ADUCM3027BCBZ-R7 [ADI]

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management;
ADUCM3027BCBZ-R7
型号: ADUCM3027BCBZ-R7
厂家: ADI    ADI
描述:

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management

文件: 总39页 (文件大小:688K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra Low Power Arm Cortex-M3 MCU with  
Integrated Power Management  
ADuCM3027/ADuCM3029  
Data Sheet  
Digital peripherals  
FEATURES  
3 SPI interfaces to enable glueless interface to sensors,  
radios, and converters  
EEMBC ULPMark™-CP score: 245.5  
Ultra low power active and hibernate mode  
Active mode dynamic current: 30 μA/MHz (typical)  
Flexi mode: 300 μA (typical)  
I2C and UART interfaces  
SPORT for natively interfacing with converters and radios  
Programmable GPIOs (44 in LFCSP and 34 in WLCSP)  
3 general-purpose timers with PWM support  
RTC and FLEX_RTC with SensorStrobe and time stamping  
Programmable beeper  
25-channel DMA controller  
Clocking features  
26 MHz clock: on-chip oscillator, external crystal oscillator  
32 kHz clock: on-chip oscillator, low power crystal oscillator  
Integrated PLL with programmable divider  
Analog peripherals  
Hibernate mode: 750 nA (typical)  
Shutdown mode: 60 nA (typical)  
ARM Cortex-M3 processor with MPU  
Up to 26 MHz with serial wire debug interface  
Power management  
Single-supply operation (VBAT): 1.74 V to 3.6 V  
Optional buck converter for improved efficiency  
Memory options  
128 kB/256 kB of embedded flash memory with ECC  
4 kB of cache memory to reduce active power  
64 kB of configurable system SRAM with parity up to 32 kB  
of SRAM retained in hibernate mode  
Safety  
Watchdog with dedicated on-chip oscillator  
Hardware CRC with programmable polynomial  
Multiparity bit protected SRAM  
ECC protected embedded flash  
12-bit SAR ADC, 1.8 MSPS, 8 channels, and digital comparator  
APPLICATIONS  
Internet of Things (IoT)  
Electronic shelf label (ESL) and signage  
Smart infrastructure  
Smart lock  
Asset tracking  
Smart machine, smart metering, smart building, smart city,  
and smart agriculture  
Wearables  
Fitness and clinical  
Machine learning and neural network  
Security  
TRNG  
User code protection  
Hardware cryptographic accelerator supporting AES-128,  
AES-256, and SHA-256  
FUNCTIONAL BLOCK DIAGRAM  
26MHz CORE RATE  
PLL  
SERIAL WIRE  
INSTRUCTION  
RAM/CACHE  
(32kB)  
HFXTAL  
LFXTAL  
HFOSC  
LFOSC  
ARM  
CORTEX-M3  
POWER  
MANAGEMENT  
FLASH  
(256kB)  
MULTI-  
LAYER  
AMBA  
BUS  
BUCK  
SRAM0  
(16kB)  
NVIC  
WIC  
MATRIX  
MPU  
REF BUFFER  
SRAM1  
(16kB)  
TEMPERATURE  
SENSOR  
DMA  
CRYPTO  
(AES 128/256,  
SHA 256)  
ADC  
SPORT  
UART  
TMR0  
TMR1  
TRNG  
RTC0  
RTC1  
AHB-APB  
BRIDGE  
2
PROGRAMMABLE  
CRC POLYNOMIAL  
SPI  
SPI  
SPI  
I C  
TMR2  
BEEPER GPIO  
WDT  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
http://www.analog.com  
 
 
 
ADuCM3027/ADuCM3029  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ARM Cortex-M3 Processor...................................................... 22  
Memory Architecture ................................................................ 23  
Cache Controller ........................................................................ 24  
System and Integration Features .............................................. 24  
On-Chip Peripheral Features.................................................... 28  
Development Support................................................................ 29  
Additional Information ............................................................. 29  
Reference Designs ...................................................................... 29  
MCU Test Conditions................................................................ 29  
Driver Types................................................................................ 29  
EEMBC ULPMark™-CP Score.................................................. 30  
GPIO Multiplexing......................................................................... 31  
Applications Information.............................................................. 33  
About ADuCM3027/ADuCM3029 Silicon Anomalies ............ 36  
Functionality Issues.................................................................... 36  
Outline Dimensions....................................................................... 38  
Ordering Guide .......................................................................... 39  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Product Highlights....................................................................... 3  
Specifications..................................................................................... 4  
Operating Conditions and Electrical Characteristics.............. 4  
Embedded Flash Specifications.................................................. 4  
Power Supply Current Specifications......................................... 5  
ADC Specifications ...................................................................... 7  
System Clocks ............................................................................... 8  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 15  
Thermal Resistance .................................................................... 15  
ESD Caution................................................................................ 15  
Pin Configuration and Function Descriptions........................... 16  
Typical Performance Characteristics ........................................... 20  
Theory of Operation ...................................................................... 22  
REVISION HISTORY  
5/2019—Rev. A to Rev. B  
Change to MMRs (Peripheral Control and Status) Section ..... 23  
Changes to Cache Controller Section and Booting Section..... 24  
Changes to Programmable GPIOs Section................................. 26  
Changes to I2C Section .................................................................. 28  
Changes to Additional Information Section............................... 29  
Changes to Figure 26...................................................................... 33  
Changes to Figure 27...................................................................... 34  
Changes to Figure 28...................................................................... 35  
Added About ADuCM3027/ADuCM3029 Silicon Anomalies  
Section, Table 30, Table 31, and Table 32; Renumbered  
Change to Features Section ............................................................. 1  
Changes to General Description Section ...................................... 3  
Change to VBAT_ADC Current (IVBAT_ADC) Parameter ,Table 7.......7  
Added Crystal Equivalent Series Resistance Parameter, Table 8 ..... 8  
Change to SPT_CLK Period Parameter, Table 12 ........................ 9  
Changes to Figure 5 and Figure 6................................................. 10  
Changed Timer PWM_OUT Cycle Timing Section to Timer  
Pulse-Width Modulation (PWM) Output Cycle  
Timing Section................................................................................ 14  
Change to Figure 13 Caption ........................................................ 14  
Change to Table 19 ......................................................................... 15  
Changes to Figure 14 and Table 20............................................... 16  
Changes to Figure 15 and Table 21............................................... 18  
Changes to Figure 16 to Figure 19................................................ 20  
Changes to Figure 20 and Figure 21............................................. 21  
Sequentially ..................................................................................... 36  
Added Table 33 ............................................................................... 37  
Changes to Ordering Guide.......................................................... 39  
12/2018—Revision A: Initial Version  
Rev. B | Page 2 of 39  
 
Data Sheet  
ADuCM3027/ADuCM3029  
GENERAL DESCRIPTION  
The ADuCM3027/ADuCM3029 microcontroller units (MCUs)  
are ultra low power microcontroller systems with integrated  
power management for processing, control, and connectivity.  
The MCU system is based on the ARM® Cortex®-M3 processor,  
a collection of digital peripherals, embedded SRAM and flash  
memory, and an analog subsystem which provides clocking,  
reset, and power management capability in addition to an  
analog-to-digital converter (ADC) subsystem. For a feature  
comparison across the ADuCM3027/ADuCM3029 product  
offerings, see Table 1.  
To support low dynamic and hibernate power management, the  
ADuCM3027/ADuCM3029 MCUs provide a collection of  
power modes and features, such as dynamic and software  
controlled clock gating and power gating.  
The ADuCM3029-1 and ADuCM3029-2 MCU models share the  
same features and functionality as that of the ADuCM3029 MCU.  
All specifications pertaining to the ADuCM3027 and  
ADuCM3029 are also applicable to the ADuCM3029-1 and  
ADuCM3029-2.  
For full details on the ADuCM3027/ADuCM3029 MCUs, refer to  
the ADuCM302x Ultra Low Power ARM Cortex-M3 MCU with  
Integrated Power Management Hardware Reference Manual.  
Table 1. Product Flash Memory Options  
Device  
Embedded Flash Memory Size  
ADuCM3029  
ADuCM3027  
256 kB  
128 kB  
PRODUCT HIGHLIGHTS  
1. Industry leading ultralow power consumption.  
2. Robust operation, including full voltage monitoring in  
deep sleep modes, ECC support on flash, and parity error  
detection on SRAM memory.  
System features that are common across the ADuCM3027/  
ADuCM3029/ADuCM3029-1/ADuCM3029-2 MCUs include  
the following:  
3. Leading edge security. Fast encryption provides read  
protection to customer algorithms. Write protection  
prevents device reprogramming by unauthorized code.  
4. Failure detection of 32 kHz LFXTAL via interrupt.  
5. SensorStrobe™ for precise time synchronized sampling of  
external sensors. Works in hibernate mode, resulting in  
drastic current reduction in system solutions. Current  
consumption reduces by 10 times when using, for example,  
the ADXL363 accelerometer. Software intervention is not  
required after setup. No pulse drift due to software execution.  
Up to 26 MHz ARM Cortex-M3 processor  
Up to 256 kB of embedded flash memory with error  
correction code (ECC)  
Optional 4 kB cache for lower active power  
64 kB system SRAM with parity  
Power management unit (PMU)  
Multilayer advanced microcontroller bus architecture  
(AMBA) bus matrix  
Central direct memory access (DMA) controller  
Beeper interface  
Serial port (SPORT), serial peripheral interface (SPI),  
inter-integrated circuit (I2C), and universal asynchronous  
receiver/transmitter (UART) peripheral interfaces  
Cryptographic hardware support with advanced encryption  
standard (AES) and secure hash algorithm (SHA)-256  
Real-time clock (RTC)  
General-purpose and watchdog timers  
Programmable general-purpose input/output (GPIO) pins  
Hardware cyclic redundancy check (CRC) calculator with  
programmable generator polynomial  
Power-on reset (POR) and power supply monitor (PSM)  
12-bit successive approximation register (SAR) ADC  
True random number generator (TRNG)  
Rev. B | Page 3 of 39  
 
 
 
ADuCM3027/ADuCM3029  
Data Sheet  
SPECIFICATIONS  
OPERATING CONDITIONS AND ELECTRICAL CHARACTERISTICS  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
EXTERNAL BATTERY SUPPLY VOLTAGE1, 2  
INPUT VOLTAGE  
High Level  
VBAT  
1.74  
3.0  
3.6  
V
VIH  
VIL  
2.5  
V
V
V
VBAT = 3.6 V  
VBAT = 1.74 V  
Low Level  
0.45  
3.6  
ADC SUPPLY VOLTAGE  
OUTPUT VOLTAGE3  
High Level  
VBAT_ADC  
1.74  
1.4  
3.0  
VOH  
VOL  
V
V
VBAT = 1.74 V, IOH = −1.0 mA  
VBAT = 1.74 V, IOL = 1.0 mA  
Low Level  
0.4  
INPUT CURRENT PULL-UP4  
High Level  
Low Level  
IIHPU  
IILPU  
0.01  
0.01  
0.01  
10  
0.2  
100  
µA  
µA  
VBAT = 3.6 V, VIN = 3.6 V  
VBAT =3.6 V, VIN = 0 V  
THREE-STATE LEAKAGE CURRENT  
High Level5  
IOZH  
0.15  
0.30  
100  
0.15  
100  
0.15  
µA  
µA  
µA  
µA  
µA  
µA  
pF  
°C  
VBAT = 3.6 V, VIN = 3.6 V  
VBAT = 3.6 V, VIN = 3.6 V  
VBAT = 3.6 V, VIN = 3.6 V  
VBAT = 3.6 V, VIN = 0 V  
VBAT = 3.6 V, VIN = 0 V  
VBAT = 3.6 V, VIN = 0 V  
TJ = 25°C  
Pull-Up6  
IOZHPU  
IOZHPD  
IOZL  
IOZLPU  
IOZLPD  
CIN  
Pull-Down7  
Low Level5  
Pull-Up6  
Pull-Down7  
INPUT CAPACITANCE  
JUNCTION TEMPERATURE  
TJ  
−40  
+85  
TAMBIENT = -40°C to +85°C  
1 Value applies to VBAT_ANA1, VBAT_ANA2, VBAT_DIG1, and VBAT_DIG2 pins.  
2 Must remain powered (even if the associated function is not used).  
3 Applies to the output and bidirectional pins: P0_00 to P0_15, P1_00 to P1_15, and P2_00 to P2_11.  
4
SYS_HWRST  
Applies to the  
input pin with pull-up.  
5 Applies to the three-state pins: P0_00 to P0_05, P0_08 to P0_15, P1_00 to P1_15, and P2_00 to P2_11.  
6 Applies to the three-state pins with pull-ups: P0_00 to P0_05, P0_07 to P0_15, and P1_00 to P1_11.  
7 Applies to the P0_06 three-state pin with pull-down.  
EMBEDDED FLASH SPECIFICATIONS  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
FLASH  
Endurance  
Data Retention  
10,000  
Cycles  
Years  
10  
Rev. B | Page 4 of 39  
 
 
 
