ADT6501SRJZP095RL7 [ADI]

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23; 低成本, 2.7 V至5.5 V ,微功耗温度开关,采用SOT -23
ADT6501SRJZP095RL7
型号: ADT6501SRJZP095RL7
厂家: ADI    ADI
描述:

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
低成本, 2.7 V至5.5 V ,微功耗温度开关,采用SOT -23

开关 传感器 换能器 温度传感器 输出元件
文件: 总16页 (文件大小:295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, 2.7 V to 5.5 V, Micropower  
Temperature Switches in SOT-23  
ADT6501/ADT6502/ADT6503/ADT6504  
FUNCTIONAL BLOCK DIAGRAM  
Data Sheet  
FEATURES  
0.5°C (typical) threshold accuracy  
Factory-set trip points from  
V
CC  
4
ADT6501  
−45°C to +15°C in 10°C increments  
+35°C to +115°C in 10°C increments  
No external components required  
Maximum temperature of 125°C  
Open-drain output (ADT6501/ADT6503)  
Push-pull output (ADT6502/ADT6504)  
Pin-selectable hysteresis of 2°C and 10°C  
Supply current of 30 µA (typical)  
Space-saving, 5-lead SOT-23 package  
Σ-Δ  
TEMPERATURE-TO-  
DIGITAL CONVERTER  
COMPARATOR  
5
TOVER  
FACTORY PRESET  
TRIP POINT  
REGISTER  
2ºC/10ºC  
1
2
3
APPLICATIONS  
Medical equipment  
Automotive  
GND  
GND  
HYST  
Figure 1.  
Cell phones  
Hard disk drives  
Personal computers  
Electronic test equipment  
Domestic appliances  
Process control  
GENERAL DESCRIPTION  
The ADT6501/ADT6502/ADT6503/ADT6504 are trip point  
temperature switches available in a 5-lead SOT-23 package.  
Each part contains an internal band gap temperature sensor for  
local temperature sensing. When the temperature crosses the  
trip point setting, the logic output is activated. The ADT6501/  
ADT6503 logic output is active low and open-drain. The  
ADT6502/ADT6504 logic output is active high and push-pull.  
The temperature is digitized to a resolution of 0.125°C (11-bit).  
The factory trip point settings are 10°C apart starting from  
−45°C to +15°C for the cold threshold models and from +35°C  
to +115°C for the hot threshold models.  
The ADT6503 and ADT6504 are used for monitoring tempera-  
tures from −45°C to +15°C only. Therefore, the logic output  
pin becomes active when the temperature goes lower than the  
selected trip point temperature.  
PRODUCT HIGHLIGHTS  
1. Σ-Δ based temperature measurement gives high accuracy  
and noise immunity.  
2. Wide operating temperature range from −55°C to +125°C.  
3.  
0.5°C typical accuracy from −45°C to +115°C.  
4. Factory threshold settings from −45°C to +115°C in  
10°C increments.  
These devices require no external components and typically  
consume 30 μA supply current. Hysteresis is pin-selectable at  
2°C and 10°C. The temperature switch is specified to operate  
over the supply range of 2.7 V to 5.5 V.  
5. Supply voltage is 2.7 V to 5.5 V.  
6. Supply current of 30 μA.  
The ADT6501 and ADT6502 are used for monitoring  
temperatures from +35°C to +115°C only. Therefore, the logic  
output pin becomes active when the temperature goes higher  
than the selected trip point temperature.  
7. Space-saving, 5-lead SOT-23 package.  
8. Pin-selectable temperature hysteresis of 2°C or 10°C.  
9. Temperature resolution of 0.125°C.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarksandregisteredtrademarksare the property oftheir respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2007–2012 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADT6501/ADT6502/ADT6503/ADT6504  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Converter Details ..........................................................................8  
Factory-Programmed Threshold Range ....................................8  
Hysteresis Input.............................................................................8  
Temperature Conversion..............................................................8  
Application Information................................................................ 10  
Thermal Response Time ........................................................... 10  
Self-Heating Effects.................................................................... 10  
Supply Decoupling ..................................................................... 10  
Temperature Monitoring........................................................... 10  
Typical Application Circuits ......................................................... 11  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ........................................................................ 8  
Circuit Information...................................................................... 8  
REVISION HISTORY  
Changes to Product Highlights .......................................................1  
Changes to Table 1.............................................................................3  
Changes to Typical Performance Characteristics .........................6  
Changes to Ordering Guide.......................................................... 13  
9/12—Rev. A to Rev. B  
Change to Supply Current Parameter, Table 1.............................. 3  
Updated Outline Dimensions....................................................... 13  
1/08—Rev. 0 to Rev. A  
Added ADT6503 and ADT6504.......................................Universal  
Changes to Features.......................................................................... 1  
9/07—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
 
