ADUC814_02 [ADI]

MicroConverter, Small Package 12-Bit ADC with Embedded FLASH MCU; 微转换器,小型封装的12位ADC,带有嵌入式闪存微控制器
ADUC814_02
型号: ADUC814_02
厂家: ADI    ADI
描述:

MicroConverter, Small Package 12-Bit ADC with Embedded FLASH MCU
微转换器,小型封装的12位ADC,带有嵌入式闪存微控制器

转换器 闪存 微控制器
文件: 总16页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MicroConverter®, Small Package  
a
12-Bit ADC with Embedded FLASH MCU  
ADuC814  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Analog I/O  
6-Channel 247 kSPS ADC  
ADuC814  
AIN0  
12-Bit Resolution  
BUF  
BUF  
DAC0  
DAC1  
DAC0  
DAC1  
ADC  
CONTROL  
LOGIC  
DAC  
CONTROL  
LOGIC  
12-BIT  
ADC  
AIN  
MUX  
T/H  
ADC High Speed Data Capture Mode  
Programmable Reference via On-Chip DAC for Low  
Level Inputs  
ADC Performance Down to VREF of 0.1 V  
Dual-Voltage Output DACs  
AIN5  
TEMP  
MONITOR  
12-Bit Resolution, 15 s Settling Time  
Memory  
8 KBytes On-Chip Flash/EE Program Memory  
640 Bytes On-Chip Flash/EE Data Memory  
Flash/EE, 100-Year Retention, 100 K Cycles  
Endurance  
Three Levels of Flash/EE Program Memory Security  
In-Circuit Serial Download (No External Hardware  
Required)  
8051-BASED MCU WITH ADDITIONAL  
PERIPHERALS  
POWER-  
ON  
RESET  
INTERNAL  
BAND GAP  
VREF  
8 KBYTES FLASH/EE PROGRAM MEMORY  
640 BYTES FLASH/EE DATA MEMORY  
256 BYTES USER RAM  
PROG.  
CLOCK  
DIVIDER  
3 
؋
 16-BIT  
TIMER/COUNTERS  
1 
؋
 WAKE-UP/RTC  
TIMER  
ON-CHIP MONITORS  
POWER SUPPLY  
MONITOR  
VREF  
CREF  
BUF  
WATCHDOG TIMER  
OSC  
AND  
PLL  
UART AND SPI  
SERIAL I/O  
10 
؋
 DIGITAL I/O PINS  
256 Bytes On-Chip Data RAM  
8051 Based Core  
XTAL1 XTAL2  
8051 Compatible Instruction Set  
32 kHz External Crystal  
On-Chip Programmable PLL (16.78 MHz Max)  
Three 16-Bit Timer/Counters  
11 Programmable I/O Lines  
11 Interrupt Sources, Two Priority Levels  
Power  
Specified for 3 V and 5 V Operation  
Normal: 3 mA @ 3 V (Core CLK = 2.1 MHz)  
Power-Down: 15 A at 3 V (32 kHz Running)  
On-Chip Peripherals  
GENERAL DESCRIPTION  
The ADuC814 is a fully integrated 247 kSPS 12-bit data acquisi-  
tion system incorporating a high performance multichannel ADC, an  
8-bit MCU, and program/data Flash/EE memory on a single chip.  
This low power device operates from a 32 kHz crystal with an  
on-chip PLL generating a high frequency clock of 16.78 MHz.  
This clock is in turn routed through a programmable clock divider  
from which the MCU core clock operating frequency is generated.  
The microcontroller core is an 8052 and is therefore 8051-  
instruction-set compatible. 8 Kbytes of nonvolatile Flash/EE  
program memory are provided on-chip. 640 bytes of nonvolatile  
Flash/EE data memory and 256 bytes of RAM are also integrated  
on-chip.  
Power-On Reset Circuit (No Need for External  
POR Device)  
Temperature Monitor (؎1.5؇C)  
Precision Voltage Reference  
Time Interval Counter (Wake-Up/RTC Timer)  
UART Serial I/O  
The ADuC814 also incorporates additional analog functionality  
with dual 12-bit DACs, a power supply monitor, and a band  
gap reference.  
SPI®/I2C® Compatible Serial I/O  
Watchdog Timer (WDT) and Power Supply  
Monitor (PSM)  
On-chip factory firmware supports in-circuit serial download and  
debug modes (via UART), as well as the single-pin emulation  
mode via the DLOAD pin. The ADuC814 is supported by a  
Package and Temperature Range  
28-Lead TSSOP 4.4 mm 
؋
 9.7 mm Body Package  
Fully Specified for –40؇C to +125؇C Operation  
QuickStart  
development system. This is a full featured low cost  
system, consisting of PC-based (Windows® compatible) hardware  
and software development tools.  
APPLICATIONS  
The part operates from a single 3 V or 5 V supply over the  
extended temperature range –40ЊC to +125ЊC. When operating  
from 3 V supplies, the power dissipation for the part is below  
10 mW. The ADuC814 is housed in a 28-lead TSSOP package.  
Optical Networking—Laser Power Control  
Base Station Systems—Power Amplifier Bias Control  
Precision Instruments and Smart Sensors  
Battery-Powered Systems and General Precision  
System Monitors  
MicroConverter is a registered trademark of Analog Devices, Inc.  
SPI is a registered trademark of Motorola Inc.  
I2C is a registered trademark of Phillips Corporation.  
QuickStart is a trademark of Analog Devices, Inc.  
Windows is a registered trademark of Microsoft Corporation.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
ADuC814–SPECIFICATIONS1  
(AVDD = DVDD = 2.7 V to 3.3 V or 4.5 V to 5.5 V. VREF = 2.5 V Internal Reference.  
XTAL1/XTAL2 = 32.768 kHz Crystal. All specifications TMIN to TMAX, unless otherwise noted.)  
Parameter  
VDD = 5 V  
VDD = 3 V  
Unit  
Test Conditions  
ADC CHANNEL SPECIFICATIONS  
A GRADE  
DC ACCURACY2, 3  
Resolution  
Integral Nonlinearity  
fSAMPLE = 147 kHz  
12  
2
1
4
2
12  
2
1
4
2
2.5  
5
Bits  
LSB max  
LSB typ  
LSB max  
LSB typ  
LSB typ  
LSB typ  
2.5 V Internal Reference  
2.5 V Internal Reference  
Differential Nonlinearity  
Integral Nonlinearity  
Differential Nonlinearity  
2.5  
5
1 V External Reference  
1 V External Reference  
CALIBRATED ENDPOINT ERRORS4, 5  
Offset Error  
Offset Error Match  
Gain Error  
5
1
5
1
5
1
5
1
LSB max  
LSB typ  
LSB max  
LSB typ  
Gain Error Match  
DYNAMIC PERFORMANCE  
fIN = 10 kHz Sine Wave  
fSAMPLE = 147 kHz  
Signal-to-Noise Ratio (SNR)6  
Total Harmonic Distortion (THD)  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Crosstalk7  
62.5  
–65  
–65  
–80  
62.5  
–65  
–65  
–80  
dB typ  
dB typ  
dB typ  
dB typ  
B GRADE  
DC ACCURACY2, 3  
Resolution  
Integral Nonlinearity  
fSAMPLE = 147 kHz  
12  
1
0.3  
0.9  
0.25  
1.5  
+1.5/–0.9  
1
12  
1
0.3  
0.9  
0.25  
1.5  
Bits  
LSB max  
LSB typ  
LSB max  
LSB typ  
LSB max  
LSB max  
LSB typ  
2.5 V Internal Reference  
2.5 V Internal Reference  
Differential Nonlinearity  
Integral Nonlinearity13  
Differential Nonlinearity13  
Code Distribution  
1 V External Reference  
1 V External Reference  
ADC Input Is a DC Voltage  
+1.5/–0.9  
1
CALIBRATED ENDPOINT ERRORS4, 5  
Offset Error  
Offset Error Match  
Gain Error  
2
1
2
1
3
1
3
1
LSB max  
LSB typ  
LSB max  
LSB typ  
Gain Error Match  
DYNAMIC PERFORMANCE  
fIN = 10 kHz Sine Wave  
fSAMPLE = 147 kHz  
Signal-to-Noise Ratio (SNR)6  
Total Harmonic Distortion (THD)  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Crosstalk7  
71  
71  
dB typ  
dB typ  
dB typ  
dB typ  
–85  
–85  
–80  
–85  
–85  
–80  
ANALOG INPUT  
Input Voltage Ranges  
Leakage Current  
0 to VREF  
1
32  
0 to VREF  
1
32  
V
µA max  
pF typ  
Input Capacitance  
TEMPERATURE MONITOR8  
Voltage Output at 25°C  
Voltage TC  
Accuracy  
Accuracy  
650  
–2  
3
650  
–2  
3
mV typ  
mV/°C typ  
°C typ  
Internal 2.5 V VREF  
External 2.5 V VREF  
1.5  
1.5  
°C typ  
–2–  
REV. 0  
ADuC814  
Parameter  
VDD = 5 V  
VDD = 3 V  
Unit  
Test Conditions  
DAC CHANNEL SPECIFICATIONS  
DAC Load to AGND  
RL = 10 k, CL = 100 pF  
DC ACCURACY9  
Resolution  
12  
3
–1  
1/2  
50  
1
12  
3
–1  
1/2  
50  
1
Bits  
Relative Accuracy  
LSB typ  
LSB max  
LSB typ  
mV max  
% max  
% typ  
Differential Nonlinearity10  
Guaranteed Monotonic  
Offset Error  
Gain Error  
VREF Range  
VREF Range  
AVDD Range  
1
1
Gain Error Mismatch  
0.5  
0.5  
% typ  
Of Full Scale on DAC1  
ANALOG OUTPUTS  
Voltage Range_0  
Voltage Range_1  
Output Impedance  
ISINK  
0 to VREF  
0 to VDD  
0.5  
0 to VREF  
0 to VDD  
0.5  
V
V
DAC VREF = 2.5 V  
DAC VREF = VDD  
typ  
µA typ  
50  
50  
DAC AC SPECIFICATIONS  
Voltage Output Settling Time  
15  
10  
15  
10  
µs typ  
Full-Scale Settling Time to  
within 1/2 LSB of Final  
Value  
Digital-to-Analog Glitch Energy  
nVs typ  
1 LSB Change at Major Carry  
REFERENCE INPUT/OUTPUT  
REFERENCE OUTPUT11  
Output Voltage (VREF  
Accuracy  
)
2.5  
2.5  
2.5  
2.5  
V
% max  
Of VREF Measured at the  
CREF Pin  
Power Supply Rejection  
47  
57  
dB typ  
Reference Temperature Coefficient  
Internal VREF Power-On Time  
100  
80  
100  
80  
ppm/ºC typ  
ms typ  
EXTERNAL REFERENCE INPUT12  
13  
Voltage Range (VREF  
)
0.1  
VDD  
20  
0.1  
VDD  
20  
V min  
V max  
ktyp  
µA max  
Input Impedance  
Input Leakage  
10  
10  
Internal Band Gap Deselected  
via ADCCON2.6  
POWER SUPPLY MONITOR (PSM)  
DD Trip Point Selection Range  
V
2.63  
2.93  
3.08  
4.63  
2.63  
2.93  
3.08  
4.63  
V
V
V
V
Four Trip Points Selectable  
in this Range Programmed  
via TP1-0 in PSMCON  
VDD Power Supply Trip Point Accuracy  
3.5  
3.5  
% max  
WATCHDOG TIMER (WDT)13  
Time-Out Period  
0
0
ms min  
ms max  
Nine Time-Out Periods  
Selectable in this Range  
Programmed via PRE3-0 in  
WDCON  
2000  
2000  
LOGIC INPUTS13  
All Inputs Except SCLOCK, RESET,  
and XTAL1  
VINL, Input Low Voltage  
VINH, Input High Voltage  
0.8  
2.0  
0.4  
2.0  
V max  
V min  
REV. 0  
–3–  
ADuC814  
SPECIFICATIONS (continued)  
Parameter  
VDD = 5 V  
VDD = 3 V  
Unit  
Test Conditions  
SCLOCK and RESET Only13  
(Schmitt-Triggered Inputs)  
VT+  
1.3  
3.0  
0.8  
1.4  
0.3  
0.85  
0.95  
2.5  
0.4  
1.1  
0.3  
V min  
V max  
V min  
V max  
V min  
V max  
VT–  
VT+ – VT–  
0.85  
INPUT CURRENTS  
P1.2–P1.7, DLOAD  
SCLOCK14  
10  
–10  
–40  
10  
10  
20  
105  
10  
1
–180  
–660  
–360  
–20  
–75  
–38  
10  
–3  
–15  
10  
10  
10  
35  
10  
1
–70  
–200  
–100  
–5  
–25  
–12  
µA max  
µA min  
µA max  
µA max  
µA max  
µA min  
µA max  
µA max  
µA typ  
µA min  
µA max  
µA typ  
µA min  
µA max  
µA typ  
VIN = 0 V or VDD  
VIN = 0 V, Internal Pull-Up  
VIN = 0 V, Internal Pull-Up  
V
IN = VDD  
RESET  
VIN = 0 V  
VIN = 5 V, 3 V Internal Pull-Down  
VIN = 5 V, 3 V Internal Pull-Down  
VIN = 5 V, 3 V  
P1.0, P1.1, Port 3  
(includes MISO, MOSI/SDATA, and SS)  
VIN = 2 V, VDD = 5 V, 3 V  
VIN = 450 mV, VDD = 5 V, 3 V  
All Digital Inputs  
INPUT CAPACITANCE  
5
5
pF typ  
CRYSTAL OSCILLATOR  
(XTAL1 AND XTAL2)  
Logic Inputs, XTAL1 Only  
VINL Input Low Voltage  
0.8  
3.5  
18  
0.4  
2.5  
18  
V typ  
V typ  
pF typ  
pF typ  
,
VINH Input High Voltage  
,
XTAL1 Input Capacitance  
XTAL2 Output Capacitance  
18  
18  
DIGITAL OUTPUTS  
Output High Voltage (VOH  
)
2.4  
2.4  
V min  
ISOURCE = 1.6 mA  
Output Low Voltage (VOL  
P1.0 and P1.1  
P1.0 and P1.1  
SCLOCK, MISO, MOSI  
All Other Outputs  
)
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V max  
V max  
V max  
V max  
ISINK = 10 mA, TMAX = 85°C  
ISINK = 8 mA, TMAX = 125°C  
ISINK = 4 mA  
I
SINK = 1.6 mA  
MCU CORE CLOCK  
MCU Clock Rate  
131.1  
16.78  
131.1  
16.78  
kHz  
MHz  
Clock Rate Generated via  
On-Chip PLL, Programmable  
via CD2-0 in PLLCON  
START-UP TIME  
At Power-On  
From Idle Mode  
500  
100  
500  
100  
ms typ  
s typ  
From Power-Down Mode  
OSC_PD Bit = 0 in  
PLLCON SFR  
Oscillator Running  
Wake-Up with INT0 Interrupt  
Wake-Up with SPI/I2C Interrupt  
Wake-Up with TIC Interrupt  
Wake-Up with External RESET  
100  
100  
100  
3
100  
100  
100  
3
s typ  
s typ  
s typ  
ms typ  
–4–  
REV. 0  
ADuC814  
Parameter  
VDD = 5 V  
VDD = 3 V  
Unit  
Test Conditions  
START-UP TIME (continued)  
Oscillator Powered Down15  
OSC_PD Bit = 1 in PLLCON  
Wake-Up with SPI/I2C Interrupt  
Wake-Up with TIC Interrupt  
150  
150  
150  
3
400  
400  
400  
3
ms typ  
ms typ  
ms typ  
ms typ  
ms typ  
Wake-Up with External RESET  
After External RESET in Normal Mode  
After WDT Reset in Normal Mode  
3
3
Controlled via WDCON  
FLASH/EE MEMORY RELIABILITY  
CHARACTERISTICS16  
Endurance17  
100,000  
100  
100,000  
100  
cycles min  
years min  
Data Retention18  
POWER REQUIREMENTS19, 20  
Power Supply Voltages  
AVDD/DVDD – AGND  
2.7  
3.3  
V min  
V max  
V min  
V max  
AVDD/DVDD = 3 V Nominal  
AVDD/DVDD = 5 V Nominal  
4.5  
5.5  
Power Supply Currents – Normal Mode  
DVDD Current13  
5
2.5  
mA max  
Core CLK = 2.097 MHz  
(CD Bits in PLLCON = 3)  
4
1.7  
20  
2
mA typ  
mA max  
mA max  
mA typ  
mA max  
mA max  
mA typ  
mA max  
AVDD Current13  
DVDD Current  
1.7  
10  
8
1.7  
1.5  
1.2  
1.7  
Core CLK = 16.78 MHz (max)  
(CD Bits in PLLCON = 0)  
16  
AVDD Current  
1.7  
3.5  
2.8  
1.7  
DVDD Current13  
Core CLK = 131.2 kHz (min)  
(CD Bits in PLLCON = 7)  
AVDD Current  
Power Supply Currents – Idle Mode  
DVDD Current13  
1.7  
1.2  
mA max  
Core CLK = 2.097 MHz  
(CD Bits in PLLCON = 3)  
1.5  
0.15  
6
1
0.15  
3
2.5  
0.15  
1
0.7  
0.15  
mA typ  
mA max  
mA max  
mA typ  
mA max  
mA max  
mA typ  
mA max  
AVDD Current13  
DVDD Current13  
Core CLK = 16.78 MHz (max)  
(CD Bits in PLLCON = 0)  
4
AVDD Current13  
DVDD Current13  
0.15  
1.25  
1.1  
0.15  
Core CLK = 131 kHz (min)  
(CD Bits in PLLCON = 7)  
AVDD Current13  
Power Supply Currents – Power-Down Mode  
Core CLK = 2.097 MHz or  
16.78 MHz  
(CD Bits in PLLCON = 3 or 0)  
Oscillator ON  
DVDD Current13  
20  
14  
1
15  
10  
1
µA max  
µA typ  
µA typ  
µA max  
µA typ  
µA typ  
40  
1
AVDD Current  
DVDD Current  
Oscillator OFF  
20  
1
AVDD Current  
Typical Additional Power Supply Currents  
Core CLK = 2.097 MHz,  
(CD Bits in PLLCON = 3)  
AVDD = DVDD = 5 V  
PSM Peripheral  
ADC  
DAC  
50  
1.5  
150  
µA typ  
mA typ  
µA typ  
REV. 0  
–5–  
ADuC814  
SPECIFICATIONS (continued)  
NOTES  
1Temperature range –40ºC to +125ºC.  
2ADC linearity is guaranteed when operating in nonpipelined mode, i.e., ADC conversion followed sequentially by a read of the ADC result. ADC linearity is also  
guaranteed during normal MicroConverter core operation.  
3ADC LSB size = VREF/2^12, i.e., for 2.5 V, 1 LSB = 610 µV and for External VREF = 1 V, 1 LSB = 244 µV.  
4Offset and gain error and offset and gain error match are measured after factory calibration.  
5Based on external ADC system components, the user may need to execute a system calibration to remove additional external channel errors and achieve these  
specifications.  
6SNR calculation includes distortion and noise components.  
7Channel-to-channel crosstalk is measured on adjacent channels.  
8The temperature monitor will give a measure of the die temperature directly; air temperature can be inferred from this result.  
9DAC linearity is calculated using:  
Reduced Code Range of 48 to 4095, 0 to VREF Range.  
Reduced Code Range of 48 to 3950, 0 to VDD Range.  
DAC output load = 10 kand 100 pF.  
10 DAC differential nonlinearity specified on 0 to VREF and 0 to VDD ranges.  
11 Power-up time for the internal reference will be determined by the value of the decoupling capacitor chosen for both the VREF and CREF pins.  
12 When using an external reference device, the internal band gap reference input can be bypassed by setting the ADCCON1.6 bit. In this mode, the VREF and CREF  
pins need to be shorted together for correct operation.  
13 These numbers are not production tested but are guaranteed by design and/or characterization data on production release.  
14 Pins configured in I2C compatible mode or SPI mode; pins configured as digital inputs during this test.  
15 These typical specifications assume no loading on the XTAL2 pin. Any additional loading on the XTAL2 pin will increase the power-on times.  
16 Flash/EE memory reliability characteristics apply to both the Flash/EE program memory and the Flash/EE data memory.  
17 Endurance is qualified to 100 Kcycles as per JEDEC STD. 22 method A117 and measured at –40ºC, +25ºC, and +125ºC; typical endurance at +25ºC is 700 Kcycles.  
18 Retention lifetime equivalent at junction temperature (Tj) = 55ºC as per JEDEC STD. 22 method A117. Retention lifetime based on an activation energy of 0.6e V  
will derate with junction temperature.  
19 Power supply current consumption is measured in normal, idle, and power-down modes under the following conditions:  
Normal Mode: Reset and all digital I/O pins = open circuit, core clk changed via CD Bits in PLLCON, and core executing internal software loop.  
Idle Mode: Reset and all digital I/O pins = open circuit, core clk changed via CD Bits in PLLCON, PCON.0 = 1, and core execution suspended in idle mode.  
Power-Down Mode: Reset and all other digital I/O pins = open circuit, core clk changed via CD Bits in PLLCON, PCON.1 = 1, core execution suspended in  
Power-Down Mode, and OSC turned ON or OFF via OSC_PD Bit (PLLCON.7) in PLLCON SFR.  
20 DVDD power supply current will increase typically by 3 mA (3 V operation) and 10 mA (5 V operation) during a Flash/EE memory program or erase cycle.  
Specifications subject to change without notice.  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed associated companies conveys a license for the purchaser under the Phillips I2C  
Patent Rights to use the ADuC814 in an I2C system, provided that the system conforms to the I2C standard specifications as defined by Phillips.  
–6–  
REV. 0  
ADuC814  
TIMING SPECIFICATIONS1, 2, 3  
(AVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V, DVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V; all  
specifications TMIN to TMAX, unless otherwise noted.)  
32.768 kHz External Crystal  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
CLOCK INPUT (External Clock Driven XTAL1)  
tCK  
tCKL  
XTAL1 Period  
XTAL1 Width Low  
XTAL1 Width High  
XTAL1 Rise Time  
30.52  
15.16  
15.16  
20  
µs  
1
1
1
1
1
µs  
tCKH  
tCKR  
tCKF  
1/tCORE  
tCORE  
tCYC  
µs  
ns  
ns  
MHz  
µs  
µs  
XTAL1 Fall Time  
20  
ADuC814 Core Clock Frequency4  
ADuC814 Core Clock Period5  
ADuC814 Machine Cycle Time6  
0.131  
0.72  
16.78  
91.55  
0.476  
5.7  
NOTES  
1AC inputs during testing are driven at DVDD – 0.5 V for a Logic 1 and 0.45 V for a Logic 0. Timing measurements are made at VIH min for a Logic 1, and VIL max  
for a Logic 0, as shown in Figure 2.  
2For timing purposes, a port pin is no longer floating when a 100 mV change from the load voltage occurs. A port pin begins to float when a 100 mV change from the  
loaded VOH/VOL level occurs, as shown in Figure 2.  
3CLOAD for all outputs = 80 pF, unless otherwise noted.  
4ADuC814 internal PLL locks onto a multiple 512 times the external crystal frequency of 32.768 kHz to provide a stable 16.777216 MHz internal clock for the  
system. The core can operate at this frequency or at a binary submultiple called Core_CLK, selected via the PLLCON SFR.  
5This number is measured at the default Core_CLK operating frequency of 2.09 MHz.  
6ADuC814 machine cycle time is nominally defined as 12/Core_CLK.  
tCKR  
tCKH  
tCKL  
tCKF  
tCK  
Figure 1. XTAL1 Input  
DV – 0.5V  
DD  
V
– 0.1V  
+ 0.1V  
V
– 0.1V  
0.2DV  
+ 0.9V  
LOAD  
LOAD  
TIMING  
REFERENCE  
POINTS  
DD  
V
V
LOAD  
TEST POINTS  
0.2DV 0.1V  
LOAD  
DD  
V
V
+ 0.1V  
LOAD  
LOAD  
0.45V  
Figure 2. Timing Waveform Characteristics  
REV. 0  
–7–  
ADuC814  
TIMING SPECIFICATIONS(continued)  
16.78 MHz Core_CLK  
Variable Core_CLK  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Max  
Unit Figure  
UART TIMING (Shift Register Mode)  
tXLXL  
tQVXH  
tDVXH  
tXHDX  
tXHQX  
Serial Port Clock Cycle Time  
Output Data Setup to Clock  
Input Data Setup to Clock  
Input Data Hold after Clock  
Output Data Hold after Clock  
715  
12tCORE  
µs  
ns  
ns  
ns  
ns  
3
3
3
3
3
463  
252  
0
10tCORE – 133  
2tCORE + 133  
0
22  
2tCORE – 117  
tXLXL  
TXD  
01  
67  
(OUTPUT CLOCK)  
SET RI  
OR  
SET TI  
tQVXH  
tXHQX  
RXD  
MSB  
BIT 6  
BIT 1  
(OUTPUT DATA)  
tDVXH  
tXHDX  
RXD  
(INPUT DATA)  
MSB  
BIT 6  
BIT 1  
LSB  
Figure 3. UART Timing in Shift Register Mode  
–8–  
REV. 0  
ADuC814  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
SPI MASTER MODE TIMING (CPHA = 1)  
tSL  
tSH  
SCLOCK Low Pulsewidth  
SCLOCK High Pulsewidth  
Data Output Valid after SCLOCK Edge  
Data Input Setup Time before SCLOCK Edge  
Data Input Hold Time after SCLOCK Edge  
Data Output Fall Time  
Data Output Rise Time  
SCLOCK Rise Time  
SCLOCK Fall Time  
*
*
630  
630  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
4
4
4
4
4
4
4
4
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
50  
100  
100  
10  
10  
10  
10  
25  
25  
25  
25  
tSF  
*
Characterized under the following conditions:  
a. Core clock divider Bits CD2, CD1, and CD0 in PLLCON SFR set to 0, 1, and 1, respectively, i.e., core clock frequency = 2.09 MHz.  
b. SPI bit rate selection Bits SPR1 and SPR0 in SPICON SFR set to 0 and 0, respectively.  
SCLOCK  
(CPOL = 0)  
tSH  
tSL  
tSR  
tSF  
SCLOCK  
(CPOL = 1)  
tDAV  
tDF  
tDR  
MOSI  
MISO  
BITS 6–1  
BITS 6–1  
MSB  
LSB  
MSB IN  
LSB IN  
tDSU  
tDHD  
Figure 4. SPI Master Mode Timing (CPHA = 1)  
REV. 0  
–9–  
ADuC814  
TIMING SPECIFICATIONS(continued)  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
SPI MASTER MODE TIMING (CPHA = 0)  
tSL  
SCLOCK Low Pulsewidth  
*
630  
630  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
5
5
5
5
5
5
5
5
5
tSH  
SCLOCK High Pulsewidth  
*
tDAV  
tDOSU  
tDSU  
tDHD  
tDF  
Data Output Valid after SCLOCK Edge  
Data Output Setup before SCLOCK Edge  
Data Input Setup Time before SCLOCK Edge  
Data Input Hold Time after SCLOCK Edge  
Data Output Fall Time  
50  
150  
100  
100  
10  
10  
10  
10  
25  
25  
25  
25  
tDR  
tSR  
Data Output Rise Time  
SCLOCK Rise Time  
tSF  
SCLOCK Fall Time  
*
Characterized under the following conditions:  
a. Core clock divider Bits CD2, CD1, and CD0 in PLLCON SFR set to 0, 1, and 1, respectively, i.e., core clock frequency = 2.09 MHz.  
b. SPI bit rate selection Bits SPR1 and SPR0 in SPICON SFR set to 0 and 0, respectively.  
SCLOCK  
(CPOL = 0)  
tSH  
tSL  
tSR  
tSF  
SCLOCK  
(CPOL = 1)  
tDAV  
tDF  
tDR  
tDOSU  
MOSI  
MISO  
MSB  
BITS 6–1  
LSB  
MSB IN  
BITS 6–1  
LSB IN  
tDSU tDHD  
Figure 5. SPI Master Mode Timing (CPHA = 0)  
–10–  
REV. 0  
ADuC814  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
SPI SLAVE MODE TIMING (CPHA = 1)  
tSS  
tSL  
SS to SCLOCK Edge  
SCLOCK Low Pulsewidth  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
6
6
6
6
6
6
6
6
6
6
330  
330  
tSH  
SCLOCK High Pulsewidth  
Data Output Valid after SCLOCK Edge  
Data Input Setup Time before SCLOCK Edge  
Data Input Hold Time after SCLOCK Edge  
Data Output Fall Time  
Data Output Rise Time  
SCLOCK Rise Time  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
50  
100  
100  
10  
10  
10  
10  
25  
25  
25  
25  
tSF  
tSFS  
SCLOCK Fall Time  
SS High after SCLOCK Edge  
0
SS  
tSFS  
tSS  
tDF  
SCLOCK  
(CPOL = 0)  
tSL  
tSR  
tSH  
tSF  
SCLOCK  
(CPOL = 1)  
tDAV  
tDF  
tDR  
MISO  
BITS 61  
MSB  
LSB  
BITS 61  
LSB IN  
MOSI  
MSB IN  
tDHD  
tDSU  
Figure 6. SPI Slave Mode Timing (CPHA = 1)  
REV. 0  
–11–  
ADuC814  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
SPI SLAVE MODE TIMING (CPHA = 0)  
tSS  
tSL  
tSH  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
SS to SCLOCK Edge  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7
7
7
7
7
7
7
7
7
7
7
7
7
SCLOCK Low Pulsewidth  
SCLOCK High Pulsewidth  
Data Output Valid after SCLOCK Edge  
Data Input Setup Time before SCLOCK Edge  
Data Input Hold Time after SCLOCK Edge  
Data Output Fall Time  
Data Output Rise Time  
SCLOCK Rise Time  
SCLOCK Fall Time  
SS to SCLOCK Edge  
330  
330  
50  
100  
100  
10  
10  
10  
10  
25  
25  
25  
25  
50  
20  
tSF  
tSSR  
tDOSS  
tSFS  
Data Output Valid after SS Edge  
SS High after SCLOCK Edge  
0
SS  
tSFS  
tSS  
SCLOCK  
(CPOL = 0)  
tSH  
tSL  
tSF  
tSR  
SCLOCK  
(CPOL = 1)  
tDAV  
tDOSS  
tDF  
tDR  
BITS 6–1  
MSB  
LSB  
MISO  
MOSI  
BITS 6–1  
MSB IN  
LSB IN  
tDSU  
tDHD  
Figure 7. SPI Slave Mode Timing (CPHA = 0)  
–12–  
REV. 0  
ADuC814  
ABSOLUTE MAXIMUM RATINGS1  
(TA = 25°C, unless otherwise noted.)  
PIN CONFIGURATION  
28-Lead TSSOP  
AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
DVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
AVDD to DVDD . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
AGND to DGND2 . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
Analog Input Voltage to AGND3 . . . . –0.3 V to AVDD + 0.3 V  
Reference Input Voltage to AGND . . –0.3 V to AVDD + 0.3 V  
Analog Input Current (Indefinite) . . . . . . . . . . . . . . . . . 30 mA  
Reference Input Current (Indefinite) . . . . . . . . . . . . . . . 30 mA  
Digital Input Voltage to DGND . . . . –0.3 V to DVDD + 0.3 V  
Digital Output Voltage to DGND . . . –0.3 V to DVDD + 0.3 V  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DGND  
DV  
DD  
DLOAD  
P3.0/RXD  
P3.1/TXD  
P3.2/INT0  
P3.3/INT1  
XTAL2  
XTAL1  
3
4
SCLOCK  
5
P3.7/MOSI  
P3.6/MISO  
P3.5/T1/SS/EXTCLK  
P1.7/ADC5/DAC1  
P1.6/ADC4/DAC0  
P1.5/ADC3  
P1.4/ADC2  
CREF  
6
ADuC814  
7
P3.4/T0/CONVST  
P1.0/T2  
TOP VIEW  
8
(Not to Scale)  
9
P1.1/T2EX  
RESET  
10  
11  
12  
13  
14  
P1.2/ADC0  
P1.3/ADC1  
θ
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 97.9°C/W  
AV  
DD  
VREF  
Lead Temperature, Soldering  
AGND  
AGND  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
2AGND and DGND are shorted internally on the ADuC814.  
3Applies to P1.2 to P1.7 pins operating in analog or digital input modes.  
ORDERING GUIDE  
Package  
Temperature  
Range  
Package  
Option  
Model  
Description  
ADuC814ARU  
ADuC814BRU  
–40°C to +125°C  
–40°C to +125°C  
Thin Shrink Small Outline Package  
Thin Shrink Small Outline Package  
RU-28  
RU-28  
QuickStart Development System Model  
Description  
EVAL-ADuC814QS  
Development System for the ADuC814 MicroConverter Contains:  
Evaluation Board  
Serial Port Cable  
Windows Serial Downloader (WSD)  
Windows Debugger (DeBug)  
Windows ADuC814 Simulator (ADSIM)  
Windows ADC Analysis Software Program (WASP)  
8051 Assembler (Metalink)  
Example Code  
Documentation  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADuC814 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–13–  
ADuC814  
PIN FUNCTION DESCRIPTIONS  
Pin No.  
Mnemonic  
Type*  
Function  
1
2
DGND  
DLOAD  
S
I
Digital Ground. Ground reference point for the digital circuitry.  
Enables Debug/Serial Download Mode when pulled high through a resistor on power-on  
or RESET. In this mode, DLOAD may also be used as an external emulation I/O pin,  
and therefore, the voltage level at this pin must not be changed during this mode of  
operation since it may cause an emulation interrupt that will halt code execution. User  
code is executed when this pin is pulled low on power-on or RESET.  
3-7  
P3.0–P3.4  
I/O  
P3.0–P3.4 are bidirectional port pins with internal pull-up resistors. Port 3 pins that have  
1s written to them are pulled high by the internal pull-up resistors, and in that state, can  
be used as inputs. As inputs, Port 3 pins being pulled externally low will source current  
because of the internal pull-up resistors. When driving a 0-to-1 output transition, a  
strong pull-up is active during S1 of the instruction cycle. Port 3 pins also have various  
secondary functions that are described below.  
3
4
5
P3.0/RXD  
P3.1/TXD  
P3.2/INT0  
I/O  
I/O  
I/O  
Receiver Data Input (Asynchronous) or Data Input/Output (Synchronous) in Serial  
(UART) Mode  
Transmitter Data Output (Asynchronous) or Clock Output (Synchronous) in Serial  
(UART) Mode  
Interrupt 0 programmable edge or level triggered interrupt input, that can be  
programmed to one of two priority levels. This pin can also be used as a gate control  
input to Timer 0.  
6
P3.3/INT1  
I/O  
Interrupt 1 programmable edge or level triggered interrupt input, that can be programmed  
to one of two priority levels. This pin can also be used as a gate control input to Timer 1.  
7
P3.4/T0/CONVST I/O  
Timer/Counter 0 Input and External Trigger Input for ADC Conversion Start  
8-9  
P1.0–P1.1  
I/O  
P1.0–P1.1 are bidirectional port pins with internal pull-up resistors. Port 1 pins that have  
1s written to them are pulled high by the internal pull-up resistors, and in that state,  
can be used as inputs. As inputs, Port 1 pins being pulled externally low will source  
current because of the internal pull-up resistors. When driving a 0-to-1 output transi-  
tion, a strong pull-up is active during S1 of the instruction cycle. Port 1 pins also have  
various secondary functions that are described below.  
8
P1.0/T2  
I/O  
Timer 2 Digital Input. Input to Timer/Counter 2. When enabled, Counter 2 is  
incremented in response to a 1 to 0 transition of the T2 input.  
9
10  
P1.1/T2EX  
RESET  
I/O  
I
Digital Input. Capture/reload trigger for Counter 2.  
Reset Input. A high level on this pin while the oscillator is running resets the device.  
There is an internal weak pull-down and a Schmitt trigger input stage on this pin.  
11-12  
P1.2–P1.3  
I
These pins have no digital output drivers, i.e., they can only function as digital inputs, for  
which 0 must be written to the Port Bit. These port pins also have the following  
analog functionality.  
11  
12  
13  
14, 15  
P1.2/ADC0  
P1.3/ADC1  
AVDD  
I
I
S
G
ADC Input Channel 0, Selected via ADCCON2 SFR  
ADC Input Channel 1, Selected via ADCCON2 SFR  
Analog Positive Supply Voltage, 3 V or 5 V  
AGND  
Analog Ground. Ground reference point for the analog circuitry.  
–14–  
REV. 0  
ADuC814  
Pin No.  
Mnemonic  
Type*  
Function  
16  
VREF  
I/O  
Reference Input/Output. This pin is connected to the internal reference through a switch  
and is the reference source for the analog-to-digital converter. The nominal internal  
reference voltage is 2.5 V, which appears at the pin. This pin can be used to connect  
an external reference to the analog-to-digital converter by setting ADCCON1.6 to 1.0.  
Connect 0.1 µF between this pin and AGND.  
17  
18-21  
CREF  
P1.4–P1.7  
I
I
Decoupling input for on-chip reference. Connect 0.1 µF between this pin and AGND.  
These pins have no digital output drivers, i.e., they can only function as digital inputs,  
for which 0 must be written to the Port Bit. These port pins also have the following  
analog functionality.  
18  
19  
20  
P1.4/ADC2  
P1.5/ADC3  
P1.6/ADC4/DAC0 I/O  
I
I
ADC Input Channel 2, Selected via ADCCON2 SFR  
ADC Input Channel 2, Selected via ADCCON2 SFR  
ADC Input Channel 4, Selected via ADCCON2 SFR. The voltage DAC Channel 0 can  
also be configured to appear on P1.6  
21  
P1.7/ADC5/DAC1 I/O  
ADC Input Channel 5, Selected via ADCCON2 SFR. The voltage DAC Channel 1 can  
also be configured to appear on P1.7  
22-24  
P3.5–P3.7  
P3.5/T1  
I/O  
I/O  
P3.5–P3.7 are bidirectional port pins with internal pull-up resistors. Port 3 pins that have  
1s written to them are pulled high by the internal pull-up resistors, and in that state, can  
be used as inputs. As inputs, Port 3 pins being pulled externally low will source current  
because of the internal pull-up resistors. When driving a 0-to-1 output transition, a  
strong pull-up is active during S1 of the instruction cycle. Port 3 pins also have various  
secondary functions that are described below.  
Timer/Counter 1 Input. P3.5–P3.7 pins also have SPI interface functions. To enable  
these functions, Bit 0 of the CFG814 SFR must be set to 1.  
This pin also functions as the slave select input for the SPI interface when the device is  
operated in Slave Mode. P3.5 can also function as an input for an external clock. This clock  
effectively bypasses the PLL. This function is enabled by setting Bit 1 of the CFG814 SFR.  
22  
22  
P3.5/SS/EXTCLK I/O  
23  
24  
25  
26  
27  
28  
P3.6/MISO  
P3.7/MOSI  
SCLOCK  
XTAL1  
XTAL2  
DVDD  
I/O  
I/O  
I/O  
I
O
S
SPI Master Input/Slave Output Data Input/Output Pin  
SPI Master Output/Slave Input Data Input/Output Pin  
Serial Clock Pin for SPI Serial Interface Clock  
Input to the Crystal Oscillator Inverter  
Output from the Crystal Oscillator Inverter  
Analog Positive Supply Voltage, 3 V or 5 V  
*I = Input, O = Output, I/O = Input and Output, and S = Supply.  
NOTES  
1. SET implies a Logic 1 state and CLEARED implies a Logic 0 state, unless otherwise stated.  
2. SET and CLEARED also imply that the bit is set or automatically cleared by the ADuC814 hardware, unless otherwise stated.  
3. User software should not write 1s to Reserved or Unimplemented Bits as they may be used in future products.  
REV. 0  
–15–  
ADuC814  
OUTLINE DIMENSIONS  
28-Lead TSSOP Package  
(RU-28)  
Dimensions shown in millimeters and (inches)  
9.80 (0.386)  
9.60 (0.378)  
28  
15  
4.50 (0.177)  
4.30 (0.169)  
6.50 (0.256)  
6.25 (0.246)  
14  
1
PIN 1  
0.15 (0.006)  
0.05 (0.002)  
1.10 (0.0433)  
MAX  
8؇  
0؇  
0.65 (0.0256)  
BSC  
0.30 (0.0118)  
0.19 (0.0075)  
0.70 (0.028)  
0.50 (0.020)  
SEATING  
PLANE  
0.20 (0.0079)  
0.090 (0.0035)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE  
ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE  
FOR USE IN DESIGN  
REV. 0  
–16–  

相关型号:

ADUC816

MicroConverter-R, Dual-Channel 16-Bit ADCs with Embedded Flash MCU
ADI

ADUC816BCPZ

8-BIT, FLASH, 12.58 MHz, MICROCONTROLLER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, MO-220VLLD-2, LFCSP_VQ-56
ROCHESTER

ADUC816BCPZ-REEL

暂无描述
ADI

ADUC816BS

MicroConverter-R, Dual-Channel 16-Bit ADCs with Embedded Flash MCU
ADI

ADUC816BSZ

暂无描述
ADI

ADUC816BSZ

8-BIT, FLASH, 12.58 MHz, MICROCONTROLLER, PQFP52, ROHS COMPLIANT, MO-112AC-1, MQFP-52
ROCHESTER

ADUC816BSZ-REEL

MicroConverter®, Dual-Channel 16-Bit ADCs with Embedded Flash MCU
ADI

ADUC824

MicroConverter, Dual-Channel 16-/24-Bit ADCs with Embedded FLASH MCU
ADI

ADUC824B2BS

IC 8-BIT, FLASH, 12.58 MHz, MICROCONTROLLER, PQFP52, PLASTIC, MQFP-52, Microcontroller
ADI

ADUC824BS

MicroConverter, Dual-Channel 16-/24-Bit ADCs with Embedded FLASH MCU
ADI

ADUC824BS

8-BIT, FLASH, 12.58 MHz, MICROCONTROLLER, PQFP52, PLASTIC, MQFP-52
ROCHESTER

ADUC824BS-REEL

8-BIT, FLASH, 12.58 MHz, MICROCONTROLLER, PQFP52, PLASTIC, MQFP-52
ROCHESTER