Data Sheet  
ADuCM3027/ADuCM3029  
POWER SUPPLY CURRENT SPECIFICATIONS  
Active Mode  
Table 4.  
Parameter  
ACTIVE MODE3  
Min Typ1 Max2 Unit  
Test Conditions/Comments  
Current consumption when VBAT = 3.0 V  
Buck Enabled  
0.40 2.71 mA  
0.98 1.29 mA  
1.28 1.64 mA  
0.95 1.36 mA  
1.08 1.43 mA  
Code executing from flash, cache enabled, peripheral clocks off, HCLK = 6.5 MHz  
Code executing from flash, cache enabled, peripheral clocks off, HCLK = 26 MHz  
Code executing from flash, cache disabled, peripheral clocks off, HCLK = 26 MHz  
Code executing from SRAM, peripheral clocks off, HCLK = 26 MHz  
Code executing from flash, cache enabled, peripheral clocks on, HCLK = 26 MHz,  
PCLK = 26 MHz  
1.37 1.78 mA  
1.08 1.49 mA  
Code executing from flash, cache disabled, peripheral clocks on, HCLK = 26 MHz,  
PCLK = 26 MHz  
Code executing from SRAM, peripheral clocks on, HCLK = 26 MHz, PCLK = 26 MHz  
Dynamic Current  
30  
1.75 8.05 mA  
2.34 3.0 mA  
1.78 2.48 mA  
1.99 2.67 mA  
µA/MHz Code executing from flash, cache enabled  
Code executing from flash, cache enabled, peripheral clocks off, HCLK = 26 MHz  
Code executing from flash, cache disabled, peripheral clocks off, HCLK = 26 MHz  
Code executing from SRAM, peripheral clocks off, HCLK = 26 MHz  
Code executing from flash, cache enabled, peripheral clocks on, HCLK = 26 MHz,  
PCLK = 26 MHz  
2.55 3.29 mA  
Code executing from flash, cache disabled, peripheral clocks on, HCLK = 26 MHz,  
PCLK = 26 MHz  
2.03 2.74 mA  
Code executing from SRAM, peripheral clocks on, HCLK = 26 MHz, PCLK = 26 MHz  
60  
µA/MHz Code executing from flash, cache enabled  
1 TJ = 25°C.  
2 TJ = 85°C.  
3 The code being executed is a prime number generation in a continuous loop, with HFOSC as the system clock source.  
Flexi Mode  
Table 5.  
Parameter  
Min Typ1 Max2 Unit  
Test Conditions/Comments  
Current consumption when VBAT = 3.0 V  
Peripheral clocks off  
Peripheral clocks on, PCLK = 26 MHz  
Peripheral clocks off  
FLEXI™ MODE  
Buck Enabled  
0.3  
0.39 0.80  
0.52 1.11  
0.67  
mA  
mA  
mA  
mA  
Buck Disabled  
0.7  
1.38  
Peripheral clocks on, PCLK = 26 MHz  
1 TJ = 25°C.  
2 TJ = 85°C.  
Rev. B | Page 5 of 39  
 
 
 
ADuCM3027/ADuCM3029  
Data Sheet  
Deep Sleep Modes—VBAT = 3.0 V  
Table 6.  
Parameter  
Min Typ  
Max Unit Test Conditions/Comments  
HIBERNATE MODE  
TJ = 25°C  
VBAT = 3.0V  
0.75  
0.77  
0.79  
0.81  
0.78  
0.83  
0.93  
2.0  
2.4  
2.6  
3.0  
2.05  
2.1  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
RTC1 and RTC0 disabled, 8 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 16 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 24 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 32 kB SRAM retained, LFXTAL off  
RTC1 enabled, 8 kB SRAM retained, LFOSC as source for RTC1  
RTC1 enabled, 8 kB SRAM retained, LFXTAL as source for RTC1  
RTC1 and RTC0 enabled, 8 kB SRAM retained, LFXTAL as source for RTC1 and RTC0  
RTC1 and RTC0 disabled, 8 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 16 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 24 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 32 kB SRAM retained, LFXTAL off  
RTC1 enabled, 8 kB SRAM retained, LFOSC as source for RTC1  
RTC1 enabled, 8 kB SRAM retained, LFXTAL as source for RTC1  
RTC1 and RTC0 enabled, 8 kB SRAM retained, LFXTAL as source for RTC1 and RTC0  
VBAT = 3.0 V  
TJ = 85°C  
6.05  
6.4  
6.75  
7.1  
6.1  
6.15  
6.3  
2.25  
SHUTDOWN MODE1  
TJ = 25°C  
0.31  
0.056  
0.49  
0.26  
µA  
µA  
1.180 µA  
0.95 µA  
RTC0 enabled, LFXTAL as source for RTC0  
RTC0 disabled  
RTC0 enabled, LFXTAL as source for RTC0  
RTC0 disabled  
TJ = 85°C  
1 Buck enable/disable does not affect power consumption.  
Rev. B | Page 6 of 39  
 
Data Sheet  
ADuCM3027/ADuCM3029  
ADC SPECIFICATIONS  
Table 7.  
Parameter1, 2  
Min Typ3  
Max  
Unit  
Test Conditions/Comments  
±.8 V (VBAT)/±.25 V (internal/external VREF)  
INTEGRAL NONLINEARITY ERROR  
64-Lead LFCSP  
64-Lead LFCSP  
4
4
4
4
±±.6  
±±.4  
±±.8  
LSB  
LSB  
LSB  
4
3.0 V (VBAT)/2.5 V (internal/external VREF)  
54-Ball WLCSP  
±.8 V (VBAT)/±.25 V (internal/external VREF  
)
)
DIFFERENTIAL NONLINEARITY ERROR  
64-Lead LFCSP  
64-Lead LFCSP  
−0.7 to +±.±5  
−0.7 to +±.±  
−0.75 to +±.2  
LSB  
LSB  
LSB  
±.8 V (VBAT)/±.25 V (internal/external VREF  
4
3.0 V (VBAT)/2.5 V (internal/external VREF)  
54-Ball WLCSP  
±.8 V (VBAT)/±.25 V (internal/external VREF)  
OFFSET ERROR  
64-Lead LFCSP  
64-Lead LFCSP  
54-Ball WLCSP  
4
±0.5  
±0.5  
±0.5  
LSB  
LSB  
LSB  
±.8 V (VBAT)/±.25 V (external VREF)  
3.0 V (VBAT)/2.5 V (external VREF)  
4
4
4
4
±.8 V (VBAT)/±.25 V (external VREF  
)
)
GAIN ERROR  
64-Lead LFCSP  
64-Lead LFCSP  
54-Ball WLCSP  
±2.5  
±0.5  
±3.0  
LSB  
LSB  
LSB  
±.8 V (VBAT)/±.25 V (external VREF  
4
3.0 V (VBAT)/2.5 V (external VREF  
)
±.8 V (VBAT)/±.25 V (external VREF  
)
5
VBAT_ADC CURRENT (IVBAT_ADC  
64-Lead LFCSP  
64-Lead LFCSP  
54-Ball WLCSP  
)
6
±04  
±3±  
±08  
±.25  
2.50  
μA  
μA  
μA  
V
±.8 V (VBAT)/±.25 V (internal VREF)  
6
3.0 V (VBAT)/2.5 V (internal VREF)  
6
±.8 V (VBAT)/±.25 V (internal VREF)  
INTERNAL REFERENCE VOLTAGE  
Internal reference, ±.25 V selected  
Internal reference, 2.5 V selected  
V
INTEGRAL NONLINEARITY ERROR  
64-Lead LFCSP  
64-Lead LFCSP  
54-Ball WLCSP  
54-Ball WLCSP  
±.22 ±.25  
±.275  
2.545  
±.275  
2.545  
±.8  
V
V
V
V
±.25 V (internal)7  
2.5 V (internal)  
±.25 V (internal)  
2.5 V (internal)  
2.45 2.5  
±.22 ±.25  
2.45 2.5  
0.0±  
ADC SAMPLING FREQUENCY (fS)8  
MSPS  
± The ADC is characterized in standalone mode without core activity and minimal or no switching on the adjacent ADC channels and digital inputs/outputs.  
2 The specifications are characterized after performing internal ADC offset calibration.  
3 TJ = 25°C.  
4 fIN = ±068 Hz, fS = ±00 kSPS, internal reference in low power mode, 400,000 samples end point method used.  
5 Current consumption from VBAT_ADC supply when ADC is performing the conversion.  
6 fIN = ±068 Hz, fS = ±00 kSPS, internal reference in low power mode.  
7 No load current, CL = 0.± μF and 4.7 μF, reference buffer low power mode is enabled.  
8 Effects of analog source impedance must be considered when selecting ADC sampling frequency.  
Rev. B | Page 7 of 39  
 
ADuCM3027/ADuCM3029  
Data Sheet  
SYSTEM CLOCKS  
External Crystal Oscillator Specifications  
Table 8.  
Parameter  
Symbol  
Min  
6
Typ  
Max  
10  
Unit  
Test Conditions/Comments  
LOW FREQUENCY EXTERNAL CRYSTAL  
OSCILLATOR (LFXTAL)  
Frequency  
External Capacitance from  
SYS_LFXTAL_IN Pin to Ground and  
from SYS_LFXTAL_OUT Pin to Ground  
fLFXTAL  
CLFXTAL  
32,768  
Hz  
pF  
External capacitors on SYS_LFXTAL_IN  
and SYS_LFXTAL_OUT pins must be  
selected considering the printed circuit  
board (PCB) trace capacitance due to  
routing  
Crystal Equivalent Series Resistance  
ESRLFXTAL  
30  
kΩ  
HIGH FREQUENCY EXTERNAL CRYSTAL  
OSCILLATOR (HFXTAL)  
Frequency  
External Capacitance from  
SYS_HFXTAL_IN Pin to Ground and  
from SYS_HFXTAL_OUT Pin to Ground  
fHFXTAL  
CHFXTAL  
26  
MHz  
pF  
20  
50  
External capacitors on SYS_HFXTAL_IN  
and SYS_HFXTAL_OUT pins must be  
selected considering the PCB trace  
capacitance due to routing  
Crystal Equivalent Series Resistance  
ESRHFXTAL  
Ω
On-Chip RC Oscillator Specifications  
Table 9.  
Parameter  
Symbol  
fLFOSC  
fHFOSC  
Min  
Typ  
Max  
Unit  
Hz  
LOW FREQUENCY RC OSCILLATOR (LFOSC)  
Frequency  
30,800  
25.09  
32,768  
26  
34,407  
26.728  
HIGH FREQUENCY RC OSCILLATOR (HFOSC)  
Frequency  
MHz  
System Clocks and PLL Specifications  
Table 10.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
PLL SPECIFICATIONS  
PLL Input Clock Frequency1  
PLL Output Clock Frequency2, 3  
System Peripheral Clock (PCLK) Frequency  
fPLLIN  
fPLLOUT  
fPCLK  
16  
16  
0.8125  
0.8125  
26  
60  
26  
26  
MHz  
MHz  
MHz  
MHz  
Advanced High Performance Bus Clock (HCLK) Frequency  
fHCLK  
1 The input to the PLL can come from either the high frequency external crystal (HFXTAL), SYS_CLKIN pin or from the high frequency internal RC oscillator (HFOSC).  
2 For the maximum value, the recommended settings are PLL_MSEL = 13, PLL_NSEL = 16, PLL_DIV2 = 1 for PLL input clock = 26 MHz; and PLL_MSEL = 13, PLL_NSEL =  
26, PLL_DIV2 = 1 for PLL input clock = 16 MHz.  
3 For the minimum value, the recommended settings are PLL_MSEL = 13, PLL_NSEL = 30, PLL_DIV2 = 0 for PLL input clock = 26 MHz; and PLL_MSEL = 8, PLL_NSEL = 30,  
PLL_DIV2 = 0 for 16 MHz.  
Rev. B | Page 8 of 39  
 
Data Sheet  
ADuCM3027/ADuCM3029  
TIMING SPECIFICATIONS  
Reset Timing  
Table 11.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
RESET TIMING REQUIREMENTS  
SYS_HWRST Asserted Pulse Width Low1  
tWRST  
4
µs  
1 Applies after power-up sequence is complete.  
tWRST  
SYS_HWRST  
Figure 2. Reset Timing  
Serial Ports Timing  
Table 12.  
Parameter  
Symbol Min  
Typ Max Unit Test Conditions/Comments  
EXTERNAL CLOCK SERIAL PORTS  
Timing Requirements  
Frame Sync Setup Before SPT_CLK1  
tSFSE  
tHFSE  
5
5
ns  
ns  
Externally generated frame sync  
in transmit or receive mode  
Externally generated frame sync  
in transmit or receive mode  
Frame Sync Hold After SPT_CLK1  
Receive Data Setup Before Receive SPT_CLK1  
Receive Data Hold After SPT_CLK1  
SPT_CLK Width2  
tSDRE  
tHDRE  
tSCLKW  
tSPTCLK  
5
8
38.5  
77  
ns  
ns  
ns  
ns  
SPT_CLK Period2  
Switching Characteristics3  
Frame Sync Delay After SPT_CLK  
tDFSE  
20  
20  
ns  
ns  
Internally generated frame sync in  
transmit or receive mode  
Internally generated frame sync in  
transmit or receive mode  
Frame Sync Hold After SPT_CLK  
tHOFSE  
2
1
Transmit Data Delay After Transmit SPT_CLK  
Transmit Data Hold After Transmit SPT_CLK  
INTERNAL CLOCK SERIAL PORTS  
Timing Requirements1  
tDDTE  
tHDTE  
ns  
ns  
Receive Data Setup Before SPT_CLK  
Receive Data Hold After SPT_CLK  
Switching Characteristics  
tSDRI  
tHDRI  
25  
0
ns  
ns  
Frame Sync Delay After SPT_CLK 3  
tDFSI  
20  
20  
ns  
ns  
Internally generated frame sync in  
transmit or receive mode  
Internally generated frame sync in  
transmit or receive mode  
Frame Sync Hold After SPT_CLK 3  
tHOFSI  
−8  
Transmit Data Delay After SPT_CLK3  
Transmit Data Hold After SPT_CLK3  
SPT_CLK Width  
tDDTI  
tHDTI  
tSCLKIW  
tSPTCLK  
ns  
ns  
ns  
ns  
−7  
tPCLK − 1.5  
(2 × tPCLK) − 1  
SPT_CLK Period  
Not shown in Figure 3 to Figure 7  
ENABLE AND THREE-STATE SERIAL PORTS  
Switching Characteristics  
Data Enable from Internal Transmit SPT_CLK3  
Data Disable from Internal Transmit SPT_CLK3  
tDDTIN  
tDDTTI  
5
ns  
ns  
160  
1 This specification is referenced to the sample edge.  
2 This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPT_CLK.  
3 These specifications are referenced to the drive edge.  
Rev. B | Page 9 of 39  
 
ADuCM3027/ADuCM3029  
Data Sheet  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
tDFSI  
tHOFSI  
SPT_0AFS/SPT_0BFS  
(FRAME SYNC)  
tSDRI  
tHDRI  
SPT_AD0/SPT_BD0  
(DATA CHANNEL A/B)  
Figure 3. Serial Ports (Data Receive Mode through Internal Clock)  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
tDFSI  
tHOFSI  
SPT_0AFS/SPT_0BFS  
(FRAME SYNC)  
tDDTI  
tHDTI  
SPT_AD0/SPT_BD0  
(DATA CHANNEL A/B)  
Figure 4. Serial Ports (Data Transmit Mode through Internal Clock)  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKW  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
tDFSE  
tHOFSE  
tSFSE  
tHFSE  
SPT0_AFS/SPT0_BFS  
(FRAME SYNC)  
tSDRE  
tHDRE  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
Figure 5. Serial Ports (Data Receive Mode through External Clock)  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKW  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
tDFSE  
tHOFSE  
tSFSE  
tHFSE  
SPT_0AFS/SPT_0BFS  
(FRAME SYNC)  
tDDTE  
tHDTE  
SPT_AD0/SPT_BD0  
(DATA CHANNEL A/B)  
Figure 6. Serial Ports (Data Transmit Mode through External Clock)  
Rev. B | Page 10 of 39  
 
Data Sheet  
ADuCM3027/ADuCM3029  
DRIVE EDGE  
DRIVE EDGE  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK INTERNAL)  
tDDTIN  
tDDTTI  
SPT0_AD0/SPT0/BD0  
(DATA CHANNEL A/B)  
Figure 7. Enable and Three-State Serial Ports  
Rev. B | Page 11 of 39  
 
ADuCM3027/ADuCM3029  
Data Sheet  
SPI Timing  
Table 13.  
Parameter1  
Symbol  
Min  
Typ  
Max  
Unit  
SPI MASTER MODE TIMING  
Timing Requirements  
Chip Select (CS) to Serial Clock (SCLK) Edge  
SCLK Low Pulse Width  
SCLK High Pulse Width  
Data Input Setup Time Before SCLK Edge  
Data Input Hold Time After SCLK Edge  
Switching Characteristics  
tCS  
(0.5 × tPCLK) − 3  
tPCLK − 3.5  
tPCLK − 3.5  
5
ns  
ns  
ns  
ns  
ns  
tSL  
tSH  
tDSU  
tDHD  
20  
Data Output Valid After SCLK Edge  
Data Output Setup Before SCLK Edge  
CS High After SCLK Edge  
tDAV  
tDOSU  
tSFS  
25  
ns  
ns  
ns  
tPCLK − 2.2  
(0.5 × tPCLK) − 3  
SPI SLAVE MODE TIMING  
Timing Requirements  
CS to SCLK Edge  
tCS  
38.5  
38.5  
38.5  
6
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse Width  
SCLK High Pulse Width  
Data Input Setup Time Before SCLK Edge  
Data Input Hold Time After SCLK Edge  
Switching Characteristics  
tSL  
tSH  
tDSU  
tDHD  
8
Data Output Valid After SCLK Edge  
Data Output Valid After CS Edge  
CS High After SCLK Edge  
tDAV  
tDOCS  
tSFS  
20  
20  
ns  
ns  
ns  
38.5  
1 These specifications are characterized with respect to double drive strength.  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
MSB  
BIT 6 TO BIT 1  
LSB  
MOSI  
MISO  
BIT 6 TO BIT 1  
LSB IN  
MSB IN  
tDSU  
tDHD  
Figure 8. SPI Master Mode Timing (Phase Mode = 1)  
Rev. B | Page 12 of 39  
Data Sheet  
ADuCM3027/ADuCM3029  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
tDOSU  
MOSI  
MISO  
MSB  
BIT 6 TO BIT 1  
LSB  
BIT 6 TO  
BIT 1  
LSB IN  
MSB IN  
tDSU  
tDHD  
Figure 9. SPI Master Mode Timing (Phase = 0)  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
MISO  
MOSI  
MSB  
BIT 6 TO BIT 1  
BIT 6 TO BIT 1  
LSB  
LSB IN  
MSB IN  
tDSU  
tDHD  
Figure 10. SPI Slave Mode Timing (Phase Mode = 1)  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
tDOCS  
MISO  
MSB  
BIT 6 TO BIT 1  
BIT 6 TO BIT 1  
LSB  
LSB IN  
MOSI  
MSB IN  
tDSU  
tDHD  
Figure 11. SPI Slave Mode Timing (Phase Mode = 0)  
Rev. B | Page 13 of 39  
ADuCM3027/ADuCM3029  
Data Sheet  
I2C Specifications  
Table 14.  
Parameter  
Symbol  
Min  
Typ  
Max  
Max  
Unit  
I2C SCLK FREQUENCY  
Standard Mode  
Fast Mode  
100  
400  
kHz  
kHz  
General-Purpose Port Timing  
Table 15.  
Parameter  
Symbol  
Min  
Typ  
Unit  
TIMING REQUIREMENTS  
General-Purpose Port Pin Input Pulse Width  
tWFI  
4 × tPCLK  
ns  
tWFI  
GPIO INPUT  
Figure 12. General-Purpose Timing  
RTC1 (FLEX_RTC) Specifications  
Table 16.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SENSORSTROBE  
Minimum Output Frequency  
Maximum Output Frequency  
RTC1 ALARM  
0.5  
16.384  
Hz  
kHz  
Minimum Time Resolution  
30.52  
µs  
Timer Pulse-Width Modulation (PWM) Output Cycle Timing  
Table 17.  
Parameter  
Symbol  
Min  
Typ  
Max  
256 × (216 − 1)  
Unit  
SWITCHING REQUIREMENTS  
Timer Pulse Width Output  
tPWMO  
(4 × tPCLK) − 6  
ns  
PWM OUTPUTS  
tPWMO  
Figure 13. Timer PWM Output Cycle Timing  
Rev. B | Page 14 of 39  
Data Sheet  
ADuCM3027/ADuCM3029  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 18.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required. θJA can be used for a first-order  
approximation of TJ by the following equation:  
Parameter  
Rating  
Supply  
VBAT_ANA1, VBAT_ANA2, VBAT_ADC, −0.3 V to +3.6 V  
VBAT_DIG1, VBAT_DIG2, and  
VREF_ADC  
TJ = TA + (θJA × PD)  
Analog  
where:  
VDCDC_CAP1N, VDCDC_CAP1P,  
VDCDC_OUT, VDCDC_CAP2N, and  
VDCDC_CAP2P  
VLDO_OUT, SYS_HFXTAL_IN, SYS_  
HFXTAL_OUT, SYS_LFXTAL_IN, and  
SYS_LFXTAL_OUT  
−0.3 V to +3.6 V  
−0.3 V to +1.32 V  
TJ is junction temperature (°C).  
TA is ambient temperature (°C).  
PD is power dissipation (to calculate power dissipation).  
Table 19. Thermal Resistance  
Package Type  
Digital Input/Output  
P0_xx, P1_xx, P2_xx, and SYS_HWRST −0.3 V to +3.6 V  
θJA  
θJC  
Unit  
CP-64-16  
26.3  
1.0  
°C/W  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. B | Page 15 of 39  
 
 
 
ADuCM3027/ADuCM3029  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
12  
10  
8
6
4
2
13  
11  
9
7
5
3
1
SYS_  
VDCDC_  
VDCDC_  
CAP1P  
SYS_  
LFXTAL_IN  
HFXTAL_OUT  
VBAT_ANA1  
VBAT_ADC  
VLDO_OUT  
CAP2N  
A
VDCDC_  
CAP2P  
VDCDC_  
CAP1N  
SYS_  
LFXTAL_OUT  
SYS_  
HFXTAL_IN  
P2_03  
VREF_ADC  
P0_00  
B
C
D
P2_05  
P0_05  
GND_ VREFADC VDCDC_OUT  
VBAT_ANA2  
GND_ANA  
P0_02  
P0_11  
P0_01  
P1_10  
P0_03  
P0_10  
P2_06  
P0_07  
P2_04  
P0_04  
P0_06  
SYS_HWRST  
GND_DIG  
P1_02  
P1_03  
E
F
P1_07  
P1_08  
P1_09  
P1_04  
P1_05  
P2_01  
VBAT_DIG1  
P2_11  
P1_06  
P1_01  
P0_13  
P0_15  
VBAT_DIG2  
G
P0_12  
P0_09  
P0_08  
P1_14  
P1_14  
P1_00  
H
BOTTOM VIEW  
(BALL SIDE UP)  
Not to Scale  
Figure 14. ADuCM3027/ADuCM3029 54-Ball WLCSP Configuration  
Table 20. ADuCM3027/ADuCM3029 54-Ball WLCSP Pin Function Descriptions  
Pin No. Mnemonic  
Signal Name  
Description  
A1  
A3  
A5  
A7  
A9  
A11  
VBAT_ANA1  
SYS_HFXTAL_OUT Not Applicable  
SYS_LFXTAL_IN  
VDCDC_CAP1P  
VDCDC_CAP2N  
VLDO_OUT  
Not Applicable  
External Supply for Analog Circuits in the MCU.  
High Frequency Crystal Output.  
High Frequency Crystal Input.  
Buck Converter Capacitor 1 Positive Terminal.  
Buck Converter Capacitor 2 Negative Terminal.  
Low Drop Out Regulator Output. This pin is only for connecting the  
decoupling capacitor. Do not connect this pin to the external load.  
Not Applicable  
Not Applicable  
Not Applicable  
Not Applicable  
A13  
B1  
B3  
VBAT_ADC  
P0_00  
SYS_HFXTAL_IN  
Not Applicable  
SPI0_CLK/SPT0_BCLK/GPIO00  
Not Applicable  
External Supply for Internal ADC.  
GPIO. See the GPIO Multiplexing section for more information.  
High Frequency Crystal Input.  
B5  
SYS_LFXTAL_OUT Not Applicable  
Low Frequency Crystal Output.  
B7  
B9  
B11  
B13  
C1  
VDCDC_CAP1N  
VDCDC_CAP2P  
VREF_ADC  
P2_03  
Not Applicable  
Not Applicable  
Not Applicable  
ADC0_VIN0/GPIO35  
SPI0_CS0/SPT0_BCNV/  
SPI2_RDY/GPIO03  
Buck Converter Capacitor 1 Negative Terminal.  
Buck Converter Capacitor 2 Positive Terminal.  
External Reference Voltage for Internal ADC.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
P0_03  
C3  
C5  
C7  
P0_01  
P0_02  
VBAT_ANA2  
SPI0_MOSI/SPT0_BFS/GPIO01  
SPI0_MISO/SPT0_BD0/GPIO02  
Not Applicable  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
External Supply for Analog Circuits in the MCU.  
Rev. B | Page 16 of 39  
 
Data Sheet  
ADuCM3027/ADuCM3029  
Pin No. Mnemonic  
Signal Name  
Description  
C9  
VDCDC_OUT  
Not Applicable  
Buck Converter Output. This pin is only for connecting the decoupling  
capacitor. Do not connect this pin to the external load.  
C11  
C13  
D1  
GND_VREFADC  
P2_05  
P0_10  
Not Applicable  
ADC0_VIN2/GPIO37  
UART0_TX/GPIO10  
SPI0_CS1/SYS_CLKIN/  
SPI1_CS3/GPIO26  
Ground for Internal ADC.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
D3  
P1_10  
D5  
D7  
D9  
D11  
D13  
E1  
E3  
E5  
E7  
P0_11  
GND_ANA  
P2_04  
P2_06  
P0_05  
P1_03  
P1_02  
GND_DIG  
SYS_HWRST  
P0_04  
UART0_RX/GPIO11  
Not Applicable  
GPIO. See the GPIO Multiplexing section for more information.  
Ground Reference for Analog Circuits in the MCU.  
ADC0_VIN1/GPIO36  
ADC0_VIN3/GPIO38  
I2C0_SDA/GPIO05  
SPI2_MOSI/GPIO19  
SPI2_CLK/GPIO18  
Not Applicable  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
Ground Reference for Digital Circuits in the MCU.  
Not Applicable  
Hardware Reset Pin.  
E9  
I2C0_SCL/GPIO04  
GPIO07/SWD0_DATA  
GPIO06/SWD0_CLK  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
E11  
E13  
F2  
P0_07  
P0_06  
P2_01  
XINT0_WAKE3/TMR2_OUT/GPIO33 GPIO. See the GPIO Multiplexing section for more information.  
F4  
F6  
F8  
P1_05  
P1_04  
P1_09  
P1_08  
P1_07  
VBAT_DIG2  
P0_15  
P0_13  
P1_01  
SPI2_CS0/GPIO21  
SPI2_MISO/GPIO20  
SPI1_CS0/GPIO25  
SPI1_MISO/GPIO24  
SPI1_MOSI/GPIO23  
Not Applicable  
XINT0_WAKE0/GPIO15  
XINT0_WAKE2/GPIO13  
GPIO17/SYS_BMODE0  
SPI1_CLK/GPIO22  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
External Supply for Digital Circuits in the MCU.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
F10  
F12  
G1  
G3  
G5  
G7  
G9  
G11  
P1_06  
P2_11  
SPI1_CS1/SYS_CLKOUT/GPIO43/  
RTC1_SS1  
G13  
H2  
H4  
H6  
H8  
VBAT_DIG1  
P1_00  
P0_14  
P1_14  
P0_08  
Not Applicable  
External Supply for Digital Circuits in the MCU.  
XINT0_WAKE1/GPIO16  
TMR0_OUT/SPI1_RDY/GPIO14  
SPI0_RDY/GPIO30  
BPR0_TONE_N/GPIO08  
BPR0_TONE_P/SPI2_CS1/GPIO09  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
H10  
H12  
P0_09  
P0_12  
SPT0_AD0/GPIO12/  
UART0_SOUT_EN  
Rev. B | Page 17 of 39  
ADuCM3027/ADuCM3029  
Data Sheet  
48 GND_DIG  
47 P1_00  
46 P0_14  
45 P2_02  
44 P1_14  
43 P1_13  
42 P1_12  
41 P1_11  
40 P0_08  
39 P0_09  
38 P1_01  
37 P1_15  
36 P2_00  
35 P0_12  
34 VBAT_DIG1  
33 P2_11  
VBAT_ANA1  
1
2
3
4
5
6
7
8
9
SYS_HFXTAL_IN  
SYS_HFXTAL_OUT  
SYS_LFXTAL_IN  
SYS_LFXTAL_OUT  
VDCDC_CAP1N  
VDCDC_CAP1P  
VBAT_ANA2  
ADuCM3027/ADuCM3029/  
ADuCM3029-1/ADuCM3029-2  
TOP VIEW  
VDCDC_OUT  
VDCDC_CAP2N 10  
VDCDC_CAP2P 11  
VLDO_OUT 12  
VREF_ADC 13  
VBAT_ADC 14  
GND_VREFADC 15  
P2_03 16  
(Not to Scale)  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD MUST BE GROUNDED.  
Figure 15. ADuCM3027/ADuCM3029/ADuCM3029-1/ADuCM3029-2 64-Lead LFCSP Configuration  
Table 21. ADuCM3027/ADuCM3029/ADuCM3029-1/ADuCM3029-2, 64-Lead LFCSP Pin Function Descriptions  
Pin No. Mnemonic  
Signal Name  
Not applicable  
Not applicable  
Description  
1
2
3
4
5
6
7
8
9
VBAT_ANA1  
SYS_HFXTAL_IN  
External Supply for Analog Circuits in the MCU.  
High Frequency Crystal Input.  
High Frequency Crystal Output.  
Low Frequency Crystal Input.  
Low Frequency Crystal Output.  
Buck Converter Capacitor 1 Negative Terminal.  
Buck Converter Capacitor 1 Positive Terminal.  
External Supply for Analog Circuits in the MCU  
Buck Converter Output. This pin is only for connecting the decoupling  
capacitor. Do not connect this pin to the external load.  
SYS_HFXTAL_OUT Not applicable  
SYS_LFXTAL_IN Not applicable  
SYS_LFXTAL_OUT Not applicable  
VDCDC_CAP1N  
VDCDC_CAP1P  
VBAT_ANA2  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
VDCDC_OUT  
10  
11  
12  
VDCDC_CAP2N  
VDCDC_CAP2P  
VLD0_OUT  
Not applicable  
Not applicable  
Not applicable  
Buck Converter Capacitor 2 Negative Terminal.  
Buck Converter Capacitor 2 Positive Terminal.  
Low Drop Out Regulator Output. This pin is only for connecting the  
decoupling capacitor. Do not connect this pin to the external load.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VREF_ADC  
VBAT_ADC  
GND_VREFADC  
P2_03  
P2_04  
P2_05  
P2_06  
P2_07  
P2_08  
P2_09  
P2_10  
P0_05  
SYS_HWRST  
P0_04  
P0_07  
Not applicable  
Not applicable  
Not applicable  
External Reference Voltage for Internal ADC.  
External Supply for Internal ADC.  
Ground for Internal ADC.  
ADC0_VIN0/GPIO35  
ADC0_VIN1/GPIO36  
ADC0_VIN2/GPIO37  
ADC0_VIN3/GPIO38  
ADC0_VIN4/SPI2_CS3/GPIO39  
ADC0_VIN5/SPI0_CS2/GPIO40  
ADC0_VIN6/SPI0_CS3/GPIO41  
ADC0_VIN7/SPI2_CS2/GPIO42  
I2C0_SDA/GPIO05  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
Hardware Reset Pin.  
Not applicable  
I2C0_SCL/GPIO04  
GPIO07/SWD0_DATA  
GPIO06/SWD0_CLK  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
P0_06  
Rev. B | Page 18 of 39  
Data Sheet  
ADuCM3027/ADuCM3029  
Pin No. Mnemonic  
Signal Name  
Description  
29  
30  
31  
32  
33  
P1_09  
P1_08  
P1_07  
P1_06  
P2_11  
SPI1_CS0/GPIO25  
SPI1_MISO/GPIO24  
SPI1_MOSI/GPIO23  
SPI1_CLK/GPIO22  
SPI1_CS1/SYS_CLKOUT/GPIO43/  
RTC1_SS1  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
VBAT_DIG1  
P0_12  
P2_00  
P1_15  
P1_01  
P0_09  
P0_08  
P1_11  
P1_12  
P1_13  
P1_14  
P2_02  
P0_14  
P1_00  
GND_DIG  
VBAT_DIG2  
P0_15  
P0_13  
P2_01  
P1_05  
P1_04  
P1_03  
P1_02  
P0_11  
P0_10  
P1_10  
Not applicable  
External Supply for Digital Circuits in the MCU.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
Ground Reference for Digital Circuits in the MCU.  
External Supply for Digital Circuits in the MCU.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
SPT0_AD0/GPIO12  
SPT0_AFS/GPIO32  
SPT0_ACLK/GPIO31  
GPIO17/SYS_BMODE0  
BPR0_TONE_P/SPI2_CS1/GPIO09  
BPR0_TONE_N/GPIO08  
TMR1_OUT/GPIO27  
GPIO28  
GPIO29  
SPI0_RDY/GPIO30  
SPT0_ACNV/SPI1_CS2/GPIO34  
TMR0_OUT/SPI1_RDY/GPIO14  
XINT0_WAKE1/GPIO16  
Not applicable  
Not applicable  
XINT0_WAKE0/GPIO15  
XINT0_WAKE2/GPIO13  
XINT0_WAKE3/TMR2_OUT/GPIO33 GPIO. See the GPIO Multiplexing section.  
SPI2_CS0/GPIO21  
SPI2_MISO/GPIO20  
SPI2_MOSI/GPIO19  
SPI2_CLK/GPIO18  
UART0_RX/GPIO11  
UART0_TX/GPIO10  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
SPI0_CS1/SYS_CLKIN/SPI1_CS3/  
GPIO26  
60  
P0_03  
SPI0_CS0/SPT0_BCNV/SPI2_RDY/  
GPIO03  
GPIO. See the GPIO Multiplexing section.  
61  
62  
63  
64  
P0_02  
P0_01  
P0_00  
GND_ANA  
EPAD  
SPI0_MISO/SPT0_BD0/GPIO02  
SPI0_MOSI/SPT0_BFS/GPIO01  
SPI0_CLK/SPT0_BCLK/GPIO00  
Not applicable  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
GPIO. See the GPIO Multiplexing section.  
Ground Reference for Analog Circuits in the MCU.  
Exposed Pad. The exposed pad must be grounded.  
Rev. B | Page 19 of 39  
ADuCM3027/ADuCM3029  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 16 through Figure 21 show the typical current voltage characteristics for the output drivers of the MCU. The curves represent the  
current drive capability of the output drivers as a function of output voltage.  
V
(V)  
V
(V)  
2.85  
OH  
OH  
1.2  
1.3  
1.4  
1.5  
1.6  
V
1.7  
1.8  
2.70  
5
2.75  
2.80  
2.90  
V
2.95  
3.00  
5
4
, V  
= 3.0V  
, V  
= 1.74V  
TYPE A  
OH BAT  
OH BAT  
4
3
V
V
V
V
TYPE A  
V
V
V
V
OH  
OH  
TYPE B  
TYPE C  
TYPE D  
TYPE B  
TYPE C  
TYPE D  
OH  
OH  
3
OH  
OH  
OH  
OH  
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
V
, V  
= 3.0V  
V
, V  
= 1.74V  
OL BAT  
0.05  
OL BAT  
0.1  
0.30  
0
0.10  
0.15  
(V)  
0.20  
0.25  
0.6  
0
0.2  
0.3  
(V)  
0.4  
0.5  
V
OL  
V
OL  
Figure 16. Output Double Drive Strength Characteristics (VBAT = 1.74 V)  
Figure 18. Output Double Drive Strength Characteristics (VBAT = 3.0 V)  
V
(V)  
1.5  
V
(V)  
OH  
OH  
1.2  
1.3  
1.4  
1.6  
1.7  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
2.5  
2.0  
2.5  
V
, V  
= 1.74V  
V
, V  
= 3.0V  
OH BAT  
OH BAT  
2.0  
V
TYPE A  
TYPE B  
V
V
V
V
TYPE A  
OH  
OH  
V
V
V
TYPE B  
TYPE C  
TYPE D  
OH  
OH  
1.5  
1.5  
TYPE C  
TYPE D  
OH  
OH  
OH  
OH  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
V
, V  
= 1.74V  
V
, V  
= 3.0V  
0.05  
OL BAT  
0.1  
OL BAT  
0
0.10  
0.15  
0.20  
0.25  
0.6  
0
0.2  
0.3  
(V)  
0.4  
0.5  
V
(V)  
V
OL  
OL  
Figure 17. Output Single Drive Strength Characteristics (VBAT = 1.74 V)  
Figure 19. Output Single Drive Strength Characteristics (VBAT = 3.0 V)  
Rev. B | Page 20 of 39  
 
 
Data Sheet  
ADuCM3027/ADuCM3029  
V
(V)  
V
(V)  
OH  
OH  
3.30  
5
3.35  
3.40  
3.45  
3.50  
V
3.55  
3.60  
3.38 3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58  
2.5  
, V  
= 3.6V  
V
, V  
= 3.6V  
OH BAT  
OH BAT  
4
3
2.0  
V
V
TYPE A  
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OH  
OH  
TYPE B  
TYPE C  
TYPE D  
V
V
V
OH  
OH  
1.5  
V
V
OH  
OH  
OH  
OH  
2
1.0  
1
0.5  
0
0
–1  
–2  
–3  
–4  
–5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OL  
OL  
OL  
OL  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OL  
OL  
OL  
OL  
V
, V = 3.6V  
OL BAT  
V
, V  
= 3.6V  
OL BAT  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.25  
0
0.05  
0.10  
0.15  
0.20  
V
(V)  
OL  
V
(V)  
OL  
Figure 20. Output Double Drive Strength Characteristics (VBAT = 3.6 V)  
Figure 21. Output Single Drive Strength Characteristics (VBAT = 3.6 V)  
Rev. B | Page 21 of 39  
 
ADuCM3027/ADuCM3029  
Data Sheet  
THEORY OF OPERATION  
Code Region  
ARM CORTEX-M3 PROCESSOR  
The ARM Cortex-M3 core is a 32-bit reduced instruction set  
computer (RISC). The length of the data can be 8 bits, 16 bits,  
or 32 bits. The length of the instruction word is 16 bits or 32 bits.  
Accesses in this region (0x0000 0000 to 0x0001 FC00 for the  
ADuCM3027 and 0x0000 0000 to 0x0003 FFFF for the  
ADuCM3029) are performed by the core and target the  
memory and cache resources.  
The processor has the following features:  
SRAM Region  
Cortex-M3 architecture  
Accesses in this region (0x2000 0000 to 0x2004 7FFF) are  
performed by the ARM Cortex-M3 core. The SRAM region of  
the core can otherwise act as a data region for an application.  
Thumb-2 instruction set architecture (ISA)  
technology  
Three-stage pipeline with branch speculation  
Low latency interrupt processing with tail chaining  
Single-cycle multiply  
Hardware divide instructions  
Nested vectored interrupt controller (NVIC)  
(64 interrupts and 8 priorities)  
Internal SRAM data region. This space can contain read/write  
data. Internal SRAM can be partitioned between code and  
data (SRAM region in M3 space) in 32 kB blocks. Access to  
this region occurs at core clock speed with no wait states.  
It also supports read/write access by the ARM Cortex-M3  
core and read/write DMA access by system devices. It  
supports exclusive memory accesses via the global  
exclusive access monitor within the Cortex-M3 platform.  
System memory mapped registers (MMRs). Various system  
MMRs reside in this region.  
Two hardware breakpoints and one watchpoint  
(unlimited software breakpoints using Segger JLink)  
Memory protection unit (MPU)  
Eight region MPU with subregions and background  
region  
Programmable clock generator unit  
System Region  
Configurable for ultra low power operation  
Accesses in this region (0xE000 0000 to 0xF7FF FFFF) are per-  
formed by the ARM Cortex-M3 core and are handled within  
the Cortex-M3 platform.  
Deep sleep mode, dynamic power management  
Programmable clock generator unit  
ARM Cortex-M3 Memory Subsystem  
CoreSight™ ROM. The read-only memory (ROM) table  
entries point to the debug components of the processor.  
ARM APB Peripheral. This space is defined by ARM and  
occupies the bottom 256 kB/128 kB of the system (SYS) region  
(0xE000 0000 to 0xE004 0000) depending on the device used.  
The space supports read/write access by the M3 core to the  
internal peripherals of the ARM core (NVIC, system control  
space (SCS), wake-up interrupt controller (WIC)), and  
CoreSight ROM. It is not accessible by system DMA.  
The memory map of the ADuCM3027/ADuCM3029 is based  
on the Cortex-M3 model from ARM. By retaining the standardized  
memory mapping, it is easier to port applications across M3  
platforms.  
The ADuCM3027/ADuCM3029 application development is  
based on memory blocks across code/SRAM regions. Internal  
memory is available via internal SRAM and internal flash.  
Rev. B | Page 22 of 39  
 
 
Data Sheet  
ADuCM3027/ADuCM3029  
MMRs (Peripheral Control and Status)  
MEMORY ARCHITECTURE  
For the address space containing MMRs, refer to Figure 22.  
These registers provide control and status for on-chip  
peripherals of the ADuCM3027/ADuCM3029. For more  
information about the MMRs, refer to the ADuCM302x Ultra  
Low Power ARM Cortex-M3 MCU with Integrated Power  
Management Hardware Reference.  
The internal memory of the ADuCM3027/ADuCM3029 is  
shown in Figure 22. The internal memory incorporates up to  
256 kB of embedded flash memory for program code and  
nonvolatile data storage, 32 kB of data SRAM, and 32 kB of  
SRAM (configured as instruction space or data space).  
SRAM Region  
Flash Memory  
This memory space contains the application instructions and  
literal (constant) data that must be accessed in real-time. It  
supports read/write access by the ARM Cortex-M3 core and  
read/write DMA access by system peripherals. Byte, half-word,  
and word accesses are supported.  
The ADuCM3027/ADuCM3029 MCUs include 128 kB to  
256 kB of embedded flash memory, which is accessed using a  
flash controller. For memory available on each product, see  
Table 1. The flash controller is coupled with a cache controller.  
A prefetch mechanism is implemented in the flash controller to  
optimize code performance.  
SRAM is divided into 32 kB data SRAM and 32 kB instruction  
SRAM. If instruction SRAM is not enabled, then the associated  
32 kB can be mapped as data SRAM, resulting in 64 kB of data  
SRAM.  
Flash writes are supported by a key hole mechanism via  
advanced peripheral bus (APB) writes to MMRs. The flash  
controller provides support for DMA-based key hole writes.  
Parity bit error detection (optional) is available on all SRAM  
memories. Two parity bits are associated with each 32-bit word.  
With respect to flash integrity, the devices support the  
following:  
When the cache controller is enabled, 4 kB of the instruction  
SRAM is reserved as cache memory.  
A fixed user key required for running protected  
commands, including mass erase and page erase.  
An optional and user definable user failure analysis key  
(FAA key). Analog Devices personnel need this key while  
performing failure analysis.  
Users can select the SRAM configuration modes depending on  
the instruction SRAM and cache needed.  
In hibernate mode, 8 kB to 32 kB of the SRAM can be retained  
in increments of 8 kB. 8 kB of data SRAM is always retained.  
Users can additionally retain  
An optional and user definable write protection for user  
accessible memory.  
8-bit ECC.  
16 kB out of 32 kB of instruction SRAM  
8 kB out of 32 kB of data SRAM  
Rev. B | Page 23 of 39  
 
ADuCM3027/ADuCM3029  
Data Sheet  
0x4001 0FE0  
0x4001 0000  
DMA0  
RESERVED  
ADC0  
0x400F FFFF  
RESERVED  
RESERVED  
0x4000 70C4  
0x4000 7000  
0x4004 C80C  
0x4004 C000  
0x4000 1044  
POWER MGT, EXT IRQ,  
CLOCKING, MISC MMR  
REAL-TIME CLOCK 0 (RTC 0)  
0x4000 1000  
RESERVED  
BEEPER 0  
RESERVED  
CRYPTO  
RESERVED  
0x4000 5C0C  
0x4000 5C00  
0x4004 406C  
0x4004 4000  
0x4000 0824  
GENERAL-PURPOSE TIMER 2  
0x4000 0800  
RESERVED  
UART 0  
RESERVED  
RESERVED  
0x4000 5030  
0x4000 5000  
0x4004 0414  
0x4004 0400  
0x4000 0424  
RANDOM NUMBER  
GENERATOR  
GENERAL-PURPOSE TIMER 1  
0x4000 0400  
RESERVED  
SPI 1 MASTER/SLAVE  
RESERVED  
SPI 0 MASTER/SLAVE  
RESERVED  
RESERVED  
RESERVED  
0x4000 4438  
0x4000 4400  
0x4004 000C  
0x4004 0000  
0x4000 0424  
PROGRAMMABLE  
CRC ENGINE  
GENERAL-PURPOSE TIMER 0  
0x4000 0400  
RESERVED  
SPORT 0  
RESERVED  
0x4000 4038  
0x4000 4000  
0x4003 8078  
0x4003 8000  
0x2004 3FFF  
RAM BANK 1 (16kB)  
0x2004 0000  
RESERVED  
RESERVED  
0x4000 3058  
0x4000 3000  
2
0x4002 4038  
0x4002 4000  
I C 0 MASTER/SLAVE  
0x2000 3FFF  
SPIH 0 MASTER/SLAVE  
RESERVED  
RAM BANK 0 (16kB)  
0x2000 0000  
RESERVED  
WATCHDOG TIMER  
RESERVED  
RESERVED  
0x1000 7FFF  
0x4000 2C18  
0x4000 2C00  
0x4002 00B4  
0x4002 0000  
GPIO  
INSTRUCTION SRAM (32kB)  
0x1000 0000  
RESERVED  
RESERVED  
0x4000 2040  
0x4000 2000  
SYSTEM ID AND DEBUG  
ENABLE  
0x4001 8088  
0x4001 8000  
0x0003 FFFC  
FLASH CONTROLLER  
RESERVED  
256kB FLASH MEMORY  
0x0000 0000  
RESERVED  
0x4000 1444  
0x4000 1400  
REAL-TIME CLOCK 1 (RTC1)  
Figure 22. ADuCM3027/ADuCM3029 Memory Map—SRAM Mode 0  
Table 22. Boot Modes  
Boot Mode  
CACHE CONTROLLER  
Description  
UART download mode.  
Flash boot. Boot from integrated flash memory.  
The ADuCM3027/ADuCM3029 MCUs have an optional 4 kB  
instruction cache. In certain applications, enabling the cache  
and executing the code can result in lower power consumption  
rather than operating directly from flash. When enabling the  
cache controller, 4 kB of instruction SRAM is reserved as cache  
memory. In hibernate mode, the cache memory is not retained.  
0
1
Power Management  
The ADuCM3027/ADuCM3029 MCUs have an integrated  
power management system that optimizes performance and  
extends battery life of the devices.  
SYSTEM AND INTEGRATION FEATURES  
The power management system consists of the following:  
The ADuCM3027/ADuCM3029 MCUs provide several features  
that ease system integration.  
Integrated 1.2 V low dropout regulator (LDO) and optional  
capacitive buck regulator  
Integrated power switches for low standby current in  
hibernate and shutdown modes.  
Reset  
There are four types of resets: external, power-on, watchdog  
timeout, and software system reset. The software system reset is  
provided as part of the ARM Cortex-M3 core.  
Additional power management features include the following:  
Customized clock gating for active and Flexi™ modes  
Power gating to reduce leakage in hibernate and shutdown  
modes  
SYS_HWRST  
The  
pin is toggled to perform a hardware reset.  
Booting  
The ADuCM3027/ADuCM3029 MCUs support two boot  
modes: booting from internal flash and upgrading software  
through UART download. If SYS_BMODE0 (Pin P1_01) is  
pulled low during power-up or a hard reset, the MCU enters  
into serial download mode. In serial download mode, an  
on-chip routine initiates in the kernel, which configures the  
UART port and communicates with the host to manage the  
firmware upgrade via a specific serial download protocol.  
Flexible sleep modes  
Shutdown mode with no retention  
Optional high efficiency buck converter to reduce power  
Integrated low power oscillators  
Power Modes  
The PMU provides control of the ADuCM3027/ADuCM3029  
power modes and allows the ARM Cortex-M3 to control the  
clocks and power gating to reduce the power consumption.  
Rev. B | Page 24 of 39  
 
 
 
Data Sheet  
ADuCM3027/ADuCM3029  
Several power modes are available. Each mode provides an  
additional low power benefit with a corresponding reduction in  
functionality.  
V
VDCDC_CAP1P  
BAT  
0.1µF  
VDCDC_CAP1N  
BUCK  
ENABLED  
VDCDC_OUT  
Active Mode  
0.47µF  
VDCDC_CAP2P  
VDCDC_CAP2N  
In active mode, all peripherals can be enabled. Active power is  
managed by optimized clock management. See Table 4 for  
details on active mode power.  
0.1µF  
VLDO_OUT  
Flexi Mode  
0.47µF  
In Flexi mode, the ARM Cortex-M3 core is clock gated, but the  
remainder of the system is active. No instructions can be  
executed in this mode, but DMA transfers can continue  
between peripherals and memory as well as memory to  
memory. See Table 5 for details on Flexi mode power.  
LDO  
NOTES  
1. FOR DESIGNS IN WHICH THE OPTIONAL BUCK IS NOT USED,  
THE FOLLOWING PINS MUST BE LEFT UNCONNECTED:  
VDCDC_CAP1P, VDCDC_CAP1N, VDCDC_OUT, VDCDC_CAP2P, AND VDCDC_CAP2N  
Figure 23. Buck Enabled Design  
Hibernate Mode  
For designs in which the optional buck is not used, the  
following pins must be left unconnected: VDCDC_CAP1P,  
VDCDC_CAP1N, VDCDC_OUT, VDCDC_CAP2P, and  
VDCDC_CAP2N.  
This mode provides state retention, configurable SRAM and  
port pin retention, a limited number of wake-up interrupts  
(XINT0_WAKEn and UART0_RX), and, optionally, two  
RTCs—RTC0 and RTC1 (FLEX_RTC).  
Security Features  
Shutdown Mode  
The ADuCM3027/ADuCM3029 MCUs provide a combination  
of hardware and software protection mechanisms that lock out  
access to the devices in secure mode but grant access in open  
mode. These mechanisms include password protected slave  
boot mode (UART), as well as password protected serial wire  
debug (SWD) interfaces.  
This mode is the deepest sleep mode, in which all the digital  
and analog circuits are powered down with an option to wake  
from four possible wake-up sources: three external interrupts  
and RTC0. The RTC0 can be optionally enabled in this mode  
and the device can be periodically woken up by the RTC0  
interrupt. See Table 6 for deep sleep (hibernate and shutdown)  
mode specifications.  
Mechanisms are provided to protect the device contents (flash,  
SRAM, CPU registers, and peripheral registers) from being read  
through an external interface by an unauthorized user, which is  
referred to as read protection.  
The following features are available for power management and  
control:  
A voltage range of 1.74 V to 3.6 V using a single supply  
(such as the CR2032 coin cell battery).  
It is possible to protect the device from being reprogrammed in  
circuit with unauthorized code. This is referred to as in circuit  
write protection.  
GPIOs are driven directly from the battery. The pin state is  
retained in hibernate and shutdown modes. The GPIO  
configuration is only retained in hibernate mode.  
Wake-up from external interrupt (via GPIOs), UART0_RX  
interrupt, and RTCs for hibernate mode.  
Wake-up from external interrupt (via GPIOs) and RTC0  
for shutdown mode.  
Optional high power buck converter for 1.2 V full on  
support (for MCU use only). See Figure 23 for the  
suggested external circuitry.  
The devices can be configured with no protection, read  
protection, or read and in circuit write protection. It is not  
necessary to provide in circuit write protection without read  
protection.  
Cryptographic Accelerator  
The cryptographic accelerator is a 32-bit APB DMA capable  
peripheral. There are two 32-bit buffers provided for data  
input/output operations. These buffers read in or read out  
128 bits in four data accesses. Big endian and little endian data  
formats are supported, as are the following modes:  
Electronic code book (ECB) mode—AES mode  
Counter (CTR) mode  
Cipher block chaining (CBC) mode  
Message authentication code (MAC) mode  
Cipher block chaining-message authentication code  
(CCM/CCM*) mode  
SHA-256 modes  
Rev. B | Page 25 of 39  
 
ADuCM3027/ADuCM3029  
Data Sheet  
True Random Number Generator (TRNG)  
Timers  
The TRNG is used during operations where nondeterministic  
values are required. These operations can include generating  
challenges for secure communication or keys for an encrypted  
communication channel. The generator can run multiple times  
to generate a sufficient number of bits for the strength of the  
intended operation. The TRNG can seed a deterministic  
random bit generator.  
The ADuCM3027/ADuCM3029 MCUs have three general-  
purpose timers and a watchdog timer.  
General-Purpose Timers  
The ADuCM3027/ADuCM3029 MCUs have three identical  
general-purpose timers, each with a 16-bit up and down  
counter. The up and down counter can be clocked from one of  
four user selectable clock sources. Any selected clock source  
can be scaled down using a prescaler of 1, 16, 64, or 256.  
Reliability and Robustness Features  
The ADuCM3027/ADuCM3029 MCUs provide a number of  
features that can enhance or help achieve certain levels of  
system safety and reliability. While the level of safety is mainly  
dominated by system considerations, the following features are  
provided to enhance robustness.  
Watchdog Timer (WDT)  
The WDT is a 16-bit count down timer with a programmable  
prescaler. The prescaler source is selectable and can be scaled by  
a factor of 1, 16, or 256. The WDT is clocked by the 32 kHz on-  
chip oscillator (LFOSC) and recovers from an illegal software  
state. The WDT requires periodic servicing to prevent it from  
forcing a reset or interrupt to the MCU.  
ECC Enabled Flash Memory  
The entire flash array can be protected to either correct single-  
bit errors or detect two-bit errors per 64-bit flash data.  
Analog-to-Digital Converter (ADC) Subsystem  
Multiparity Bit Protected SRAM  
The ADuCM3027/ADuCM3029 MCUs integrate a 12-bit SAR  
ADC with up to eight external channels. Conversions can be  
performed in single or autocycle mode. In single mode, the  
ADC can be configured to convert on a particular channel by  
selecting one of the channels. Autocycle mode is provided to  
reduce MCU overhead of sampling and reading individual  
channel registers. The ADC can also be used for temperature  
sensing and measuring battery voltage using dedicated  
channels. Temperature sensing and battery monitoring cannot  
be included with external channels in autocycle mode.  
Each word of the SRAM and cache memory is protected by  
multiple parity bits to allow detection of random soft errors.  
Software Watchdog  
The on-chip watchdog timer can provide software-based  
supervision of the ADuCM3027/ADuCM3029.  
Cyclic Redundancy Check (CRC) Accelerator  
The CRC accelerator computes the CRC for a block of memory  
locations. The exact memory location can be in the SRAM,  
flash, or any combination of MMRs. The CRC accelerator  
generates a checksum that can be compared with an expected  
signature.  
A digital comparator triggers an interrupt if ADC input is above  
or below a programmable threshold. The ADC0_VIN0,  
ADC0_VIN1, ADC0_VIN2, and ADC0_VIN3 input channels  
can be used with the digital comparator.  
The main features of the CRC include the following:  
Use the ADC in DMA mode to reduce MCU overhead by  
moving ADC results directly into SRAM with a single interrupt  
asserted when the required number of ADC conversions has  
been completely logged to memory.  
Generates a CRC signature for a block of data.  
Supports programmable polynomial length of up to 32 bits.  
Operates on 32 bits of data at a time.  
Supports MSB first and LSB first CRC implementations.  
Various data mirroring capabilities.  
Initial seed to be programmed by user.  
DMA controller (memory to memory transfer) used for  
data transfer to offload the MCU.  
Programmable GPIOs  
The ADuCM3027 and ADuCM3029 MCUs have 44 and 34  
GPIO pins in the LFCSP and WLCSP packages, respectively.  
Note that the ADuCM3029-1 and ADuCM3029-2 models have  
44 GPIO pins and are available in the LFCSP only. These GPIO  
pins have multiple, configurable functions defined by user code.  
They can be configured as an input/output and have  
programmable pull-up resistors. All GPIO pins are functional  
over the full supply range.  
In deep sleep mode, the GPIO pins retain their state. On reset,  
the GPIO pins tristate.  
Rev. B | Page 26 of 39  
Data Sheet  
ADuCM3027/ADuCM3029  
The main features of the ADC subsystem include the following:  
Each channel, including temperature sensor and battery  
monitoring, has a data register for conversion result.  
12-bit resolution.  
Programmable ADC update rate from 10 KSPS to  
1.8 MSPS.  
Integrated input multiplexer that supports up to eight  
channels.  
Clocking  
The ADuCM3027/ADuCM3029 MCUs have the following  
clocking options:  
26 MHz  
Temperature sensing support.  
Battery monitoring support.  
Software selectable on-chip reference voltage generation—  
1.25 V and 2.5 V.  
Internal oscillator—HFOSC (26 MHz)  
External crystal oscillator—HFXTAL (26 MHz or  
16 MHz)  
GPIO clock in—SYS_CLKIN  
Software selectable internal or external reference.  
Autocycle mode—ability to automatically select a sequence  
of input channels for conversion.  
32 kHz  
Internal oscillator—LFOSC  
External crystal oscillator—LFXTAL  
Averaging function—converted data on single-channel or  
multiple channels can be averaged up to 256 samples.  
Alert function—internal digital comparator for  
ADC0_VIN0, ADC0_VIN1, ADC0_VIN2, and  
ADC0_VIN3 channels. An interrupt is generated if the  
digital comparator detects an ADC result above or below a  
user defined threshold.  
The clock options have software configurability with the  
following exceptions:  
HFOSC cannot be disabled when using an internal buck  
regulator.  
LFOSC cannot be disabled even if using LFXTAL.  
Dedicated DMA channel support.  
Table 23. RTC Features  
Features  
RTC0  
RTC1 (FLEX_RTC)  
Resolution of  
Time Base  
(Prescaling)  
Counts time at 1 Hz in units of seconds. Operationally, Can prescale the clock by any power of two from 0 to 15. It can  
RTC0 always prescales to 1 Hz (for example, divide by  
32,768) and always counts real time in units of  
seconds.  
count time in units of any of these 16 possible prescale settings.  
For example, the clock can be prescaled by 1, 2, 4, 8, …, 16,384, or  
32,768.  
Source Clock  
LFXTAL.  
Depending on the low frequency multiplexer (LFMUX)  
configuration, the RTC is clocked by the LFXTAL or the LFOSC.  
Wake-Up  
Timer  
Wake-up time is specified in units of seconds.  
Supports alarm times down to a resolution of 30.52 μs, that is,  
where the time is specified down to a specific 32 kHz clock cycle.  
Number of  
Alarms  
One alarm only. Uses an absolute, nonrepeating  
alarm time, specified in units of 1 sec.  
Two alarms. One absolute alarm time and one periodic alarm,  
repeating every 60 prescaled time units.  
SensorStrobe  
Mechanism  
Not available.  
SensorStrobe is an alarm mechanism in the RTC that sends an  
output pulse via GPIOs to an external device to instruct the device  
to take a measurement or perform some action at a specific time.  
SensorStrobe events are schedule data specific target time  
relative to the real-time count of the RTC. SensorStrobe can be  
enabled in active, Flexi, and hibernate modes.  
Input Capture Not available.  
Input capture takes a snapshot of the RTC when an external  
device signals an event via a transition on one of the GPIO inputs  
to the ADuCM3027/ADuCM3029. Typically, an input-capture  
event is triggered by an autonomous measurement or action on  
such a device, which then signals to the ADuCM3027/  
ADuCM3029 that the RTC must take a snapshot of time  
corresponding to the event. Taking the snapshot can wake up the  
ADuCM3027/ADuCM3029 and cause an interrupt to the CPU. The  
CPU can subsequently obtain information from the RTC on the  
exact 32 kHz cycle on which the input capture event occurred.  
Rev. B | Page 27 of 39  
ADuCM3027/ADuCM3029  
Data Sheet  
channels. The frame sync and clock can be shared. Some of the  
ADCs and DACs require two control signals for their  
conversion process. To interface with such devices, the  
SPT0_ACNV and SPT0_BCNV signals are provided. To use  
these signals, enable the timer enable mode. In this mode, a  
PWM timer inside the module generates the programmable  
SPT0_ACNV and SPT0_BCNV signals.  
Beeper Driver  
The ADuCM3027/ADuCM3029 MCUs have an integrated  
audio driver for a beeper.  
The beeper driver module in the ADuCM3027/ADuCM3029  
MCUs generate a differential square wave of programmable  
frequency. It drives an external piezoelectric sound component  
with two terminals that connect to the differential square wave  
output.  
Serial ports operate in two modes:  
Standard digital signal processor (DSP) serial mode  
Timer enable mode  
The beeper driver consists of a module that can deliver  
frequencies ranging from 8 kHz to approximately 0.25 kHz; the  
minimum frequency is determined by the maximum value of a  
divide register that can be programmed to 127. This results in a  
beeper frequency of  
SPI Ports  
The ADuCM3027/ADuCM3029 MCUs provide three SPIs. SPI  
is an industry standard, full-duplex, synchronous serial inter-  
face that allows eight bits of data to be synchronously  
32.768 kHz/127 = 0.25802 kHz  
transmitted and simultaneously received. Each SPI incorporates  
two DMA channels that interface with the DMA controller. One  
DMA channel transmits and the other receives. The SPI on the  
MCU eases interfacing to external serial flash devices.  
The beeper driver allows programmable tone durations in 4 ms  
increments. Pulse (single-tone) and sequence (multitone)  
modes provide versatile playback options.  
In sequence mode, the beeper can be programmed to play any  
number of tone pairs from 1 to 254 (2 tones to 508 tones) or be  
programmed to play forever (until stopped by the user).  
Interrupts are available to indicate the start or end of any beep,  
the end of a sequence, or when the sequence is nearing  
completion.  
The SPI features include the following:  
Serial clock phase mode and serial clock polarity mode  
Loopback mode  
Continuous and repeated transfer mode  
Wired OR output mode  
Read command mode for half-duplex operation (transmit  
followed by receive)  
Debug Capability  
The ADuCM3027/ADuCM3029 MCUs support SWD. The  
ADuCM3027/ADuCM3029 MCUs have a reduced flash patch  
and breakpoint (FPB) unit with support for up to two hardware  
breakpoints.  
Flow control support in read command mode  
Support for 3-pin SPI in read command mode  
CS  
Multiple  
line support  
software override support  
CS  
ON-CHIP PERIPHERAL FEATURES  
The ADuCM3027/ADuCM3029 MCUs have a rich set of  
peripherals connected to the core via several concurrent high  
bandwidth buses, providing flexibility in system configuration  
as well as excellent overall system performance (see Figure 1).  
UART Port  
The ADuCM3027/ADuCM3029 MCUs provide a full-duplex  
UART port, which is fully compatible with PC standard UARTs.  
The UART port provides a simplified UART interface to other  
peripherals or hosts, supporting full-duplex, DMA, and  
asynchronous transfers of serial data. The UART port includes  
support for five to eight data bits, and none, even, or odd parity.  
A frame is terminated by one, one and a half, or two stop bits.  
The ADuCM3027/ADuCM3029 MCUs contain high speed  
serial ports, an interrupt controller for flexible management of  
interrupts from the on-chip peripherals or external sources, and  
power management control functions to tailor the performance  
and power characteristics of the MCU and system to many  
application scenarios.  
I2C  
The ADuCM3027/ADuCM3029 MCUs provide an I2C bus  
peripheral that has two pins for data transfer. SCL (Pin P0_04)  
is a serial clock pin, and SDA (Pin P0_05) is a serial data pin.  
The pins are configured in a wired AND format that allows  
arbitration in a multimaster system. A master device can be  
configured to generate the serial clock. The frequency is  
programmed by the user in the serial clock divisor register. The  
master channel can operate in fast mode (400 kHz) or standard  
mode (100 kHz).  
Serial Ports (SPORT)  
The ADuCM3027/ADuCM3029 MCUs provide two single  
direction half SPORTs or one bidirectional full SPORT. The  
synchronous serial ports provide an inexpensive interface to a  
wide variety of digital and mixed-signal peripheral devices such  
as Analog Devices audio codecs, ADCs, and DACs. The serial  
ports contain two data lines, a clock, and a frame sync. The data  
lines can be programmed to either transmit or receive, and each  
data line has a dedicated DMA channel.  
Serial port data can be automatically transferred to and from  
on-chip memory or external memory via dedicated DMA  
Rev. B | Page 28 of 39  
 
Data Sheet  
ADuCM3027/ADuCM3029  
DEVELOPMENT SUPPORT  
MCU TEST CONDITIONS  
Development support for the ADuCM3027/ADuCM3029 MCU  
includes documentation, evaluation hardware, and  
development software tools.  
The ac signal specifications (timing parameters) appearing in  
this data sheet include output disable time, output enable time,  
and others. Timing is measured on signals when they cross the  
voltage threshold (VMEAS) level as described in Figure 24. All  
delays (in nanoseconds or microseconds) are measured between  
the point that the first signal reaches VMEAS and the point that  
the second signal reaches VMEAS. The value of VMEAS is set to  
VBAT/2. The tester pin electronics is shown in Figure 25.  
Documentation  
The ADuCM302x Ultra Low Power ARM Cortex-M3 MCU  
with Integrated Power Management Hardware Reference details  
the functionality of each block on the ADuCM3027/ADuCM3029  
MCUs. It includes power management, clocking, memories, and  
peripherals.  
INPUT  
OR  
V
V
MEAS  
MEAS  
Hardware  
OUTPUT  
The EV-COG-AD3029LZ is available to prototype sensor  
configurations with the ADuCM3027/ADuCM3029 MCUs.  
Figure 24. Voltage Reference Levels for AC Measurements (Except Output  
Enable/Disable)  
50Ω  
Software  
V
LOAD  
T1  
DUT  
OUTPUT  
The EV-COG-AD3029LZ includes a complete development and  
debug environment for the ADuCM3027/ADuCM3029 MCUs.  
The device family pack (DFP) for the ADuCM3027/  
ADuCM3029 is provided for the IAR Embedded Workbench  
for ARM, Keil™, and CrossCore® embedded studio (CCES)  
environments.  
70Ω  
45Ω  
ZO = 50Ω (IMPEDANCE)  
TD = 4.04ns ± 1.18ns  
50Ω  
2pF  
0.5pF  
4pF  
400Ω  
The DFP also includes operating system (OS) aware drivers and  
example code for all the peripherals on the devices.  
NOTES  
1. THE WORST-CASE TRANSMISSION LINE DELAY (TD) IS SHOWN AND  
CAN BE USED FOR THE OUTPUT TIMINGANALYSIS TO REFLECT THE  
TRANSMISSION LINE EFFECTAND MUST BE CONSIDERED.  
TRANSMISSION LINE IS FOR LOAD ONLY AND DOES NOT AFFECT  
THE DATA SHEET TIMING SPECIFICATIONS.  
2. ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING  
FORA GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM  
CAN INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR  
ANY TIMING DIFFERENCES.  
ADDITIONAL INFORMATION  
The following documentation that describe the ADuCM3027/  
ADuCM3029 MCUs can be ordered from any Analog Devices  
sales office or accessed electronically on the Analog Devices  
website:  
Figure 25. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
ADuCM302x Ultra Low Power ARM Cortex-M3 MCU  
with Integrated Power Management Hardware Reference.  
DRIVER TYPES  
Table 24 shows the driver types.  
This data sheet describes the ARM Cortex-M3 core and  
memory architecture used on the ADuCM3027/ADuCM3029  
MCUs but does not provide detailed programming information  
for the ARM processor. For more information about  
programming the ARM processor, visit the ARM Infocenter  
web page.  
Table 24. Driver Types  
Driver Type1, 2, 3 Associated Pins  
Type A  
P0_00 to P0_03, P0_07, P0_10 to P0_13,  
P0_15, P1_00 to P1_10, P1_15, P2_00, P2_01,  
P2_04 to P2_14, P3_00 to P3_03, and  
SYS_HWRST  
The applicable documentation for programming the ARM  
Cortex-M3 processor include the following:  
.
Type B  
P0_08, P0_09, P0_14, P1_11 to P1_14, and  
P2_02  
P0_04 and P0_05  
P0_06  
ARM Cortex-M3 Devices Generic User Guide  
ARM Cortex-M3 Technical Reference Manual  
Type C  
Type D  
REFERENCE DESIGNS  
1 In single drive mode, the maximum source/sink capacity is 2 mA.  
2 In double drive mode, the maximum source/sink capacity is 4 mA.  
3 At maximum drive capacity, only 16 GPIOs are allowed to switch at any  
given point of time.  
The Circuits from the Lab® page provides the following for the  
ADuCM3027/ADuCM3029 reference design:  
Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
Drill down links for components in each chain to selection  
guides and application information  
Reference designs applying best practice design techniques  
Rev. B | Page 29 of 39  
 
 
 
 
 
 
 
 
ADuCM3027/ADuCM3029  
Data Sheet  
Table 26. EEMBC ULPMark™-CP Profile Configuration  
EEMBC ULPMARK™-CP SCORE  
Profile Configuration  
Value  
Using the software configuration and the profile configuration  
shown in the following tables, the EEMBC ULPMark-CP score  
is 245.5.  
Wakeup Timer Module  
RTC1  
Wakeup Timer Clock Source  
Wakeup Timer Frequency  
Wakeup Timer Accuracy  
External crystal  
32768 Hz  
20 PPM  
Table 25. EEMBC ULPMark™-CP Software Configuration  
Software Configuration  
Compiler Name and Version  
Compiler Flags  
Value  
Active Power Mode Name  
Active Mode Clock Configuration  
Active Mode Voltage Integrity  
Inactive Power Mode Name  
Inactive Clock Configuration  
Inactive Mode Voltage Integrity  
Active mode  
26 MHz (CPU), 32 kHz (RTC)  
1.74 V  
Hibernate  
Off (CPU), 32 kHz (RTC)  
1.74 V  
IAR EWARM 7.50.2.10505  
-Ohs --  
endian=little --  
cpu=Cortex-M3 -D  
__ADuCM3029__  
ULPBench Profile and Version  
EnergyMonitor Software Version  
Core Profile v1.1  
V1.1.3  
Rev. B | Page 30 of 39  
 
Data Sheet  
ADuCM3027/ADuCM3029  
GPIO MULTIPLEXING  
Table 27 through Table 29 show the signal multiplexing options for the GPIO pins.  
Table 27. Signal Multiplexing for PORT 0  
Availability  
Pin  
WLCSP LFCSP Multiplexed Function 0 Multiplexed Function 1 Multiplexed Function 2 Multiplexed Function 3  
P0_00 Yes  
P0_01 Yes  
P0_02 Yes  
P0_03 Yes  
P0_04 Yes  
P0_05 Yes  
P0_06 Yes  
P0_07 Yes  
P0_08 Yes  
P0_09 Yes  
P0_10 Yes  
P0_11 Yes  
P0_12 Yes  
P0_13 Yes  
P0_14 Yes  
P0_15 Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GPIO00  
GPIO01  
GPIO02  
GPIO03  
GPIO04  
GPIO05  
SWD0_CLK  
SWD0_DATA  
GPIO08  
GPIO09  
GPIO10  
GPIO11  
GPIO12  
GPIO13/XINT0_WAKE2  
GPIO14  
GPIO15/XINT0_WAKE0  
SPI0_CLK  
SPT0_BCLK  
SPT0_BFS  
SPT0_BD0  
Not available  
Not available  
Not available  
SPI2_RDY  
SPI0_MOSI  
SPI0_MISO  
SPI0_CS0  
I2C0_SCL  
I2C0_SDA  
GPIO06  
SPT0_BCNV  
Not available  
Not available  
Not available  
Not available  
Not available  
SPI2_CS1  
Not available  
Not available  
Not available  
Not available  
SPI1_RDY  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
UART0_SOUT_EN  
Not available  
Not available  
Not available  
GPIO07  
BPR0_TONE_N  
BPR0_TONE_P  
UART0_TX  
UART0_RX  
SPT0_AD0  
Not available  
TMR0_OUT  
Not available  
Not available  
Table 28. Signal Multiplexing for PORT 1  
Availability  
Pin  
WLCSP LFCSP Multiplexed Function 0 Multiplexed Function 1 Multiplexed Function 2 Multiplexed Function 3  
P1_00 Yes  
P1_01 Yes  
P1_02 Yes  
P1_03 Yes  
P1_04 Yes  
P1_05 Yes  
P1_06 Yes  
P1_07 Yes  
P1_08 Yes  
P1_09 Yes  
P1_10 Yes  
P1_11 No  
P1_12 No  
P1_13 No  
P1_14 Yes  
P1_15 No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GPIO16/XINT0_WAKE1  
SYS_BMODE0  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
Not available  
GPIO17  
SPI2_CLK  
SPI2_MOSI  
SPI2_MISO  
SPI2_CS0  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
SYS_CLKIN  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
SPI1_CS3  
Not available  
Not available  
Not available  
Not available  
Not available  
SPI1_CLK  
SPI1_MOSI  
SPI1_MISO  
SPI1_CS0  
SPI0_CS1  
Not available  
Not available  
Not available  
Not available  
SPT0_ACLK  
TMR1_OUT  
Not available  
Not available  
SPI0_RDY  
Not available  
Rev. B | Page 31 of 39  
 
 
ADuCM3027/ADuCM3029  
Data Sheet  
Table 29. Signal Multiplexing for PORT 2  
Availability  
Pin  
WLCSP LFCSP Multiplexed Function 0 Multiplexed Function 1 Multiplexed Function 2 Multiplexed Function 3  
P2_00 No  
P2_01 Yes  
P2_02 No  
P2_03 Yes  
P2_04 Yes  
P2_05 Yes  
P2_06 Yes  
P2_07 No  
P2_08 No  
P2_09 No  
P2_10 No  
P2_11 Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GPIO32  
GPIO33/XINT0_WAKE3  
GPIO34  
GPIO35  
GPIO36  
GPIO37  
GPIO38  
GPIO39  
GPIO40  
SPT0_AFS  
Not available  
TMR2_OUT  
SPI1_CS2  
Not available  
Not available  
Not available  
Not available  
SPI2_CS3  
SPI0_CS2  
SPI0_CS3  
SPI2_CS2  
SYS_CLKOUT  
Not available  
Not available  
SPT0_ACNV  
ADC0_VIN0  
ADC0_VIN1  
ADC0_VIN2  
ADC0_VIN3  
ADC0_VIN4  
ADC0_VIN5  
ADC0_VIN6  
ADC0_VIN7  
SPI1_CS1  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
Not available  
RTC1_SS1  
GPIO41  
GPIO42  
GPIO43  
Rev. B | Page 32 of 39  
 
Data Sheet  
ADuCM3027/ADuCM3029  
APPLICATIONS INFORMATION  
This section contains circuit diagrams that show the  
recommended external components for proper operation of the  
ADuCM3027/ADuCM3029 in example application scenarios.  
VBAT  
IO  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
14  
1
8
34  
VBAT_DIG1  
49  
VBAT_DIG2  
VBAT_ADC  
VBAT_ANA1  
VBAT_ANA2  
2
SYS_HFXTAL_IN  
SYS_LFXTAL_IN  
VREF_ADC  
3
5
SYS_HFXTAL_OUT  
SYS_LFXTAL_OUT  
VDCDC_OUT  
4
0.47µF  
0.47µF  
13  
25  
9
SYS_HWRST  
ADuCM3027/ADuCM3029/  
VLDO_OUT  
12  
0.1µF  
0.1µF  
ADuCM3029-1/ADuCM3029-2  
6
VDCDC_CAP1N  
VDCDC_CAP1P  
VDCDC_CAP2N  
P1_09  
P1_08  
P1_06  
29  
30  
32  
7
10  
11 VDCDC_CAP2P  
RTC1_SS1  
P2_11 33  
IO  
16 P2_03  
31  
P1_07  
P2_04  
17  
53  
54  
55  
56  
P1_05  
P1_04  
P1_03  
P1_02  
18 P2_05  
19 P2_06  
20 P2_07  
21 P2_08  
22 P2_09  
23 P2_10  
P0_12  
P2_00  
P1_15  
P2_02  
35  
36  
37  
45  
39 P0_09  
P0_08  
40  
P1_00  
P0_15  
47  
50  
28 P0_06  
P0_07  
P1_01  
P1_12  
p1_13  
27  
38  
42  
43  
P0_13 51  
52  
P2_01  
P1_11  
P0_14  
41  
46  
P0_05  
P0_04  
24  
26  
P0_11 57  
P0_14 58  
P1_14  
P1_10  
P0_03  
44  
59  
60  
P0_01  
62  
63  
P0_00  
61 P0_02  
GND_ANA  
64  
GND_DIG  
48  
GND_VREFADC  
15  
PAD  
Figure 26. Recommended External Components when Using the Internal Buck Converter  
Rev. B | Page 33 of 39  
 
ADuCM3027/ADuCM3029  
Data Sheet  
VBAT  
HFCLK CRYSTAL  
26.000MHz  
IO  
LFCLK CRYSTAL  
32.7680kHz  
LFXTAL_IN  
8pF  
LFXTAL_OUT  
HFXTAL_IN  
18pF  
HFXTAL_OUT  
18pF  
8pF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
14  
1
8
34  
VBAT_DIG1  
49  
VBAT_DIG2  
VBAT_ADC  
VBAT_ANA1  
VBAT_ANA2  
2
SYS_HFXTAL_IN  
SYS_LFXTAL_IN  
VREF_ADC  
3
5
SYS_HFXTAL_OUT  
SYS_LFXTAL_OUT  
VDCDC_OUT  
4
13  
25  
9
SYS_HWRST  
ADuCM3027/ADuCM3029/  
VLDO_OUT  
12  
ADuCM3029-1/ADuCM3029-2  
0.47µF  
6
7
VDCDC_CAP1N  
VDCDC_CAP1P  
P1_09  
29  
P1_08 30  
P1_06 32  
10 VDCDC_CAP2N  
11 VDCDC_CAP2P  
RTC1_SS1  
33  
31  
P2_11  
P1_07  
IO  
16  
P2_03  
17 P2_04  
18 P2_05  
53  
54  
55  
56  
P1_05  
P1_04  
P1_03  
P1_02  
19  
20  
P2_06  
P2_07  
21 P2_08  
P0_12  
P2_00  
P1_15  
22  
23  
P2_09  
P2_10  
35  
36  
37  
39  
P0_09  
P2_02 45  
40 P0_08  
P1_00 47  
28 P0_06  
27 P0_07  
P0_15  
50  
P0_13 51  
P1_01  
P1_12  
p1_13  
38  
42  
43  
52  
P2_01  
P1_11  
P0_14  
41  
46  
P0_05  
P0_04  
24  
26  
57  
58  
P0_11  
P0_14  
44 P1_14  
P1_10  
P0_01  
P0_00  
59  
60 P0_03  
61  
62  
63  
P0_02  
GND_ANA  
64  
GND_DIG  
48  
GND_VREFADC  
15  
PAD  
Figure 27. Recommended External Components when Using LFXTAL and HFXTAL  
Rev. B | Page 34 of 39  
Data Sheet  
ADuCM3027/ADuCM3029  
VBAT  
IO  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
14  
1
8
34  
VBAT_DIG1  
49  
VBAT_DIG2  
VBAT_ADC  
VBAT_ANA1  
VBAT_ANA2  
2
SYS_HFXTAL_IN  
SYS_LFXTAL_IN  
VREF_ADC  
3
5
SYS_HFXTAL_OUT  
4
VREF_ADC  
IO  
SYS_LFXTAL_OUT  
VDCDC_OUT  
13  
25  
9
SYS_HWRST  
ADuCM3027/ADuCM3029/  
VLDO_OUT  
12  
0.1µF  
4.7µF  
ADuCM3029-1/ADuCM3029-2  
0.47µF  
6
7
VDCDC_CAP1N  
VDCDC_CAP1P  
P1_09  
29  
P1_08 30  
P1_06 32  
10 VDCDC_CAP2N  
11 VDCDC_CAP2P  
RTC1_SS1  
33  
31  
IO  
P2_11  
P1_07  
ANALOG_IN  
33Ω  
IO  
16  
P2_03  
0.0056µF  
17 P2_04  
18 P2_05  
19 P2_06  
53  
54  
55  
56  
P1_05  
P1_04  
P1_03  
P1_02  
20  
P2_07  
21 P2_08  
22 P2_09  
P0_12  
P2_00  
P1_15  
P2_02  
35  
36  
37  
45  
23  
P2_10  
39 P0_09  
40 P0_08  
P1_00 47  
P0_15  
28 P0_06  
50  
P0_13 51  
P0_07  
P1_01  
P1_12  
p1_13  
27  
38  
42  
43  
52  
P2_01  
P1_11  
P0_14  
41  
46  
P0_05  
P0_04  
24  
26  
57  
58  
P0_11  
P0_14  
44 P1_14  
P1_10  
P0_03  
P0_02  
P0_01  
P0_00  
59  
60  
61  
62  
63  
GND_ANA  
64  
GND_DIG  
48  
GND_VREFADC  
15  
PAD  
Figure 28. Recommended External Components on VREF_ADC Pin and ADC Input Channel (ADC0_VIN0 Used as Example) when Using the Internal ADC  
Rev. B | Page 35 of 39  
ADuCM3027/ADuCM3029  
Data Sheet  
ABOUT ADuCM3027/ADuCM3029 SILICON ANOMALIES  
This anomaly list describes the known bugs, anomalies, and workarounds for the ADuCM3027/ADuCM3029. These anomalies represent  
the currently known differences between revisions of the ADuCM3027/ADuCM3029 product(s) and the functionality specified in the  
ADuCM3027/ADuCM3029 data sheet(s) and the Hardware Reference manual.  
Analog Devices, Inc., is committed, through future silicon revisions, to continuously improve silicon functionality. Analog Devices tries  
to ensure that these future silicon revisions remain compatible with your present software/systems by implementing the recommended  
workarounds outlined in this section.  
ADuCM30297/ADuCM3029 FUNCTIONALITY ISSUES  
Silicon Revision Identifier  
Silicon Status  
No. of Reported Anomalies  
1.2  
Released  
4 (21000011, 21000015, 21000016, 21000017)  
A silicon revision number with the form x.y is branded on all devices. The silicon revision can be electronically determined by reading  
Bits[3:0] of the SYS_CHIPID register. SYS_CHIPID = 0x4 indicates Silicon Revision 1.2.  
FUNCTIONALITY ISSUES  
Table 30 through Table 33 detail all known silicon anomalies for the ADuCM3027/ADuCM3029 including a description, workaround,  
and identification of applicable silicon revisions.  
Table 30. 21000011—I2C Master Mode Fails to Generate Clock  
When the I2C clock dividers are configured in master mode such that the sum of the LOW bit in the I2C_DIV register  
Background  
and the HIGH bit in the I2C_DIV register is less than 16, the I2C fails to generate a clock.  
Issue  
Workaround  
Related Issues  
The I2C master mode fails to generate clock when clock dividers are too small.  
Program the I2C clock dividers such that I2C_DIV.LOW + I2C_DIV.HIGH ≥ 16.  
None.  
Table 31. 21000015—Pin P2_11 Not Retained  
Background  
The state of the P2_11 pin is not retained after waking up from shutdown mode.  
Issue  
Pin P2_11 is not retained after shutdown wake up.  
Workaround  
Related Issues  
None. To retain the pin state through shutdown, use any other GPIO pin instead of P2_11.  
None.  
Table 32. 21000016—Data Loss with I2C Automatic Clock Stretching  
When the I2C Rx FIFO is full and new I2C data is received, a data overflow occurs. When automatic clock stretching is  
Background  
enabled, the transaction is paused by holding the SCL line low. This pause function works as expected when the  
next read happens after the clock is stretched (for example, after the overflow is detected). However, if the read  
occurs after the last bit of the I2C data is received but before the clock is stretched, the received data is not written  
to the Rx FIFO and is lost.  
Issue  
Possible receive data loss with I2C automatic clock stretching.  
After I2C automatic clock stretching is enabled, read the FIFO only after the overflow flag is set in the status register  
to ensure the Rx FIFO is never read at the same time the overflow is asserted.  
Workaround  
Related Issues  
None.  
Rev. B | Page 36 of 39  
 
 
 
Data Sheet  
ADuCM3027/ADuCM3029  
Table 33. 21000017—SPI Read Command Mode Does Not Work  
When the SPI master is enabled and uses the DMA mode with SPI_CNT = 1, the read command mode may not  
function properly. Consider the following configurations: SPI_RD_CTL = 0x07, SPI_CNT = 1, and the Tx and Rx DMA  
channels configured for one half-word. In this configuration, the read command sent in the first byte on the MOSI  
output is repeated in the second byte (in the address slot); thus, the slave device responds on the MISO line with  
whatever content is at the address equivalent to the read command value (for example, if the read command is 0xB,  
the response is the data read from Slave Address 0xB).  
Background  
Issue  
Workaround  
SPI read command mode does not work properly when SPI_CNT is 1 and DMA is enabled.  
Use the overlap mode to align the transmit/receive SPI operations and discard the junk bytes, as follows:  
Set the OVERLAP bit in the SPI_RD_CTL register = 1 to enable overlap mode.  
Set the TXBYTES bit in the SPI_RD_CTL register = 1 to configure a single transmit byte (8-bit address register).  
Set SPI_CNT.VALUE = 3 to configure the transfer count: one byte for the address register, one byte for the command,  
and one dummy byte to obtain the read value, and on the receive side, discard the first two bytes received during  
the transfer of the address and command bytes before processing the actual read value in the third byte.  
Do not use Tx DMA operation on the SPI transmit side, as follows: enable only the SPI Rx DMA requests, fill the SPI Tx  
FIFO by using core accesses to write to the SPI_TX register, and perform a dummy read of the SPI_RX register to  
start the SPI transfers.  
Related Issues  
None.  
Rev. B | Page 37 of 39  
 
ADuCM3027/ADuCM3029  
OUTLINE DIMENSIONS  
Data Sheet  
DETAIL A  
(JEDEC 95)  
9.10  
0.30  
0.25  
0.20  
9.00 SQ  
8.90  
PIN 1  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR EA OP T  
49  
64  
(SEE DETAIL A)  
1
48  
0.50  
BSC  
4.60  
4.50 SQ  
4.40  
EXPOSED  
PAD  
16  
33  
32  
17  
0.50  
TOP VIEW  
END VIEW  
BOTTOM VIEW  
0.20 MIN  
0.40  
0.30  
7.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WMMD  
Figure 29. 64-Lead Frame Chip Scale Package [LFCSP]  
9 mm × 9 mm Body and 0.75 mm Package Height  
(CP-64-16)  
Dimensions shown in millimeters  
2.800  
2.760 SQ  
2.720  
0.210  
12 10  
8
6
4
2
3
1
0.108  
13 11  
9
7
5
A
B
C
D
E
F
0.35  
BSC  
BALL A1  
IDENTIFIER  
0.303  
BSC  
G
H
0.350  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.103  
0.320  
0.290  
0.260  
0.530  
0.470  
0.410  
END VIEW  
COPLANARITY  
0.05  
0.280  
0.240  
0.200  
SEATING  
PLANE  
0.210  
0.180  
0.150  
Figure 30. 54-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-54-1)  
Dimensions shown in millimeters  
Rev. B | Page 38 of 39  
 
Data Sheet  
ADuCM3027/ADuCM3029  
ORDERING GUIDE  
Package  
Option  
Model1  
Description  
Temperature2  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
54-Ball WLCSP, 13" Reel  
54-Ball WLCSP, 7” Reel  
64-Lead LFCSP  
64-Lead LFCSP, 13Reel  
64-Lead LFCSP, 7Reel  
54-Ball WLCSP, 13” Reel  
54-Ball WLCSP, 7” Reel  
64-Lead LFCSP  
64-Lead LFCSP, 13Reel  
64-Lead LFCSP, 7Reel  
64-Lead LFCSP  
64-Lead LFCSP, 7Reel  
64-Lead LFCSP  
ADuCM3027BCBZ-RL  
ADuCM3027BCBZ-R7  
ADuCM3027BCPZ  
ADuCM3027BCPZ-RL  
ADuCM3027BCPZ-R7  
ADuCM3029BCBZ-RL  
ADuCM3029BCBZ-R7  
ADuCM3029BCPZ  
ADuCM3029BCPZ-RL  
ADuCM3029BCPZ-R7  
ADuCM3029-1BCPZ  
ADuCM3029-1BCPZ-R7  
ADuCM3029-2BCPZ  
ADuCM3029-2BCPZ-R7  
EV-COG-AD3029LZ  
EV-COG-AD3029WZ  
ULP ARM Cortex-M3 with 128 kB Embedded Flash  
ULP ARM Cortex-M3 with 128 kB Embedded Flash  
ULP ARM Cortex-M3 with 128 kB Embedded Flash  
ULP ARM Cortex-M3 with 128 kB Embedded Flash  
ULP ARM Cortex-M3 with 128 kB Embedded Flash  
ULP ARM Cortex-M3 with 256 kB Embedded Flash  
ULP ARM Cortex-M3 with 256 kB Embedded Flash  
ULP ARM Cortex-M3 with 256 kB Embedded Flash  
ULP ARM Cortex-M3 with 256 kB Embedded Flash  
ULP ARM Cortex-M3 with 256 kB Embedded Flash  
ULP ARM Cortex-M3 with 256 kB Embedded Flash  
ULP ARM Cortex-M3 with 256 kB Embedded Flash  
ULP ARM Cortex-M3 with 256 kB Embedded Flash  
ULP ARM Cortex-M3 with 256 kB Embedded Flash  
ADuCM3029 LFCSP Development Board  
CB-54-1  
CB-54-1  
CP-64-16  
CP-64-16  
CP-64-16  
CB-54-1  
CB-54-1  
CP-64-16  
CP-64-16  
CP-64-16  
CP-64-16  
CP-64-16  
CP-64-16  
CP-64-16  
64-Lead LFCSP, 7Reel  
ADuCM3029 WLCSP Development Board  
1 Z = RoHS Compliant Part.  
2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. See the Absolute Maximum Ratings section for junction temperature  
(TJ) specification which is the only temperature specification.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14168-0-5/19(B)  
Rev. B | Page 39 of 39  
 

相关型号:

ADUCM3027BCBZ-RL

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3027BCPZ

ADUCM3027BCPZ
ADI

ADUCM3027BCPZ-R7

ADUCM3027BCPZ-R7
ADI

ADUCM3027BCPZ-RL

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029-1BCPZ

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029-1BCPZ-R7

RISC Microcontroller
ADI

ADUCM3029-2BCPZ

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029-2BCPZ-R7

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029BCBZ-R7

ADUCM3029BCBZ-R7
ADI

ADUCM3029BCBZ-RL

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029BCPZ

ADUCM3029BCPZ
ADI