Data Sheet  
ADT6501/ADT6502/ADT6503/ADT6504  
SPECIFICATIONS  
TA = −55°C to +125°C, VCC = 2.7 V to 5.5 V, open-drain RPULL-UP = 10 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit Test Conditions/Comments  
TEMPERATURE SENSOR AND ADC  
Threshold Accuracy  
0.5  
0.5  
0.5  
0.5  
11  
30  
600  
2
6
4
4
6
°C  
°C  
°C  
°C  
Bits  
ms  
ms  
°C  
TA = −45°C to −25°C  
TA = −15°C to +15°C  
TA = 35°C to 65°C  
TA = 75°C to 115°C  
ADC Resolution  
Temperature Conversion Time  
Update Rate  
Time necessary to complete a conversion  
Conversion started every 600 ms  
HYST pin = 0 V  
Temperature Threshold Hysteresis  
10  
°C  
HYST pin = VCC  
DIGITAL INPUT (HYST)  
Input Low Voltage, VIL  
0.2 × VCC  
V
V
Input High Voltage, VIH  
DIGITAL OUTPUT (OPEN-DRAIN)  
Output High Current, IOH  
Output Low Voltage, VOL  
0.8 × VCC  
10  
nA  
V
V
Leakage current, VCC = 2.7 V and VOH = 5.5 V  
IOL = 1.2 mA, VCC = 2.7 V  
IOL = 3.2 mA, VCC = 4.5 V  
0.3  
0.4  
10  
1
Output Capacitance, COUT  
pF  
RPULL-UP = 10 kΩ  
DIGITAL OUTPUT (PUSH-PULL)  
Output Low Voltage, VOL  
0.3  
0.4  
V
V
V
V
IOL = 1.2 mA, VCC = 2.7 V  
IOL = 3.2 mA, VCC = 4.5 V  
ISOURCE = 500 µA, VCC = 2.7 V  
ISOURCE = 800 µA, VCC = 4.5 V  
Output High Voltage, VOH  
0.8 × VCC  
VCC − 1.5  
1
Output Capacitance, COUT  
10  
pF  
POWER REQUIREMENTS  
Supply Voltage  
Supply Current  
2.7  
5.5  
55  
V
µA  
30  
1 Guaranteed by design and characterization.  
Rev. B | Page 3 of 16  
 
 
 
ADT6501/ADT6502/ADT6503/ADT6504  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 2.  
Parameter  
Rating  
VCC to GND  
−0.3 V to +7 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to +7 V  
−0.3 V to VCC + 0.3 V  
20 mA  
HYST Input Voltage to GND  
Open-Drain Output Voltage to GND  
Push-Pull Output Voltage to GND  
Input Current on All Pins  
Output Current on All Pins  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature, TJMAX  
5-Lead SOT-23 (RJ-5)  
0.9  
20 mA  
−55°C to +125°C  
−65°C to +160°C  
150.7°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
Power Dissipation1  
Thermal Impedance3  
WMAX = (TJMAX − TA )/θJA  
2
θJA, Junction-to-Ambient (Still Air) 240°C/W  
IR Reflow Soldering  
(RoHS Compliant Package)  
Peak Temperature  
0.1  
260°C (+0°C)  
SOT-23 PD @ 125°C = 0.107W  
0
Time at Peak Temperature  
Ramp-Up Rate  
Ramp-Down Rate  
20 sec to 40 sec  
3°C/sec maximum  
−6°C/sec maximum  
8 minute maximum  
–55 –40 –20  
0
20  
40  
60  
80  
100 120  
–50 –30 –10  
10  
30  
50  
70  
90 110 125  
TEMPERATURE (°C)  
Figure 2. SOT-23 Maximum Power Dissipation vs. Temperature  
Time 25°C to Peak Temperature  
1 Values relate to package being used on a standard 2-layer PCB. This gives a  
worst case θJA. Refer to Figure 2 for a plot of maximum power dissipation vs.  
ambient temperature (TA).  
ESD CAUTION  
2 TA = ambient temperature.  
3 Junction-to-case resistance is applicable to components featuring a  
preferential flow direction, for example, components mounted on a  
heat sink. Junction-to-ambient resistance is more useful for air-cooled,  
PCB-mounted components.  
Rev. B | Page 4 of 16  
 
 
 
 
 
 
 
Data Sheet  
ADT6501/ADT6502/ADT6503/ADT6504  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADT6501/  
ADT6502  
ADT6503/  
ADT6504  
GND  
GND  
1
2
3
5
4
TOVER/  
TOVER  
GND  
GND  
1
2
3
5
4
TUNDER/  
TUNDER  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
HYST  
V
HYST  
V
CC  
CC  
Figure 3. ADT6501/ADT6502 Pin Configuration  
Figure 4. ADT6503/ADT6504 Pin Configuration  
Table 3. Pin Function Descriptions  
Pin Number  
ADT6501 ADT6502 ADT6503 ADT6504 Mnemonic Description  
1, 2  
3
1, 2  
3
1, 2  
3
1, 2  
3
GND  
HYST  
Ground.  
Hysteresis Input. Connects HYST to GND for 2°C hysteresis or connects to  
VCC for 10°C hysteresis.  
4
5
4
4
4
VCC  
Supply Input (2.7 V to 5.5 V).  
Open-Drain, Active Low Output.  
goes low when the temperature of  
TOVER  
TOVER  
the part exceeds the factory-programmed threshold; must use a pull-up  
resistor.  
5
5
TOVER  
Push-Pull, Active High Output. TOVER goes high when the temperature of  
the part exceeds the factory-programmed threshold.  
Open-Drain, Active Low Output.  
goes low when the temperature  
TUNDER  
TUNDER  
of the part exceeds the factory-programmed threshold; must use a pull-up  
resistor.  
5
TUNDER  
Push-Pull, Active High Output. TUNDER goes high when the temperature  
of the part exceeds the factory-programmed threshold.  
Rev. B | Page 5 of 16  
 
ADT6501/ADT6502/ADT6503/ADT6504  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
35  
80  
70  
60  
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 300  
30  
25  
20  
15  
10  
5
2.7V  
5.5V  
3.3V  
0
–0.5 –0.4 –0.3 –0.2 –0.1 0.1  
0.2  
0.3  
0.4  
0.5  
–55  
–10  
25  
70  
100  
125  
TEMPERATURE ACCURACY (°C)  
TEMPERATURE (°C)  
Figure 5. Trip Threshold Accuracy  
Figure 8. Output Sink Resistance vs. Temperature  
45  
40  
35  
30  
25  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
5V  
3.3V  
0
–40  
–10  
25  
75  
120  
0
1.6  
3.2  
4.8  
6.4  
8.0  
9.6  
11.2  
12.8  
0.8  
2.4  
4.0  
5.6  
7.2  
8.8  
10.4 12.0  
TEMPERATURE (°C)  
TIME (s)  
Figure 6. Operating Supply Current vs. Temperature  
Figure 9. Thermal Step Response in Perfluorinated Fluid  
180  
160  
140  
120  
100  
80  
140  
120  
100  
80  
60  
40  
20  
0
2.7V  
3.3V  
5.5V  
60  
40  
20  
0
–55  
–10  
25  
70  
100  
125  
3.6  
10.8 18.0 25.2 32.4 39.6 46.8 54.0 61.2  
0
7.2  
14.4 21.6 28.8 36.0 43.2 50.4 57.6  
TEMPERATURE (°C)  
TIME (s)  
Figure 7. ADT6502/ADT6504 Output Source Resistance vs. Temperature  
Figure 10. Thermal Step Response in Still Air  
Rev. B | Page 6 of 16  
 
Data Sheet  
ADT6501/ADT6502/ADT6503/ADT6504  
12  
10  
8
10°C  
V
CC  
1
V
= 3.3V  
CC  
6
4
2
0
TOVER  
2
2°C  
–45  
–25  
–15  
15  
25  
35  
65  
75  
115  
CH1 2.0V  
CH2 2.0V  
M 10.0ms  
A CH1  
50.0kS/s  
1.68V  
20.0µs/pt  
TEMPERATURE (°C)  
Figure 11. Hysteresis vs. Trip Temperature  
Figure 13. ADT6501 Start-Up Delay  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
CC  
1
TOVER  
2
–40ºC  
–10ºC  
+25ºC  
+75ºC  
+120ºC  
0
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6  
CH1 2.0V  
CH2 2.0V  
M 10.0µs  
A CH1  
50.0MS/s  
1.68V  
20.0ns/pt  
V
(V)  
CC  
Figure 12. ADT6501 Start-Up and Power-Down  
Figure 14. Operating Supply Current vs. Voltage Over Temperature  
Rev. B | Page 7 of 16  
ADT6501/ADT6502/ADT6503/ADT6504  
Data Sheet  
THEORY OF OPERATION  
CIRCUIT INFORMATION  
FACTORY-PROGRAMMED THRESHOLD RANGE  
The ADT6501/ADT6502/ADT6503/ADT6504 are 11-bit digital  
temperature sensors with a 12th bit acting as the sign bit. An  
on-board temperature sensor generates a voltage precisely  
proportional to absolute temperature, which is compared to  
an internal voltage reference and input to a precision digital  
modulator. The 12-bit output from the modulator is input into a  
digital comparator where it is compared with a factory-set trip  
level. The output trip pin is activated if the temperature measured  
is greater than, in the case of the ADT6501/ADT6502, or less  
than, in the case of the ADT6503/ADT6504, the factory-set trip  
level. Overall accuracy for the ADT650x family is 6°C  
(maximum) from −45°C to +115°C.  
The ADT6501/ADT6502/ADT6503/ADT6504 are available  
with factory-set threshold levels ranging from −45°C to +115°C  
in 10°C temperature steps. The ADT6501/ADT6503 outputs are  
intended to interface to reset inputs of microprocessors. The  
ADT6502/ADT6504 are intended for driving circuits of  
applications such as fan control circuits. Table 4 lists the  
available temperature threshold ranges.  
Table 4. Factory-Set Temperature Threshold Ranges  
Device  
Threshold (TTH) Range  
+35°C < TTH < +115°C  
+35°C < TTH < +115°C  
−45°C < TTH < +15°C  
−45°C < TTH < +15°C  
ADT6501  
ADT6502  
ADT6503  
ADT6504  
The on-board temperature sensor has excellent accuracy and  
linearity over the entire rated temperature range without needing  
correction or calibration by the user. The ADT6501/ADT6503  
have active low, open-drain output structures that can sink  
current. The ADT6502/ADT6504 have active high, push-pull  
output structures that can sink and source current. On power-  
up, the output becomes active when the first conversion is  
completed, which typically takes 30 ms.  
HYSTERESIS INPUT  
The HYST pin is used to select a temperature hysteresis of 2°C or  
10°C. The digital comparator ensures excellent accuracy for the  
hysteresis value. If the HYST pin is connected to VCC, a hysteresis  
of 10°C is selected. If the HYST pin is connected to GND, a  
hysteresis of 2°C is selected. The HYST pin should not be left  
floating. Hysteresis prevents oscillation on the output pin when  
the temperature is approaching the trip point and after the  
output pin is activated. For example, if the temperature trip is  
45°C and the hysteresis selected is 10°C, the temperature would  
have to go as low as 35°C before the output deactivates.  
The sensor output is digitized by a first-order, ∑-∆ modulator,  
also known as the charge balance type analog-to-digital  
converter (ADC). This type of converter utilizes time domain  
oversampling and a high accuracy comparator to deliver 11 bits  
of effective accuracy in an extremely compact circuit.  
CONVERTER DETAILS  
TEMPERATURE CONVERSION  
The Σ-Δ modulator consists of an input sampler, a summing  
network, an integrator, a comparator, and a 1-bit digital-to-  
analog converter (DAC). Similar to the voltage-to-frequency  
converter, this architecture creates a negative feedback loop and  
minimizes the integrator output by changing the duty cycle of  
the comparator output in response to input voltage changes.  
The comparator samples the output of the integrator at a much  
higher rate than the input sampling frequency; this is called  
oversampling. Oversampling spreads the quantization noise  
over a much wider band than that of the input signal,  
The conversion clock for the part is generated internally. No  
external clock is required. The internal clock oscillator runs an  
automatic conversion sequence. During this automatic conversion  
sequence, a conversion is initiated every 600 ms. At this time, the  
part powers up its analog circuitry and performs a temperature  
conversion.  
This temperature conversion typically takes 30 ms, after which  
the analog circuitry of the part automatically shuts down. The  
analog circuitry powers up again 570 ms later, when the 600 ms  
timer times out and the next conversion begins. The result of  
the most recent temperature conversion is compared with the  
factory-set trip point value. If the temperature measured is  
greater than the trip point value, the output is activated. The  
output is deactivated once the temperature crosses back over  
the trip point threshold plus whatever temperature hysteresis is  
selected. Figure 15 to Figure 18 show the transfer function for  
the output trip pin of each generic model.  
improving overall noise performance and increasing accuracy.  
Rev. B | Page 8 of 16  
 
 
 
 
 
 
 
Data Sheet  
ADT6501/ADT6502/ADT6503/ADT6504  
V
V
TUNDER  
TOVER  
COLD  
HOT  
HOT  
COLD  
10°C  
HYST  
TEMP  
TEMP  
TTH  
TTH  
10°C  
HYST  
2°C  
HYST  
2°C  
HYST  
Figure 15. ADT6501 TOVER Transfer Function  
Figure 17. ADT6503 TUNDER Transfer Function  
V
V
TOVER  
TUNDER  
COLD  
HOT  
HOT  
COLD  
TEMP  
TEMP  
TTH  
TTH  
10°C  
HYST  
10°C  
HYST  
2°C  
HYST  
2°C  
HYST  
Figure 16. ADT6502 TOVER Transfer Function  
Figure 18. ADT6504 TUNDER Transfer Function  
Rev. B | Page 9 of 16  
 
 
ADT6501/ADT6502/ADT6503/ADT6504  
Data Sheet  
APPLICATION INFORMATION  
If possible, the ADT650x should be powered directly from the  
system power supply. This arrangement, shown in Figure 19,  
isolates the analog section from the logic switching transients.  
Even if a separate power supply trace is not available, generous  
supply bypassing reduces supply line induced errors. Local  
supply bypassing consisting of a 0.1 µF ceramic capacitor is  
advisable to achieve the temperature accuracy specifications.  
This decoupling capacitor must be placed as close as possible to  
the ADT650x VCC pin.  
THERMAL RESPONSE TIME  
The time required for a temperature sensor to settle to a specified  
accuracy is a function of the sensors thermal mass and the  
thermal conductivity between the sensor and the object being  
sensed. Thermal mass is often considered equivalent to  
capacitance. Thermal conductivity is commonly specified using  
the symbol Q and can be thought of as thermal resistance. It is  
commonly specified in units of degrees per watt of power  
transferred across the thermal joint. Thus, the time required for  
the ADT650x to settle to the desired accuracy is dependent on  
the characteristics of the SOT-23 package, the thermal contact  
established in that particular application, and the equivalent  
power of the heat source. In most applications, the settling time  
is best determined empirically.  
TTL/CMOS  
LOGIC  
CIRCUITS  
0.1µF  
ADT650x  
POWER  
SUPPLY  
SELF-HEATING EFFECTS  
The temperature measurement accuracy of the ADT6501/  
ADT6502/ADT6503/ADT6504 can be degraded in some  
applications due to self-heating. Errors can be introduced from  
the quiescent dissipation and power dissipated when converting.  
The magnitude of these temperature errors depends on the  
thermal conductivity of the ADT650x package, the mounting  
technique, and the effects of airflow. At 25°C, static dissipation  
in the ADT650x is typically 99 µW operating at 3.3 V. In the  
5-lead SOT-23 package mounted in free air, this accounts for a  
temperature increase due to self-heating of  
Figure 19. Separate Traces Used to Reduce Power Supply Noise  
TEMPERATURE MONITORING  
The ADT6501/ADT6502/ADT6503/ADT6504 are ideal for  
monitoring the thermal environment within electronic equipment.  
For example, the surface-mount package accurately reflects the  
exact thermal conditions that affect nearby integrated circuits.  
The ADT650x measure and convert the temperature at the  
surface of its own semiconductor chip. When the ADT650x are  
used to measure the temperature of a nearby heat source, the  
thermal impedance between the heat source and the ADT650x  
must be as low as possible.  
ΔT = PDISS × θJA = 99 µW × 240°C/W = 0.024°C  
It is recommended that current dissipated through the device be  
kept to a minimum because it has a proportional effect on the  
temperature error.  
As much as 60% of the heat transferred from the heat source to  
the thermal sensor on the ADT650x die is discharged via the  
copper tracks, package pins, and bond pads. Of the pins on the  
ADT650x, the GND pins transfer most of the heat. Therefore,  
to monitor the temperature of a heat source, it is recommended  
that the thermal resistance between the ADT650x GND pins  
and the GND of the heat source be reduced as much as possible.  
SUPPLY DECOUPLING  
The ADT6501/ADT6502/ADT6503/ADT6504 should be  
decoupled with a 0.1 µF ceramic capacitor between VCC and  
GND. This is particularly important when the ADT650x are  
mounted remotely from the power supply. Precision analog  
products such as the ADT650x require well filtered power  
sources. Because the ADT650x operate from a single supply, it  
may seem convenient to tap into the digital logic power supply.  
For example, the unique properties of the ADT650x can be used  
to monitor a high power dissipation microprocessor. The  
ADT650x device in its SOT-23 package is mounted directly  
beneath the microprocessors pin grid array (PGA) package.  
The ADT650x requires no external characterization.  
Unfortunately, the logic supply is often a switch-mode design,  
which generates noise in the 20 kHz to 1 MHz range. In addition,  
fast logic gates can generate glitches that are hundreds of mV in  
amplitude due to wiring resistance and inductance.  
Rev. B | Page 10 of 16  
 
 
 
 
 
 
Data Sheet  
ADT6501/ADT6502/ADT6503/ADT6504  
TYPICAL APPLICATION CIRCUITS  
3.3V  
3.3V  
12V  
0.1µF  
0.1µF  
100kΩ  
V
V
V
CC  
CC  
CC  
ADT6501  
ADT6502  
MICROPROCESSOR  
INT  
HYST  
TOVER  
TOVER  
GND  
GND  
HYST  
GND  
GND  
GND  
Figure 20. Microprocessor Alarm  
Figure 21. Overtemperature Fan Control  
3.3V  
0.1µF  
V
CC  
ADT6502  
... P075  
OVER TEMPERATURE  
TOVER  
GND  
HYST  
GND  
OUT OF RANGE  
0.1µF  
V
CC  
ADT6504  
... N015  
UNDER TEMPERATURE  
TUNDER  
GND  
HYST  
GND  
Figure 22. Temperature Window Alarms  
Rev. B | Page 11 of 16  
 
ADT6501/ADT6502/ADT6503/ADT6504  
Data Sheet  
3.3V  
0.1µF  
100kΩ  
V
V
CC  
CC  
ADT6501  
... P075  
MICROPROCESSOR  
INT  
TOVER  
GND  
HYST  
GND  
GND  
12V  
0.1µF  
V
CC  
ADT6502  
... P045  
TOVER  
GND  
HYST  
GND  
Figure 23. Fail-Safe Temperature Monitor  
Rev. B | Page 12 of 16  
Data Sheet  
ADT6501/ADT6502/ADT6503/ADT6504  
OUTLINE DIMENSIONS  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.60  
0.50 MAX  
0.35 MIN  
0.35  
BSC  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 24. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Accuracy @  
Threshold  
Temperature  
Threshold  
Temperature  
Temperature  
Range  
Package  
Description  
Package Ordering  
Model1  
Option  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
Quantity  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
10,000  
3,000  
3,000  
10,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
Branding  
T1U  
T1V  
T0B  
T1W  
T1X  
T0W  
T0W  
T1Y  
T15  
T15  
T1Z  
T25  
T26  
T27  
T28  
T17  
T29  
T2B  
T2C  
T2D  
T2E  
T2F  
T19  
ADT6501SRJZP035RL7  
ADT6501SRJZP045RL7  
ADT6501SRJZP055RL7  
ADT6501SRJZP065RL7  
ADT6501SRJZP075RL7  
ADT6501SRJZP085RL7  
ADT6501SRJZP085-RL  
ADT6501SRJZP095RL7  
ADT6501SRJZP105RL7  
ADT6501SRJZP105-RL  
ADT6501SRJZP115RL7  
ADT6502SRJZP035RL7  
ADT6502SRJZP045RL7  
ADT6502SRJZP055RL7  
ADT6502SRJZP065RL7  
ADT6502SRJZP075RL7  
ADT6502SRJZP085RL7  
ADT6502SRJZP095RL7  
ADT6502SRJZP105RL7  
ADT6502SRJZP115RL7  
ADT6503SRJZN045RL7  
ADT6503SRJZN035RL7  
ADT6503SRJZN025RL7  
ADT6503SRJZN015RL7  
ADT6503SRJZN005RL7  
35°C  
45°C  
55°C  
65°C  
75°C  
85°C  
85°C  
95°C  
105°C  
105°C  
115°C  
35°C  
45°C  
55°C  
65°C  
75°C  
85°C  
95°C  
4°C  
4°C  
4°C  
4°C  
6°C  
6°C  
6°C  
6°C  
6°C  
6°C  
6°C  
4°C  
4°C  
4°C  
4°C  
6°C  
6°C  
6°C  
6°C  
6°C  
6°C  
6°C  
6°C  
4°C  
4°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
105°C  
115°C  
−45°C  
−35°C  
−25°C  
−15°C  
−5°C  
T2J  
T2M  
Rev. B | Page 13 of 16  
 
 
ADT6501/ADT6502/ADT6503/ADT6504  
Data Sheet  
Accuracy @  
Threshold  
Temperature  
+5°C  
+15°C  
−45°C  
−35°C  
−25°C  
−15°C  
−5°C  
Threshold  
Temperature  
Temperature  
Range  
Package  
Description  
Package Ordering  
Model1  
Option  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
Quantity  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
Branding  
T2N  
T2P  
ADT6503SRJZP005RL7  
ADT6503SRJZP015RL7  
ADT6504SRJZN045RL7  
ADT6504SRJZN035RL7  
ADT6504SRJZN025RL7  
ADT6504SRJZN015RL7  
ADT6504SRJZN005RL7  
ADT6504SRJZP005RL7  
ADT6504SRJZP015RL7  
4°C  
4°C  
6°C  
6°C  
6°C  
4°C  
4°C  
4°C  
4°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
T2K  
T2L  
T2Q  
T2R  
T2T  
+5°C  
+15°C  
T2H  
T2U  
1 Z = RoHS Compliant Part.  
Rev. B | Page 14 of 16  
 
 
Data Sheet  
NOTES  
ADT6501/ADT6502/ADT6503/ADT6504  
Rev. B | Page 15 of 16  
ADT6501/ADT6502/ADT6503/ADT6504  
NOTES  
Data Sheet  
©2007–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06096-0-10/12(B)  
Rev. B | Page 16 of 16  

相关型号:

ADT6501SRJZP105-RL

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6501SRJZP105RL7

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6501SRJZP115RL7

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6501_15

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6502

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6502ARJP035

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6502ARJP045

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6502ARJP055

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6502ARJP065

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6502ARJP075

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6502ARJP085

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI

ADT6502ARJP095

Low Cost, 2.7 V to 5.5 V, Micropower Temperature Switches in SOT-23
ADI