ADUCM3027BCPZ-R7 [ADI]

ADUCM3027BCPZ-R7;
ADUCM3027BCPZ-R7
型号: ADUCM3027BCPZ-R7
厂家: ADI    ADI
描述:

ADUCM3027BCPZ-R7

外围集成电路
文件: 总37页 (文件大小:1255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra Low Power ARM Cortex-M3 MCU  
with Integrated Power Management  
ADuCM3027/ADuCM3029  
Hardware cryptographic accelerator supporting AES-128,  
AES-256, and SHA-256  
FEATURES  
EEMBC ULPBench™ score: 245.5  
DIGITAL PERIPHERALS  
Ultralow power active and hibernate modes  
Active (full on mode) < 30 μA/MHz (typical)  
Flexi™ (core in sleep, peripherals active) < 300 μA (typical)  
Hibernate (with SRAM retention) < 750 nA (typical)  
Shutdown (optional RTC active) < 60 nA (typical)  
ARM® Cortex®-M3 processor with MPU  
Up to 26 MHz with serial wire debug interface  
Power management  
Single-supply operation (VBAT): 1.74 V to 3.6 V  
Optional buck converter for improved efficiency  
Memory options  
128 KB/256 KB of embedded flash memory with ECC  
4 KB of cache memory to reduce active power  
64 KB of configurable system SRAM with parity  
Up to 32 KB of SRAM retained in hibernate mode  
Safety  
3 SPI interfaces to enable glueless interface to sensors,  
radios, and converters  
I2C and UART interfaces  
SPORT for natively interfacing with converters and radios  
Programmable GPIOs (44 in LFCSP and 36 in WLCSP)  
3 general-purpose timers with PWM support  
RTC and FLEX_RTC with SensorStrobe™ and time stamping  
Programmable beeper  
25-channel DMA controller  
CLOCKING FEATURES  
26 MHz clock: on-chip oscillator, external crystal oscillator  
32 kHz clock: on-chip oscillator, low power crystal oscillator  
Integrated PLL with programmable divider  
ANALOG PERIPHERALS  
Watchdog with dedicated on-chip oscillator  
Hardware CRC with programmable polynomial  
Multiparity bit protected SRAM  
12-bit SAR ADC, 1.8 MSPS, 8 channels, digital comparator  
APPLICATIONS  
Internet of Things (IoT)  
ECC protected embedded flash  
Smart machine, smart metering, smart building,  
smart city, smart agriculture  
Wearables  
Security  
TRNG  
User code protection  
Fitness and clinical  
26 MHz CORE RATE  
SERIAL-WIRE  
PLL  
INSTRUCTION  
RAM/CACHE  
(32 KB)  
HFXTAL  
LFXTAL  
POWER  
MANAGEMENT  
ARM  
CORTEX-M3  
MULTI-  
LAYER  
AMBA  
BUS  
FLASH  
(256 KB)  
HFOSC  
LFOSC  
BUCK  
SRAM0  
(16 KB)  
NVIC  
MPU  
WIC  
MATRIX  
REF BUFFER  
SRAM1  
(16 KB)  
TEMP  
SENSOR  
DMA  
CRYPTO  
(AES 128/256,  
SHA 256)  
ADC  
SPORT  
SPI  
UART  
TMR0  
TMR2  
TMR1  
RTC0  
RTC1  
AHB  
-APB  
BRIDGE  
2
I C  
SPI  
SPI  
TRNG  
WDT  
BEEPER  
GPIO  
PROGRAMMABLE  
CRC POLYNOMIAL  
Figure 1. Functional Block Diagram  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
ADuCM3027/ADuCM3029  
TABLE OF CONTENTS  
General Description ................................................. 3  
Highlights ........................................................... 3  
ARM Cortex-M3 Processor ..................................... 3  
Memory Architecture ............................................ 4  
System and Integration Features ............................... 5  
On-Chip Peripheral Features ................................. 10  
Development Support .......................................... 10  
Additional Information ........................................ 11  
Reference Designs ............................................... 11  
Security Features Disclaimer .................................. 11  
Specifications ........................................................ 12  
Operating Conditions .......................................... 12  
Electrical Characteristics ....................................... 12  
System Clocks/Timers .......................................... 14  
ADC Specifications .............................................. 15  
Flash Specifications .............................................. 15  
Absolute Maximum Ratings ................................... 16  
ESD Sensitivity ................................................... 16  
Package Information ............................................ 16  
Timing Specifications ........................................... 17  
MCU Test Conditions .......................................... 25  
Driver Types ...................................................... 25  
Environmental Conditions .................................... 28  
Pin Configuration And Function Description ................ 29  
Outline Dimensions ................................................ 36  
Ordering Guide ..................................................... 37  
REVISION HISTORY  
3/2017—Revision 0: Initial Version  
Rev. 0  
| Page 2 of 37 | March 2017  
ADuCM3027/ADuCM3029  
GENERAL DESCRIPTION  
The ADuCM3027/ADuCM3029 microcontroller units (MCUs)  
are ultra low power microcontroller systems with integrated  
power management for processing, control, and connectivity.  
The MCU system is based on the ARM Cortex-M3 processor, a  
collection of digital peripherals, embedded SRAM and flash  
memory, and an analog subsystem which provides clocking,  
reset, and power management capability in addition to an  
analog-to-digital converter (ADC) subsystem. For a feature  
comparison across the ADuCM3027/ADuCM3029 product  
offerings, see Table 1.  
HIGHLIGHTS  
The following are the key features of the ADuCM3027/  
ADuCM3029 MCUs:  
• Industry leading ultralow power consumption.  
• Robust operation.  
• Full voltage monitoring in deep sleep modes.  
• ECC support on flash.  
• Parity error detection on SRAM memory.  
• Leading edge security.  
Table 1. Product Flash Memory Options  
• Fast encryption provides read protection to customer  
algorithms.  
Device  
Embedded Flash Memory Size  
ADuCM3029  
ADuCM3027  
256 KB  
128 KB  
• Write protection prevents device reprogramming by  
unauthorized code.  
• Failure detection of 32 kHz LFXTAL via interrupt.  
System features that are common across the ADuCM3027/  
ADuCM3029 MCUs include the following:  
• SensorStrobe for precise time synchronized sampling of  
external sensors.  
• Up to 26 MHz ARM Cortex-M3 processor  
• Works in hibernate mode, resulting in drastic current  
reduction in system solutions. Current consumption  
reduces by 10 times when using, for example, the  
ADXL363 accelerometer.  
• Up to 256 KB of embedded flash memory with error cor-  
rection code (ECC)  
• Optional 4 KB cache for lower active power  
• 64 KB system SRAM with parity  
• Software intervention is not required after setup.  
• No pulse drift due to software execution.  
• Power management unit (PMU)  
• Multilayer advanced microcontroller bus architecture  
(AMBA) bus matrix  
ARM CORTEX-M3 PROCESSOR  
The ARM Cortex-M3 core is a 32-bit reduced instruction set  
computer (RISC). The length of the data can be 8 bits, 16 bits, or  
32 bits. The length of the instruction word is 16 bits or 32 bits.  
• Central direct memory access (DMA) controller  
• Beeper interface  
• Serial port (SPORT), serial peripheral interface (SPI), inter-  
integrated circuit (I2C), and universal asynchronous  
receiver/transmitter (UART) peripheral interfaces  
The processor has the following features:  
• Cortex-M3 architecture  
• Thumb-2 instruction set architecture (ISA)  
technology  
• Cryptographic hardware support with advanced encryp-  
tion standard (AES) and secure hash algorithm (SHA) -256  
• Three-stage pipeline with branch speculation  
• Low latency interrupt processing with tail chaining  
• Single-cycle multiply  
• Real-time clock (RTC)  
• General-purpose and watchdog timers  
• Programmable general-purpose input/output (GPIO) pins  
• Hardware divide instructions  
• Hardware cyclic redundancy check (CRC) calculator with  
programmable generator polynomial  
• Nested vectored interrupt controller (NVIC) (64 inter-  
rupts and 8 priorities)  
• Power-on reset (POR) and power supply monitor (PSM)  
• 12-bit successive approximation register (SAR) ADC  
• True random number generator (TRNG)  
• Two hardware breakpoints and one watchpoint  
(unlimited software breakpoints using Segger JLink)  
• Memory protection unit (MPU)  
To support low dynamic and hibernate power management, the  
ADuCM3027/ADuCM3029 MCUs provide a collection of  
power modes and features, such as dynamic and software con-  
trolled clock gating and power gating.  
• Eight-region MPU with subregions and background  
region  
• Programmable clock generator unit  
For full details on the ADuCM3027/ADuCM3029 MCUs, refer  
to the ADuCM302x Ultra Low Power ARM Cortex-M3 MCU  
with Integrated Power Management Hardware Reference.  
Rev. 0  
| Page 3 of 37 | March 2017  
 
ADuCM3027/ADuCM3029  
• Configurable for ultralow power operation  
• Deep sleep mode, dynamic power management  
• Programmable clock generator unit  
SRAM Region  
This memory space contains the application instructions and  
literal (constant) data that must be accessed in real-time. It sup-  
ports read/write access by the ARM Cortex-M3 core and  
read/write DMA access by system peripherals. Byte, half-word,  
and word accesses are supported.  
ARM Cortex-M3 Memory Subsystem  
The memory map of the ADuCM3027/ADuCM3029 is based  
on the Cortex-M3 model from ARM. By retaining the standard-  
ized memory mapping, it is easier to port applications across  
M3 platforms.  
SRAM is divided into 32 KB data SRAM and 32 KB instruction  
SRAM. If instruction SRAM is not enabled, then the associated  
32 KB can be mapped as data SRAM, resulting in 64 KB of data  
SRAM.  
The ADuCM3027/ADuCM3029 application development is  
based on memory blocks across code/SRAM regions. Internal  
memory is available via internal SRAM and internal flash.  
Parity bit error detection (optional) is available on all SRAM  
memories. Two parity bits are associated with each 32-bit word.  
Code Region  
When the cache controller is enabled, 4 KB of the instruction  
SRAM is reserved as cache memory.  
Accesses in this region (0x0000 0000 to 0x0001 FC00 for the  
ADuCM3027 and 0x0000 0000 to 0x0003 FFFF for the  
ADuCM3029) are performed by the core and target the memory  
and cache resources.  
Users can select the SRAM configuration modes depending on  
the instruction SRAM and cache needed.  
In hibernate mode, 8 KB to 32 KB of the SRAM can be retained  
in increments of 8 KB. 8 KB of data SRAM is always retained.  
Users can additionally retain  
SRAM Region  
Accesses in this region (0x2000 0000 to 0x2004 7FFF) are per-  
formed by the ARM Cortex-M3 core. The SRAM region of the  
core can otherwise act as a data region for an application.  
• 16 KB out of 32 KB of instruction SRAM  
• 8 KB out of 32 KB of data SRAM  
Internal SRAM Data Region. This space can contain  
read/write data. Internal SRAM can be partitioned between  
code and data (SRAM region in M3 space) in 32 KB blocks.  
Access to this region occurs at core clock speed with no  
wait states.  
It also supports read/write access by the Cortex-M3 core  
and read/write DMA access by system devices. It supports  
exclusive memory accesses via the global exclusive access  
monitor within the Cortex-M3 platform.  
MMRs (Peripheral Control and Status)  
For the address space containing MMRs, refer to Figure 2.  
These registers provide control and status for on-chip peripher-  
als of the ADuCM3027/ADuCM3029. For more information  
about the MMRs, refer to the ADuCM302x Ultra Low Power  
ARM Cortex-M3 MCU with Integrated Power Management  
Hardware Reference.  
Flash Memory  
System MMRs. Various system memory mapped registers  
(MMRs) reside in this region.  
The ADuCM3027/ADuCM3029 MCUs include 128 KB to  
256 KB of embedded flash memory, which is accessed using a  
flash controller. For memory available on each product, see  
Table 1. The flash controller is coupled with a cache controller.  
A prefetch mechanism is implemented in the flash controller to  
optimize code performance.  
System Region  
Accesses in this region (0xE000 0000 to 0xF7FF FFFF) are per-  
formed by the ARM Cortex-M3 core and are handled within the  
Cortex-M3 platform.  
Flash writes are supported by a key hole mechanism via  
advanced peripheral bus (APB) writes to MMRs. The flash con-  
troller provides support for DMA-based key hole writes.  
CoreSightROM. The read only memory (ROM) table  
entries point to the debug components of the processor.  
ARM APB Peripheral. This space is defined by ARM and  
occupies the bottom 256 KB/128 KB of the system (SYS)  
region (0xE000 0000 to 0xE004 0000) depending on the  
device used. The space supports read/write access by the  
M3 core to the internal peripherals of the ARM core  
(NVIC, system control space (SCS), wake-up interrupt  
controller (WIC)) and CoreSight ROM. It is not accessible  
by system DMA.  
With respect to flash integrity, the devices support the  
following:  
• A fixed user key required for running protected com-  
mands, including mass erase and page erase.  
• An optional and user definable user failure analysis key  
(FAA key). Analog Devices personnel need this key while  
performing failure analysis.  
MEMORY ARCHITECTURE  
• An optional and user definable write protection for user  
accessible memory.  
The internal memory of the ADuCM3027/ADuCM3029 is  
shown in Figure 2. It incorporates up to 256 KB of embedded  
flash memory for program code and nonvolatile data storage, 32  
KB of data SRAM, and 32 KB of SRAM (configured as instruc-  
tion space or data space).  
• An optional 8-bit ECC. It is enabled by default. It is recom-  
mended not to disable ECC.  
Rev. 0  
| Page 4 of 37 | March 2017  
ADuCM3027/ADuCM3029  
RESERVED  
REAL TIME CLOCK 0 (RTC0)  
RESERVED  
0x4000 1044  
0x4000 1000  
0x400F FFFF  
0x4001 0FE0  
0x4001 0000  
DMA 0  
RESERVED  
RESERVED  
0x4004 C80C  
0x4004 C000  
POWER MGT, EXT IRQ,  
CLOCKING, & MISC MMR  
RESERVED  
0x4000 0824  
0x4000 0800  
GENERAL-PURPOSE TIMER 2  
RESERVED  
0x4000 5C0C  
0x4000 5C00  
BEEPER 0  
0x4004 406C  
0x4004 4000  
RESERVED  
0x4000 0424  
0x4000 0400  
CRYPTO  
RESERVED  
GENERAL-PURPOSE TIMER 1  
RESERVED  
0x4000 5030  
0x4000 5000  
UART 0  
0x4004 0414  
0x4004 0400  
RESERVED  
0x4000 0024  
0x4000 0000  
RANDOM NUMBER GENERATOR  
RESERVED  
GENERAL-PURPOSE TIMER 0  
RESERVED  
0x4000 4438  
0x4000 4400  
SPI 1 MASTER/SLAVE  
RESERVED  
0x4004 000C  
0x4004 0000  
0x2004 7FFF  
0x2004 4000  
0x2004 3FFF  
0x2004 0000  
0x2000 7FFF  
0x2000 4000  
0x2000 3FFF  
PROGRAMMABLE CRC ENGINE  
RESERVED  
RAM BANK 1* (16K BYTES)  
0x4000 4038  
0x4000 4000  
SPI 0 MASTER/SLAVE  
RESERVED  
RAM BANK 1 (16K BYTES)  
RESERVED  
0x4003 8078  
0x4003 8000  
SPORT 0  
0x4000 3058  
0x4000 3000  
2
I C 0 MASTER/SLAVE  
RESERVED  
RAM BANK 0* (16K BYTES)  
0x4002 4038  
0x4002 4000  
RESERVED  
WATCHDOG TIMER  
RESERVED  
SPIH 0 MASTER/SLAVE  
RESERVED  
0x4000 2C18  
0x4000 2C00  
RAM BANK 0 (16K BYTES)  
RESERVED  
0x2000 0000  
0x4002 00B4  
0x4002 0000  
GPIO  
0x1000 7FFF  
0x1000 0000  
0x4000 2040  
0x4000 2000  
INSTRUCTION SRAM* (32K BYTES)  
RESERVED  
SYSTEM ID AND DEBUG ENABLE  
RESERVED  
RESERVED  
0x4001 8088  
0x4001 8000  
FLASH CONTROLLER  
RESERVED  
0x4000 1444  
0x4000 1400  
0x0003 FFFC  
0x0000 0000  
256K BYTES FLASH MEMORY  
REAL TIME CLOCK 1 (RTC1)  
Figure 2. ADuCM3027/ADuCM3029 Memory Map  
In this mode, an on-chip loader routine initiates in the kernel,  
which configures the UART port and communicates with the  
host to manage the firmware upgrade via a specific serial down-  
load protocol.  
Cache Controller  
The ADuCM3027/ADuCM3029 MCUs have an optional 4 KB  
instruction cache. In certain applications, enabling the cache  
and executing the code can result in lower power consumption  
than operating directly from flash. When the cache controller is  
enabled, 4 KB of instruction SRAM is reserved as cache mem-  
ory. In hibernate mode, the cache memory is not retained.  
Table 2. Boot Modes  
Boot Mode Description  
0
1
UART download mode.  
SYSTEM AND INTEGRATION FEATURES  
Flash boot. Boot from integrated flash memory.  
The ADuCM3027/ADuCM3029 MCUs provide several features  
that ease system integration.  
Power Management  
Reset  
The ADuCM3027/ADuCM3029 MCUs have an integrated  
power management system that optimizes performance and  
extends battery life of the devices.  
There are four types of resets: external, power-on, watchdog  
timeout, and software system reset. The software system reset is  
provided as part of the Cortex-M3 core.  
The power management system consists of the following:  
The SYS_HWRST pin is toggled to perform a hardware reset.  
• Integrated 1.2 V low dropout regulator (LDO) and optional  
capacitive buck regulator  
Booting  
• Integrated power switches for low standby current in hiber-  
nate and shutdown modes  
The ADuCM3027/ADuCM3029 MCUs support two boot  
modes: booting from internal flash and upgrading software  
through UART download. If the SYS_BMODE0 pin (GPIO17)  
is pulled low during power-up or a hard reset, the MCU enters  
into serial download mode.  
Rev. 0  
| Page 5 of 37 | March 2017  
ADuCM3027/ADuCM3029  
Additional power management features include the following:  
• Customized clock gating for active and Flexi modes  
• Power gating to reduce leakage in hibernate and shutdown  
modes  
VBAT  
VDCDC_CAP1P  
VDCDC_CAP1N  
VDCDC_OUT  
0.1μF  
0.1μF  
BUCK  
(ENABLED)  
• Flexible sleep modes  
0.47μF  
VDCDC_CAP2P  
VDCDC_CAP2N  
• Shutdown mode with no retention  
• Optional high efficiency buck converter to reduce power  
• Integrated low power oscillators  
Power Modes  
The PMU provides control of the ADuCM3027/ADuCM3029  
power modes and allows the ARM Cortex-M3 to control the  
clocks and power gating to reduce the power consumption.  
Several power modes are available. Each mode provides an  
additional low power benefit with a corresponding reduction in  
functionality.  
VLDO_OUT  
0.47μF  
LDO  
• Active mode. All peripherals can be enabled. Active power  
is managed by optimized clock management. See Table 4  
for details on active mode power.  
Note: For designs in which the optional buck is not used, the  
following pins must be left unconnected—VDCDC_CAP1P,  
VDCDC_CAP1N, VDCDC_OUT, VDCDC_CAP2P, and  
VDCDC_CAP2N.  
• Flexi mode. The ARM Cortex-M3 core is clock gated, but  
the remainder of the system is active. No instructions can  
be executed in this mode, but DMA transfers can continue  
between peripherals and memory as well as memory to  
memory. See Table 5 for details on Flexi mode power.  
Figure 3. Buck Enabled Design  
Security Features  
• Hibernate mode. This mode provides state retention, con-  
figurable SRAM and port pin retention, a limited number  
of wake-up interrupts (XINT0_WAKEn and UART0_RX),  
and, optionally, two RTCs—RTC0 and RTC1  
(FLEX_RTC).  
The ADuCM3027/ADuCM3029 MCUs provide a combination  
of hardware and software protection mechanisms that lock out  
access to the devices in secure mode, but grant access in open  
mode. These mechanisms include password protected slave  
boot mode (UART), as well as password protected serial wire  
debug (SWD) interfaces.  
• Shutdown mode. This mode is the deepest sleep mode, in  
which all the digital and analog circuits are powered down  
with an option to wake from four possible wake-up  
sources: three external interrupts and RTC0. The RTC0 can  
be optionally enabled in this mode and the device can be  
periodically woken up by the RTC0 interrupt. See Table 6  
for deep sleep (hibernate and shutdown) mode  
specifications.  
Mechanisms are provided to protect the device contents (flash,  
SRAM, CPU registers, and peripheral registers) from being read  
through an external interface by an unauthorized user. This is  
referred to as read protection.  
It is possible to protect the device from being reprogrammed in  
circuit with unauthorized code. This is referred to as in circuit  
write protection.  
The following features are available for power management and  
control:  
CAUTION  
• A voltage range of 1.74 V to 3.6 V, using a single supply  
(such as the CR2032 coin cell battery).  
This product includes security features that can be  
used to protect embedded nonvolatile memory  
contents and prevent execution of unauthorized  
code. When security is enabled on this device  
(either by the ordering party or the subsequent  
receiving parties), the ability of Analog Devices to  
conduct failure analysis on returned devices is  
limited. Contact Analog Devices for details on the  
failure analysis limitations for this device.  
• GPIOs are driven directly from the battery. The pin state is  
retained in hibernate and shutdown modes. The GPIO  
configuration is only retained in hibernate mode.  
• Wake-up from external interrupt (via GPIOs), UART0_RX  
interrupt, and RTCs for hibernate mode.  
• Wake-up from external interrupt (via GPIOs) and RTC0  
for shutdown mode.  
The devices can be configured with no protection, read protec-  
tion, or read and in circuit write protection. It is not necessary  
to provide in circuit write protection without read protection.  
• Optional high power buck converter for 1.2 V full on sup-  
port; for MCU usage only. See Figure 3 for the suggested  
external circuitry.  
Rev. 0  
| Page 6 of 37 | March 2017  
 
ADuCM3027/ADuCM3029  
• Initial seed to be programmed by user.  
Cryptographic Accelerator  
• DMA controller (memory to memory transfer) used for  
data transfer to offload the MCU.  
The cryptographic accelerator is a 32-bit APB DMA capable  
peripheral. There are two 32-bit buffers provided for data  
input/output operations. These buffers read in or read out  
128 bits in four data accesses. Big endian and little endian data  
formats are supported, as are the following modes:  
Programmable GPIOs  
The ADuCM3027/ADuCM3029 MCUs have 44 and 36 GPIO  
pins in the LFCSP and WLCSP packages, respectively, with  
multiple, configurable functions defined by user code. They can  
be configured as an input/output and have programmable pull-  
up resistors. All GPIO pins are functional over the full supply  
range.  
• Electronic code book (ECB) mode—AES mode  
• Counter (CTR) mode  
• Cipher block chaining (CBC) mode  
• Message authentication code (MAC) mode  
In deep sleep mode, GPIO pins retain their state. On reset, they  
tristate.  
• Cipher block chaining-message authentication code  
(CCM/CCM*) mode  
Timers  
• SHA-256 modes  
The ADuCM3027/ADuCM3029 MCUs have three general-pur-  
pose timers and a watchdog timer.  
True Random Number Generator (TRNG)  
The TRNG is used during operations where nondeterministic  
values are required. This can include generating challenges for  
secure communication or keys for an encrypted communication  
channel. The generator can run multiple times to generate a suf-  
ficient number of bits for the strength of the intended operation.  
The TRNG can seed a deterministic random bit generator.  
General-Purpose Timers  
The ADuCM3027/ADuCM3029 MCUs have three identical  
general-purpose timers, each with a 16-bit up and down  
counter. The up and down counter can be clocked from one of  
four user selectable clock sources. Any selected clock source can  
be scaled down using a prescaler of 1, 16, 64, or 256.  
Reliability and Robustness Features  
Watchdog Timer (WDT)  
The ADuCM3027/ADuCM3029 MCUs provide a number of  
features that can enhance or help achieve certain levels of sys-  
tem safety and reliability. While the level of safety is mainly  
dominated by system considerations, the following features are  
provided to enhance robustness:  
The WDT is a 16-bit count down timer with a programmable  
prescaler. The prescaler source is selectable and can be scaled by  
a factor of 1, 16, or 256. The watchdog timer is clocked by the  
32 kHz on-chip oscillator (LFOSC) and recovers from an illegal  
software state. The WDT requires periodic servicing to prevent  
it from forcing a reset or interrupt to the MCU.  
• ECC enabled flash memory. The entire flash array can be  
protected to either correct single-bit errors or detect two-  
bit errors per 64-bit flash data (enabled by default).  
Analog-to-Digital Converter (ADC) Subsystem  
• Multiparity bit protected SRAM. Each word of the SRAM  
and cache memory is protected by multiple parity bits to  
allow detection of random soft errors.  
The ADuCM3027/ADuCM3029 MCUs integrate a 12-bit SAR  
ADC with up to eight external channels. Conversions can be  
performed in single or autocycle mode. In single mode, the  
ADC can be configured to convert on a particular channel by  
selecting one of the channels. Autocycle mode is provided to  
reduce MCU overhead of sampling and reading individual  
channel registers. The ADC can also be used for temperature  
sensing and measuring battery voltage using dedicated chan-  
nels. Temperature sensing and battery monitoring cannot be  
included with external channels in autocycle mode.  
• Software watchdog. The on-chip watchdog timer can pro-  
vide software-based supervision of the ADuCM3027/  
ADuCM3029.  
Cyclic Redundancy Check (CRC) Accelerator  
The CRC accelerator computes the CRC for a block of memory  
locations. The exact memory location can be in the SRAM,  
flash, or any combination of MMRs. The CRC accelerator gen-  
erates a checksum that can be compared with an expected  
signature.  
A digital comparator triggers an interrupt if ADC input is above  
or below a programmable threshold. The ADC0_VIN0,  
ADC0_VIN1, ADC0_VIN2, and ADC0_VIN3 input channels  
can be used with the digital comparator.  
The main features of the CRC include the following:  
• Generates a CRC signature for a block of data.  
• Supports programmable polynomial length of up to 32 bits.  
• Operates on 32 bits of data at a time.  
Use the ADC in DMA mode to reduce MCU overhead by mov-  
ing ADC results directly into SRAM with a single interrupt  
asserted when the required number of ADC conversions has  
been completely logged to memory.  
• Supports MSB first and LSB first CRC implementations.  
• Various data mirroring capabilities.  
Rev. 0  
| Page 7 of 37 | March 2017  
ADuCM3027/ADuCM3029  
The main features of the ADC subsystem include the following:  
• 12-bit resolution.  
Real-Time Clock (RTC)  
The ADuCM3027/ADuCM3029 MCUs have two real-time  
clock blocks—RTC0 and RTC1 (FLEX_RTC). The clock blocks  
share a low power crystal oscillation circuit that operates in con-  
junction with a 32,768 Hz external crystal.  
• Programmable ADC update rate from 10 KSPS to  
1.8 MSPS.  
• Integrated input multiplexer that supports up to eight  
channels.  
The RTC has an alarm that interrupts the core when the pro-  
grammed alarm value matches the RTC count. The software  
enables and configures the RTC.  
• Temperature sensing support.  
• Battery monitoring support.  
The RTC also has a digital trim capability to allow a positive or  
negative adjustment to the RTC count at fixed intervals.  
• Software selectable on-chip reference voltage  
generation—1.25 V and 2.5 V.  
The FLEX_RTC supports SensorStrobe mechanism. Using this  
mechanism, the ADuCM3027/ADuCM3029 MCUs can be used  
as a programmable clock generator in some power modes,  
including hibernate mode. In this way, the external sensors can  
have their timing domains mastered by the ADuCM3027/  
ADuCM3029 MCUs, as SensorStrobe can output a programma-  
ble divider from the FLEX_RTC, which can operate up to a  
resolution of 30.7 μs. The sensors and MCU are in sync, which  
removes the need for additional resampling of data to time align  
it.  
• Software selectable internal or external reference.  
• Autocycle mode—ability to automatically select a sequence  
of input channels for conversion.  
• Averaging function—converted data on single or multiple  
channels can be averaged up to 256 samples.  
• Alert function—internal digital comparator for  
ADC0_VIN0, ADC0_VIN1, ADC0_VIN2, and  
ADC0_VIN3 channels. An interrupt is generated if the dig-  
ital comparator detects an ADC result above or below a  
user defined threshold.  
In the absence of this mechanism,  
• The external sensor uses an RC oscillator (~ 30ꢀ typical  
variation). The MCU must sample the data and resample it  
on the time domain of the MCU before using it.  
• Dedicated DMA channel support.  
• Each channel, including temperature sensor and battery  
monitoring, has a data register for conversion result.  
Or  
• The MCU remains in a higher power state and drives each  
data conversion on the sensor side.  
Clocking  
The ADuCM3027/ADuCM3029 MCUs have the following  
clocking options:  
This mechanism allows the ADuCM3027/ADuCM3029 MCUs  
to be in a lower power state for a long duration and avoids  
unnecessary data processing which extends the battery life of  
the end product.  
• 26 MHz  
• Internal oscillator—HFOSC (26 MHz)  
• External crystal oscillator—HFXTAL (26 MHz or  
16 MHz)  
• GPIO clock in—SYS_CLKIN  
• 32 kHz  
• Internal oscillator—LFOSC  
• External crystal oscillator—LFXTAL  
The clock options have software configurability with the follow-  
ing exceptions:  
• HFOSC cannot be disabled when using an internal buck  
regulator.  
• LFOSC cannot be disabled even if using LFXTAL.  
Rev. 0  
| Page 8 of 37 | March 2017  
ADuCM3027/ADuCM3029  
The key differences between RTC0 and RTC1 (FLEX_RTC) are  
shown in Table 3.  
Table 3. RTC Features  
Features  
RTC0  
RTC1 (FLEX_RTC)  
Resolution of Time Counts time at 1 Hz in units of seconds. Operationally, always Can prescale the clock by any power of two from 0 to 15.  
Base (Prescaling) prescales to 1 Hz (for example, divide by 32,768) and always It can count time in units of any of these 16 possible  
counts real time in units of seconds.  
prescale settings. For example, the clock can be prescaled  
by 1, 2, 4, 8, …, 16384, or 32768.  
Source Clock  
LFXTAL.  
Depending on the low frequency multiplexer (LFMUX)  
configuration, the RTC is clocked by the LFXTAL or the  
LFOSC.  
Wake-Up Timer  
Wake-up time is specified in units of seconds.  
Supports alarm times down to a resolution of 30.7 μs, that  
is, where the time is specified down to a specific 32 kHz  
clock cycle.  
Number of Alarms One alarm only. Uses an absolute, nonrepeating alarm time, Two alarms. One absolute alarm time and one periodic  
specified in units of 1 sec.  
alarm, repeating every 60 prescaled time units.  
SensorStrobe  
Mechanism  
Not available.  
SensorStrobe is an alarm mechanism in the RTC that  
causes an output pulse to be sent via GPIOs to an external  
device to instruct the device to take a measurement or  
perform some action at a specific time. SensorStrobe  
events are scheduled at a specific target time relative to  
the real-time count of the RTC. SensorStrobe can be  
enabled in active, Flexi, and hibernate modes.  
Input Capture  
Not available.  
Input capture takes a snapshot of the RTC when an  
external device signals an event via a transition on one of  
the GPIO inputs to the ADuCM3027/ ADuCM3029.  
Typically, an input-capture event is triggered by an auton-  
omous measurement or action on such a device, which  
then signals to the ADuCM3027/ ADuCM3029 that the  
RTC must take a snapshot of time corresponding to the  
event.Taking the snapshot can wake up theADuCM3027/  
ADuCM3029 and cause an interrupt to the CPU. The CPU  
cansubsequently obtaininformation from the RTC on the  
exact 32 kHz cycle on which the input capture event  
occurred.  
Rev. 0  
| Page 9 of 37 | March 2017  
 
ADuCM3027/ADuCM3029  
Serial ports operate in two modes:  
• Standard digital signal processor (DSP) serial mode  
• Timer enable mode  
Beeper Driver  
The ADuCM3027/ADuCM3029 MCUs have an integrated  
audio driver for a beeper.  
The beeper driver module in the ADuCM3027/ADuCM3029  
MCUs generate a differential square wave of programmable fre-  
quency. It drives an external piezoelectric sound component  
with two terminals that connect to the differential square wave  
output.  
Serial Peripheral Interface (SPI) Ports  
The ADuCM3027/ADuCM3029 MCUs provide three SPIs. SPI  
is an industry standard, full-duplex, synchronous serial inter-  
face that allows eight bits of data to be synchronously  
transmitted and simultaneously received. Each SPI incorporates  
two DMA channels that interface with the DMA controller. One  
DMA channel transmits and the other receives. The SPI on the  
MCU eases interfacing to external serial flash devices.  
The beeper driver consists of a module that can deliver frequen-  
cies ranging from 8 kHz to ~0.25 kHz. It operates on a fixed  
independent 32 kHz clock source that is unaffected by changes  
in system clocks.  
The SPI features include the following:  
• Serial clock phase mode and serial clock polarity mode  
• Loopback mode  
It allows programmable tone durations from 4 ms to 1.02 sec in  
4 ms increments. Pulse (single-tone) and sequence (multitone)  
modes provide versatile playback options.  
In sequence mode, the beeper can be programmed to play any  
number of tone pairs from 1 to 254 (2 to 508 tones) or be pro-  
grammed to play forever (until stopped by the user). Interrupts  
are available to indicate the start or end of any beep, the end of a  
sequence, or when the sequence is nearing completion.  
• Continuous and repeated transfer mode  
• Wired OR output mode  
• Read command mode for half-duplex operation (transmit  
followed by receive)  
• Flow control support in read command mode  
• Support for 3-pin SPI in read command mode  
• Multiple CS line support  
Debug Capability  
The ADuCM3027/ADuCM3029 MCUs support SWD.  
ON-CHIP PERIPHERAL FEATURES  
• CS software override support  
The ADuCM3027/ADuCM3029 MCUs have a rich set of  
peripherals connected to the core via several concurrent high  
bandwidth buses, providing flexibility in system configuration  
as well as excellent overall system performance (see Figure 1).  
UART Port  
The ADuCM3027/ADuCM3029 MCUs provide a full-duplex  
UART port, which is fully compatible with PC standard UARTs.  
The UART port provides a simplified UART interface to other  
peripherals or hosts, supporting full-duplex, DMA, and asyn-  
chronous transfers of serial data. The UART port includes  
support for five to eight data bits, and none, even, or odd parity.  
A frame is terminated by one, one and a half, or two stop bits.  
The ADuCM3027/ADuCM3029 MCUs contain high speed  
serial ports, an interrupt controller for flexible management of  
interrupts from the on-chip peripherals or external sources, and  
power management control functions to tailor the performance  
and power characteristics of the MCU and system to many  
application scenarios.  
I2C  
Serial Ports (SPORT)  
The ADuCM3027/ADuCM3029 MCUs provide an I2C bus  
peripheral that has two pins for data transfer. SCL is a serial  
clock pin and SDA is a serial data pin. The pins are configured  
in a wired AND format that allows arbitration in a multimaster  
system. A master device can be configured to generate the serial  
clock. The frequency is programmed by the user in the serial  
clock divisor register. The master channel can operate in fast  
mode (400 kHz) or standard mode (100 kHz).  
The ADuCM3027/ADuCM3029 MCUs provide two single  
direction half SPORTs or one bidirectional full SPORT. The  
synchronous serial ports provide an inexpensive interface to a  
wide variety of digital and mixed-signal peripheral devices such  
as Analog Devices audio codecs, ADCs, and DACs. The serial  
ports contain two data lines, a clock, and a frame sync. The data  
lines can be programmed to either transmit or receive, and each  
data line has a dedicated DMA channel.  
DEVELOPMENT SUPPORT  
Serial port data can be automatically transferred to and from  
on-chip memory or external memory via dedicated DMA chan-  
nels. The frame sync and clock can be shared. Some of the ADCs  
and DACs require two control signals for their conversion pro-  
cess. To interface with such devices, the SPT0_ACNV and  
SPT0_BCNV signals are provided. To use these signals, enable  
the timer enable mode. In this mode, a PWM timer inside the  
module generates the programmable SPT0_ACNV and  
SPT0_BCNV signals.  
Development support for the ADuCM3027/ADuCM3029  
MCUs includes documentation, evaluation hardware, and  
development software tools.  
Documentation  
The ADuCM302x Ultra Low Power ARM Cortex-M3 MCU  
with Integrated Power Management Hardware Reference details  
the functionality of each block on the ADuCM3027/  
ADuCM3029 MCUs. It includes power management, clocking,  
memories, and peripherals.  
Rev. 0  
| Page 10 of 37 | March 2017  
ADuCM3027/ADuCM3029  
Hardware  
REFERENCE DESIGNS  
The ADuCM3029 EZ-KIT® is available to prototype sensor con-  
figurations with the ADuCM3027/ADuCM3029 MCUs.  
The Circuits from the Lab® page provides the following:  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
Software  
• Drill down links for components in each chain to selection  
guides and application information  
The ADuCM3029 EZ-KIT includes a complete development  
and debug environment for the ADuCM3027/ADuCM3029  
MCUs. The board support package (BSP) for the ADuCM3027/  
ADuCM3029 is provided for the IAR Embedded Workbench  
for ARM, Keil, and CrossCore® embedded studio (CCES)  
environments.  
• Reference designs applying best practice design techniques  
SECURITY FEATURES DISCLAIMER  
To our knowledge, the Security Features, when used in accor-  
dance with the data sheet and hardware reference manual  
specifications, provide a secure method of implementing code  
and data safeguards. However, Analog Devices does not guaran-  
tee that this technology provides absolute security.  
The BSP also includes operating system (OS) aware drivers and  
example code for all the peripherals on the devices.  
ADDITIONAL INFORMATION  
ACCORDINGLY, ANALOG DEVICES HEREBY DISCLAIMS  
ANY AND ALL EXPRESS AND IMPLIED WARRANTIES  
THAT THE SECURITY FEATURES CANNOT BE  
BREACHED, COMPROMISED, OR OTHERWISE CIRCUM-  
VENTED AND IN NO EVENT SHALL ANALOG DEVICES  
BE LIABLE FOR ANY LOSS, DAMAGE, DESTRUCTION, OR  
RELEASE OF DATA, INFORMATION, PHYSICAL PROP-  
ERTY, OR INTELLECTUAL PROPERTY.  
The following publications that describe the ADuCM3027/  
ADuCM3029 MCUs can be ordered from any Analog Devices  
sales office or accessed electronically on the Analog Devices  
website:  
ADuCM302x Ultra Low Power ARM Cortex-M3 MCU  
with Integrated Power Management Hardware Reference.  
ADuCM3027/ADuCM3029 Anomaly List  
This data sheet describes the ARM Cortex-M3 core and mem-  
ory architecture used on the ADuCM3027/ADuCM3029  
MCUs, but does not provide detailed programming information  
for the ARM processor. For more information about program-  
ming the ARM processor, visit the ARM Infocenter web page.  
The applicable documentation for programming the ARM Cor-  
tex-M3 processor include the following:  
ARM Cortex-M3 Devices Generic User Guide  
ARM Cortex-M3 Technical Reference Manual  
Rev. 0  
| Page 11 of 37 | March 2017  
ADuCM3027/ADuCM3029  
SPECIFICATIONS  
For information about product specifications, contact your Analog Devices, Inc. representative.  
OPERATING CONDITIONS  
Parameter  
Conditions  
Min  
1.74  
2.5  
Typ  
Max  
Unit  
V
1, 2  
VBAT  
External Battery Supply Voltage  
High Level Input Voltage  
Low Level Input Voltage  
ADC Supply Voltage  
3.0  
3.6  
VIH  
VIL  
VBAT = 3.6 V  
V
VBAT = 1.74 V  
0.45  
3.6  
V
VBAT  
1.74  
40  
3.0  
V
_
ADC  
TJ  
Junction Temperature  
TAMBIENT = 40°C to +85°C  
+85  
°C  
1 The voltage must remain powered even if the associated function is not used.  
2 Value applies to the VBAT_ANA1,VBAT_ANA2,VBAT_DIG1, and VBAT_DIG2 pins.  
ELECTRICAL CHARACTERISTICS  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
1
VOH  
High Level Output Voltage  
VBAT = minimum V, IOH = 1.0 mA  
VBAT = minimum V, IOL = 1.0 mA  
VBAT =maximum V, VIN = maximum VBAT  
VBAT =maximum V, VIN = 0 V  
1.4  
1
VOL  
Low Level Output Voltage  
0.4  
1
V
2
IIHPU  
High Level Input Current Pull-Up  
Low Level Input Current Pull-Up  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current Pull-Up  
Three-State Leakage Current Pull-Up  
0.01  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
pF  
2
IILPU  
100  
1
3
IOZH  
VBAT = maximum V, VIN = maximum VBAT  
VBAT = maximum V, VIN = 0 V  
0.01  
0.01  
3
IOZL  
1
4
IOZLPU  
VBAT = maximum V, VIN = 0 V  
100  
1
4
IOZHPU  
VBAT = maximum V, VIN = maximum VBAT  
5
IOZLPD  
Three-State Leakage Current Pull-Down VBAT = maximum V, VIN = 0 V  
1
5
IOZHPD  
Three-State Leakage Current Pull-Down VBAT = maximum V, VIN = maximum VBAT  
100  
CIN  
Input Capacitance  
TJ = 25°C  
10  
1 Applies to the output and bidirectional pins: P1_10, P0_10, P0_11, P1_02, P1_03, P1_04, P1_05, P2_01, P0_13, P0_15, P1_00, P1_01, P1_15, P2_00, P0_12, P2_11, P1_06,  
P1_07, P1_08, P1_09, P0_00, P0_01, P0_02, P0_03, P0_06, P0_07, P2_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13,  
P1_12, P1_11, P0_08, and P0_09.  
2 Applies to the input pin with pull-up: SYS_HWRST.  
3 Applies to the three-statable pins: P1_10, P0_10, P0_11, P1_02, P1_03, P1_04, P1_05, P2_01, P0_13, P0_15, P1_00, P1_15, P2_00, P0_12, P2_11, P1_06, P1_07, P1_08, P1_09,  
P0_00, P0_01, P0_02, P0_03, P2_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P0_08, and P0_09.  
4 Applies to the three-statable pins with pull-ups: P1_10, P0_10, P0_11, P1_02, P1_03, P1_04, P1_05, P2_01, P0_13, P0_15, P1_00, P1_15, P2_00, P0_12, P2_11, P1_06, P1_07,  
P1_08, P1_09, P0_00, P0_01, P0_02, P0_03, P2_03, P2_04, P2_05, P2_06, P2_07, P2_08, P2_09, P2_10, P0_04, P0_05, P0_14, P2_02, P1_14, P1_13, P1_12, P1_11, P0_08,  
P0_09, P0_07, and P1_01.  
5 Applies to the three-statable pin with pull-down: P0_06.  
Rev. 0  
| Page 12 of 37 | March 2017  
ADuCM3027/ADuCM3029  
Power Supply Current  
Table 4, Table 5, and Table 6 describe power supply current for VBAT  
.
Table 4. Active Mode—Current Consumption When VBAT = 3.0 V  
Conditions  
Buck  
Typ1  
0.40  
0.98  
Max2  
Unit  
Code3 executing from flash, cache enabled, peripheral clocks off, HCLK = 6.5 MHz  
Code3 executing from flash, cache enabled, peripheral clocks off, HCLK = 26 MHz  
Enabled  
Enabled  
mA  
1.29  
2.38  
1.64  
3.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Disabled 1.75  
Enabled 1.28  
Disabled 2.34  
Enabled 0.95  
Disabled 1.78  
Code3 executing from flash, cache enabled, peripheral clocks on, HCLK = 26 MHz, PCLK = 26 MHz Enabled  
1.08  
Disabled 1.99  
Code3 executing from flash, cache disabled, peripheral clocks off, HCLK = 26 MHz  
Code3 executing from SRAM, peripheral clocks off, HCLK = 26 MHz  
1.36  
2.48  
1.43  
2.67  
1.78  
3.29  
1.49  
2.74  
Code3 executing from flash, cache disabled, peripheral clocks on, HCLK = 26 MHz, PCLK = 26 MHz Enabled  
1.37  
Disabled 2.55  
Code3 executing from SRAM, peripheral clocks on, HCLK = 26 MHz, PCLK = 26 MHz  
Enabled  
Disabled 2.03  
1.08  
1 TJ = 25°C.  
2 TJ = 85°C.  
3 The code being executed is a prime number generation in a continuous loop, with HFOSC as the system clock source.  
Table 5. FlexiMode—Current Consumption When VBAT = 3.0 V  
Conditions  
Buck  
Typ1  
0.3  
0.52  
0.39  
0.7  
Max2  
Unit  
mA  
mA  
mA  
mA  
Peripheral clocks off  
Enabled  
Disabled  
Enabled  
Disabled  
0.67  
1.11  
0.80  
1.38  
Peripheral clocks on, PCLK = 26 MHz  
1 TJ = 25°C.  
2 TJ = 85°C.  
Table 6. Deep Sleep Modes1—Current Consumption When VBAT = 3.0 V  
40°C +25°C +85°C +85°C  
Typ  
0.66  
0.67  
0.68  
0.69  
0.69  
0.74  
0.83  
290  
40  
Typ Max Unit  
Typ  
0.75  
0.77  
0.79  
0.81  
0.78  
0.83  
0.93  
310  
56  
Mode  
Conditions  
Hibernate RTC1 and RTC0 disabled, 8 KB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 16 KB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 24 KB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 32 KB SRAM retained, LFXTAL off  
RTC1 enabled, 8 KB SRAM retained, LFOSC as source for RTC1  
RTC1 enabled, 8 KB SRAM retained, LFXTAL as source for RTC1  
2.0  
2.4  
2.6  
3.0  
6.05 μA  
6.4 μA  
6.75 μA  
7.1  
μA  
μA  
2.05 6.1  
2.1  
2.25 6.3  
6.15 μA  
μA  
1180 nA  
950 nA  
RTC1 and RTC0 enabled, 8 KB SRAM retained, LFXTAL as source for RTC1 and RTC0  
Shutdown RTC0 enabled, LFXTAL as source for RTC0  
RTC0 disabled  
490  
260  
1 Buck enable/disable selection does not affect power consumption.  
Rev. 0  
| Page 13 of 37 | March 2017  
 
 
 
 
ADuCM3027/ADuCM3029  
SYSTEM CLOCKS/TIMERS  
Table 7 and Table 8 show the system clock specifications for the ADuCM3027/ADuCM3029 MCUs.  
Platform External Crystal Oscillator  
Table 7. Platform External Crystal Oscillator Specifications  
Parameter  
Min  
Typ  
Max  
Unit Conditions  
LOW FREQUENCY EXTERNAL CRYSTAL OSCILLATOR (LFXTAL)  
CEXT1 = CEXT2  
6
10  
pF  
External capacitor, CEXT1 = CEXT2  
(symmetrical load), for C L 5 pF  
(maximum)andESR=30k(maximum).  
CEXT1, CEXT2 must be selected considering  
the printed circuit board (PCB) trace  
capacitance due to routing.  
Frequency  
32,768  
Hz  
pF  
HIGH FREQUENCY EXTERNAL CRYSTAL OSCILLATOR (HFXTAL)  
CEXT1 = CEXT2  
20  
External capacitor, CEXT1 = CEXT2  
(symmetrical load), for C L= 10 pF  
(maximum) and ESR = 50 (maximum).  
CEXT1, CEXT2 must be selected considering  
the PCB trace capacitance due to  
routing.  
Frequency  
26  
MHz  
On-Chip RC Oscillator  
Table 8. On-Chip RC Oscillator Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
HIGH FREQUENCY RC OSCILLATOR (HFOSC)  
Frequency  
25.09  
30,800  
26  
26.728  
MHz  
Hz  
LOW FREQUENCY RC OSCILLATOR (LFOSC)  
Frequency  
32,768  
34,407  
Rev. 0  
|
Page 14 of 37 | March 2017  
 
 
ADuCM3027/ADuCM3029  
ADC SPECIFICATIONS  
Table 9. ADC Specifications  
Parameter1, 2  
VBAT/VREF (V)  
Package  
Typ  
Unit  
Conditions  
NO MISSING CODE  
1.8/1.25 (internal/external) 64-lead LFCSP 12  
1.8/1.25 (internal/external) 54-ball WLCSP 12  
3.0/2.5 (internal/external) 64-lead LFCSP 12  
Bits  
Bits  
Bits  
Fin = 1068 Hz, Fs = 100 KSPS,  
internalreferenceinlowpower  
mode, 400,000 samples end  
point method used  
INTEGRAL NONLINEARITY ERROR  
1.8/1.25 (internal/external) 64-lead LFCSP 1.6  
1.8/1.25 (internal/external) 54-ball WLCSP 1.8  
3.0/2.5 (internal/external) 64-lead LFCSP 1.4  
LSB  
LSB  
LSB  
DIFFERENTIAL NONLINEARITY ERROR 1.8/1.25 (internal/external) 64-lead LFCSP 0.7, +1.15 LSB  
1.8/1.25 (internal/external) 54-ball WLCSP 0.75, +1.2 LSB  
3.0/2.5 (internal/external) 64-lead LFCSP 0.7, +1.1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
μA  
OFFSET ERROR  
GAIN ERROR  
1.8/1.25 (external)  
1.8/1.25 (external)  
3.0/2.5 (external)  
1.8/1.25 (external)  
1.8/1.25 (external)  
3.0/2.5 (external)  
1.8/1.25 (internal)  
1.8/1.25 (internal)  
3.0/2.5 (internal)  
64-lead LFCSP 0.5  
54-ball WLCSP 0.5  
64-lead LFCSP 0.5  
64-lead LFCSP 2.5  
54-ball WLCSP 3.0  
64-lead LFCSP 0.5  
64-lead LFCSP 104  
54-ball WLCSP 108  
64-lead LFCSP 131  
3
Fin = 1068 Hz, Fs = 100 KSPS,  
internalreferenceinlowpower  
mode  
IVBAT_ADC  
μA  
μA  
1 The ADC is characterized in standalone mode without core activity and minimal or no switching on the adjacent ADC channels and digital inputs/outputs.  
2 The specifications are characterized after performing internal ADC offset calibration.  
3 Current consumption from VBAT_ADC supply when ADC is performing the conversion.  
FLASH SPECIFICATIONS  
Table 10. Flash Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
FLASH  
Endurance  
Data Retention  
10,000  
Cycles  
Years  
10  
Rev. 0  
|
Page 15 of 37 | March 2017  
ADuCM3027/ADuCM3029  
ABSOLUTE MAXIMUM RATINGS  
ESD SENSITIVITY  
Stresses at or above those listed in Table 11 may cause perma-  
nent damage to the product. This is a stress rating only. The  
functional operation of the product at these or any other condi-  
tions above those indicated in the operational section of this  
specification is not implied. Operation beyond the maximum  
operating conditions for extended periods may affect product  
reliability.  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
Table 11. Absolute Maximum Ratings  
PACKAGE INFORMATION  
Parameter  
Rating  
Unit  
SUPPLY  
Figure 4 and Table 12 provide details about package branding.  
For a complete listing of product availability, see the Ordering  
Guide section.  
VBAT_ANA1  
−0.3 to +3.6  
V
VBAT_ANA2  
VBAT_ADC  
VBAT_DIG1  
VBAT_DIG2  
VREF_ADC  
ANALOG  
VDCDC_CAP1N  
VDCDC_AP1P  
VDCDC_OUT  
VDCDC_CAP2N  
VDCDC_CAP2P  
−0.3 to +3.6  
V
V
Figure 4. Product Information on Package1  
1 Exact brand may differ, depending on package type.  
VLDO_OUT  
−0.3 to +1.32  
SYS_HFXTAL_IN  
SYS_HFXTAL_OUT  
SYS_LFXTAL_IN  
SYS_LFXTAL_OUT  
Table 12. Package Brand Information  
Brand Key  
Field Description  
Product model  
ADuCM3027/ADuCM3029  
DIGITAL INPUT/OUTPUT  
t
Temperature range  
Package type  
pp  
P0.X  
−0.3 to +3.6  
V
P1.X  
P2.X  
SYS_HWRST  
Z
RoHS compliant designation  
See the Ordering Guide section  
Assembly lot code  
Silicon revision  
ccc  
vvvvvv.x  
n.n  
yyww  
Date code  
Rev. 0  
|
Page 16 of 37  
|
March 2017  
 
 
 
ADuCM3027/ADuCM3029  
TIMING SPECIFICATIONS  
Specifications are subject to change without notice.  
Reset Timing  
Table 13 and Figure 5 describe reset timing.  
Table 13. Reset Timing  
Parameter  
Min  
Max  
Unit  
TIMING REQUIREMENTS  
tWRST  
SYS_HWRST Asserted Pulse Width Low1  
4
μs  
1 Applies after power-up sequence is complete.  
tWRST  
SYS_HWRST  
Figure 5. Reset Timing  
System Clock and PLL  
Table 14 describes system clock and phase-locked loop (PLL) specifications.  
Table 14. System Clock and PLL  
Parameter  
Min  
Max  
Unit  
TIMING REQUIREMENTS  
tCK  
PLL Input CLKIN Period1  
PLL Output Frequency 2, 3  
38.5  
16  
62.5  
60  
ns  
fPLL  
MHz  
ns  
tPCLK  
tHCLK  
System Peripheral Clock Period  
38.5  
154  
154  
Advanced High Performance Bus (AHB) Subsystem Clock Period 38.5  
ns  
1 The input to the PLL can come either from the high frequency external crystal or from the high frequency internal RC oscillator. Refer to the ADuCM302x Ultra Low Power  
ARM Cortex-M3 MCU with Integrated Power Management Hardware Reference.  
2 For the minimum value, the recommended settings are PLL_MSEL = 13, PLL_NSEL = 16, and PLL_DIV2 = 1 for PLL input clock = 26 MHz; and PLL_MSEL = 13,  
PLL_NSEL = 26, and PLL_DIV2 = 1 for PLL input clock = 16 MHz.  
3 For the maximum value, the recommended settings are PLL_MSEL = 13, PLL_NSEL = 30, and PLL_DIV2 = 0 for PLL input clock = 26 MHz; and PLL_MSEL = 8,  
PLL_NSEL = 30, and PLL_DIV2 = 0 for PLL input clock= 16 MHz.  
Rev. 0  
| Page 17 of 37 | March 2017  
 
 
 
ADuCM3027/ADuCM3029  
Serial Ports  
To determine whether communication is possible between two devices at a particular clock speed, confirm the following specifications:  
• Frame sync delay and frame sync setup and hold  
• Data delay and data setup and hold  
• Serial clock (SPT_CLK) width  
In Figure 6, use the rising edge or the falling edge of SPT_CLK (external or internal) as the active sampling edge.  
When externally generated, the SPORT clock is called fSPTCLKEXT  
.
1
t
= ------------------------------  
SPTCLKEXT  
f
SPTCLKEXT  
When internally generated, the programmed SPORT clock (fSPTCLKPROG) frequency is set by the following equation:  
f
PCLK  
f
= ----------------------------------------------  
SPTCLKPROG  
2  CLKDIV + 1  
where CLKDIV is a field in the SPORT_DIV register that can be set from 0 to 65535.  
Table 15. Serial Ports—External Clock  
Parameter  
Min  
Max  
Unit  
TIMING REQUIREMENTS  
tSFSE  
Frame Sync Setup Before SPT_CLK (Externally Generated Frame Sync inTransmit or Receive Mode)1 5  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
Frame Sync Hold After SPT_CLK (Externally Generated Frame Sync in Transmit or Receive Mode)1  
5
tSDRE  
tHDRE  
tSCLKW  
tSPTCLK  
Receive Data Setup Before Receive SPT_CLK1  
Receive Data Hold After SPT_CLK1  
SPT_CLK Width2  
5
8
38.5  
77  
SPT_CLK Period2  
SWITCHING CHARACTERISTICS  
tDFSE  
tHOFSE  
tDDTE  
tHDTE  
Frame Sync Delay After SPT_CLK (Internally Generated Frame Sync in Transmit or Receive Mode)3  
Frame Sync Hold After SPT_CLK (Internally Generated Frame Sync in Transmit or Receive Mode)3  
Transmit Data Delay After Transmit SPT_CLK3  
20  
20  
ns  
ns  
ns  
ns  
2
1
Transmit Data Hold After Transmit SPT_CLK3  
1 This specification is referenced to the sample edge.  
2 This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPT_CLK.  
3 This specification is referenced to the drive edge.  
Rev. 0  
| Page 18 of 37 | March 2017  
ADuCM3027/ADuCM3029  
Table 16. Serial Ports—Internal Clock  
Parameter  
Min  
Max  
Unit  
TIMING REQUIREMENTS  
tSDRI  
tHDRI  
SWITCHING CHARACTERISTICS  
Receive Data Setup Before SPT_CLK1  
Receive Data Hold After SPT_CLK1  
25  
0
ns  
ns  
tDFSI  
Frame Sync Delay After SPT_CLK (Internally Generated Frame Sync in Transmit or Receive Mode)2  
Frame Sync Hold After SPT_CLK (Internally Generated Frame Sync in Transmit or Receive Mode)2 –8  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
Transmit Data Delay After SPT_CLK2  
Transmit Data Hold After SPT_CLK2  
SPT_CLK Width  
tHDTI  
–7  
tSCLKIW  
tSPTCLK  
tPCLK – 1.5  
2 × tPCLK – 1  
SPT_CLK Period  
1 This specification is referenced to the sample edge.  
2 This specification is referenced to the drive edge.  
DATA RECEIVE—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
tDFSI  
tDFSE  
tHOFSI  
tHOFSE  
tSFSE  
tHFSE  
SPT0_AFS/SPT0_BFS  
(FRAME SYNC)  
SPT0_AFS/SPT0_BFS  
(FRAME SYNC)  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
SPT0_AD0/SPTO_BD0  
(DATA CHANNEL A/B)  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
SPT0_ACLK/BSPT0_CLK  
(SPORT CLOCK)  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
tDFSI  
tDFSE  
tHOFSI  
tHOFSE  
tSFSE  
tHFSE  
SPT0_AFS/SPT0_BFS  
(FRAME SYNC)  
SPT0_AFS/SPT0_BFS  
(FRAME SYNC)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
Figure 6. Serial Ports  
Rev. 0  
|
Page 19 of 37  
|
March 2017  
 
ADuCM3027/ADuCM3029  
Table 17. Serial Ports—Enable and Three-State  
Parameter  
Min  
Max  
Unit  
SWITCHING CHARACTERISTICS  
tDDTIN  
tDDTTI  
Data Enable From Internal Transmit SPT_CLK1  
Data Disable From Internal Transmit SPT_CLK1  
5
ns  
ns  
160  
1 This specification is referenced to the drive edge.  
DRIVE EDGE  
DRIVE EDGE  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK INTERNAL)  
tDDTIN  
tDDTTI  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
Figure 7. Serial Ports—Enable and Three-State  
Rev. 0  
| Page 20 of 37 | March 2017  
ADuCM3027/ADuCM3029  
SPI Timing  
Table 18, Figure 8, and Figure 9 (for master mode) and Table 19, Figure 10, and Figure 11 (for slave mode) describe SPI timing specifica-  
tions. High speed SPI (SPIH) can be used for high data rate peripherals.  
Table 18. SPI Master Mode Timing1  
Parameter  
Min  
Max  
Unit  
TIMING REQUIREMENTS  
tCS  
CS to SCLK Edge  
0.5 × tPCLK – 3  
tPCLK – 3.5  
tPCLK – 3.5  
5
ns  
ns  
ns  
ns  
ns  
tSL  
SCLK Low Pulse Width  
tSH  
SCLK High Pulse Width  
tDSU  
tDHD  
Data Input Setup Time Before SCLK Edge  
Data Input Hold Time After SCLK Edge  
20  
SWITCHING CHARACTERISTICS  
tDAV  
tDOSU  
tSFS  
Data Output Valid After SCLK Edge  
25  
ns  
ns  
ns  
Data Output Setup Before SCLK Edge  
CS High After SCLK Edge  
tPCLK – 2.2  
0.5 × tPCLK – 3  
1 This specification is characterized with respect to double drive strength.  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
MOSI  
MISO  
MSB  
BIT 6 TO BIT 1  
BIT 6 TO BIT 1  
LSB  
MSB IN  
LSB IN  
tDSU  
tDHD  
Figure 8. SPI Master Mode Timing (Phase Mode = 1)  
Rev. 0  
| Page 21 of 37 | March 2017  
 
 
ADuCM3027/ADuCM3029  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
tDOSU  
MOSI  
MISO  
MSB  
BIT 6 TO BIT 1  
BIT 6 TO BIT 1  
LSB  
MSB IN  
LSB IN  
tDSU  
tDHD  
Figure 9. SPI Master Mode Timing (Phase Mode = 0)  
Table 19. SPI Slave Mode Timing  
Parameter  
Min  
Max  
Unit  
TIMING REQUIREMENTS  
tCS  
CS to SCLK Edge  
SCLK Low Pulse Width  
38.5  
ns  
ns  
ns  
ns  
ns  
tSL  
38.5  
38.5  
6
tSH  
SCLK High Pulse Width  
tDSU  
Data Input Setup Time Before SCLK Edge  
Data Input Hold Time After SCLK Edge  
tDHD  
8
SWITCHING CHARACTERISTICS  
tDAV  
tDOCS  
tSFS  
Data Output Valid After SCLK Edge  
Data Output Valid After CS Edge  
CS High After SCLK Edge  
25  
ns  
ns  
ns  
20  
38.5  
Rev. 0  
| Page 22 of 37 | March 2017  
ADuCM3027/ADuCM3029  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
MISO  
MOSI  
MSB  
BIT 6 TO BIT 1  
BIT 6 TO BIT 1  
LSB  
MSB IN  
LSB IN  
tDSU  
tDHD  
Figure 10. SPI Slave Mode Timing (Phase Mode = 1)  
CS  
tCS  
tSFS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
tDOCS  
MISO  
MOSI  
MSB  
BIT 6 TO BIT 1  
BIT 6 TO BIT 1  
LSB  
MSB IN  
LSB IN  
tDSU  
tDHD  
Figure 11. SPI Slave Mode Timing (Phase Mode = 0)  
Rev. 0  
| Page 23 of 37 | March 2017  
ADuCM3027/ADuCM3029  
General-Purpose Port Timing  
Table 20 and Figure 12 describe general-purpose port timing.  
Table 20. General-Purpose Port Timing  
Parameter  
Min  
Max  
Unit  
TIMING REQUIREMENTS  
tWFI  
General-Purpose Port Pin Input Pulse Width  
4 × tPCLK  
ns  
tWFI  
GPIO INPUT  
Figure 12. General-Purpose Port Timing  
Timer PWM_OUT Cycle Timing  
Table 21 and Figure 13 describe timer PWM_OUT cycle timing.  
Table 21. Timer PWM_OUT Cycle Timing  
Parameter  
Min  
Max  
256 × (216 – 1)  
Unit  
SWITCHING CHARACTERISTICS  
tPWMO  
Timer Pulse Width Output  
4 × tPCLK – 6  
ns  
PWM OUTPUTS  
tPWM0  
Figure 13. Timer PWM_OUT Cycle Timing  
Rev. 0  
| Page 24 of 37 | March 2017  
 
 
 
 
ADuCM3027/ADuCM3029  
MCU TEST CONDITIONS  
DRIVER TYPES  
The ac signal specifications (timing parameters) that appear in  
this data sheet include output disable time, output enable time,  
and others. Timing is measured on signals when they cross the  
Table 22 shows driver types.  
Table 22. Driver Types  
V
MEAS level as described in Figure 14. All delays (in ns or μs) are  
Driver Type1, 2, 3 Associated Pins  
measured between the point that the first signal reaches VMEAS  
and the point that the second signal reaches VMEAS. The value of  
VMEAS is set to VBAT/2.  
Type A  
P0_00, P0_01, P0_02, P0_03, P0_07, P0_10,  
P0_11, P0_12, P0_13, P0_15, P1_00, P1_01,  
P1_02, P1_03, P1_04, P1_05, P1_06, P1_07,  
P1_08, P1_09, P1_10, P1_15, P2_00, P2_01,  
P2_04, P2_05, P2_06, P2_07, P2_08, P2_09,  
P2_10, P2_11, SYS_HWRST  
Input  
or  
Output  
V
V
ME AS  
ME AS  
Type B  
P0_08, P0_09, P0_14, P1_11, P1_12, P1_13,  
P1_14, P2_02  
Figure 14. Voltage Reference Levels for AC Measurements  
(Except Output Enable/Disable)  
Type C  
Type D  
P0_04, P0_05  
P0_06  
1 In single drive mode, the maximum source/sink capacity is 2 mA.  
2 In double drive mode, the maximum source/sink capacity is 4 mA.  
3 At maximum drive capacity, only 16 GPIOs are allowed to switch at any given  
point of time.  
Tester Pin Electronics  
50 ꢀ:  
V
Load  
T1  
DUT  
Output  
45 ꢀ:  
70 ꢀ:  
ZO = 50 :ꢀ(Impedance)  
TD = 4.04 r 1.18 ns  
50 ꢀ:  
0.5 pF  
4 pF  
2 pF  
400 ꢀ:  
NOTES:  
THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED  
FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE  
EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR  
LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.  
ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN  
SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE  
EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.  
Figure 15. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
Rev. 0  
| Page 25 of 37 | March 2017  
 
 
ADuCM3027/ADuCM3029  
Figure 16 through Figure 21 show the typical current voltage  
characteristics for the output drivers of the MCU.  
The curves represent the current drive capability of the output  
drivers as a function of output voltage.  
VOH (V)  
VOH (V)  
2.7  
2.75  
2.8  
2.85  
2.9  
2.95  
3
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
5
4
5
4
Type B  
Type A  
Type A  
3
3
,
-3.0V  
,
-1.74V  
2
2
Type B  
1
1
0
0
Type C,D  
Type C,D  
-1  
-2  
-3  
-1  
-2  
-3  
-4  
-5  
Type A,C,D  
Type A,C,D  
,
-3.0V  
,
-1.74V  
Source/Sink VBAT Current (mA)  
Type B  
Type B  
-4  
-5  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
VOL (V)  
VOL (V)  
Figure 16. Output Double Drive Strength Characteristics (VBAT = 1.74 V)  
Figure 18. Output Double Drive Strength Characteristics (VBAT = 3.0 V)  
VOH (V)  
VOH (V)  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
2.75  
2.8  
2.85  
2.9  
2.95  
3
2.5  
2
2.5  
2
Type A  
,
-1.74V  
Type B  
Type A  
1.5  
1
1.5  
1
,
-3.0V  
Type B  
0.5  
0
0.5  
0
Type C,D  
Type C,D  
-0.5  
-1  
- 0.5  
-1  
Type A,C,D  
Type D  
,
-3.0V  
,
-1.74V  
-1.5  
-2  
-1.5  
-2  
Type B  
Type B  
Type A,C  
-2.5  
-2.5  
0
0.1  
0.2  
0.4  
0.5  
0.6  
VOL (V) 0.3  
0
0.05  
0.1  
0.15  
0.2  
0.25  
VOL (V)  
Figure 17. Output Single Drive Strength Characteristics (VBAT = 1.74 V)  
Figure 19. Output Single Drive Strength Characteristics (VBAT = 3.0 V)  
Rev. 0  
|
Page 26 of 37  
|
March 2017  
 
ADuCM3027/ADuCM3029  
VOH (V)  
VOH (V)  
3.3  
3.35  
3.4  
3.45  
3.5  
3.55  
3.6  
3.38  
3.4  
3.42  
3.44  
3.46  
3.48  
3.5  
3.52  
3.54  
3.56  
3.58  
5
4
2.5  
2
Type B  
Type B  
Type A  
Type A  
3
1.5  
1
2
,
-3.6V  
,
-3.6V  
1
0.5  
0
0
Type C,D  
Type C,D  
-1  
-2  
-3  
-4  
-5  
-0.5  
-1  
Type A  
Type B  
,
-3.6V  
,
-3.6V  
Type B  
-1.5  
-2  
Type C,D  
Type A,C,D  
-2.5  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.05  
0.1  
0.15  
0.2  
0.25  
VOL (V)  
VOL (V)  
Figure 20. Output Double Drive Strength Characteristics (VBAT = 3.6 V)  
Figure 21. Output Single Drive Strength Characteristics (VBAT = 3.6 V)  
Rev. 0  
|
Page 27 of 37  
|
March 2017  
ADuCM3027/ADuCM3029  
Values of JA are provided for package comparison and PCB  
design considerations. JA can be used for a first-order approxi-  
mation of TJ by the equation:  
ENVIRONMENTAL CONDITIONS  
Table 23. Thermal Characteristics (64-Lead LFCSP)  
TJ = TA + JA PD  
Parameter  
Typ  
28.2  
5.4  
Unit  
°C/W  
°C/W  
JA  
JC  
where:  
TA is ambient temperature (°C).  
TJ is junction temperature (°C).  
PD is power dissipation (To calculate PD, see the Power Supply  
Current section).  
Values of JC are provided for package comparison and PCB  
design considerations when an external heat sink is required.  
Rev. 0  
| Page 28 of 37 | March 2017  
ADuCM3027/ADuCM3029  
PIN CONFIGURATION AND FUNCTION DESCRIPTION  
Figure 22 shows an overview of signal placement on the 64-Lead LFCSP_WQ.  
VBAT_ANA1  
SYS_HFXTAL_IN  
SYS_HFXTAL_OUT  
SYS_LFXTAL_IN  
SYS_LFXTAL_OUT  
VDCDC_CAP1N  
VDCDC_CAP1P  
VBAT_ANA2  
1
2
3
4
5
6
7
8
9
48 GND_DIG  
47 XINT0_WAKE1/GPIO16  
46 TRM0_OUT/SPI1_RDY/GPIO14  
45 SPT0_ACNV/SPI1_CS2/GPIO34  
44 SPI0_RDY/GPIO30  
43 GPIO29  
42 GPIO28  
ADuCM3027/  
ADuCM3029  
41 TMR1_OUT/GPIO27  
40 BPR0_TONE_N/GPIO08  
39 BPR0_TONE_P/SPI2_CS1/GPIO09  
38 GPIO17/SYS_BMODE0  
37 SPT0_ACLK/GPIO31  
36 SPT0_AFS/GPIO32  
VDCDC_OUT  
TOP VIEW  
VDCDC_CAP2N 10  
VDCDC_CAP2P 11  
VLDO_OUT 12  
VREF_ADC 13  
VBAT_ADC 14  
GND_VREFADC 15  
ADC0_VIN0/GPIO35 16  
35 SPT0_AD0/UART0_SOUT_EN/GPIO12  
34 VBAT_DIG1  
33  
SPI1_CS1/SYS_CLKOUT/GPIO43/RTC1_SS1  
Figure 22. 64-Lead LFCSP Configuration  
Rev. 0  
| Page 29 of 37 | March 2017  
 
ADuCM3027/ADuCM3029  
Figure 23 shows an overview of signal placement on the 54-Ball WLCSP.  
12  
10  
VDCDC_CAP2N  
8
6
4
2
13  
VBAT_ADC  
11  
9
7
5
3
1
VBAT_ANA1  
SYS_LFXTAL_IN  
VLDO_OUT  
VDCDC_CAP1P  
SYS_HFXTAL_OUT  
A
B
C
D
E
F
VDCDC_CAP2P  
SYS_LFXTAL_OUT  
P2_03  
VREF_ADC  
P0_00  
P0_03  
VDCDC_CAP1N  
SYS_HFXTAL_IN  
P2_05 GND_VREFADC VDCDC_OUT VBAT_ANA2  
P0_02  
P0_11  
P0_01  
P0_05  
P0_06  
P2_06  
P0_07  
P2_04  
P0_04  
GND_ANA  
P1_10  
P1_02  
P0_10  
P1_03  
SYS_HWRST GND_DIG  
P1_07  
P1_08  
P1_09  
P1_04  
P1_05  
P2_01  
VBAT_DIG1  
P2_11  
P1_06  
P1_01  
P0_13  
P0_15  
VBAT_DIG2  
G
H
P0_12  
P0_09  
P0_08  
P1_14  
P0_14  
P1_00  
BOTTOM VIEW  
(BALL SIDE UP)  
Not to Scale  
Figure 23. 54-Ball WLCSP Configuration  
Rev. 0  
| Page 30 of 37 | March 2017  
 
ADuCM3027/ADuCM3029  
Table 24 lists the signal descriptions of the ADuCM3027/ADuCM3029 MCUs.  
Table 24. Signal Functional Descriptions  
GPIO Signal Name  
SPIn_CLK  
Description  
SPI Clock. n = 0, 1, 2.  
SPIn_MOSI  
SPIn_MISO  
SPIn_RDY  
SPI Master Out Slave In. n = 0, 1, 2.  
SPI Master In Slave Out. n = 0, 1, 2.  
SPI Ready Signal. n = 0, 1, 2.  
SPI Chip Select Signal. n = 0, 1, 2 and m = 0, 1, 2, 3.  
SPORT A Clock Signal.  
SPIn_CSm  
SPT0_ACLK  
SPT0_AFS  
SPORT A Frame Sync.  
SPT0_AD0  
SPORT A Data Pin 0.  
SPT0_ACNV  
SPT0_BCLK  
SPT0_BFS  
SPORT A Converter Signal for Interface with ADC.  
SPORT B Clock Signal.  
SPORT B Frame Sync.  
SPT0_BD0  
SPORT B Data Pin 0.  
SPT0_BCNV  
I2C0_SCL  
SPORT B Converter Signal for Interface with ADC.  
I2C Clock.  
I2C Data.  
I2C0_SDA  
SWD0_CLK  
SWD0_DATA  
BPR0_TONE_N  
BPR0_TONE_P  
UART0_TX  
Serial Wire Debug Clock.  
Serial Wire Debug Data.  
Beeper Tone Negative Pin.  
Beeper Tone Positive Pin.  
UART Transmit Pin.  
UART0_RX  
UART Receive Pin.  
UART0_SOUT_EN  
XINT0_WAKEn  
TMRn_OUT  
SYS_BMODE0  
SYS_CLKIN  
SYS_CLKOUT  
RTC1_SS1  
UART Serial Data Out Pin.  
System Wake-Up Pin. Wake Up from Flexi/Hibernate/Shutdown Modes1. n = 0, 1, 2, 3.  
Timer Output Pin. n = 0, 1, 2.  
Boot Mode Pin.  
External Clock In Pin.  
External Clock Out Pin.  
RTC1 SensorStrobe Pin.  
ADC0_VINn  
ADC Voltage Input Pin. n = 0, 1, 2, 3, 4, 5, 6, 7.  
1
For shutdown, XINT0_WAKE3 is not capable of waking the device from shutdown mode.  
Rev. 0  
| Page 31 of 37 | March 2017  
 
ADuCM3027/ADuCM3029  
Table 25 lists the 64-Lead LFCSP_WQ package by pin number for the ADuCM3027/ADuCM3029 MCUs.  
Table 25. Pin Function Descriptions, 64-Lead LFCSP_WQ  
Pin No.  
1
GPIO  
Signal Name  
Description  
GPIO Pull  
VBAT_ANA1  
Analog 3 V Supply.  
2
SYS_HFXTAL_IN  
26 MHz High Frequency Crystal.  
26 MHz High Frequency Crystal.  
32 kHz Low Frequency Crystal.  
32 kHz Low Frequency Crystal.  
Buck Fly Capacitor.  
3
SYS_HFXTAL_OUT  
SYS_LFXTAL_IN  
4
5
SYS_LFXTAL_OUT  
VDCDC_CAP1N  
6
7
VDCDC_CAP1P  
Buck Fly Capacitor.  
8
VBAT_ANA2  
Analog 3 V Supply.  
9
VDCDC_OUT  
Buck Output Capacitor.  
Buck Fly Capacitor.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
VDCDC_CAP2N  
VDCDC_CAP2P  
Buck Fly Capacitor.  
VLDO_OUT  
LDO Output Capacitor.  
Analog Reference Voltage for ADC.  
Analog 3 V Supply for ADC.  
Reference Ground for ADC.  
VREF_ADC  
VBAT_ADC  
GND_VREFADC  
P2_03  
P2_04  
P2_05  
P2_06  
P2_07  
P2_08  
P2_09  
P2_10  
P0_05  
ADC0_VIN0/GPIO35  
ADC0_VIN1/GPIO36  
ADC0_VIN2/GPIO37  
ADC0_VIN3/GPIO38  
ADC0_VIN4/SPI2_CS3/GPIO39  
ADC0_VIN5/SPI0_CS2/GPIO40  
ADC0_VIN6/SPI0_CS3/GPIO41  
ADC0_VIN7/SPI2_CS2/GPIO42  
I2C0_SDA/GPIO05  
SYS_HWRST  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
System Hardware Reset.  
P0_04  
P0_07  
P0_06  
P1_09  
P1_08  
P1_07  
P1_06  
P2_11  
I2C0_SCL/GPIO04  
GPIO07/SWD0_DATA  
GPIO06/SWD0_CLK  
SPI1_CS0/GPIO25  
SPI1_MISO/GPIO24  
SPI1_MOSI/GPIO23  
SPI1_CLK/GPIO22  
SPI1_CS1/SYS_CLKOUT/GPIO43/RTC1_SS1  
VBAT_DIG1  
PU  
PU  
PD  
PU  
PU  
PU  
PU  
PU  
Digital 3 V Supply.  
P0_12  
P2_00  
P1_15  
P1_01  
P0_09  
P0_08  
P1_11  
P1_12  
P1_13  
P1_14  
P2_02  
SPT0_AD0/GPIO12  
SPT0_AFS/GPIO32  
SPT0_ACLK/GPIO31  
GPIO17/SYS_BMODE0  
BPR0_TONE_P/SPI2_CS1/GPIO09  
BPR0_TONE_N/GPIO08  
TMR1_OUT/GPIO27  
GPIO28  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
GPIO29  
SPI0_RDY/GPIO30  
SPT0_ACNV/SPI1_CS2/GPIO34  
Rev. 0  
| Page 32 of 37 | March 2017  
 
ADuCM3027/ADuCM3029  
Table 25. Pin Function Descriptions, 64-Lead LFCSP_WQ (Continued)  
Pin No.  
GPIO  
P0_14  
P1_00  
Signal Name  
Description  
GPIO Pull  
PU  
46  
TMR0_OUT/SPI1_RDY/GPIO14  
XINT0_WAKE1/GPIO16  
GND_DIG  
47  
PU  
48  
Digital Ground.  
49  
VBAT_DIG2  
Digital 3 V Supply.  
50  
P0_15  
P0_13  
P2_01  
P1_05  
P1_04  
P1_03  
P1_02  
P0_11  
P0_10  
P1_10  
P0_03  
P0_02  
P0_01  
P0_00  
XINT0_WAKE0/GPIO15  
XINT0_WAKE2/GPIO13  
XINT0_WAKE3/TMR2_OUT/GPIO33  
SPI2_CS0/GPIO21  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
51  
52  
53  
54  
SPI2_MISO/GPIO20  
55  
SPI2_MOSI/GPIO19  
56  
SPI2_CLK/GPIO18  
57  
UART0_RX/GPIO11  
58  
UART0_TX/GPIO10  
59  
SPI0_CS1/SYS_CLKIN/SPI1_CS3/GPIO26  
SPI0_CS0/SPT0_BCNV/SPI2_RDY/GPIO03  
SPI0_MISO/SPT0_BD0/GPIO02  
SPI0_MOSI/SPT0_BFS/GPIO01  
SPI0_CLK/SPT0_BCLK/GPIO00  
GND_ANA  
60  
61  
62  
63  
64  
Analog Ground.  
Ground.  
Exposed Pad  
GND  
Rev. 0  
| Page 33 of 37 | March 2017  
ADuCM3027/ADuCM3029  
Table 26 lists the 54-Ball WLCSP package by ball number for the ADuCM3027/ADuCM3029 MCUs.  
Table 26. Pin Function Descriptions, 54-Ball WLCSP  
Ball No. GPIO  
Pin Label  
Description  
GPIO Pull  
A01  
A03  
A05  
A07  
A09  
A11  
A13  
VBAT_ANA1  
Analog 3 V Supply.  
SYS_HFXTAL_OUT  
SYS_LFXTAL_IN  
26 MHz High Frequency Crystal.  
32 kHz Low Frequency Crystal.  
Buck Fly Capacitor.  
VDCDC_CAP1P  
VDCDC_CAP2N  
Buck Fly Capacitor.  
VLDO_OUT  
LDO Output Capacitor  
Analog 3 V Supply for ADC.  
VBAT_ADC  
B01  
B03  
B05  
B07  
B09  
B11  
B13  
C01  
C03  
C05  
C07  
C09  
C11  
C13  
D01  
D03  
D05  
D07  
D09  
D11  
D13  
E01  
E03  
E05  
E07  
E09  
E11  
E13  
F02  
F04  
F06  
F08  
F10  
F12  
G01  
G03  
P0_00  
SPI0_CLK/SPT0_BCLK/GPIO00  
SYS_HFXTAL_IN  
PU  
26 MHz High Frequency Crystal.  
32 kHz Low Frequency Crystal.  
Buck Fly Capacitor.  
SYS_LFXTAL_OUT  
VDCDC_CAP1N  
VDCDC_CAP2P  
Buck Fly Capacitor.  
VREF_ADC  
Analog Reference Voltage for ADC.  
P2_03  
P0_03  
P0_01  
P0_02  
ADC0_VIN0/GPIO35  
SPI0_CS0/SPT0_BCNV/SPI2_RDY/GPIO03  
SPI0_MOSI/SPT0_BFS/GPIO01  
SPI0_MISO/SPT0_BD0/GPIO02  
VBAT_ANA2  
PU  
PU  
PU  
PU  
Analog 3 V Supply.  
VDCDC_OUT  
Buck Output Capacitor.  
Reference Ground for ADC.  
GND_VREFADC  
P2_05  
P0_10  
P1_10  
P0_11  
ADC0_VIN2/GPIO37  
UART0_TX/GPIO10  
SPI0_CS1/SYS_CLKIN/SPI1_CS3/GPIO26  
UART0_RX/GPIO11  
GND_ANA  
PU  
PU  
PU  
PU  
Analog Ground.  
P2_04  
P2_06  
P0_05  
P1_03  
P1_02  
ADC0_VIN1/GPIO36  
ADC0_VIN3/GPIO38  
I2C0_SDA/GPIO05  
SPI2_MOSI/GPIO19  
SPI2_CLK/GPIO18  
GND_DIG  
PU  
PU  
PU  
PU  
PU  
Digital Ground.  
SYS_HWRST  
System Hardware Reset.  
P0_04  
P0_07  
P0_06  
P2_01  
P1_05  
P1_04  
P1_09  
P1_08  
P1_07  
I2C0_SCL/GPIO04  
GPIO07/SWD0_DATA  
GPIO06/SWD0_CLK  
XINT0_WAKE3/TMR2_OUT/GPIO33  
SPI2_CS0/GPIO21  
SPI2_MISO/GPIO20  
SPI1_CS0/GPIO25  
SPI1_MISO/GPIO24  
SPI1_MOSI/GPIO23  
VBAT_DIG2  
PU  
PU  
PD  
PU  
PU  
PU  
PU  
PU  
PU  
Digital 3 V Supply.  
P0_15  
XINT0_WAKE0/GPIO15  
PU  
Rev. 0  
| Page 34 of 37 | March 2017  
 
ADuCM3027/ADuCM3029  
Table 26. Pin Function Descriptions, 54-Ball WLCSP (Continued)  
Ball No. GPIO  
Pin Label  
Description  
GPIO Pull  
G05  
G07  
G09  
G11  
G13  
H02  
H04  
H06  
H08  
H10  
H12  
P0_13  
P1_01  
P1_06  
P2_11  
XINT0_WAKE2/GPIO13  
GPIO17/SYS_BMODE0  
SPI1_CLK/GPIO22  
PU  
PU  
PU  
PU  
SPI1_CS1/SYS_CLKOUT/GPIO43/RTC1_SS1  
VBAT_DIG1  
Digital 3 V Supply.  
P1_00  
P0_14  
P1_14  
P0_08  
P0_09  
P0_12  
XINT0_WAKE1/GPIO16  
TMR0_OUT/SPI1_RDY/GPIO14  
SPI0_RDY/GPIO30  
PU  
PU  
PU  
PU  
PU  
PU  
BPR0_TONE_N/GPIO08  
BPR0_TONE_P/SPI2_CS1/GPIO09  
SPT0_AD0/GPIO12/UART0_SOUT_EN  
Rev. 0  
| Page 35 of 37 | March 2017  
ADuCM3027/ADuCM3029  
OUTLINE DIMENSIONS  
9.10  
9.00 SQ  
8.90  
0.30  
0.25  
0.20  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
49  
64  
1
48  
0.50  
BSC  
EXPOSED  
PAD  
4.60  
4.50 SQ  
4.40  
16  
33  
32  
17  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
7.50 REF  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.203 REF  
Figure 24. 64-Lead Frame Chip Scale Package [LFCSP]  
9 mm x 9 mm Body and 0.75 mm Package Height  
(CP-64-16)  
Dimensions shown in mm  
Note: Exposed pad must be grounded  
2.800  
2.760 SQ  
2.720  
0.210  
13 11  
12 10  
8
6
4
2
3
1
0.108  
9
7
5
A
B
C
D
E
F
0.35  
BSC  
BALL A1  
IDENTIFIER  
0.303  
BSC  
G
H
0.350  
BSC  
TOP VIEW  
BOTTOM VIEW  
(BALL SIDE UP)  
0.103  
(BALL SIDE DOWN)  
0.320  
0.290  
0.260  
0.530  
0.470  
0.410  
END VIEW  
COPLANARITY  
0.05  
0.280  
0.240  
0.200  
SEATING  
PLANE  
0.210  
0.180  
0.150  
Figure 25. 54-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-54-1)  
Dimensions shown in mm  
Rev. 0  
| Page 36 of 37 | March 2017  
ADuCM3027/ADuCM3029  
ORDERING GUIDE  
Model1  
Description  
Temperature2, 3 Package Description Package Option  
54-Ball WLCSP, 13” Reel  
ULP ARM Cortex-M3 with 128 KB Embedded Flash  
ULP ARM Cortex-M3 with 128 KB Embedded Flash  
ADUCM3027BCBZ-RL  
ADUCM3027BCBZ-R7  
ADUCM3027BCPZ  
ADUCM3027BCPZ-RL  
−40°C to +85°C  
CB-54-1  
−40°C to +85°C 54-Ball WLCSP, 7” Reel CB-54-1  
ULP ARM Cortex-M3 with 128 KB Embedded Flash −40°C to +85°C 64-Lead LFCSP  
ULP ARM Cortex-M3 with 128 KB Embedded Flash 64-Lead LFCSP, 13” Reel  
CP-64-16  
CP-64-16  
−40°C to +85°C  
ADUCM3027BCPZ-R7 ULP ARM Cortex-M3 with 128 KB Embedded Flash −40°C to +85°C 64-Lead LFCSP, 7Reel CP-64-16  
ADUCM3029BCBZ-RL ULP ARM Cortex-M3 with 256 KB Embedded Flash −40°C to +85°C 54-Ball WLCSP, 13” Reel CB-54-1  
ADUCM3029BCBZ-R7 ULP ARM Cortex-M3 with 256 KB Embedded Flash −40°C to +85°C 54-Ball WLCSP, 7” Reel CB-54-1  
ADUCM3029BCPZ  
ULP ARM Cortex-M3 with 256 KB Embedded Flash −40°C to +85°C 64-Lead LFCSP  
64-Lead LFCSP, 13” Reel  
CP-64-16  
CP-64-16  
ADUCM3029BCPZ-RL ULP ARM Cortex-M3 with 256 KB Embedded Flash −40°C to +85°C  
ADUCM3029BCPZ-R7 ULP ARM Cortex-M3 with 256 KB Embedded Flash −40°C to +85°C 64-Lead LFCSP, 7Reel CP-64-16  
ADZS-UCM3029EZLITE ADuCM3029 Evaluation Kit  
−40°C to +85°C 64-Lead LFCSP  
CP-64-16  
1 Z = RoHS Compliant Part.  
2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. See the Absolute Maximum Ratings section for TJ (junction temperature)  
specification which is the only temperature specification.  
3 These are preproduction devices. See ENG-Grade agreement for details.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14168-0-3/17(0)  
Rev. 0  
| Page 37 of 37 | March 2017  

相关型号:

ADUCM3027BCPZ-RL

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029-1BCPZ

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029-1BCPZ-R7

RISC Microcontroller
ADI

ADUCM3029-2BCPZ

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029-2BCPZ-R7

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029BCBZ-R7

ADUCM3029BCBZ-R7
ADI

ADUCM3029BCBZ-RL

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029BCPZ

ADUCM3029BCPZ
ADI

ADUCM3029BCPZ-R7

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM3029BCPZ-RL

Ultra Low Power Arm Cortex-M3 MCU with Integrated Power Management
ADI

ADUCM310BBCZ

Precision Analog Microcontroller, Tunable Optical Control Microcontroller
ADI