ADUCM310BBCZ [ADI]

Precision Analog Microcontroller, Tunable Optical Control Microcontroller;
ADUCM310BBCZ
型号: ADUCM310BBCZ
厂家: ADI    ADI
描述:

Precision Analog Microcontroller, Tunable Optical Control Microcontroller

微控制器 外围集成电路
文件: 总28页 (文件大小:542K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Analog Microcontroller, Tunable  
Optical Control Microcontroller  
ADuCM310  
Data Sheet  
External 16 MHz crystal option  
External clock source  
Memory  
2× 128 kB Flash/EE memories, 32 kB SRAM  
In-circuit download, SW-DP-based debugging  
Software triggered in-circuit reprogrammability  
On-chip peripherals  
UART, 2× I2C and 2× SPI serial input/output  
28-pin general-purpose input/output (GPIO) port  
3 general-purpose timers  
FEATURES  
Analog input/output  
22-channel, 14-bit, 800 kSPS analog-to-digital  
converter (ADC)  
10 external channels  
1 on-chip die temperature monitor  
6 current output digital-to-analog converter (IDAC)  
monitor channels  
3 power monitor channels  
2 buffered reference output channels  
Fully differential and single-ended modes  
0 V to 2.5 V analog input range  
Wake-up (W/U) timer  
Watchdog timer (WDT)  
32-element programmable logic array (PLA)  
Vectored interrupt controller  
Interrupt on edge or level external pin inputs  
9× external interrupts  
Power  
Multiple supplies  
6 low noise, 12-/14-bit IDAC outputs  
1× 250 mA, 1× 200 mA, 2× 100 mA, and 2× 20 mA  
Semiconductor optical amplifier (SOA) IDAC pull-down  
to −3.0 V for fast current sink  
Eight 12-bit voltage output DACs (VDACs)  
Channel 0 and Channel 1: 0 V to 3 V, 75 Ω load  
Channel 2 and Channel 3: −5 V to 0 V, 500 Ω load  
Channel 4 and Channel 5: 0 V to 3 V, 300 Ω load  
Channel 6: 0 V to 5 V, 500 Ω load  
5 V for VDAC6 and VDAC7  
3.3 V for digital and analog inputs/outputs  
1.8 V to 2.7 V for IDACs  
−5 V supply for IDAC3 and VDAC2/VDAC3  
Package and temperature range  
6 mm × 6 mm, 112-ball CSP_BGA package  
Fully specified for −40°C to +85°C ambient operation  
Tools  
Channel 7: 0 V to 5 V, 100 Ω load  
2.5 V, on-chip voltage reference  
2 buffered 2.5 V outputs  
Microcontroller  
ARM Cortex-M3 processor, 32-bit RISC architecture  
Serial wire port supports code download and debugging  
Clocking options  
QuickStart™ development system  
Full third party support  
APPLICATIONS  
Optical modules—tunable laser modules  
Trimmed on-chip oscillator ( 3%)  
80 MHz phase-locked loop (PLL)  
FUNCTIONAL BLOCK DIAGRAM  
32.786kHz  
16MHz OSC  
80MHz PLL  
AIN0  
AIN9  
RESET  
POR  
14-BIT  
SAR  
ADC  
MUX  
BUF  
IOVDDx  
PVDD_IDACx  
AVDDx  
ON-CHIP  
1.8V LDO  
INTERNAL CHANNELS,  
IDACs, TEMPERATURE,  
SUPPLIES  
ARM  
CORTEX-M3  
PROCESSOR  
DGNDx  
PGND  
GPIO PORTS  
UART PORT  
2 × SPI PORT  
2.5V BAND  
VREF_1.2  
BUF_VREF2.5A  
BUF_VREF2.5B  
GAP V  
REF  
2
2 × I C PORT  
MEMORY  
256k FLASH  
32k SRAM  
EXT IRQs  
GENERAL-  
PURPOSE  
I/O PORTS  
VDAC  
VDAC0  
3 × GP TIMER  
WD TIMER  
W/U TIMER  
PWM  
DMA  
NVIC  
VDAC7  
IDAC0  
VDAC  
IDAC  
ADuCM310  
PLA  
32 × ELEMENTS  
SWDIO  
SWCLK  
SERIAL  
WIRE  
IDAC5  
IDAC  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
ADUCM310* PRODUCT PAGE QUICK LINKS  
Last Content Update: 08/02/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADuCM310 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
Quality And Reliability  
ADuCM310 Evaluation Board  
Symbols and Footprints  
DOCUMENTATION  
Application Notes  
DISCUSSIONS  
View all ADuCM310 EngineerZone Discussions.  
AN-1160: Cortex-M3 Based ADuCxxx Serial Download  
Protocol  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AN-1322: ADuCM320 Code Execution Speed  
Data Sheet  
ADuCM310: Precision Analog Microcontroller, Tunable  
Optical Control Microcontroller Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
User Guides  
UG-549: How to Set Up and Use the ADuCM310  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
UG-829: ADuCM310 Development Systems Getting  
Started Tutorial  
TOOLS AND SIMULATIONS  
ADuCM310 CMSIS Pack  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADuCM310  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.................................................................... 17  
ESD Caution................................................................................ 17  
Pin Configuration and Function Descriptions........................... 18  
Typical Performance Characteristics ........................................... 22  
Recommended Circuit and Component Values ........................ 25  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
Timing Specifications ................................................................ 12  
Absolute Maximum Ratings.......................................................... 17  
REVISION HISTORY  
7/2017—Rev. A to Rev. B  
Change to Features ........................................................................... 1  
Change to General Description...................................................... 3  
Changes to Specifications Section and Table 1............................. 4  
Added Endnote 1, Table 1; Renumbered Sequentially .............. 12  
11/2015—Rev. 0 to Rev. A  
Change to Features Section ............................................................. 1  
Changes to Specifications Section and Table 1............................. 4  
Changes to Table 6 and Figure 5................................................... 15  
Changes to Table 7 and Figure 6................................................... 16  
Changes to Figure 7........................................................................ 18  
5/2015—Revision 0: Initial Version  
Rev. B Page 2 of 27  
 
Data Sheet  
ADuCM310  
GENERAL DESCRIPTION  
The ADuCM310 is a multidie stack, on-chip system designed  
for diagnostic control of tunable laser optical module applications.  
The ADuCM310 features a 16-bit (14-bit accurate) multichannel  
successive approximation register (SAR) ADC, an ARM  
Cortex™-M3 processor, eight voltage DACs (VDACs), six  
current output DACs, and Flash/EE memory packaged in a  
6 mm × 6 mm, 112-ball CSP_BGA package.  
The ADuCM310 also provides 2× buffered reference outputs  
capable of sourcing up to 1.2 mA. These outputs can be used  
externally to the chip.  
The ADuCM310 integrates an 80 MHz ARM Cortex-M3  
processor. It is a 32-bit reduced instruction set computer (RISC)  
machine, offering up to 100 DMIPS peak performance. The ARM  
Cortex-M3 processor also has a flexible 14-channel direct  
memory access (DMA) controller supporting serial peripheral  
interface (SPI), UART, and I2C communication peripherals. The  
ADuCM310 has 256 kB of nonvolatile Flash/EE memory and  
32 kB of SRAM integrated on-chip.  
The bottom die in the stack supports the bulk of the low voltage  
analog circuitry and is the largest of the three die. It contains  
the ADC, VDACs, main IDAC circuits, as well as other analog  
support circuits, such as the low drift precision 2.5 V voltage  
reference source.  
A 16 MHz on-chip oscillator generates the 80 MHz system  
clock. This clock internally divides to allow the processor to  
operate at lower frequency, thus saving power. A low power  
internal 32 kHz oscillator is available and can clock the timers.  
The ADuCM310 includes three general-purpose timers, a  
wake-up timer (which can be used as a general-purpose timer),  
and a system watchdog timer.  
The middle die in the stack supports the bulk of the digital  
circuitry, including the ARM Cortex-M3 processor, the flash  
and SRAM blocks, and all of the digital communication  
peripherals. In addition, this die provides the clock sources for  
the whole chip. A 16 MHz internal oscillator is the source of the  
internal PLL that outputs an 80 MHz system clock.  
The top die, which is the smallest die, was developed on a high  
voltage process, and this die supports the −5 V and +5 V VDAC  
outputs. It also implements the SOA IDAC current sink circuit  
that allows the external SOA diode to pull to a −3.0 V level to  
implement the fast shutdown of the laser output.  
A range of communication peripherals can be configured as  
required in a specific application. These peripherals include  
UART, 2 × I2C, 2 × SPI, GPIO ports, and pulse-width  
modulation (PWM).  
On-chip factory firmware supports in-circuit serial download via  
the UART, while nonintrusive emulation and program download  
are supported via the serial wire debug port (SW-DP) interface.  
These features are supported on the EVAL-ADuCM310QSPZ  
development system.  
Regarding the individual blocks, the ADC is capable of  
operating at conversion rates up to 800 kSPS. There are  
10 external inputs to the ADC, which can be single ended or  
differential. Several internal channels are included, such as the  
supply monitor channels, an on-chip temperature sensor, and  
internal voltage reference monitors.  
The ADuCM310 operates from 2.9 V to 3.6 V and is specified  
over a temperature range of −40°C to +85°C.  
The VDACs are 12-bit string DACs with output buffers capable  
of sourcing between 10 mA and 50 mA, and these DACs are all  
capable of driving 10 nF capacitive loads.  
Note that, throughout this data sheet, multifunction pins, such  
as P1.0/SIN/ECLKIN/PLAI[4], are referred to either by the  
entire pin name or by a single function of the pin, for example,  
P1.0, when only that function is relevant.  
The low drift current DACs have 14-bit resolution and varied  
full-scale output ranges from 0 mA to 20 mA to 0 mA to  
250 mA on the SOA IDAC (IDAC3). The SOA IDAC also  
comes with a 0 mA to −80 mA current sink capability.  
For additional information on the ADuCM310, see the  
ADuCM310 reference manual, How to Set Up and Use the  
ADuCM310.  
A precision 2.5 V on-chip reference source is available. The internal  
ADC, IDACs, and VDAC circuits use this on-chip reference  
source to ensure low drift performance for all of these peripherals  
Rev. B Page 3 of 27  
 
ADuCM310  
Data Sheet  
SPECIFICATIONS  
AVDD = IOVDD = DVDD = 2.9 V to 3.6 V (the input supply voltages). The difference between AVDD, IOVDD, and DVDD must be ≤0.3 V.  
AVNEG (the supply voltage) = −5.5 V to −4.65 V. VDACVDD (the VDAC supply voltage) = 3.07 V to 5.35 V (for VDAC6 and VDAC7),  
and VDACVDD must be ≥ AVDD. PVDD (the IDAC supply voltage) for the IDACs = 1.8 V to 2.7 V. AVDD ≥ PVDD + 0.4V. VREF = 2.5 V  
internal reference, fCORE = 80 MHz, TA = −40°C to +85°C, unless otherwise noted.  
For power sequencing, connect the AGND, DGND, PGND, and IOGND pins to ground before applying power to the AVNEG or VDACVDD pins.  
For register and bit information, see the ADuCM310 reference manual, How to Set Up and Use the ADuCM310.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ADC CHANNEL SPECIFICATIONS  
All measurements in single-ended  
mode, unless otherwise stated  
ADC Power-Up Time  
DC Accuracy  
5
µs  
fSAMPLE ≥500 kSPS  
Resolution  
14  
Bits  
Integral Nonlinearity  
Input Buffer  
Disabled  
2
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
2.5 V internal reference  
2.5 V internal reference  
1.51  
Enabled  
Disabled  
2.5  
2
1.51  
External reference  
External reference  
2.5 V external reference;  
no missing codes  
2.5 V external reference;  
no missing codes  
ADC input voltage = 1.25 V dc  
Differential Nonlinearity  
−0.99  
−0.99  
0.7  
+1.51  
+2.0  
0.7  
LSB  
LSB  
DC Code Distribution  
ENDPOINT ERRORS  
3
5
Offset Error (All Channels Except  
the Internal Channels)  
ADC update rate up to 800 kSPS  
Buffer On or Buffer Off  
−0.8  
0.2  
0.2  
+0.8  
mV  
mV  
Buffer on, chop mode on and  
automatic zero or buffer off  
Buffer on, chop mode on and  
automatic zero or buffer off  
−0.61  
+0.61  
Offset Error Drift2  
Buffer On or Buffer Off  
3.2  
µV/°C  
µV/°C  
Buffer on, chop mode on and  
automatic zero or buffer off  
Buffer on, chop mode on and  
automatic zero or buffer off  
2.51  
Full-Scale Error  
Buffer On or Buffer Off  
ADC update rate up to 800 kSPS  
Excluding internal channels  
Excluding internal channels  
−0.75  
−0.71  
0.2  
0.2  
0.2  
+0.75  
+0.61  
+1  
mV  
mV  
Internal Channels  
% of full scale Input buffer on; AVDD/2, IOVDD/2,  
PVDD voltage on PVDD_IDAC2 pin  
0.2  
0.61  
2
% of full scale Input buffer on; AVDD/2, IOVDD/2,  
PVDD voltage on PVDD_IDAC2 pin  
% of full scale Input buffer on; IDAC0 to IDAC5;  
measured with 1.5 V on the IDAC0  
to IDAC5 pins  
% of full scale Input buffer on; IDAC0 to IDAC5;  
measured with 1.5 V on the IDAC0  
to IDAC5 pins  
0.75  
0.75  
2
1.51  
Gain Error Drift2  
µV/°C  
Full-scale error drift minus offset  
error drift; all modes; internal  
reference  
Rev. B Page 4 of 27  
 
Data Sheet  
ADuCM310  
Parameter  
DYNAMIC PERFORMANCE2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
fIN = 665.283 Hz sine wave; fSAMPLE  
=
100 kSPS; internally unbuffered  
channels; the filter on the analog  
inputs is a 15 Ω resistor and a 2 nF  
capacitor  
Signal-to-Noise Ratio (SNR)  
Input Buffer  
Disabled  
80  
dB  
Includes distortion and noise  
components  
Enabled  
78  
74  
dB  
dB  
Chop mode on  
Automatic zero  
Total Harmonic Distortion (THD)  
Input Buffer  
Disabled  
Enabled  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Crosstalk  
−86  
−86  
−88  
−95  
dB  
dB  
dB  
dB  
Chop mode on and automatic zero  
Buffer on and off  
Measured on adjacent channels; fIN =  
25 kHz sine wave; buffer on and off  
ANALOG INPUT  
Absolute Input Voltage Range  
Unbuffered Mode  
Buffered Mode  
AGND  
AGND + 0.15  
AVDD  
2.5  
V
V
Voltage level on AINx pin  
Voltage level on AINx pin  
Input Voltage Ranges  
Differential Mode  
−VREF  
+VREF  
V
Voltage difference between AIN+  
(positive input) and AIN− (negative  
input)  
Common-Mode Voltage Range  
Single-Ended Mode  
0.9  
AGND  
1.6  
VREF  
V
V
Voltage difference between AIN+  
and AIN−  
Input Current3  
Buffered Mode  
AIN0, AIN1, AIN2, and AIN3  
VIN = 0.15 V to 2.5 V  
−102  
−40  
−602  
5
+132  
+60  
+902  
nA  
nA  
nA  
pA/°C  
ADC sampling rate ≤ 100 kSPS  
ADC sampling rate ≤ 500 kSPS  
ADC sampling rate ≤ 800 kSPS  
Input buffer on, ADC sampling rate ≤  
500 kSPS  
15  
25  
20  
Input Current Drift  
101  
34  
pA/°C  
pA/°C  
pA/°C  
Input buffer on, ADC sampling rate ≤  
500 kSPS  
Input buffer on, ADC sampling rate ≤  
800 kSPS  
Input buffer on, ADC sampling rate ≤  
800 kSPS  
AIN4 to AIN9 ≤ 100 kSPS  
ADC sampling rate ≤ 500 kSPS  
ADC sampling rate ≤ 800 kSPS  
VIN = 0 V to 2.5 V, all channels, all  
sampling rates  
201  
AIN4 to AIN9  
−502  
20  
50  
−90  
+750  
+502  
nA  
nA  
nA  
nA  
−2152  
−3502  
−11002  
+1102  
+902  
Unbuffered Mode  
Input Current Drift  
+17002  
1401  
530  
20  
pA/°C  
pA/°C  
pF  
VIN = 1 V  
VIN = 1 V  
Input Capacitance  
Input Leakage Current  
During ADC acquisition, buffer on  
ADC off, buffer off or buffer on,  
AINx connected 2.5 V  
−1.62  
+1  
+3.52  
nA  
Rev. B Page 5 of 27  
ADuCM310  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
0.47 µF from VREF_1.2 to AGND  
2.505  
V
mV  
ppm/°C  
ppm/°C  
dB  
Accuracy4  
5
301  
44  
TA = 25°C  
Reference Temperature Coefficient2, 5  
15  
15  
70  
3
Power Supply Rejection Ratio  
Output Impedance  
Internal VREF Power-On Time2  
EXTERNAL REFERENCE INPUT2  
Input Voltage Range2  
ms  
For ADC_CAPP, TA = 25°C  
Turned on by default  
38  
50  
1.8  
2.5  
V
ADC maximum reference voltage =  
2.5 V  
Switching Time  
External to Internal Reference  
Internal to External Reference  
2.5  
1
ms  
ms  
BUFFERED VREF OUTPUTS  
(BUF_VREF2.5x PINS)  
Output Voltage  
Accuracy  
Reference Temperature Coefficient2  
2.5  
15  
V
mV  
ppm/°C  
5
301  
TA = 25°C, load = 0.4 mA  
100 nF capacitor required on both  
outputs  
15  
2.5  
3
50  
ppm/°C  
mV/mA  
Load Regulation  
Output Impedance  
TA = 25°C  
Load Current  
1.2  
mA  
Power Supply Rejection Ratio  
IDAC CHANNEL SPECIFICATIONS6, 7  
Voltage Compliance Range2  
70  
dB  
Output voltage compliance;  
minimum compliance if IDACx set to  
full scale, see Figure 15 to Figure 20  
IDAC0, IDAC1, and IDAC2  
IDAC4 and IDAC5  
IDAC3  
0.4  
PVDD  
200 mV  
PVDD  
V
V
V
V
275 mV  
PVDD  
200 mV  
PVDD  
450 mV  
0.4  
0.5  
−3.7  
−3.0  
At −3.5 V, maximum sink current is  
80 mA; pin voltage clamped to  
−3.5 V, tolerance of clamping  
voltage is 200 mV  
Reference Current Generator  
Reference Current  
0.38  
0.76  
mA  
mA  
Using internal reference, 0.1%,  
≤5 ppm, 3.16 kΩ external resistor  
If the external resistor (REXT) value  
drops below 1.580 kΩ, IDAC output  
currents disable  
IDAC Reference Current Shutdown  
Threshold  
Temperature Coefficient2, 5  
Over Heat Shutdown  
Resolution  
7
135  
25  
ppm/°C  
°C  
Using internal reference;  
Junction temperature  
IDAC0, IDAC1, IDAC4,and IDAC5  
14  
14  
14  
Bits  
Bits  
Bits  
11-bit MSBs and 5-bit LSBs are  
guaranteed monotonic  
11-bit MSBs and 5-bit LSBs are  
guaranteed monotonic  
0 V to 2 V compliant range, 11-bit  
MSBs and 5-bit LSBs are guaranteed  
monotonic  
IDAC2  
IDAC3  
IDAC3  
8
Bits  
−4.5 V to 0 V compliant range  
Rev. B Page 6 of 27  
Data Sheet  
ADuCM310  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Full-Scale Output  
IDAC0 and IDAC1  
IDAC4 and IDAC5  
IDAC2  
100  
20  
200  
250  
mA  
mA  
mA  
mA  
IDAC3  
Current source  
Current sink  
Current sink  
11-bit  
−90  
−801  
−3  
Integral Nonlinearity  
Noise Current  
1.5  
1.5  
+4  
+4  
LSB  
LSB  
−2.51  
11-bit  
RMS noise; maximum bandwidth  
setting, IDACxCON[5:2] = 0000b  
IDAC0 and IDAC1  
IDAC4 and IDAC5  
IDAC2  
1.5  
0.3  
4
µA  
µA  
µA  
µA  
Measured driving 10 Ω  
Measured driving 100 Ω  
Measured driving 5 Ω  
Measured driving 5 Ω  
IDAC3  
5
Full-Scale Error  
IDAC0 and IDAC1  
−2.31  
−3.0  
−0.71  
−1  
−1.751  
−1.77  
−21  
0.25  
+11  
+1.3  
0.7  
+0.7  
0.65  
%
%
%
%
%
%
%
%
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
IDAC4 and IDAC 5  
IDAC2  
IDAC3  
1.41  
+1.6  
−2.4  
Full-Scale Error Drift vs. Temperature  
IDAC4 and IDAC5  
Including internal reference drift  
and 5 ppm external resistor  
−401  
−58  
−12  
+301  
+58  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
−12  
+55  
+40  
+551  
+90  
+40  
IDAC2 and IDAC3  
IDAC2 and IDAC3  
IDAC0 and IDAC1  
Full temperature range  
Reduced 25°C to 85°C range  
−1451  
−205  
−100  
+1451  
+205  
+100  
Full temperature range  
Reduced 25°C to 85°C range  
Long-term stability  
IDAC0 and IDAC1  
Full-Scale Error Drift vs. Time8  
IDAC0  
200  
450  
500  
2250  
40  
µA/  
1000 hours  
µA/  
1000 hours  
µA/  
1000 hours  
µA/  
1000 hours  
IDAC1  
IDAC2  
IDAC3  
IDAC4 and IDAC5  
µA/  
1000 hours  
Zero-Scale Error  
IDAC0 and IDAC1  
Pull-down current off  
−1201  
−180  
−135  
−251  
−31  
+751  
+115  
−100  
+15  
+15  
−22  
µA  
µA  
µA  
µA  
µA  
µA  
Pull-Down Current  
IDAC4 and IDAC5  
−115  
−24  
Increased −45°C to +85°C range  
Pull-Down Current  
−30  
Rev. B Page 7 of 27  
ADuCM310  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
µA  
µA  
Test Conditions/Comments  
IDAC2 and IDAC3  
−3501  
−460  
−300  
+2801  
+300  
−160  
Pull-Down Current for IDAC2  
Zero-Scale Error Drift2  
IDAC0 and IDAC1  
−288  
µA  
−8501  
−1400  
−120  
−120  
300  
300  
50  
50  
1
+12001  
+1400  
+2051  
+230  
nA/°C  
nA/°C  
nA/°C  
nA/°C  
µA/°C  
IDAC4 and IDAC5  
IDAC2 and IDAC3  
Settling Time  
IDAC0, IDAC1, IDAC2, and IDAC3  
1
ms  
To 0.1%, IDACxCON[5:2] = 0101b,  
1 mA change in output current  
IDAC4 and IDAC5  
2
ms  
µs  
IDAC0, IDAC1, IDAC2, and IDAC3  
250  
To 1%, IDACxCON[5:2] = 0101b,  
1 mA change in output current  
IDAC4 and IDAC5  
IDAC0, IDAC1, IDAC2, and IDAC3  
1.2  
50  
ms  
µs  
To 1%, IDACxCON[5:2] = 0000b,  
1 mA change in output current  
IDAC4 and IDAC5  
IDAC3 Switching Time2  
1.1  
ms  
µs  
1
Time to switch from current source  
to current sink  
Transconductance  
Analog input signal coupled on to  
CDAMP_IDACx pin via 1 nF capacitor;  
frequency range = 100 kHz to  
1000 kHz; voltage is the peak to  
peak voltage on the CDAMP_IDACx  
pin of the associated IDAC; current  
is peak-to-peak current change  
IDAC0 and IDAC1  
IDAC2  
IDAC3  
IDAC4 and IDAC5  
IDAC Shutdown Temperature  
7.99/100  
12.6/100  
18.6/100  
1.16/100  
125  
mA/mV  
mA/mV  
mA/mV  
mA/mV  
°C  
Die temperature; enabled via  
IDACxCON[6]  
VDAC CHANNEL SPECIFICATIONS6, 9, 10  
DC Accuracy  
Resolution  
12  
Bits  
Relative Accuracy  
VDAC0, VDAC1, and VDAC2  
VDAC4 and VDAC5  
VDAC3, VDAC6, and VDAC7  
Differential Nonlinearity  
Offset Error  
−6.3  
−7.3  
−7  
1
2
2
0.6  
+10  
+11  
+8.5  
+1  
LSB  
LSB  
LSB  
LSB  
−0.99  
Guaranteed monotonic  
Calculated  
5
4
mV  
mV  
2.5 V internal reference  
Measured at Code 0  
Actual  
VDAC0, VDAC1, VDAC4, and  
VDAC5  
7
VDAC6 and VDAC7  
VDAC2 and VDAC3  
Full-Scale Error  
15  
−20  
22  
mV  
mV  
−30  
0.71  
0.9  
% of full scale For VDAC2, VDAC3, VDAC4, VDAC5,  
and VDAC6  
% of full scale For VDAC2, VDAC3, VDAC4, VDAC5,  
and VDAC6  
%
%
VDAC0, VDAC1, and VDAC72  
0.71  
0.9  
With 500 Ω load  
With 500 Ω load  
Rev. B Page 8 of 27  
Data Sheet  
ADuCM310  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VDAC0 and VDAC1  
0.5  
%
With 75 Ω load, over full  
temperature range  
VDAC7  
0.5  
%
With 100 Ω load, over full  
temperature range  
Gain Mismatch Error  
0.1  
0.2  
0.1  
0.35  
%
%
%
%
VDAC0 relative to VDAC1  
VDAC2 relative to VDAC3  
VDAC4 relative to VDAC5  
VDAC6 relative to VDAC7; both  
driving a 500 Ω load  
Offset Error Drift  
Calculated  
VDAC0, VDAC1, VDAC4, and  
VDAC5  
VDAC2, VDAC3, VDAC6, and  
VDAC7  
5
µV/°C  
µV/°C  
25  
Actual  
Measured at Code 0  
VDAC0, VDAC1, VDAC4, and  
VDAC5  
VDAC2, VDAC3, VDAC6, and  
VDAC7  
13  
75  
µV/°C  
µV/°C  
Gain Error Drift  
Excluding internal reference drift  
VDAC0, VDAC1, VDAC4, and  
VDAC5  
VDAC2, VDAC3, VDAC6, and  
VDAC7  
5
ppm/°C  
ppm/°C  
10  
Output Impedance  
VDAC0, VDAC1, VDAC4,  
VDAC5, VDAC6, and VDAC7  
VDAC2 and VDAC3  
1
1.5  
Short-Circuit Current  
Measured with VDAC shorted to  
ground and to associated power  
supply  
VDAC0 and VDAC1  
VDAC2 and VDAC3  
VDAC4 and VDAC5  
VDAC6 and VDAC7  
VDAC Outputs  
200  
170  
200  
200  
mA  
mA  
mA  
mA  
Capacitive load up to 0.01 µF  
Output Impedance  
VDAC0, VDAC1, and VDAC4  
to VDAC7  
VDAC2 and VDAC3  
Output Range  
1.8  
1.2  
Buffer on  
VDAC0 and VDAC1  
0 + Actual  
Offset1  
AVDD  
600 mV  
−0.15  
V
V
V
V
V
RL = 75 Ω, 40 mA maximum, VOUT  
maximum = 3 V  
RL = 500 Ω, 10 mA maximum, VOUT  
maximum = −5 V, gain = −2.25 V  
RL = 300 Ω, 10 mA maximum, VOUT  
maximum = 3 V  
RL = 500 Ω, 10 mA maximum, VOUT  
maximum = 5 V  
VDAC2 and VDAC3  
VDAC4 and VDAC5  
VDAC6  
AVNEG  
+
250 mV  
0 + Actual  
Offset1  
0 + Actual  
Offset1  
0 + Actual  
Offset1  
AVDD  
300 mV  
VDACVDD  
250 mV  
VDACVDD  
700 mV  
VDAC7  
RL = 100 Ω, 50 mA maximum, VOUT  
maximum = 5 V  
Rev. B Page 9 of 27  
ADuCM310  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DAC AC CHARACTERISTICS  
Slew Rate  
VDAC0, VDAC1, VDAC4, and  
VDAC5  
3
V/µs  
VDAC2, VDAC3, and VDAC6  
Voltage Output Settling Time  
1.1  
10  
0.05  
20  
V/µs  
µs  
ms  
Load =100 pF  
Load = 0.01 µF  
1 LSB change at major carry  
(DACxDAT register change from  
0x07FF0000 to 0x08000000)  
Digital-to-Analog Glitch Energy  
nV/sec  
AC PSRR 100 Hz  
VDAC0, VDAC1, VDAC4, and  
VDAC5  
72  
dB  
VDAC2 and VDAC3  
VDAC6 and VDAC7  
AC PSRR 1 kHz  
67  
64  
dB  
dB  
VDAC0, VDAC1, VDAC4, and  
VDAC5  
56  
dB  
VDAC2 and VDAC3  
VDAC6 and VDAC7  
53  
50  
dB  
dB  
POWER-ON RESET (POR)  
POR Trip Level  
Refers to voltage at DVDD pin  
Power-on level  
Power-down level  
2.80  
2.74  
2.85  
2.79  
65  
2.9  
2.83  
V
V
mV  
POR Hysteresis  
EXTERNAL RESET  
External Reset Minimum Pulse  
Width2  
1.5  
µs  
ns  
Minimum pulse width required on  
external RESET pin to trigger a  
reset sequence  
Maximum low pulse width on RESET  
pin that does not generate a reset  
Reset Pin Glitch Immunity2  
50  
TEMPERATURE SENSOR  
Accuracy2  
1.25  
1.37  
1.494  
V
Indicates die temperature; ADC  
measured voltage for temperature  
sensor channel without calibration,  
TA = 25°C  
FLASH/EE MEMORY  
Endurance  
Data Retention  
10,000  
20  
Cycles  
Years  
MHz  
TJ = 85°C  
INTERNAL HIGH POWER OSCILLATOR  
16  
Used as input to PLL to generate  
80 MHz clock  
Accuracy  
−2.251  
+2.251  
+3  
%
%
INTERNAL LOW POWER OSCILLATOR  
Accuracy  
32.768  
8
8
kHz  
%
−121  
−22  
+12  
+12  
LOGIC INPUTS  
Input Low Voltage (VINL  
)
0.2 × IOVDD  
12  
V
V
mA  
Input High Voltage (VINH  
Short-Circuit Current2  
LOGIC OUTPUTS  
Output High Voltage (VOH)11  
Output Low Voltage (VOL)11  
Short-Circuit Current2  
)
0.7 × IOVDD  
IOVDD − 0.4  
V
V
mA  
ISOURCE = 2 mA  
ISINK = 2 mA  
0.4  
12  
Rev. B Page 10 of 27  
Data Sheet  
ADuCM310  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INPUT LEAKAGE CURRENT  
Logic 1  
Internal Pull-Up Disabled  
Logic 0  
Internal Pull-Up Disabled  
Pull-Up  
80  
+6  
80  
+6  
40  
µA  
nA  
µA  
nA  
kΩ  
VINH = 3.6 V  
VINH = 0 V  
−22  
+22  
−22  
30  
+22  
72  
If not disabled, disabled at reset;  
pull-up can be described as an  
80 µA (typical) current source  
CRYSTAL INPUTS XCLKI AND XCLKO  
(16 MHz)  
Logic Inputs, XCLKI Only  
Input Low Voltage (VINL  
Input High Voltage (VINH  
XCLKI Input Capacitance  
XCLKO Output Capacitance  
MICROCONTROLLER UNIT CLOCK RATE  
Using PLL Output2  
)
1.1  
1.7  
8
V
V
pF  
pF  
)
8
0.05  
80  
50  
MHz  
PROCESSOR START-UP TIME  
At Power-On2  
38  
ms  
ms  
Includes kernel power-on  
execution time  
Includes kernel power-on  
execution time  
After Reset Event  
1.44  
After Processor Power Down  
Mode 1, Mode 2, or Mode 3  
POWER REQUIREMENTS  
Power Supply Voltage Range  
AVDD  
3 to 5  
fCLK  
2.9  
2.9  
3.3  
3.3  
3.6  
3.6  
V
V
Measured between AVDDx and  
AGND  
Measured between IOVDDxand  
AGND  
IOVDD  
Analog Power Supply Currents  
AVDD Current  
6.5  
7.2  
mA  
ADC, VDACs, IDACs off  
Digital Power Supply Current  
Current in Normal Mode  
DVDD  
29  
2.7  
32  
5.1  
mA  
mA  
CLKCON1[2:0] = [000b]  
All GPIO pull-ups enabled  
IOVDD  
Additional Power Supply Currents  
ADC2  
3.1  
3.6  
mA  
ADC continuously converting at  
100 kSPS  
ADC Input Buffer2  
IDAC2  
DAC2  
4.1  
26.5  
2.7  
4.8  
30  
3.1  
mA  
mA  
mA  
Both buffers enabled  
Total for all VDACs driving  
maximum allowed load with  
DACxDAT = 0  
VDAC2 and VDAC32  
VDAC6 and VDAC72  
−1.7  
1
mA  
mA  
IDD when VDAC2 and VDAC3 are  
driving maximum allowed load  
with DACxDAT set to 0  
IDD sourced from the VDACVDD  
supply when VDAC6 and VDAC7  
are driving the maximum allowed  
load with DACxDAT set to 0  
1 Reduced temperature range of − 10°C to + 85°C.  
2 These numbers are not production tested but are guaranteed by design or characterization data at production release.  
3 The input current is the total input current including the input pad and mux leakage plus the charge current for the full input circuit. The input current relates to the  
ADC sampling frequency.  
Rev. B Page 11 of 27  
ADuCM310  
Data Sheet  
4 The internal reference calibration and trimming are performed when the processor operates in normal mode with CD = 0, when ADC is enabled and converting, when  
IDACs are all on, and when VDACs are on. VREF accuracy can vary under other operating conditions.  
5 Measured using the following box method:  
(
)
(
)
×16  
VREF Maximum at Any Temperature VREF Minimum at Any Temperature  
(
)
2.5× Temperature MaximumTemperature Minimum  
6 VDAC linearity specifications are calculated with following ranges:  
VDAC0 and VDAC1 = +150 mV to +2.699 V  
VDAC2 and VDAC3: −150 mV to −4.22 V  
VDAC4 and VDAC5: +150 mV to +2.98 V  
VDAC6: +150 mV to +4.747 V  
VDAC7: +150 mV to +4.297 V  
7 Analog Devices, Inc., production IDAC full-scale trimming conditions include PVDD_IDACx pin voltage = 0.7 V, all IDACs on.  
8 The long-term stability specifications is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
9 For all VDAC specifications for VDAC0, VDAC1, VDAC4, and VDAC5, DACxCON[10:9] = 11.  
10 VDACx minimum and maximum limits apply to the internal reference only (DACxCON[1:0] = 00b). AVDDx supply valid only with typical specifications.  
11 The average current from the GPIO pins must not exceed 3 mA per pin. See Figure 22.  
TIMING SPECIFICATIONS  
I2C Timing  
Table 2. I2C Timing in Standard Mode (100 kHz)  
Slave  
Parameter  
Description  
Min  
4.7  
4.0  
4.0  
250  
0
4.7  
4.0  
4.7  
Typ  
Max  
Unit  
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
tL  
tH  
SCLx low pulse width  
SCLx high pulse width  
Start condition hold time  
Data setup time  
Data hold time (SDAx held internally for 300 ns after falling edge of SCLx)  
Setup time for repeated start  
Stop condition setup time  
Bus free time between a stop condition and a start condition  
Rise time for both SCLx and SDAx  
Fall time for both SCLx and SDAx  
Data valid time  
tSHD  
tDSU  
tDHD  
tRSU  
tPSU  
tBUF  
tR  
tF  
tVD;DAT  
tVD;ACK  
3.45  
1
15  
300  
3.45  
3.45  
Data valid acknowledge time  
Table 3. I2C Timing in Fast Mode (400 kHz)  
Slave  
Typ  
Parameter  
Description  
Min  
1.3  
0.6  
0.3  
100  
0
0.6  
0. 3  
1.3  
20  
Max  
Unit  
µs  
ns  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
tL  
tH  
SCLx low pulse width  
SCLx high pulse width  
Start condition hold time  
Data setup time  
Data hold time (SDAx held internally for 300 ns after falling edge of SCLx)  
Setup time for repeated start  
Stop condition setup time  
Bus free time between a stop condition and a start condition  
Rise time for both SCLx and SDAx  
Fall time for both SCLx and SDAx  
Data valid time  
tSHD  
tDSU  
tDHD  
tRSU  
tPSU  
tBUF  
tR  
tF  
tVD;DAT  
tVD;ACK  
300  
300  
0.9  
15  
Data valid acknowledge time  
0.9  
Rev. B Page 12 of 27  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADuCM310  
tBUF  
tR  
MSB  
tF  
SDAx (I/O)  
MSB  
LSB  
ACK  
tDSU  
tDSU  
tDHD  
tDHD  
tRSU  
tPSU  
tVD;DAT  
tR  
tSHD  
tH  
tVD;ACK  
1
2
TO 7  
8
9
1
SCLx (I)  
tL  
P
S
S(R)  
tF  
STOP  
START  
REPEATED  
START  
CONDITION CONDITION  
Figure 2. I2C Compatible Interface Timing  
SPI Timing  
Table 4. SPI Master Mode Timing (Phase Mode = 1)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSL  
tSH  
SCLKx low pulse width  
SCLKx high pulse width  
Data output valid after SCLKx edge  
Data input setup time before SCLKx edge  
Data input hold time after SCLKx edge  
Data output fall time  
(SPIxDIV1 + 1) × tHCLK2/2  
(SPIxDIV1 + 1) × tHCLK2/2  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
0
3
½ SCLKx  
SCLKx  
SCLKx  
25  
Data output rise time  
SCLKx rise time  
25  
tSF  
SCLKx fall time  
20  
ns  
1 For SPI0, x is 0, and for SPI1, x is 1.  
2 tHCLK is the divided system clock, UCLK/CLKCON1[2:0].  
SCLKx  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLKx  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MOSIx  
MISOx  
MSB  
BIT 6 TO BIT 1  
LSB  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 3. SPI Master Mode Timing (Phase Mode = 1)  
Rev. B Page 13 of 27  
ADuCM310  
Data Sheet  
Table 5. SPI Master Mode Timing (Phase Mode = 0)  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSL  
tSH  
SCLKx low pulse width  
(SPIxDIV1 + 1) × tHCLK2/2  
SCLKx high pulse width  
Data output valid after SCLKx edge  
Data output setup before SCLKx edge  
Data input setup time before SCLKx edge  
Data input hold time after SCLKx edge  
Data output fall time  
Data output rise time  
SCLKx rise time  
SCLKx fall time  
(SPIxDIV1 + 1) × tHCLK2/2  
tDAV  
tDOSU  
tDSU  
tDHD  
tDF  
tDR  
tSR  
tSF  
0
3
½ SCLKx  
SCLKx  
SCLKx  
25  
25  
20  
20  
1 For SPI0, x is 0, and for SPI1, x is 1.  
2 tHCLK is the divided system clock, UCLK/CLKCON1[2:0].  
SCLKx  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLKx  
(POLARITY = 1)  
tDAV  
tDOSU  
tDF  
tDR  
MOSIx  
MISOx  
MSB  
BIT 6 TO BIT 1  
LSB  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 4. SPI Master Mode Timing (Phase Mode = 0)  
Rev. B Page 14 of 27  
Data Sheet  
ADuCM310  
Table 6. SPI Slave Mode Timing (Phase Mode = 1)  
Parameter  
Description  
Min  
10  
Typ  
Max  
Unit  
ns  
tCS0/tCS1  
CS0 CS1  
/
to SCLKx edge  
tCS  
CS0 CS1  
/
SCLKx  
ns  
M
high time between active periods  
(SPIxDIV1 + 1) × tHCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
tSL  
tSH  
SCLKx low pulse width  
2
SCLKx high pulse width  
Data output valid after SCLKx edge  
Data input setup time before SCLKx edge  
Data input hold time after SCLKx edge  
Data output fall time  
Data output rise time  
SCLKx rise time  
SCLKx fall time  
(SPIxDIV1 + 1) × tHCLK  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
20  
10  
10  
25  
25  
1
1
20  
tSF  
tSFS  
CS0 CS1  
/
high after SCLKx edge  
1 For SPI0, x is 0, and for SPI1, x is 1.  
2 tHCLK is the divided system clock, UCLK/CLKCON1[2:0].  
tCSM  
CS0/CS1  
tSFS  
tCS0/tCS1  
SCLKx  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLKx  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MISOx  
MOSIx  
MSB  
BIT 6 TO BIT 1  
LSB  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 5. SPI Slave Mode Timing (Phase Mode = 1)  
Rev. B Page 15 of 27  
ADuCM310  
Data Sheet  
Table 7. SPI Slave Mode Timing (Phase Mode = 0)  
Parameter  
Description  
Min  
10  
Typ  
Max  
Unit  
ns  
tCS0/tCS1  
CS0 CS1  
/
to SCLKx edge  
tCS  
CS0 CS1  
/
SCLKx  
ns  
M
high time between active periods  
(SPIxDIV1 + 1) × tHCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
tSL  
tSH  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
tSF  
tDOCS  
tSFS  
SCLKx low pulse width  
2
SCLKx high pulse width  
Data output valid after SCLKx edge  
Data input setup time before SCLKx edge  
Data input hold time after SCLKx edge  
Data output fall time  
Data output rise time  
SCLKx rise time  
SCLKx fall time  
(SPIxDIV1 + 1) × tHCLK  
20  
10  
10  
25  
25  
1
1
20  
10  
CS0 CS1  
/
Data output valid after  
edge  
CS0 CS1  
/
high after SCLKx edge  
1 For SPI0, x is 0, and for SPI1, x is 1  
2 tHCLK is the divided system clock, UCLK/CLKCON1[2:0].  
tCSM  
CS0/CS1  
tCS0/tCS1  
tSFS  
SCLKx  
(POLARITY = 0)  
tSH  
tSL  
tSF  
tSR  
SCLKx  
(POLARITY = 1)  
tDAV  
tDOCS  
tDF  
tDR  
MISOx  
MOSIx  
MSB  
BIT 6 TO BIT 1  
LSB  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 6. SPI Slave Mode Timing (Phase Mode = 0)  
Rev. B Page 16 of 27  
Data Sheet  
ADuCM310  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 8.  
Parameter  
Rating  
AVDD to AGNDx  
AVNEG to AGNDx  
VDACVDD to AGNDx  
IOVDDx to DGNDx  
−0.3 V to +3.96 V  
−5.5 V to +0.3 V  
−0.3 V to +5.5 V  
−0.3 V to +3.96 V  
−0.3 V to IOVDDx + 0.3 V  
−0.3 V to IOVDDx + 0.3 V  
−0.3 V to AVDD + 0.3 V  
0 mA to 30 mA  
−30 mA to 0 mA  
AVNEG − 0.3 V  
Table 9. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
112-Ball CSP_BGA  
44.5  
11  
°C/W  
Digital Input Voltage to DGNDx  
Digital Output Voltage to DGNDx  
Analog Inputs to AGNDx  
Total Positive GPIO Pins Current  
Total Negative GPIO Pins Current  
IDAC3 Pull-Down Voltage  
IDAC3 Pull-Down Current  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
ESD Rating, All Pins  
ESD CAUTION  
−100 mA  
−40°C to +85°C  
−65°C to +150°C  
150°C  
Human Body Model (HBM)  
1 kV  
Field-Induced Charged Device  
Model (FICDM)  
1.25 kV  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B Page 17 of 27  
 
 
 
ADuCM310  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
RESERVED  
IDAC0  
PVDD_  
IDAC0  
IDAC2  
PVDD_  
IDAC2  
IDAC3  
PGND  
PVDD_  
IDAC3  
PVDD_  
IDAC1  
IDAC1  
RESERVED  
A
B
C
D
E
F
IDAC4  
CDAMP_  
IDAC0  
CDAMP_  
IDAC2  
IDAC2  
PVDD_  
IDAC2  
IDAC3  
PGND  
PVDD_  
IDAC3  
CDAMP_  
IDAC3  
CDAMP_  
IDAC1  
IDAC5  
P1.0/  
SIN/  
ECLKIN/  
PLAI[4]  
P1.4/  
PWM2/  
SCLK1/  
PLAO[10]  
P1.5/  
PWM3/  
MISO1/  
PLAO[11]  
P1.6/  
PWM4/  
MOSI1/  
PLAO[12]  
P1.2/  
PWM0/  
PLAI[6]  
P1.3/  
PWM1/  
PLAI[7]  
PVDD_  
IDAC4  
CDAMP_  
IDAC4  
CDAMP_  
IDAC5  
PVDD_  
IDAC5  
P2.3/BM  
P2.0/IRQ2/  
PWMTRIP/  
PLACLK2/  
PLAI[8]  
P2.4/IRQ5/  
ADCCONV/  
PWM6/  
P1.7/IRQ1/  
PWM5/CS1/  
PLAO[13]  
P1.1/SOUT/  
PLACLK1/  
PLAI[5]  
P2.5/IRQ6/  
PWM7/  
PLAO[19]  
P3.2/  
PLAI[14]  
RESERVED  
IOVDD1  
RESET  
RESERVED  
DGND2  
SWCLK  
IREF  
IOVDD2  
IOGND2  
VREF_1.2  
AVDD4  
PLAO[18]  
P2.2/IRQ4/  
MRST/  
CLKOUT/  
PLAI[10]  
P0.1/  
MISO0/  
PLAI[1]  
P0.0/  
SCLK0/  
PLAI[0]  
P2.1/IRQ3/  
PWMSYNC/  
PLAI[9]  
SWDIO  
ADuCM310  
P0.3/  
IRQ0/CS0/  
PLAI[3]  
P0.2/  
MOSI0/  
PLAI[2]  
IOGND1  
RESERVED  
RESERVED  
AIN4  
VDACV  
DD  
AVDD_REG1  
AVDD_REG2  
VDAC7  
TOP VIEW  
(Not to Scale)  
G
H
J
P0.7/  
SDA1/  
PLAO[5]  
P0.6/  
SCL1/  
PLAO[4]  
P0.5/  
SDA0/  
PLAO[3]  
P.04/  
SCL0/  
PLAO[2]  
AGND2  
VDAC6  
VDAC2  
VDAC3  
AIN9  
G
H
J
P2.6/  
IRQ7/  
PLAO[20]  
P2.7/  
IRQ8/  
PLAO[21]  
P3.0/  
PLAI[12]  
AGND5  
VDAC4  
VDAC1  
VDAC5  
DVDD  
RESERVED  
AIN0  
AIN1  
AIN2  
AIN3  
AIN5  
P3.4/  
PLAO[26]  
XTALO  
XTALI  
P3.1/  
PLAI[13]  
AIN6  
BUF_  
VREF2.5A  
AGND4  
K
L
IOVDD3  
DVDD_REG1  
AGND1  
AV  
AIN7  
ADC_CAPN  
BUF_  
VREF2.5B  
K
L
NEG  
IOGND3  
1
DGND1  
2
DVDD_REG2  
3
VDAC0  
4
AVDD3  
5
AGND3  
6
AGND6  
7
AIN8  
8
ADC_CAPN  
10  
ADC_CAPP  
11  
9
IDAC RELATED  
DIGITAL PINS  
ANALOG PINS  
RESERVED  
Figure 7. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1 Description  
D2  
RESET  
I
Reset Input (Active Low). An internal pull-up is included on this pin.  
E3  
P0.0/SCLK0/PLAI[0]  
I/O  
General-Purpose Input and Output Port 0.0/SPI0 Clock/Input to PLA  
Element 0. This pin defaults as an input with the internal pull-up resistor  
disabled.  
E2  
F3  
F2  
P0.1/MISO0/PLAI[1]  
P0.2/MOSI0/PLAI[2]  
P0.3/IRQ0/CS0/PLAI[3]  
I/O  
I/O  
I/O  
General-Purpose Input and Output Port 0.1/SPI0 Data Master Input-Slave  
Output/Input to PLA Element 1. This pin defaults as an input with the  
internal pull-up disabled.  
General-Purpose Input and Output Port 0.2/SPI0 Data Master Output-  
Slave Input/Input of PLA Element 2. This pin defaults as an input with the  
internal pull-up disabled.  
General-Purpose Input and Output Port 0.3/External Interrupt Request 0/  
SPI0 Chip Select Input/Input of PLA Element 3. This pin defaults as an  
input with the internal pull-up disabled. If SPI0 is used, configure this pin  
as CS0.  
G4  
P0.4/SCL0/PLAO[2]  
I/O  
General-Purpose Input and Output Port 0.4/I2C Interface Clock for  
I2C0/Output of PLA Element 2. This pin defaults as an input with the  
internal pull-up disabled.  
Rev. B Page 18 of 27  
 
Data Sheet  
ADuCM310  
Pin No.  
Mnemonic  
Type1 Description  
G3  
P0.5/SDA0/PLAO[3]  
I/O  
I/O  
I/O  
I/O  
I/O  
General-Purpose Input and Output Port 0.5/I2C Interface Data for  
I2C0/Output of PLA Element 3. This pin defaults as an input with internal  
pull-up disabled.  
General-Purpose Input and Output Port 0.6/I2C Interface Clock for  
I2C1/Output of PLA Element 4. This pin defaults as an input with internal  
pull-up disabled.  
General-Purpose Input and Output Port 0.7/I2C Interface Data for  
I2C1/Output of PLA Element 5. This pin defaults as an input with internal  
pull-up disabled.  
General-Purpose Input and Output Port 1.0/UART Input Pin/External  
Input Clock/Input to PLA Element 4. The ECLKIN pin is used for the UART  
downloader. This pin defaults as an input with internal pull-up disabled.  
General-Purpose Input and Output Port 1.1/UART Output Pin/PLA Input  
Clock/Input to PLA Element 5. The PLACLK1 pin is used for the UART  
downloader. This pin defaults as an input with internal pull-up disabled.  
G2  
G1  
C4  
D5  
P0.6/SCL1/PLAO[4]  
P0.7/SDA1/PLAO[5]  
P1.0/SIN/ECLKIN/PLAI[4]  
P1.1/SOUT/PLACLK1/PLAI[5]  
C5  
C6  
C7  
P1.2/PWM0/PLAI[6]  
I/O  
I/O  
I/O  
General-Purpose Input and Output Port 1.2/PWM0 Output/Input to PLA  
Element 6. This pin defaults as an input with internal pull-up disabled.  
General-Purpose Input and Output Port 1.3/PWM1 Output/Input to PLA  
Element 7. This pin defaults as an input with internal pull-up disabled.  
General-Purpose Input and Output Port 1.4/PWM2 Output/SPI1  
Clock/Output of PLA Element 10. This pin defaults as an input with  
internal pull-up disabled.  
P1.3/PWM1/PLAI[7]  
P1.4/PWM2/SCLK1/PLAO[10]  
C8  
C9  
D9  
P1.5/PWM3/MISO1/PLAO[11]  
P1.6/PWM4/MOSI1/PLAO[12]  
P1.7/IRQ1/PWM5/CS1/PLAO[13]  
I/O  
I/O  
I/O  
General-Purpose Input and Output Port 1.5/PWM3 Output/SPI1 Data  
Master Input-Slave Output/Output of PLA Element 11. This pin defaults as  
an input with internal pull-up disabled.  
General-Purpose Input and Output Port 1.6/PWM4 Output/SPI1 Data  
Master Output-Slave Input/Output of PLA Element 12. This pin defaults as  
an input with internal pull-up disabled.  
General-Purpose Input and Output Port 1.7/External Interrupt Request 1/  
PWM5 Output/SPI1 Chip Select Input/Output of PLA Element 13. This pin  
defaults as an input with internal pull-up disabled. If SPI1 is used,  
configure this pin as CS1.  
D4  
E8  
E4  
C3  
D7  
P2.0/IRQ2/PWMTRIP/PLACLK2/PLAI[8]  
P2.1/IRQ3/PWMSYNC/PLAI[9]  
P2.2/IRQ4/MRST/CLKOUT/PLAI[10]  
P2.3/BM  
I/O  
I/O  
I/O  
I/O  
I/O  
General-Purpose Input and Output Port 2.0/External Interrupt Request 2/  
PWM Trip Input Source/PLA Input Clock/Input to PLA Element 8. This pin  
defaults as an input with the internal pull-up disabled.  
General-Purpose Input and Output Port 2.1/External Interrupt Request 3/  
PWM Sync Input/Input to PLA Element 9. This pin defaults as an input  
with the internal pull-up disabled.  
General-Purpose Input and Output Port 2.2/External Interrupt Request 4/  
Reset Out Pin/Clock Output/Input to PLA Element 10. This pin defaults as  
an input with the internal pull-up disabled.  
General-Purpose Input and Output Port 2.3/BM pin. If this pin is low, then  
the device enters UART download after the next rest sequence. This pin  
defaults as an input with the internal pull-up disabled.  
P2.4/IRQ5/ADCCONV/PWM6/PLAO[18]  
General-Purpose Input and Output Port 2.4/External Interrupt Request 5/  
External Input to Start ADC Conversions/PWM6 Output/Output of  
PLA Element 18. This pin defaults as an input with the internal pull-up  
disabled.  
D8  
H1  
H2  
H3  
P2.5/IRQ6/PWM7/PLAO[19]  
P2.6/IRQ7/PLAO[20]  
P2.7/IRQ8/PLAO[21]  
P3.0/PLAI[12]  
I/O  
I/O  
I/O  
I/O  
General-Purpose Input and Output Port 2.5/External Interrupt Request 6/  
PWM7 Output/Output of PLA Element 19. This pin defaults as an input  
with the internal pull-up disabled.  
General-Purpose Input and Output Port 2.6/External Interrupt Request 7/  
Output of PLA Element 20. This pin defaults as an input with the internal  
pull-up disabled.  
General-Purpose Input and Output Port 2.7/External Interrupt Request 8/  
Output of PLA Element 21. This pin defaults as an input with the internal  
pull-up disabled.  
General-Purpose Input and Output Port 3.0/Input to PLA Element 12. This  
pin defaults as an input with the internal pull-up disabled.  
Rev. B Page 19 of 27  
ADuCM310  
Data Sheet  
Pin No.  
Mnemonic  
Type1 Description  
J3  
P3.1/PLAI[13]  
P3.2/PLAI[14]  
P3.4/PLAO[26]  
I/O  
I/O  
I/O  
General-Purpose Input and Output Port 3.1/Input to PLA Element 13. This  
pin defaults as an input with the internal pull-up disabled.  
General-Purpose Input and Output Port 3.2/Input to PLA Element 14. This  
pin defaults as an input with the internal pull-up disabled.  
General-Purpose Input and Output Port 3.4/Output of PLA Element 26. This  
pin defaults as an input with the internal pull-up disabled.  
D3  
J1  
E10  
E9  
G11  
SWCLK  
SWDIO  
VREF_1.2  
I
Serial Wire Debug Clock Input Pin.  
Serial Wire Debug Data Input/Output Input Pin.  
1.2 V Reference Output. This pin cannot be used to source current  
externally. Connect this pin to AGND via a 470 nF capacitor.  
I/O  
AO  
D11  
IREF  
AI  
This pin generates the reference current for the IDACs. Connect this pin to  
analog ground via a 5 ppm, 3.16 kΩ external resistor (REXT).  
J6  
H7  
J7  
K7  
G8  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AI  
AI  
AI  
AI  
AI  
Single-Ended or Differential Analog Input 0.  
Single-Ended or Differential Analog Input 1.  
Single-Ended or Differential Analog Input 2.  
Single-Ended or Differential Analog Input 3.  
Single-Ended or Differential Analog Input 4. This is also the input for the  
digital comparator.  
H8  
J8  
K8  
L8  
L9  
L4  
K4  
J9  
K9  
J4  
H5  
H9  
H10  
A2  
A3  
B2  
A10  
A9  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
VDAC0  
VDAC1  
VDAC2  
VDAC3  
VDAC4  
VDAC5  
VDAC6  
VDAC7  
IDAC0  
PVDD_IDAC0  
CDAMP_IDAC0  
IDAC1  
PVDD_IDAC1  
CDAMP_IDAC1  
IDAC5  
PVDD_IDAC5  
CDAMP_IDAC5  
IDAC4  
PVDD_IDAC4  
CDAMP_IDAC4  
IDAC2  
PVDD_IDAC2  
CDAMP_IDAC2  
IDAC3  
PVDD_IDAC3  
CDAMP_IDAC3  
PGND  
AI  
AI  
AI  
AI  
Single-Ended or Differential Analog Input 5.  
Single-Ended or Differential Analog Input 6.  
Single-Ended or Differential Analog Input 7.  
Single-Ended or Differential Analog Input 8.  
Single-Ended or Differential Analog Input 9.  
12-Bit VDAC Output 0, 0 V to 3 V Range.  
12-Bit VDAC Output 1, 0 V to 3 V Range.  
12-Bit VDAC Output 2, −5 V to 0 V Range.  
12-Bit VDAC Output 3, −5 V to 0 V Range.  
12-Bit VDAC Output 4, 0 V to 3 V Range.  
12-Bit VDAC Output 5, 0 V to 3 V Range.  
12-Bit VDAC Output 6, 0 V to 5 V Range.  
12-Bit VDAC Output 7, 0 V to 5 V Range.  
IDAC0 (100 mA).  
AI  
AO  
AO  
AO  
AO  
AO  
AO  
AO  
AO  
AO  
S
AI  
AO  
S
AI  
AO  
S
AI  
AO  
S
AI  
AO  
S
AI  
AO  
S
AI  
S
Power for IDAC0.  
Damping Capacitor Pin for IDAC0. Connect this pin to the PVDD supply.  
IDAC1 (100 mA).  
Power for IDAC1.  
Damping capacitor pin for IDAC1. Connect this pin to the PVDD supply.  
IDAC5 (20 mA).  
Power for IDAC5.  
Damping capacitor pin for IDAC5. Connect this pin to the PVDD supply.  
IDAC4 (20 mA).  
Power for IDAC4.  
Damping capacitor pin for IDAC4. Connect this pin to the PVDD supply.  
IDAC2 (200 mA).  
Power for IDAC2.  
Damping Capacitor for IDAC2. Connect this pin to the PVDD supply.  
IDAC3 (250 mA).  
Power for IDAC3.  
Damping Capacitor Pin for IDAC3. Connect this pin to the PVDD supply.  
Power Supply Ground of the IDACs.  
Analog Ground Pins.  
B10  
B11  
C11  
C10  
B1  
C1  
C2  
A4, B4  
A5, B5  
B3  
A6, B6  
A8, B8  
B9  
A7, B7  
K5, G9,  
L6, J11,  
H4, L7  
AGND1, AGND2, AGND3, AGND4,  
AGND5, AGND6  
S
Rev. B Page 20 of 27  
Data Sheet  
ADuCM310  
Pin No.  
Mnemonic  
Type1 Description  
J5  
DVDD  
S
Digital Supply Pin. This pin is the supply for the 16 MHz oscillator, PLL,  
POR, and digital core, including the flash that requires a regulated 1.8 V  
supply and a 3 V supply.  
F9  
L5, H11  
K3  
VDACVDD  
AVDD3, AVDD4  
DVDD_REG1  
S
S
S
5 V Analog Supply Pin.  
Analog Supply Pin (3.3 V).  
Output of 2.5 V on Chip Low Dropout (LDO) Regulator. Connect a 470 nF  
capacitor to this pin and DGND. This regulator supplies the inter-die digital  
interface.  
L3  
DVDD_REG2  
AVDD_REG1  
AVDD_REG2  
S
S
S
Output of 1.8 V on chip LDO regulator. Connect a 470 nF capacitor to this  
pin and DGND. This regulator supplies flash and the Cortex-M3 processor.  
Output of 2.5 V on chip LDO regulator. Connect a 470 nF capacitor to this  
pin and DGND. This regulator supplies the ADC.  
Output of 2.5 V on chip LDO regulator. Connect a 470 nF capacitor to this  
pin and DGND. This regulator supplies the IDACs.  
F10  
G10  
K6  
E1  
L2, D10  
E11, K1  
F1, F11,  
L1  
AVNEG  
IOVDD1  
DGND1, DGND2  
IOVDD2, IOVDD3  
IOGND1, IOGND2, IOGND3  
S
S
S
S
S
−5 V Supply Pin.  
3.3 V GPIO Supply Pin.  
Digital Ground Pins.  
3.3 V GPIO Supply Pins.  
GPIO Ground Pins.  
J2  
XTALO  
XTALI  
DO  
DI  
Output from the Crystal Oscillator Inverter. If an external crystal is not  
used, leave this pin unconnected.  
Input to the Crystal Oscillator Inverter and Input to the Internal Clock  
Generator Circuits. If an external crystal is not used, connect this pin to  
the DGND system ground.  
K2  
J10  
BUF_VREF2.5A  
BUF_VREF2.5B  
ADC_CAPN  
AO  
AO  
S
Buffered 2.5 V Bias, Maximum Load = 1.2 mA. Connect this pin to AGND  
via a 100 nF capacitor.  
Buffered 2.5 V Bias, Maximum Load = 1.2 mA. Connect this pin to AGND  
via a 100 nF capacitor.  
Decoupling Capacitor Connection for ADC Reference Buffer. Connect this  
pin to AGND.  
Decoupling Capacitor Connection for ADC Reference Buffer. Connect this  
pin to a 4.7 µF capacitor and connect the other side of the capacitor to  
the AGND and the ADC_CAPN pins.  
K11  
K10, L10  
L11  
ADC_CAPP  
S
A1, A11,  
D1, F4,  
F8, D6,  
H6  
RESERVED  
Reserved. Do not connect to this pin.  
1 I is input, I/O is input/output, AO is analog output, AI is analog input, S is supply, DO is digital output, and DI is digital input.  
Rev. B Page 21 of 27  
ADuCM310  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
600  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
400  
300  
HEADROOM 125°C  
HEADROOM 125°C  
200  
HEADROOM 25°C  
100  
HEADROOM 25°C  
0
0
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
LOAD RESISTANCE (Ω)  
LOAD RESISTANCE (Ω)  
Figure 11. Typical Headroom Voltage vs. Load Resistance for VDAC0,  
AVDD = 3 V; Headroom = AVDD − VDAC Output Voltage  
Figure 8. Typical Headroom Voltage vs. Load Resistance for VDAC7,  
VDACVDD = 3 V; Headroom = VDACVDD − VDAC Output Voltage  
600  
500  
400  
300  
700  
600  
500  
400  
300  
HEADROOM 125°C  
HEADROOM 125°C  
200  
200  
100  
HEADROOM 25°C  
100  
0
HEADROOM 25°C  
0
0
200  
400  
600  
800  
1000  
1200  
0
100 200 300 400 500 600 700 800 900 1000  
LOAD RESISTANCE (Ω)  
LOAD RESISTANCE (Ω)  
Figure 9. Typical Headroom Voltage vs. Load Resistance for VDAC7,  
VDACVDD = 5 V; Headroom = VDACVDD − VDAC Output Voltage  
Figure 12. Typical Headroom Voltage vs. Load Resistance for VDAC4,  
AVDD = 3 V; Headroom = AVDD − VDAC Output Voltage  
1000  
900  
0.8  
0.6  
0.4  
800  
HEADROOM 125°C  
700  
0.2  
600  
AIN0  
500  
0
–0.2  
–0.4  
–0.6  
–0.8  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
HEADROOM 25°C  
400  
300  
200  
100  
0
0
100 200 300 400 500 600 700 800 900 1000  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
LOAD RESISTANCE (Ω)  
V
IN  
Figure 10. Typical Headroom Voltage vs. Load Resistance for VDAC2,  
AVNEG = −5 V; Headroom = AVNEG − VDAC Output Voltage  
Figure 13. Input Current vs. VIN, VDD = 3.3 V, TA = 25°C, Unbuffered Mode, 100 kSPS  
Rev. B Page 22 of 27  
 
Data Sheet  
ADuCM310  
15  
250  
200  
150  
100  
50  
+115°C  
10  
5
+85°C  
+25°C  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40°C  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
0
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
75  
100  
125  
150  
175  
200  
225  
V
IDAC OUTPUT CURRENT (mA)  
IN  
Figure 17. Typical IDAC2 PVDD_IDAC2 Pin Voltage Headroom vs.  
Output Current for Different Temperatures; PVDD = 1.8 V  
Figure 14. Input Current vs. VIN, VDD = 3.3 V, TA = 25°C, Buffered Mode, 100 kSPS  
250  
600  
+115°C  
500  
200  
+115°C  
+85°C  
+85°C  
400  
150  
+25°C  
+25°C  
300  
–40°C  
–40°C  
100  
200  
100  
0
50  
0
37.5  
50.0  
62.5  
75.0  
87.5  
100.0  
112.5  
100  
125  
150  
175  
200  
225  
250  
275  
IDAC OUTPUT CURRENT (mA)  
IDAC OUTPUT CURRENT (mA)  
Figure 15. Typical IDAC0 PVDD_IDAC0 Pin Voltage Headroom vs.  
Output Current for Different Temperatures; PVDD = 1.8 V  
Figure 18. Typical IDAC3 PVDD_IDAC3 Pin Voltage Headroom vs.  
Output Current for Different Temperatures; PVDD = 1.8 V  
250  
160  
+115°C  
+115°C  
140  
200  
+85°C  
120  
+85°C  
100  
150  
+25°C  
+25°C  
80  
–40°C  
–40°C  
100  
60  
40  
20  
0
50  
0
37.5  
50.0  
62.5  
75.0  
87.5  
100.0  
112.5  
5
10  
15  
25  
25  
IDAC OUTPUT CURRENT (mA)  
IDAC OUTPUT CURRENT (mA)  
Figure 16. Typical IDAC1 PVDD_IDAC1 Pin Voltage Headroom vs.  
Output Current for Different Temperatures; PVDD = 1.8 V  
Figure 19. Typical IDAC4 PVDD_IDAC4 Pin Voltage Headroom vs.  
Output Current for Different Temperatures; PVDD = 1.8 V  
Rev. B Page 23 of 27  
 
ADuCM310  
Data Sheet  
160  
140  
120  
100  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
MAX  
OL  
V
MIN  
OL  
+115°C  
V
MIN  
OH  
+85°C  
+25°C  
60  
40  
20  
0
V
MAX  
OH  
–40°C  
5
7
9
11  
13  
15  
17  
19  
21  
0
2
4
6
8
10  
12  
14  
16  
IDAC OUTPUT CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 20. Typical IDAC5 PVDD_IDAC5 Pin Voltage Headroom vs.  
Output Current for Different Temperatures, PVDD = 1.8 V  
Figure 22. Typical Output Voltage vs. Load Current  
90  
3.60  
80  
78.2  
77.6  
80  
70  
60  
50  
40  
30  
20  
10  
0
77.2  
61.9  
AFTER 50ms DVDD MUST  
STAY ABOVE 2.85V INCLUDING  
NOISE EXCURSIONS  
2.90  
2.85  
46.2  
50ms min  
20  
DVDD MUST BE ABOVE 2.9V  
FOR AT LEAST 50ms TO  
COMPLETE POR  
TIME (Not to Scale)  
1.30  
1.45  
1.50  
1.60  
EXT V  
1.80  
2.00  
2.50  
(V)  
REF  
Figure 21. ADC SNR vs. External Reference Voltage (EXT VREF  
)
Figure 23. DVDD Power-On Requirements  
Rev. B Page 24 of 27  
 
 
Data Sheet  
ADuCM310  
RECOMMENDED CIRCUIT AND COMPONENT VALUES  
Figure 24 shows a typical connection diagram for the  
ADuCM310.  
The ADC reference requires a 4.7 µF capacitor between the  
ADC_CAPN and ADC_CAPP balls. Directly connect  
ADC_CAPN to the analog ground (AGND).  
There are four digital supply balls: IOVDD1, IOVDD2,  
IOVDD3, and DVDD. Decouple these balls with a 0.1 µF  
capacitor placed as close as possible to each of the four balls and a  
10 µF capacitor at the supply source. Similarly, the analog supply  
pins, AVDD3 and AVDD4, each require a 0.1 µF capacitor  
placed as close as possible to each ball with a 10 µF capacitor at  
the supply source.  
The ADuCM310 contains four internal regulators. These regulators  
require external decoupling capacitors. The DVDD_REG1 and  
DVDD_REG2 balls each requires a 0.47 µF capacitor to the  
digital ground (DGND). The AVDD_REG1 and AVDD_REG2  
balls each requires a decoupling capacitor to the AGND.  
To generate an accurate and low drift reference current, connect the  
IREF ball to the analog ground via a low parts per million  
(ppm) 3.16 kΩ resistor.  
The IDACs source their output currents from the PVDD supply  
balls, PVDD_IDACx. Connect a 100 nF capacitor close to each  
PVDD supply ball. Place at least one 10 µF capacitor at the  
source of the PVDD supply (PVDD_IDACx balls).  
Connect the VREF_1.2 ball to AGND via a 0.47 µF capacitor.  
See Figure 24 for more details.  
The IDAC output filters depend on a 10 nF capacitor placed  
between the CDAMP_IDACx ball and the PVDD_IDACx ball.  
Rev. B Page 25 of 27  
 
ADuCM310  
Data Sheet  
IOVDD  
DVDD  
0.1µF  
0.1µF  
0.1µF 0.1µF  
0.47µF  
0.47µF  
DGND  
DGND  
J5  
F1  
L1  
E1  
IOVDD1  
E11  
K1  
L3  
L2  
D10  
F11  
K3  
DVDD  
PVDD  
10KΩ  
D2  
RESET  
+5V  
–5V  
100nF  
XTALI  
K2  
J2  
0.1µF  
VDACVDD F9  
XTALO  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
AGND  
–0.1µF  
AGND  
AVNEG  
K6  
A3  
PVDD_IDAC0  
DVDD  
10KΩ  
A9 PVDD_IDAC1  
PVDD_IDAC2  
PVDD_IDAC2  
PVDD_IDAC3  
PVDD_IDAC3  
A5  
B5  
A8  
B8  
ADuCM310  
P2.3/BM  
C3  
C4  
P1.0/SIN/ECLKIN/PLAI[4]  
SWCLK  
E10  
C1 PVDD_IDAC4  
PVDD_IDAC5  
C11  
D5  
P1.1/SOUT/PLACLK1/PLAI[5
n
100  
F
CDAMP_IDAC0  
CDAMP_IDAC1  
B2  
B10  
B3  
SWDIO  
PGND  
PGND  
E9  
A7  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
CDAMP_IDAC2  
CDAMP_IDAC3  
CDAMP_IDAC4  
CDAMP_IDAC5  
B9  
B7  
C2  
C10  
G11  
G10  
L6 J11  
L5  
H11  
D11 L11 L10 K10  
F10  
K5  
G9  
AVDD  
0.47µF 0.47µF  
0.47µF 3.16k4.7µF  
0.1µF  
0.1µF  
AGND  
RESET  
GND  
RESET  
DGND  
SWDIO  
Tx  
SWCLK  
Rx  
NO CONNECT  
DVDD  
DVDD  
1.6Ω  
10µF  
0.1µF  
0.1µF  
DGND DGND1 AGND1  
AVDD  
V
IOVDD  
IN  
ADP7102ARDZ-3.3-R7  
1.6Ω  
VIN  
VOUT  
SENSE  
EN  
0.1µF  
10µF  
0.1µF  
10kΩ  
10µF  
0.1µF  
10µF  
PG  
DGND  
GND  
AGND AGND  
+5V  
–5V  
ADP3605  
+2.5V  
PVDD  
ADP1741ACPZ  
V
V
IN  
OUT  
+
+
VOUT  
VIN  
0.1µF  
0.1µF  
AGND  
0.1µF  
0.1µF  
31.6kΩ  
0.1µF  
VSENSE  
+
30kΩ  
10µF  
PGND  
10µF  
C
P
+
EN  
EP  
ADJ  
10µF  
10kΩ  
C
P
SD  
GND  
GND  
SS  
PGND  
10µF  
PGND  
AGND  
Figure 24. Typical Connection Diagram  
Rev. B Page 26 of 27  
 
Data Sheet  
ADuCM310  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
11 10  
7 4 2 1  
9 8 6 5 3  
A
B
C
D
E
F
5.00  
REF SQ  
G
H
J
0.50  
BSC  
K
L
BOTTOM VIEW  
DETAIL A  
0.50  
TOP VIEW  
REF  
0.93  
0.86  
0.79  
0.26  
REF  
DETAIL A  
1.200  
1.083  
1.000  
0.223 NOM  
0.173 MIN  
0.35  
0.30  
0.25  
COPLANARITY  
0.08  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-195-AC  
WITH THE EXCEPTION TO BALL COUNT.  
Figure 25. 112-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-112-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
BC-112-4  
BC-112-4  
ADuCM310BBCZ  
ADuCM310BBCZ-RL  
EVAL-ADuCM310QSPZ  
−10°C to +85°C  
−10°C to +85°C  
112-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
112-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board with QuickStart Development System  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2015–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13040-0-7/17(B)  
Rev. B Page 27 of 27  
 
 

相关型号:

ADUCM320BBCZ

ADUCM320BBCZ
ADI

ADUCM320BBCZ-RL

ADUCM320BBCZ-RL
ADI

ADUCM320BBCZI

ADUCM320BBCZI
ADI

ADUCM322BBCZ

ADUCM322BBCZ
ADI

ADUCM322BBCZI

ADUCM322BBCZI
ADI

ADUCM330

Dual channel, simultaneous sampling
ADI

ADUCM330WDCPZ

Integrated, Precision Battery Sensor for Automotive Systems
ADI

ADuCM330WDCPZ-RL

Dual channel, simultaneous sampling
ADI

ADUCM330WFS

Integrated, Precision Battery Sensor for Automotive Systems
ADI

ADUCM330WFSBCPZ-RL

Integrated, Precision Battery Sensor for Automotive Systems
ADI

ADUCM331

车用集成精密电池传感器
ADI

ADuCM331WDCPZ

Dual channel, simultaneous sampling
ADI