10°C  
10°C  
10°C  
10°C  
2°C  
0
0
0
0
0
1
0
0
Float  
0
1
0
0
1
1
0
0
Float  
The sensor output is digitized by a first-order, ∑-ꢀ modulator,  
also known as the charge balance type analog-to-digital converter  
(ADC). This type of converter utilizes time domain oversampling  
and a high accuracy comparator to deliver 11 bits of effective  
accuracy in an extremely compact circuit.  
0
Float  
0
0
Float  
1
1
Float  
Float  
1
0
0
1
0
1
1
0
Float  
°ONVERTER DETAILS  
1
1
0
The Σ-Δ modulator consists of an input sampler, a summing  
network, an integrator, a comparator, and a 1-bit digital-to-  
analog converter (DAC). Similar to the voltage-to-frequency  
converter, this architecture creates a negative feedback loop and  
minimizes the integrator output by changing the duty cycle of  
the comparator output in response to input voltage changes.  
The comparator samples the output of the integrator at a much  
higher rate than the input sampling frequency; this is called  
oversampling. Oversampling spreads the quantization noise  
over a much wider band than that of the input signal, improving  
overall noise performance and increasing accuracy.  
1
1
1
1
1
Float  
1
1
1
Float  
Float  
Float  
0
0
0
1
1
1
0
1
−ꢀ°C  
2°C  
Float  
0
1
Float  
0
1
Float  
0
1
−1ꢀ°C  
−2ꢀ°C  
−3ꢀ°C  
−4ꢀ°C  
+ꢀ°C  
2°C  
2°C  
2°C  
2°C  
10°C  
10°C  
10°C  
10°C  
10°C  
10°C  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
−ꢀ°C  
−1ꢀ°C  
−2ꢀ°C  
−3ꢀ°C  
−4ꢀ°C  
Float  
Float  
Float  
Float  
1 0 = pin tied to GND, 1 = pin tied to VCC, Float = pin left floating.  
Rev. 0 | Page 9 of 12  
 
 
ADT6401/ADT6402  
Hysteresis  
This temperature conversion typically takes 30 ms, after which  
the analog circuitry of the part automatically shuts down. The  
analog circuitry powers up again 570 ms later, when the 600 ms  
timer times out and the next conversion begins. The result of  
the most recent temperature conversion is compared with the  
factory-set trip point value. If the temperature measured is  
greater than the trip point value, the output is activated. The  
output is deactivated once the temperature crosses back over  
the trip point threshold, plus whatever temperature hysteresis is  
selected. Figure 18 to Figure 21 show the transfer function for  
the output trip pin of each generic model.  
A hysteresis value of 2°C or 10°C can be selected. The digital  
comparator ensures excellent accuracy for the hysteresis value.  
Hysteresis prevents oscillation on the output pin when the  
temperature is approaching the trip point and after the output  
pin is activated. For example, if the temperature trip is 45°C and  
the hysteresis selected is 10°C, the temperature must go as low  
as 35°C before the output deactivates.  
TEMPERATURE °ONVERSION  
The conversion clock for the part is generated internally. No  
external clock is required. The internal clock oscillator runs an  
automatic conversion sequence. During this automatic conversion  
sequence, a conversion is initiated every 600 ms. At this time, the  
part powers up its analog circuitry and performs a temperature  
conversion.  
V
V
TUNDER  
TOVER  
COLD  
HOT  
HOT  
COLD  
10°C  
HYSTERESIS  
TEMP  
TEMP  
TTH  
TTH  
10°C  
HYSTERESIS  
2°C  
HYSTERESIS  
2°C  
HYSTERESIS  
TOVER  
Figure 18. ADT6401  
Transfer Function  
TUNDER  
Figure 20. ADT6401 Transfer Function  
V
V
TOVER  
TUNDER  
COLD  
HOT  
HOT  
COLD  
TEMP  
TEMP  
TTH  
TTH  
10°C  
HYSTERESIS  
10°C  
HYSTERESIS  
2°C  
HYSTERESIS  
2°C  
HYSTERESIS  
Figure 19. ADT6402 TOVER Transfer Function  
Figure 21. ADT6402 TUNDER Transfer Function  
Rev. 0 | Page 10 of 12  
 
 
 
ADT6401/ADT6402  
APPLICATIONS INFORMATION  
If possible, the ADT6401/ADT6402 should be powered directly  
from the system power supply. This arrangement, shown in  
Figure 22, isolates the analog section from the logic-switching  
transients. Even if a separate power supply trace is not available,  
generous supply bypassing reduces supply line induced errors.  
Local supply bypassing consisting of a 0.1 ꢁF ceramic capacitor  
is advisable to achieve the temperature accuracy specifications.  
This decoupling capacitor must be placed as close as possible to  
the ADT6401/ADT6402 VCC pin.  
THERMAL RESPONSE TIME  
The time required for a temperature sensor to settle to a specified  
accuracy is a function of the thermal mass of the sensor and  
the thermal conductivity between the sensor and the object  
being sensed. Thermal mass is often considered equivalent to  
capacitance. Thermal conductivity is commonly specified using  
the symbol Q and can be thought of as thermal resistance. It is  
commonly specified in units of degrees per watt of power  
transferred across the thermal joint. Thus, the time required for  
the ADT6401/ADT6402 to settle to the desired accuracy is  
dependent on the characteristics of the SOT-23 package, the  
thermal contact established in that particular application, and  
the equivalent power of the heat source. In most applications,  
the settling time is best determined empirically.  
TTL/CMOS  
LOGIC  
ADT6401/  
ADT6402  
CIRCUITS  
0.1µF  
SELF-HEATING EFFE°TS  
POWER  
SUPPLY  
The temperature measurement accuracy of the ADT6401/  
ADT6402 can be degraded in some applications due to self-  
heating. Errors can be introduced from the quiescent dissipation  
and power dissipated when converting. The magnitude of these  
temperature errors depends on the thermal conductivity of the  
ADT6401/ADT6402 package, the mounting technique, and the  
effects of airflow. At 25°C, static dissipation in the ADT6401/  
ADT6402 is typically 99 ꢁW operating at 3.3 V. In the 6-lead  
SOT-23 package mounted in free air, this accounts for a tempera-  
ture increase due to self-heating of  
Figure 22. Separate Traces Used to Reduce Power Supply Noise  
TEMPERATURE MONITORING  
The ADT6401/ADT6402 are ideal for monitoring the thermal  
environment within electronic equipment. For example, the  
surface-mount package accurately reflects the exact thermal  
conditions that affect nearby integrated circuits.  
The ADT6401/ADT6402 measure and convert the temperature  
at the surface of its own semiconductor chip. When the ADT6401/  
ADT6402 are used to measure the temperature of a nearby heat  
source, the thermal impedance between the heat source and the  
ADT6401/ADT6402 must be as low as possible.  
ΔT = PDISS × θJA = 99 ꢁW × 240°C/W = 0.024°C  
It is recommended that current dissipated through the device be  
kept to a minimum because it has a proportional effect on the  
temperature error.  
As much as 60% of the heat transferred from the heat source to  
the thermal sensor on the ADT6401/ADT6402 die is discharged  
via the copper tracks, package pins, and bond pads. Of the pins  
on the ADT6401/ADT6402, the GND pin transfers most of the  
heat. Therefore, to monitor the temperature of a heat source, it is  
recommended that the thermal resistance between the ADT6401/  
ADT6402 GND pin and the GND of the heat source be reduced  
as much as possible.  
SUPPLY DE°OUPLING  
The ADT6401/ADT6402 should be decoupled with a 0.1 ꢁF  
ceramic capacitor between VCC and GND. This is particularly  
important when the ADT6401/ADT6402 are mounted remotely  
from the power supply. Precision analog products such as the  
ADT6401/ADT6402 require well-filtered power sources.  
Because the ADT6401/ADT6402 operate from a single supply,  
it may seem convenient to tap into the digital logic power supply.  
Unfortunately, the logic supply is often a switch-mode design,  
which generates noise in the 20 kHz to 1 MHz range. In addition,  
fast logic gates can generate glitches that are hundreds of millivolts  
in amplitude due to wiring resistance and inductance.  
For example, the unique properties of the ADT6401/ADT6402  
can be used to monitor a high power dissipation microproces-  
sor. The ADT6401/ADT6402 device in its SOT-23 package is  
mounted directly beneath the pin grid array (PGA) package of  
the microprocessor. The ADT6401/ADT6402 require no external  
characterization.  
Rev. 0 | Page 11 of 12  
 
 
ADT6401/ADT6402  
OUTLINE DIMENSIONS  
2.90 BSC  
6
1
5
2
4
3
2.80 BSC  
1.60 BSC  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
4°  
0°  
0.60  
0.45  
0.30  
0.50  
0.30  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 23. 6-Lead Small Outline Transistor Package [SOT-23]  
(RJ-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Ordering  
Quantity  
Model  
Branding  
T30  
T32  
ADT±401SRJZ-RL71  
ADT±402SRJZ-RL71  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
±-Lead SOT-23  
±-Lead SOT-23  
RJ-±  
RJ-±  
3,000  
3,000  
1 Z = RoHS Compliant Part.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D0741ꢀ-0-5/08ꢁ0)  
Rev. 0 | Page 12 of 12  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY