ADTR1107ACCZ-R7 [ADI]

6 GHz to 18 GHz, Front-End IC;
ADTR1107ACCZ-R7
型号: ADTR1107ACCZ-R7
厂家: ADI    ADI
描述:

6 GHz to 18 GHz, Front-End IC

电信 电信集成电路
文件: 总28页 (文件大小:929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6 GHz to 18 GHz, Front-End IC  
Data Sheet  
ADTR1107  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VDD_LNA VGG_LNA  
VSS_SW CTRL_SW VDD_SW  
Operates from 6 GHz to 18 GHz  
25 dBm typical transmit state PSAT  
22 dB typical transmit state small signal gain  
18 dB typical receive state small signal gain  
2.5 dB typical receive state noise figure  
Coupled power amplifier output for power detection  
RX_OUT  
TX_IN  
ANT  
ADTR1107  
APPLICATIONS  
Phased array antenna  
Military radar  
Weather radar  
VGG_PA  
VDD_PA  
CPLR_OUT  
Figure 1.  
Communication links  
Electronic warfare  
GENERAL DESCRIPTION  
The ADTR1107 is a compact, 6 GHz to 18 GHz, front-end IC  
with an integrated power amplifier, low noise amplifier (LNA),  
and a reflective single-pole double-throw (SPDT) switch. These  
integrated features make the device ideal for phased array antenna  
and radar applications. The front-end IC offers 25 dBm of  
saturated output power (PSAT) and 22 dB small signal gain in  
transmit state, and 18 dB small signal gain and 2.5 dB noise  
figure in receive state. The device has a directional coupler for  
power detection. The input/outputs (I/Os) are internally matched  
to 50 Ω. The ADTR1107 is supplied in a 5 mm × 5 mm,  
24-terminal, land grid array (LGA) package.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADTR1107  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Transmit State................................................................................9  
Receive State................................................................................ 16  
Theory of Operation ...................................................................... 23  
Applications Information ............................................................. 24  
Recommended Bias Sequencing .............................................. 24  
Typical Application Circuit...................................................... 25  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Absolute Maximum Ratings ........................................................... 6  
Thermal Resistance...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions ............................ 7  
Interface Schematics .................................................................... 8  
Typical Performance Characteristics............................................. 9  
Interfacing the ADTR1107 to the ADAR1000 X Band and KU  
Band Beamformer............................................................................ 26  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
REVISION HISTORY  
4/2020—Rev. 0 to Rev. A  
Changes to VDD_LNA Parameter, Table 4 ................................. 5  
1/2020—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
Data Sheet  
ADTR1107  
SPECIFICATIONS  
Transmit state, VDD_PA = 5 V, IDQ_PA = 220 mA, VDD_SW = 3.3 V, VSS_SW = −3.3 V, CTRL_SW = 0 V, receive state off (VDD_LNA = 0 V,  
VGG_LNA = 0 V), TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
6
Typ Max  
Unit  
Test Conditions/Comments  
OVERALL FUNCTION  
Frequency Range  
TRANSMIT STATE  
Small Signal Gain  
Gain Flatness  
14  
GHz  
19.5  
21.5  
0.8  
13  
dB  
TX_IN to ANT  
dB  
Input Return Loss  
Output Return Loss  
Output 1 dB Compression (OP1dB)  
dB  
TX_IN to ANT  
TX_IN to ANT  
TX_IN to ANT  
15  
dB  
21  
23  
dBm  
dBm  
dBm  
dB  
Saturated Output Power (PSAT  
)
25  
Output Third-Order Intercept (OIP3)  
Noise Figure  
31  
TX_IN to ANT output power (POUT) per tone = 8 dBm  
TX_IN to ANT  
9
Coupling Factor  
Isolation  
23.5  
dB  
Coupling factor = ANT POUT − CPLR_OUT POUT  
TX_IN to RX_OUT  
ANT to RX_OUT  
RF Settling Time  
0.1 dB  
40  
64  
dB  
dB  
Receive state off  
Receive state off  
17  
22  
ns  
ns  
50% CTRL_SW to 0.1 dB of final RF output  
50% CTRL_SW to 0.05 dB of final RF output  
0.05 dB  
Switching Speed  
Rise and Fall Time  
Turn On and Turn Off Time  
VDD_PA  
tRISE, tFALL  
tON, tOFF  
2
ns  
ns  
V
10% to 90% of RF output  
10  
50% CTRL_SW to 90% of RF output  
3.3  
5.0  
5.5  
Quiescent Current (IDQ_PA)  
220  
mA  
Adjust VGG_PA voltage between −1.75 V and  
−0.25 V to achieve the desired IDQ_PA  
Transmit state, VDD_PA = 5 V, IDQ_PA = 220 mA, VDD_SW = 3.3 V, VSS_SW = −3.3 V, CTRL_SW = 0 V, receive state off, TA = 25°C,  
unless otherwise noted.  
Table 2.  
Parameter  
Symbol Min Typ Max  
Unit  
Test Conditions/Comments  
OVERALL FUNCTION  
Frequency Range  
TRANSMIT STATE  
Small Signal Gain  
Gain Flatness  
Input Return Loss  
Output Return Loss  
OP1dB  
PSAT  
OIP3  
Noise Figure  
Coupling Factor  
Isolation  
14  
20  
18  
GHz  
22  
0.6  
12  
11  
21.5  
24  
31.5  
6.5  
18  
dB  
dB  
dB  
dB  
dBm  
dBm  
dBm  
dB  
TX_IN to ANT  
TX_IN to ANT  
TX_IN to ANT  
TX_IN to ANT  
TX_IN to ANT  
TX_IN to ANT POUT per tone = 8 dBm  
TX_IN to ANT  
Coupling factor = ANT POUT − CPLR_OUT POUT  
19  
dB  
TX_IN to RX_OUT  
ANT to RX_OUT  
39  
64  
dB  
dB  
Receive state off  
Receive state off  
Rev. A | Page 3 of 28  
 
ADTR1107  
Data Sheet  
Parameter  
Symbol Min Typ Max  
Unit  
Test Conditions/Comments  
RF Settling Time  
0.1 dB  
0.05 dB  
17  
22  
ns  
ns  
50% CTRL_SW to 0.1 dB of final RF output  
50% CTRL_SW to 0.05 dB of final RF output  
Switching Speed  
Rise and Fall Time  
Turn On and Turn Off Time tON, tOFF  
VDD_PA  
IDQ_PA  
tRISE, tFALL  
2
ns  
ns  
V
10% to 90% of RF output  
50% CTRL_SW to 90% of RF output  
10  
5.0  
220  
3.3  
5.5  
mA  
Adjust VGG_PA voltage between −1.75 V and −0.25 V to  
achieve the desired IDQ_PA  
Receive state, self biased, VDD_LNA = 3.3 V, VGG_LNA = 0 V, VDD_SW = 3.3 V, VSS_SW = −3.3 V, CTRL_SW = 3.3 V, transmit state  
off (VDD_PA = 0 V, VGG_PA = −1.75 V), TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Min  
6
Typ  
Max  
Unit  
Test Conditions/Comments  
OVERALL FUNCTION  
Frequency Range  
RECEIVE STATE  
Small Signal Gain  
Gain Flatness  
Input Return Loss  
Output Return Loss  
OP1dB  
PSAT  
OIP3  
Noise Figure  
Isolation  
14  
GHz  
15.5  
17.5  
0.6  
13  
14  
14  
16  
26  
2.5  
dB  
ANT to RX_OUT  
dB  
dB  
dB  
dBm  
dBm  
dBm  
dB  
ANT to RX_OUT  
ANT to RX_OUT  
ANT to RX_OUT  
12  
ANT to RX_OUT POUT per tone = 0 dBm  
ANT to RX_OUT  
ANT to TX_IN  
RX_OUT to TX_IN  
RF Settling Time  
0.1 dB  
32  
48  
dB  
dB  
Transmit state off  
Transmit state off  
17  
22  
ns  
ns  
50% CTRL_SW to 0.1 dB of final RF output  
50% CTRL_SW to 0.05 dB of final RF output  
0.05 dB  
Switching Speed  
Rise and Fall Time  
Turn On and Turn Off Time  
VDD_LNA  
tRISE, tFALL  
tON, tOFF  
2
ns  
ns  
V
10% to 90% of RF output  
50% CTRL_SW to 90% of RF output  
10  
3.3  
80  
2.0  
3.6  
IDQ_LNA  
mA  
Self biased  
Receive state, self biased, VDD_LNA = 3.3 V, VGG_LNA = 0 V, VDD_SW = 3.3 V, VSS_SW = −3.3 V, CTRL_SW = 3.3 V, transmit state  
off, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Min  
14  
Typ  
Max  
Unit  
Test Conditions/Comments  
OVERALL FUNCTION  
Frequency Range  
RECEIVE STATE  
Small Signal Gain  
Gain Flatness  
Input Return Loss  
Output Return Loss  
OP1dB  
18  
GHz  
16  
18  
0.9  
13  
18  
14  
dB  
dB  
ANT to RX_OUT  
dB  
dB  
dBm  
dBm  
ANT to RX_OUT  
ANT to RX_OUT  
ANT to RX_OUT  
ANT to RX_OUT  
12  
PSAT  
16.5  
Rev. A | Page 4 of 28  
Data Sheet  
ADTR1107  
Parameter  
Symbol  
Min  
Typ  
25.5  
3
Max  
Unit  
dBm  
dB  
Test Conditions/Comments  
ANT to RX_OUT POUT per tone = 0 dBm  
ANT to RX_OUT  
OIP3  
Noise Figure  
Isolation  
ANT to TX_IN  
RX_OUT to TX_IN  
RF Settling Time  
0.1 dB  
26  
46  
dB  
dB  
Transmit state off  
Transmit state off  
17  
22  
ns  
ns  
50% CTRL_SW to 0.1 dB of final RF output  
50% CTRL_SW to 0.05 dB of final RF output  
0.05 dB  
Switching Speed  
Rise and Fall Time  
Turn On and Turn Off Time  
VDD_LNA  
tRISE, tFALL  
tON, tOFF  
2
ns  
ns  
V
10% to 90% of RF output  
50% CTRL_SW to 90% of RF output  
10  
3.3  
80  
2.0  
3.6  
IDQ_LNA  
mA  
Self biased  
SPDT switch bias at VDD_SW = 3.3 V, VSS_SW = −3.3 V.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
Positive  
Negative  
VDD_SW and VSS_SW  
IDD_SW  
ISS_SW  
14  
120  
μA  
μA  
DIGITAL CONTROL INPUTS  
Voltage  
CTRL_SW  
Low  
High  
0
1.2  
0.8  
3.3  
V
V
Current (Low and High)  
<1  
μA  
Rev. A | Page 5 of 28  
ADTR1107  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Transmit State (PA On), Receive State Off  
VDD_PA  
VGG_PA  
Continuous Wave (CW) RF Input Power 20 dBm  
(RFIN) at TX_IN  
Continuous Power Dissipation (PDISS  
5.5 V  
−2 V to +0 V  
)
1.71 W  
THERMAL RESISTANCE  
(TA = 85°C, Derate 18.98 mW/°C  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Above 85°C)  
Receive State (LNA On), Transmit State Off  
VDD_LNA  
4 V  
VGG_LNA  
CW RFIN at ANT  
PDISS (TA = 85°C, Derate 5.04 mW/°C  
Above 85°C)  
Transmit and Receive States  
−2 V to +0.2 V  
20 dBm  
0.453 W  
θ
JC is the thermal resistance from the operating portion of the  
device to the outside surface of the package (case) closest to the  
device mounting area.  
1
Table 7. Thermal Resistance  
Output Load Voltage Standing Wave  
Ratio (VSWR)  
VDD_SW Range  
VSS_SW Range  
VDD_CTRL Range  
Channel Temperature  
7:1  
Package Type θJC Transmit State  
θJC Receive State Unit  
198.4 °C/W  
CC-24-8 52.7  
−0.3 V to +3.6 V  
−3.6 V to +0.3 V  
−0.3 V to VDD + 0.3 V  
175°C  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with 36 thermal vias. Refer to the JEDEC standard JESD51 for  
additional information.  
ESD CAUTION  
Maximum Peak Reflow Temperature  
(Moisture Sensitivity Level 3, MSL3)1  
260°C  
Storage Temperature Range  
Operating Temperature Range  
ESD Sensitivity (Human Body Model)  
−40°C to +125°C  
−40°C to +85°C  
Class 1B  
(Passed 500 V)  
1 See the Ordering Guide section for more information.  
Table 8. Signal Path Truth Table  
State  
CTRL_SW  
RF Signal Path  
TX_IN to ANT  
ANT to RX_OUT  
Transmit  
Receive  
Low  
High  
Rev. A | Page 6 of 28  
 
 
 
 
Data Sheet  
ADTR1107  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
RX_OUT  
GND  
GND  
ANT  
GND  
GND  
GND  
GND  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
ADTR1107  
TOP VIEW  
GND  
(Not to Scale)  
TX_IN  
GND  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
SOLDER THESE PINS TO A LOW  
IMPEDANCE GROUND PLANE.  
2. EXPOSED PAD. MUST BE CONNECTED  
TO RF/DC GROUND.  
Figure 2. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No. Mnemonic Description  
1, 3, 4, 6, 11, 13 GND  
to 16, 18, 22  
Ground. Solder these pins to a low impedance ground plane.  
2
5
7
8
9, 10  
12  
17  
19  
20  
21  
23  
RX_OUT  
TX_IN  
Receive Path Output. This pin is dc-coupled to ground and ac matched to 50 Ω.  
Transmit Path Input. This pin is dc-coupled to ground and ac matched to 50 Ω.  
Power Amplifier Gate Bias. This pin is used to set the desired quiescent current of the amplifier.  
Power Amplifier Drain Bias Voltage.  
VGG_PA  
VDD_PA  
NIC  
CPLR_OUT  
ANT  
VDD_SW  
CTRL_SW  
VSS_SW  
VGG_LNA  
No Internal Connection. Solder these pins to a low impedance ground plane.  
Transmit Path Coupled Port. This port is used in connection with a detector to monitor transmitted power.  
RF Common Port. This pin is dc-coupled to 0 V and ac matched to 50 Ω.  
SPDT Switch Positive Bias Voltage.  
Switch Digital Control. This pin controls the state of the SPDT switch.  
SPDT Switch Negative Bias Voltage.  
LNA Gate Voltage Bias. This pin is used to set the desired quiescent current of the LNA. If this pin is  
supplied with 0 V or is connected to ground, the LNA runs in self bias mode at a typical current of 80 mA.  
24  
VDD_LNA  
EPAD  
LNA Drain Voltage Bias.  
Exposed Pad. Must be connected to RF/dc ground.  
Rev. A | Page 7 of 28  
 
ADTR1107  
Data Sheet  
INTERFACE SCHEMATICS  
GND  
VDD_LNA  
Figure 3. GND Interface Schematic  
Figure 8. VDD_LNA Interface Schematic  
ANT  
VGG_LNA  
Figure 4. ANT Interface Schematic  
Figure 9. VGG_LNA Interface Schematic  
VDD_SW  
VDD_SW  
RX_OUT  
8kΩ  
CTRL_SW  
Figure 5. CTRL_SW and VDD_SW Interface Schematic  
Figure 10. RX_OUT Interface Schematic  
VDD_PA  
TX_IN  
2.5kΩ  
Figure 6. VDD_PA Interface Schematic  
Figure 11. TX_IN Interface Schematic  
VGG_PA  
Figure 7. VGG_PA Interface Schematic  
Rev. A | Page 8 of 28  
 
Data Sheet  
ADTR1107  
TYPICAL PERFORMANCE CHARACTERISTICS  
TRANSMIT STATE  
30  
26  
24  
22  
20  
18  
16  
14  
12  
25  
20  
15  
10  
S11 (dB)  
S21 (dB)  
S22 (dB)  
5
0
+85°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 12. Broadband Gain and Return Loss vs. Frequency, 10 MHz to 26 GHz,  
Transmit State, Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA,  
Receive State Off  
Figure 15. Gain vs. Frequency for Various Temperatures, Transmit State, Path =  
TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
26  
24  
22  
20  
26  
24  
22  
20  
18  
18  
5.0V  
250mA  
220mA  
200mA  
180mA  
150mA  
16  
16  
14  
12  
4.0V  
3.3V  
14  
12  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 13. Gain vs. Frequency for Various VDD_PA, Transmit State, Path =  
TX_IN to ANT, IDQ_PA = 220 mA, Receive State Off  
Figure 16. Gain vs. Frequency for Various IDQ_PA, Transmit State, Path =  
TX_IN to ANT, VDD_PA = 5 V, Receive State Off  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–4  
–8  
–4  
–8  
–12  
–16  
–20  
–12  
–16  
–20  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 14. Input Return Loss vs. Frequency for Various Temperatures, Transmit  
State, Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Figure 17. Output Return Loss vs. Frequency for Various Temperatures, Transmit  
State, Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Rev. A | Page 9 of 28  
 
 
ADTR1107  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 18. Reverse Isolation vs. Frequency for Various Temperatures,Transmit  
State, Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Figure 21. CLPR_OUT Coupling Factor vs. Frequency for Various  
Temperatures, Transmit State, Coupling Factor = ANT POUT − CPLR_OUT POUT  
VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
,
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 19. TX_IN to RX_OUT Isolation vs. Frequency for Various Temperatures,  
Transmit State, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Figure 22. ANT to RX_OUT Isolation vs. Frequency for Various Temperatures,  
Transmit State, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
16  
16  
+85°C  
5.0V  
4.0V  
3.3V  
+25°C  
14  
14  
12  
10  
8
–40°C  
12  
10  
8
6
6
4
4
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
Figure 20. Noise Figure vs. Frequency for Various Temperatures, Transmit  
State, Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Figure 23. Noise Figure vs. Frequency for Various VDD_PA, Transmit State,  
Path = TX_IN to ANT, IDQ_PA = 220 mA, Receive State Off  
Rev. A | Page 10 of 28  
Data Sheet  
ADTR1107  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
250mA  
220mA  
200mA  
180mA  
150mA  
6
4
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 24. Noise Figure vs. Frequency for Various IDQ_PA, Transmit State , Path =  
TX_IN to ANT, VDD_PA = 5 V, Receive State Off  
Figure 27. OP1dB vs. Frequency for Various Temperatures,Transmit State, Path =  
TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
28  
28  
26  
24  
22  
20  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.0V  
4.0V  
3.3V  
18  
250mA  
220mA  
200mA  
180mA  
150mA  
16  
14  
12  
10  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 25. OP1dB vs. Frequency for Various VDD_PA, Transmit State, Path =  
TX_IN to ANT, IDQ_PA = 220 mA, Receive State Off  
Figure 28. OP1dB vs. Frequency for Various IDQ_PA, Transmit State, Path =  
TX_IN to ANT, VDD_PA = 5 V, Receive State Off  
30  
28  
26  
24  
22  
20  
18  
30  
28  
26  
24  
22  
20  
5.0V  
4.0V  
3.3V  
18  
16  
14  
12  
10  
16  
+85°C  
+25°C  
–40°C  
14  
12  
10  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 26. PSAT vs. Frequency for Various Temperatures, Transmit State, Path =  
TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Figure 29. PSAT vs. Frequency for Various VDD_PA, Transmit State, Path =  
TX_IN to ANT, IDQ_PA = 220 mA, Receive State Off  
Rev. A | Page 11 of 28  
ADTR1107  
Data Sheet  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
250mA  
220mA  
200mA  
180mA  
150mA  
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 30. PSAT vs. Frequency for Various IDQ_PA,Transmit State, Path = TX_IN  
to ANT, VDD_PA = 5 V, Receive State Off  
Figure 33. PAE vs. Frequency for Various Temperatures, Transmit State, Path =  
TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off, PAE  
Measured at PSAT  
35  
35  
30  
25  
20  
5.0V  
30  
4.0V  
3.3V  
25  
20  
15  
10  
5
15  
10  
5
250mA  
220mA  
200mA  
180mA  
150mA  
0
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 31. Power Added Efficiency (PAE) vs. Frequency for Various VDD_PA,  
Transmit State, Path = TX_IN to ANT, IDQ_PA = 220 mA, Receive State Off, PAE  
Measured at PSAT  
Figure 34. PAE vs. Frequency for Various IDQ_PA, Transmit State, Path = TX_IN  
to ANT, VDD_PA = 5 V, Receive State Off, PAE Measured at PSAT  
30  
25  
20  
15  
10  
5
330  
310  
290  
270  
250  
230  
210  
30  
25  
20  
15  
10  
5
450  
410  
370  
330  
290  
250  
210  
P
GAIN  
PAE  
OUT  
I
_PA  
DD  
P
GAIN  
PAE  
OUT  
I
_PA  
DD  
0
0
–20  
–16  
–12  
–8  
–4  
0
4
8
–20  
–16  
–12  
–8  
–4  
0
4
8
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 32. POUT, Gain, PAE and Power Amplifier Supply Current (IDD_PA) vs. Input  
Power, 6 GHz, Transmit State, Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA =  
220 mA, Receive State Off  
Figure 35. POUT, Gain, PAE and IDD_PA vs. Input Power, 10 GHz, Transmit State,  
Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Rev. A | Page 12 of 28  
Data Sheet  
ADTR1107  
30  
450  
410  
370  
330  
290  
250  
210  
30  
25  
20  
15  
10  
5
330  
310  
290  
270  
250  
230  
P
GAIN  
PAE  
OUT  
25  
20  
15  
10  
5
I
_PA  
DD  
P
GAIN  
PAE  
OUT  
I
_PA  
DD  
0
–20  
0
–20  
210  
5
–15  
–10  
–5  
0
5
10  
–15  
–10  
–5  
0
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 36. POUT, Gain, PAE and IDD_PA vs. Input Power, 14 GHz, Transmit State,  
Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Figure 39. POUT, Gain, PAE and IDD_PA vs. Input Power, 18 GHz, Transmit State,  
Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
2.0  
40  
35  
30  
25  
20  
15  
MAX P  
1.5  
1.0  
0.5  
0
DISS  
6GHz  
8GHz  
10GHz  
12GHz  
14GHz  
16GHz  
18GHz  
+85°C  
10  
+25°C  
–40°C  
5
0
–20  
–15  
–10  
–5  
0
5
10  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 37. Power Dissipation vs. Input Power at TA = 85°C, Transmit State,  
Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Figure 40. OIP3 vs. Frequency for Various Temperatures, POUT/Tone = 8 dBm,  
Transmit State, Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA,  
Receive State Off  
40  
35  
30  
25  
40  
35  
30  
25  
20  
20  
5.0V  
250mA  
15  
15  
4.0V  
220mA  
3.3V  
200mA  
180mA  
150mA  
10  
10  
5
0
5
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 38. OIP3 vs. Frequency for Various VDD_PA, POUT/Tone = 8 dBm,  
Transmit State, Path = TX_IN to ANT, IDQ_PA = 220 mA, Receive State Off  
Figure 41. OIP3 vs. Frequency for Various IDQ_PA, POUT/Tone = 8 dBm,  
Transmit State, Path = TX_IN to ANT, VDD_PA = 5 V, Receive State Off  
Rev. A | Page 13 of 28  
ADTR1107  
Data Sheet  
40  
35  
30  
25  
20  
15  
70  
60  
50  
40  
30  
20  
10  
0
6GHz  
8GHz  
10GHz  
12GHz  
14GHz  
16GHz  
18GHz  
8dBm  
6dBm  
4dBm  
10  
5
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
4
5
6
7
8
P
/TONE (dBm)  
OUT  
Figure 45. Third-Order Intermodulation Distortion Relative to Carrier (IM3)  
vs. POUT/Tone, Transmit State, Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA =  
220 mA, Receive State Off  
Figure 42. OIP3 vs. Frequency for Various POUT/Tone, Transmit State, Path =  
TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
70  
65  
60  
55  
50  
45  
40  
70  
65  
60  
55  
50  
45  
40  
35  
35  
5.0V  
4.0V  
+85°C  
30  
30  
25  
3.3V  
+25°C  
–40°C  
25  
20  
15  
10  
20  
15  
10  
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
Figure 46. OIP2 vs. Frequency for Various VDD_PA, POUT/Tone = 8 dBm,  
Transmit State, Path = TX_IN to ANT, IDQ_PA = 220 mA, Receive State Off  
Figure 43. Output Second-Order Intercept (OIP2) vs. Frequency for Various  
Temperatures, POUT/Tone = 8 dBm, Transmit State, Path = TX_IN to ANT,  
VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
70  
65  
60  
55  
50  
45  
40  
70  
65  
60  
55  
50  
45  
40  
35  
35  
8dBm  
250mA  
6dBm  
220mA  
30  
30  
4dBm  
200mA  
180mA  
25  
20  
15  
10  
25  
150mA  
20  
15  
10  
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
Figure 47. OIP2 vs. Frequency for Various POUT/Tone, Transmit State, Path =  
TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Figure 44. OIP2 vs. Frequency for Various IDQ_PA, POUT/Tone = 8 dBm,  
Transmit State, Path = TX_IN to ANT, VDD_PA = 5 V, Receive State Off  
Rev. A | Page 14 of 28  
Data Sheet  
ADTR1107  
400  
0.2  
0.1  
6GHz  
8GHz  
375  
350  
325  
300  
275  
250  
225  
200  
10GHz  
12GHz  
14GHz  
16GHz  
18GHz  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
6GHz  
8GHz  
10GHz  
12GHz  
14GHz  
16GHz  
18GHz  
–20  
–15  
–10  
–5  
0
5
10  
–20  
–15  
–10  
–5  
0
5
10  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 48. IDD_PA vs. Input Power for Various Frequencies, Transmit State,  
Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA = 220 mA, Receive State Off  
Figure 50. Power Amplifier Gate Current (IGG_PA) vs. Input Power for Various  
Frequencies, Transmit State, Path = TX_IN to ANT, VDD_PA = 5 V, IDQ_PA =  
220 mA, Receive State Off  
800  
700  
600  
500  
400  
300  
200  
100  
0
–100  
–1.75  
–1.50  
–1.25  
–1.00  
–0.75  
–0.50  
–0.25  
VGG_PA (V)  
Figure 49. IDQ_PA vs. VGG_PA, VDD_PA = 5 V, Transmit State, Path = TX_IN to  
ANT, VDD_PA = 5 V, Receive State Off  
Rev. A | Page 15 of 28  
 
ADTR1107  
Data Sheet  
RECEIVE STATE  
25  
22  
20  
18  
16  
14  
12  
10  
8
20  
15  
S11 (dB)  
S21 (dB)  
S22 (dB)  
10  
5
0
–5  
+85°C  
+25°C  
–40°C  
–10  
–15  
–20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 51. Broadband Gain and Return Loss vs. Frequency, 10 MHz to 26 GHz,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V,  
VGG_LNA = 0 V, Transmit State Off  
Figure 54. Gain vs. Frequency for Various Temperatures, Receive State,  
Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V,  
Transmit State Off  
22  
20  
18  
16  
14  
22  
20  
18  
16  
14  
50mA  
100mA  
85mA, SELF BIAS MODE  
12  
10  
8
12  
2.0V  
3.0V  
3.3V  
3.6V  
10  
8
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 52. Gain vs. Frequency for Various VDD_LNA, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VGG_LNA = 0 V, Transmit State Off  
Figure 55. Gain vs. Frequency for Various IDQ_LNA, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, Controlled VGG_LNA,  
Transmit State Off  
0
0
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–4  
–4  
–8  
–12  
–16  
–20  
–8  
–12  
–16  
–20  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 53. Input Return Loss vs. Frequency for Various Temperatures,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V,  
VGG_LNA = 0 V, Transmit State Off  
Figure 56. Output Return Loss vs. Frequency for Various Temperatures,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V,  
VGG_LNA = 0 V, Transmit State Off  
Rev. A | Page 16 of 28  
Data Sheet  
ADTR1107  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 57. Reverse Isolation vs. Frequency for Various Temperatures, Receive  
State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA =  
0 V, Transmit State Off  
Figure 60. RX_OUT to TX_IN Isolation vs. Frequency for Various  
Temperatures, Receive State, Path = ANT to RX_OUT, Self Biased Mode,  
VDD_LNA = 3.3 V, VGG_LNA = 0 V, Transmit State Off  
0
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
+85°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
+85°C  
1.5  
+25°C  
–40°C  
1.0  
0.5  
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (GHz)  
Figure 58. ANT to TX_IN Isolation vs. Frequency for Various Temperatures,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V,  
VGG_LNA = 0 V, Transmit State Off  
Figure 61. Noise Figure vs. Frequency for Various Temperatures, Receive  
State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V,  
VGG_LNA = 0 V, Transmit State Off  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
2.0  
2.0V  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
3.0V  
3.3V  
3.6V  
50mA  
100mA  
85mA, SELF BIAS MODE  
4
6
8
10  
12  
14  
16  
18  
20  
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 59. Noise Figure vs. Frequency for Various VDD_LNA, Receive State,  
Path = ANT to RX_OUT, Self Biased Mode, VGG_LNA = 0 V, Transmit State Off  
Figure 62. Noise Figure vs. Frequency for Various IDQ_LNA, Receive State,  
Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, Controlled  
VGG_LNA, Transmit State Off  
Rev. A | Page 17 of 28  
ADTR1107  
Data Sheet  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
2.0V  
3.0V  
3.3V  
3.6V  
6
6
+85°C  
+25°C  
–40°C  
4
4
2
2
0
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 63. OP1dB vs. Frequency for Various Temperatures, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V,  
Transmit State Off  
Figure 66. OP1dB vs. Frequency for Various VDD_LNA, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VGG_LNA = 0 V, Transmit State Off  
22  
20  
18  
16  
14  
12  
22  
20  
18  
16  
14  
12  
10  
8
10  
50mA  
100mA  
8
85mA, SELF BIAS MODE  
6
4
2
0
6
4
2
0
+85°C  
+25°C  
–40°C  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 64. OP1dB vs. Frequency for Various IDQ_LNA, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, Controlled VGG_LNA,  
Transmit State Off  
Figure 67. PSAT vs. Frequency for Various Temperatures, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V,  
Transmit State = Off  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
50mA  
100mA  
8
85mA, SELF BIAS MODE  
2.0V  
3.0V  
3.3V  
3.6V  
6
4
2
0
6
4
2
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 65. PSAT vs. Frequency for Various VDD_LNA, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VGG_LNA = 0 V, Transmit State Off  
Figure 68. PSAT vs. Frequency for Various IDQ_LNA, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, Controlled VGG_LNA,  
Transmit State Off  
Rev. A | Page 18 of 28  
Data Sheet  
ADTR1107  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
2.0V  
3.0V  
3.3V  
3.6V  
+85°C  
+25°C  
–40°C  
0
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 69. PAE vs. Frequency for Various Temperatures, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V,  
Transmit State Off, PAE Measured at PSAT  
Figure 72. PAE vs. Frequency for Various VDD_LNA, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VGG_LNA = 0 V, Transmit State Off, PAE  
Measured at PSAT  
25  
20  
15  
25  
20  
15  
10  
5
110  
105  
100  
95  
P
GAIN  
PAE  
OUT  
I
_LNA  
DD  
10  
90  
50mA  
100mA  
85mA, SELF BIAS MODE  
5
0
85  
0
–5  
80  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
–20 –18 –16 –14 –12 –10 –8  
–6  
–4  
–2  
0
2
INPUT POWER (dBm)  
Figure 70. PAE vs. Frequency for Various IDQ_LNA, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, Controlled VGG_LNA,  
Transmit State Off, PAE Measured at PSAT  
Figure 73. POUT, Gain, PAE and IDD_LNA vs. Input Power, 6 GHz, Receive State,  
Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA= 0 V,  
Transmit State Off  
25  
20  
15  
10  
5
110  
105  
100  
95  
25  
20  
15  
10  
5
110  
105  
100  
95  
P
GAIN  
PAE  
P
OUT  
GAIN  
PAE  
OUT  
I
_LNA  
I
_LNA  
DD  
DD  
90  
90  
0
85  
0
85  
–5  
–20  
80  
–5  
–20  
80  
–16  
–12  
–8  
–4  
0
4
–15  
–10  
–5  
0
5
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 71. POUT, Gain, PAE and IDD_LNA vs. Input Power, 10 GHz, Receive State,  
Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA= 0 V,  
Transmit State Off  
Figure 74. POUT, Gain, PAE and IDD_LNA vs. Input Power, 14 GHz, Receive State,  
Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA= 0 V,  
Transmit State Off  
Rev. A | Page 19 of 28  
ADTR1107  
Data Sheet  
25  
110  
105  
100  
95  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
MAX P  
DISS  
P
GAIN  
PAE  
15  
10  
5
OUT  
I
_LNA  
DD  
6GHz  
8GHz  
10GHz  
12GHz  
14GHz  
16GHz  
18GHz  
90  
0
85  
–5  
80  
–20 –18 –16 –14 –12 –10 –8  
–6  
–4  
–2  
0
2
–20 –18 –16 –14 –12 –10 –8 –6 –4 –2  
0
2
4
6
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 75. POUT, Gain, PAE and IDD_LNA vs. Input Power, 18 GHz, Receive State,  
Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V,  
Transmit State Off  
Figure 78. Power Dissipation vs. Input Power at TA = 85°C, Receive State,  
Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V,  
Transmit State Off  
30  
27  
24  
21  
30  
27  
24  
21  
2.0V  
3.0V  
3.3V  
3.6V  
+85°C  
+25°C  
–40°C  
18  
18  
15  
15  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 76. OIP3 vs. Frequency for Various Temperatures, POUT/Tone = 0 dBm,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V,  
VGG_LNA = 0 V, Transmit State Off  
Figure 79. OIP3 vs. Frequency for Various VDD_LNA, POUT/Tone = 0 dBm,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VGG_LNA = 0 V,  
Transmit State Off  
30  
25  
20  
15  
30  
25  
20  
15  
50mA  
100mA  
85mA, SELF BIAS MODE  
0dBm  
5dBm  
10  
10  
5
5
0
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
FREQUENCY (GHz)  
Figure 77. OIP3 vs. Frequency for Various IDQ_LNA, POUT/Tone = 0 dBm,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V,  
Controlled VGG_LNA, Transmit State Off  
Figure 80. OIP3 vs. Frequency for Various POUT/Tone, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V,  
Transmit State Off  
Rev. A | Page 20 of 28  
Data Sheet  
ADTR1107  
70  
60  
50  
40  
45  
40  
35  
30  
25  
20  
15  
10  
5
6GHz  
30  
20  
10  
0
8GHz  
10GHz  
12GHz  
14GHz  
16GHz  
18GHz  
+85°C  
+25°C  
–40°C  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
P
/TONE (dBm)  
OUT  
Figure 81. IM3 vs. POUT/Tone, Receive State, Path = ANT to RX_OUT, Self  
Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V, Transmit State Off  
Figure 84. OIP2 vs. Frequency for Various Temperatures, POUT/Tone = 0 dBm,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V,  
VGG_LNA = 0 V, Transmit State Off  
45  
40  
35  
30  
25  
20  
45  
40  
35  
30  
25  
20  
15  
10  
5
50mA  
100mA  
85mA, SELF BIAS MODE  
15  
2.0V  
3.0V  
10  
3.3V  
3.6V  
5
0
0
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
Figure 82. OIP2 vs. Frequency for Various VDD_LNA, POUT/Tone = 0 dBm,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VGG_LNA = 0 V,  
Transmit State Off  
Figure 85. OIP2 vs. Frequency for Various IDQ_LNA, POUT/Tone = 0 dBm,  
Receive State, Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V,  
Controlled VGG_LNA, Transmit State Off  
45  
40  
35  
30  
25  
90  
6GHz  
8GHz  
10GHz  
12GHz  
14GHz  
16GHz  
18GHz  
85  
80  
75  
70  
0dBm  
20  
5dBm  
15  
10  
5
0
6
7
8
9
10 11 12 13 14 15 16 17 18  
FREQUENCY (GHz)  
–20  
–15  
–10  
–5  
0
5
INPUT POWER (dBm)  
Figure 83. OIP2 vs. Frequency for Various POUT/Tone, Receive State, Path =  
ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V,  
Transmit State Off  
Figure 86. IDD_LNA vs. Input Power for Various Frequencies, Receive State,  
Path = ANT to RX_OUT, Self Biased Mode, VDD_LNA = 3.3 V, VGG_LNA = 0 V,  
Transmit State Off  
Rev. A | Page 21 of 28  
ADTR1107  
Data Sheet  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
–20  
–1.5  
–1.0  
–0.5  
0
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6  
_LNA (V)  
VGG_LNA (V)  
V
DD  
Figure 88. IDQ_LNA vs. VDD_LNA, Self Biased Mode, VGG_LNA = 0 V, Receive  
State, Path = ANT to RX_OUT, Transmit State Off  
Figure 87. IDQ_LNA vs. VGG_LNA, VDD_LNA = 3.3 V, Controlled VGG_LNA,  
Receive State, Path = ANT to RX_OUT, Transmit State Off  
Rev. A | Page 22 of 28  
Data Sheet  
ADTR1107  
THEORY OF OPERATION  
The ADTR1107 is a multichip transmit/receive module that  
consists of an LNA, a medium power amplifier, and a silicon  
SPDT reflective switch. The ANT antenna port is dc-coupled to  
0 V and no dc block is required at this port when the RF line  
potential is equal to 0 V. The switch has an integrated driver to  
perform logic functions internally and provides a simplified  
complementary metal-oxide semiconductor (CMOS)/low  
voltage transistor to transistor logic (LVTTL)-compatible  
control interface. The driver features a single digital control  
input pin, CTRL_SW. The logic level applied to CTRL_SW  
determines whether the ADTR1107 is in transmit state or  
receive state (see Table 8).  
The receive path contains a self biased LNA with optional bias  
control using the VGG_LNA pin for bias adjustment. For self  
biased operation, the VGG_LNA pin is set to 0 V or connected  
to ground. The receive path output (RX_OUT) is dc-coupled to  
ground through an 8 kΩ resistor. No dc block is required at this  
port when the RF line potential is equal to 0 V.  
The transmit path contains a power amplifier. The bias  
current is set using VGG_PA. The transmit path input (TX_IN)  
is dc-coupled to ground through a 2.5 kΩ resistor. No dc block  
is required at this port when the RF line potential is equal to 0 V.  
A directional coupler is incorporated into the ADTR1107 to  
allow for monitoring of the transmit power level.  
Rev. A | Page 23 of 28  
 
ADTR1107  
Data Sheet  
APPLICATIONS INFORMATION  
The basic connections for operating the ADTR1107 are shown  
in Figure 89. The power amplifier on the transmit path is biased  
with +5 V on the VDD_PA pin and a voltage from −1.75 V to  
−0.25 V is applied to the VGG_PA pin to achieve 220 mA  
quiescent current.  
The recommended bias sequence during receive state power-up  
is as follows:  
1. Connect all GND pins to ground.  
2. Set the VDD_SW pin to 3.3 V.  
3. Set the VSS_SW pin to −3.3 V.  
4. Set the CTRL_SW pin to 3.3 V.  
5. Set the VGG_PA pin to −1.75 V.  
6. Set the VDD_PA pin to 0 V.  
7. Set the VGG_LNA pin to 0 V.  
8. Set the VDD_LNA pin to 3.3 V.  
9. Apply the RF signal to the ANT pin.  
The LNA on the receive path operates as either self biased or  
external biased mode. For self biased mode, apply 3.3 V to the  
VDD_LNA pin and leave the VGG_LNA pin supplied with 0 V  
or connected to ground. For external biased mode, apply +3.3 V  
to the VDD_LNA pin and adjust the VGG_LNA pin with a voltage  
range of −1.5 V to 0 V to achieve the desired IDQ_PA.  
The SPDT switch is biased with +3.3 V on the VDD_SW pin  
and −3.3 V on the VSS_SW pin. The CTRL_SW pin sets the  
path state shown in Table 8. High logic state is set at 3.3 V and  
low logic state is set at 0 V.  
The recommended receive state bias sequence during  
power-down is as follows:  
1. Turn off the RF signal.  
2. Set the VDD_LNA pin to 0 V.  
3. Set the CTRL_SW pin to 0 V.  
4. Set the VSS_SW pin to 0 V.  
5. Set the VDD_SW pin to 0 V.  
All required decoupling capacitors for the dc power supply  
lines are internal to the ADTR1107.  
RECOMMENDED BIAS SEQUENCING  
All measurements and data shown in this data sheet were taken  
using the typical application circuit (see Figure 89) and biased  
per the conditions in this section, unless otherwise noted. The  
bias conditions described in this section are the operating  
points recommended to optimize the overall device performance.  
Operation using other bias conditions can result in performance  
that differs from what is shown in the Typical Performance  
Characteristics section. To obtain optimal performance while  
not damaging the device, follow the recommended biasing  
sequences described in this section and adhere to the values  
shown in the Absolute Maximum Ratings section.  
The recommended bias sequence during transmit state  
power-up is as follows:  
1. Connect all GND pins to ground.  
2. Set the VDD_SW pin to 3.3 V.  
3. Set the VSS_SW pin to −3.3 V.  
4. Set the CTRL_SW pin to 0 V.  
5. Set the VGG_LNA pin to 0 V.  
6. Set the VDD_LNA pin to 0 V.  
7. Set the VGG_PA pin to −1.75 V.  
8. Set the VDD_PA pin to 5 V.  
9. Increase the VGG_PA voltage to achieve the desired  
I
DQ_PA.  
10. Apply the RF signal to the TX_IN pin.  
The recommended transmit state bias sequence during  
power-down is as follows:  
1. Turn off the RF signal.  
2. Decrease the VGG_PA voltage to −1.75 V.  
3. Set the VDD_PA pin to 0 V.  
4. Set the VSS_SW pin to 0 V.  
5. Set the VDD_SW pin to 0 V.  
Rev. A | Page 24 of 28  
 
 
Data Sheet  
ADTR1107  
TYPICAL APPLICATION CIRCUIT  
+3.3V  
0V/+3.3V  
–3.3V  
0V  
+3.3V  
RECEIVE PATH OUTPUT  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
GND  
RX_OUT  
GND  
GND  
TX_IN  
GND  
GND  
ANT  
GND  
GND  
GND  
GND  
ADTR1107  
TRANSMIT PATH INPUT  
COUPLED  
OUTPUT  
GND  
+5V  
–1.75V TO –0.25V  
Figure 89. Typical Application Circuit  
Rev. A | Page 25 of 28  
 
ADTR1107  
Data Sheet  
INTERFACING THE ADTR1107 TO THE ADAR1000 X BAND AND KU BAND BEAMFORMER  
ADTR1107 can be interfaced to the ADAR1000 X band and Ku  
band quad beamformer IC, as shown in Figure 91. Note that  
only a single channel of the ADAR1000 is shown in Figure 91  
and additional components have been omitted for clarity. The  
ADAR1000 provides multiple bias voltages and control signals,  
resulting in a glueless interface and no need for any additional  
control signals to the ADTR1107. The gate voltage for the  
ADTR1107 power amplifier (VGG_PA) is provided by the  
ADAR1000 PA_BIAS3 pin. One of four independent negative  
gate voltages is needed for power amplifier gate biasing. Each  
voltage is set by an 8-bit digital-to-analog converter (DAC)  
with an output voltage range of 0 V to −4.8 V. The typical gate  
voltage required to bias the ADTR1107 power amplifier is −1.1 V  
(see Figure 49). This voltage can be asserted by the ADAR1000  
TR input pin (rising edge enables the power amplifier) or by a  
serial peripheral interface (SPI) write. Asserting the ADAR1000  
TR pin switches the polarity of the ADAR1000 TR_SW_NEG pin  
and TR_SW_POS pin. The TR_SW_POS pin can drive the  
gates of up to four switches and can be used to control the  
ADTR1107 SPDT switch.  
The ADTR1107 CPLR_OUT coupler output can be tied back to  
one of the four ADAR1000 RF detector inputs (DET1 to DET4).  
These diode based RF detectors have an input range of −20 dBm to  
+10 dBm. The coupling factor of the ADTR1107 directional  
coupler ranges from 28 dB at 6 GHz to 18 dB at 18 GHz. At  
12 GHz, with a coupling factor of 22 dB and a maximum power  
amplifier output of 26 dBm, the coupled output power is a  
maximum of 4 dBm. If the coupler output is connected directly  
to the detector input, this connection provides a detection range of  
24 dB. Figure 90 shows the relationship between the ADTR1107  
output power and the ADC code of the ADAR1000 detector at  
12 GHz. In this case, the ADTR1107 output power is swept to a  
maximum level of approximately 22 dBm.  
100  
10  
1
While the ADTR1107 LNA gate voltage is self biased (the  
VGG_LNA pin is connected to 0 V or grounded), the voltage  
can also be controlled from the ADAR1000. In this case, there  
is a single LNA_BIAS voltage (0 V to −4.8 V) controlled by an  
8-bit DAC that can be used to bias four ADTR1107 devices  
connected to each ADAR1000.  
0.1  
5
7
9
11  
13  
15  
17  
19  
21  
23  
ADTR1107 OUTPUT POWER (dBm)  
Figure 90. ADAR1000 RF Detector Output Code vs. ADTR1107 Output Power  
at 12 GHz  
Rev. A | Page 26 of 28  
 
 
Data Sheet  
ADTR1107  
–5V  
+3.3V  
AVDD3  
AVDD1  
ADAR1000  
TO PA  
BIAS  
DET3  
LDO  
1.8V  
ADC  
+5V  
VDD_PA  
VGG_PA  
TX_IN  
100kΩ  
CPLR_OUT  
PA_BIAS3  
PA BIAS  
TX3  
RX3  
ANT  
ADTR1107  
RX_OUT  
1
LNA_BIAS  
VGG_LNA  
VSS_SW  
–3.3V  
LNA BIAS  
VDD_LNA  
+3.3V  
VDD_SW  
+3.3V  
TR_SW_POS  
TO ADDITIONAL LNA  
GATES  
SPI  
1
LNA_BIAS IS A SINGLE PIN THAT CAN DRIVE UP TO FOUR GATES AND  
IS AN OPTIONAL CONNECTION THAT CAN BE USED TO VARY THE BIAS  
CURRENT OF THE ADTR1107.  
Figure 91. Interfacing the ADTR1107 to the ADAR1000 X and Ku Band Beamformer, One Channel Shown  
Rev. A | Page 27 of 28  
 
ADTR1107  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
AREA  
0.50  
0.45  
0.40  
PIN 1  
INDICATOR  
C 0.30 × 0.45  
°
19  
24  
18  
1
3.30 SQ  
BSC  
3.25 REF  
SQ  
EXPOSED  
PAD  
13  
6
0.65  
BSC  
7
12  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.15  
REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.13  
MAX  
0.70 REF  
0.356  
0.326  
0.296  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
Figure 92. 24-Terminal Land Grid Array [LGA]  
(CC-24-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADTR1107ACCZ  
ADTR1107ACCZ-R7  
ADTR1107-EVAL  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
MSL Rating2  
Package Description3  
Package Option  
CC-24-8  
CC-24-8  
3
3
24-Terminal Land Grid Array [LGA]  
24-Terminal Land Grid Array [LGA]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 See the Absolute Maximum Ratings section for additional information.  
3 The lead finish of the ADTR1107ACCZ and the ADTR1107ACCZ-R7 is nickel palladium gold (NiPdAu).  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D22146-4/20(A)  
Rev. A | Page 28 of 28  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY