ADUCM4050BCPZ [ADI]

Ultra Low Power ARM Cortex-M4F MCU with Integrated Power Management;
ADUCM4050BCPZ
型号: ADUCM4050BCPZ
厂家: ADI    ADI
描述:

Ultra Low Power ARM Cortex-M4F MCU with Integrated Power Management

文件: 总46页 (文件大小:743K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra Low Power ARM Cortex-M4F MCU  
with Integrated Power Management  
ADuCM4050  
Data Sheet  
Digital peripherals  
FEATURES  
3 SPI interfaces to enable glueless interface to sensors,  
radios, and converters  
EEMBC ULPMark™-CP score (3 V): 189  
Ultra low power active and hibernate modes  
Active mode dynamic current: 41 µA/MHz (typical)  
Flexi mode: 400 µA (typical)  
Hibernate mode: 0.65 µA (typical)  
Shutdown mode: 50 nA (typical)  
Shutdown mode (fast wake-up): 0.20 µA (typical)  
ARM Cortex-M4F processor at 52 MHz with FPU, MPU, ITM  
with SWD interface  
Power management  
Single-supply operation (connected to VBAT pins): 1.74 V to  
3.6 V  
1 I2C and 2 UART peripheral interfaces  
SPORT for natively interfacing with converters and radios  
Programmable GPIOs (44 in LFCSP and 51 in WLCSP)  
3 general-purpose timers with PWM support  
RGB timer for driving RGB LED  
RTC0 for time keeping  
RTC1 with SensorStrobe and time stamping  
Programmable beeper  
27-channel DMA controller  
Clocking features  
26 MHz clock: on-chip oscillator, external crystal oscillator,  
SYS_CLKIN for external clock, and integrated PLL  
32 kHz clock: on-chip oscillator and low power crystal  
oscillator  
Clock fail detection for external crystals  
Analog peripherals  
Optional buck converter for improved efficiency  
Memory options  
512 kB of embedded flash memory with ECC  
4 kB of cache memory to reduce active power  
128 kB of configurable system SRAM with parity  
Safety  
Watchdog with dedicated on-chip oscillator  
Hardware CRC with programmable polynomial  
Multiparity bit protected SRAM  
ECC protected embedded flash  
Security  
Hardware cryptographic accelerator supporting AES-128,  
AES-256, and SHA-256  
Protected key storage in flash, SHA-256-based keyed  
HMAC and key wrap and unwrap  
User code protection  
12-bit SAR ADC, 1.8 MSPS, 8 channels, and digital  
comparator  
APPLICATIONS  
Internet of Things (IoT)  
Smart agriculture, smart building, smart metering, smart  
city, smart machine, and sensor network  
Wearables  
Fitness and clinical  
Machine learning and neural networks  
TRNG  
FUNCTIONAL BLOCK DIAGRAM  
52MHz CORE RATE  
PLL  
SERIAL WIRE  
ITM TRACE  
HFXTAL  
LFXTAL  
HFOSC  
LFOSC  
HP BUCK  
PWR MGT  
ARM  
CORTEX–M4F  
FLASH (512kB)  
MULTI-  
LAYER  
AMBA  
BUS  
NVIC  
MPU  
WIC  
FPU  
CRYPTO  
(AES-128, AES-256,  
SHA 256)  
DATA SRAM/  
INSTRUCTION  
SRAM/  
MATRIX  
REF BUFFER  
TEMP SENSOR  
ADC  
DMA  
KEYED HMAC  
CACHE (128kB)  
KEY WRAP–UNWRAP  
PROTECTED  
KEY STORAGE  
TMR0  
TMR1  
RTC0  
RTC1  
ADC CONTROLLER  
SPORT  
SPIH  
UART0  
UART1  
TRNG  
AHB–APB  
BRIDGE  
2
PROGRAMMABLE  
CRC POLYNOMIAL  
SPI0  
SPI1  
I C  
TMR2  
RGB TMR  
WDT  
BEEPER  
GPIO  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADuCM4050  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 28  
ARM Cortex-M4F Processor.................................................... 28  
Memory Architecture ................................................................ 29  
System Integration Features...................................................... 30  
On-Chip Peripheral Features.................................................... 35  
Development Support................................................................ 36  
Reference Designs ...................................................................... 36  
Security Features Disclaimer .................................................... 36  
MCU Test Conditions................................................................ 36  
Driver Types................................................................................ 36  
EEMBC ULPMark™-CP Score.................................................. 37  
GPIO Multiplexing......................................................................... 38  
Applications Information.............................................................. 40  
Silicon Anomaly ............................................................................. 43  
ADuCM4050 Functionality Issues........................................... 43  
Functionality Issues.................................................................... 43  
Section 1. ADuCM4050 Functionality Issues......................... 44  
Outline Dimensions....................................................................... 45  
Ordering Guide .......................................................................... 46  
Applications....................................................................................... 1  
Functional Block Diagram................................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Product Highlights ........................................................................... 3  
Specifications..................................................................................... 4  
Operating Conditions and Electrical Characteristics.............. 4  
Embedded Flash Specifications.................................................. 4  
Power Supply Current Specifications......................................... 5  
ADC Specifications .................................................................... 10  
Temperature Sensor Specifications .......................................... 11  
System Clocks ............................................................................. 12  
Timing Specifications ................................................................ 13  
Absolute Maximum Ratings.......................................................... 20  
Thermal Resistance .................................................................... 20  
ESD Caution................................................................................ 20  
Pin Configuration and Function Descriptions........................... 21  
Typical Performance Characteristics ........................................... 26  
REVISION HISTORY  
4/2019—Rev. 0 to Rev. A  
6/2018—Revision 0: Initial Version  
Change to Crystal Equivalent Series Resistance Parameter,  
Table 10 ............................................................................................ 12  
Updated Outline Dimensions....................................................... 45  
Rev. A | Page 2 of 46  
 
Data Sheet  
ADuCM4050  
GENERAL DESCRIPTION  
The ADuCM4050 microcontroller unit (MCU) is an ultra low  
power integrated microcontroller system with integrated power  
management for processing, control, and connectivity. The MCU  
system is based on the ARM® Cortex®-M4F processor. The  
MCU also has a collection of digital peripherals, embedded  
static random access memory (SRAM) and embedded flash  
memory, and an analog subsystem that provides clocking, reset,  
and power management capabilities in addition to an analog-  
to-digital converter (ADC) subsystem.  
The ADuCM4050 features a real-time clock (RTC), general-  
purpose and watchdog timers, and programmable general-purpose  
input/output (GPIO) pins. There is a hardware cyclic redundancy  
check (CRC) calculator with programmable generator polynomial.  
The device also features a power on reset (POR) and power supply  
monitor (PSM), a 12-bit successive approximation register (SAR)  
ADC, a red/green/blue (RGB) timer for driving RGB LED, and a  
true random number generator (TRNG).  
To support low dynamic and hibernate power management, the  
ADuCM4050 MCU provides a collection of power modes and  
features such as dynamic- and software-controlled clock gating  
and power gating.  
This data sheet describes the ARM Cortex-M4F core and  
memory architecture used on the ADuCM4050 MCU. It does  
not provide detailed programming information about the ARM  
processor.  
For full details on the ADuCM4050 MCU, refer to the  
ADuCM4050 Ultra Low Power ARM Cortex-M4F MCU with  
Integrated Power Management Hardware Reference.  
The system features include an up to 52 MHz ARM Cortex-  
M4F processor, 512 kB of embedded flash memory with error  
correction code (ECC), an optional 4 kB cache for lower active  
power, and 128 kB system SRAM with parity. The ADuCM4050  
features a power management unit (PMU), multilayer advanced  
microcontroller bus architecture (AMBA) bus matrix, central  
direct memory access (DMA) controller, and beeper interface.  
PRODUCT HIGHLIGHTS  
1. Ultra low power consumption.  
2. Robust operation.  
3. Full voltage monitoring in deep sleep modes.  
4. ECC support on flash.  
5. Parity error detection on SRAM memory.  
6. Leading edge security.  
7. Fast encryption provides read protection to user algorithms.  
8. Write protection prevents device reprogramming by  
unauthorized code.  
9. Failure detection of 32 kHz low frequency external crystal  
oscillator (LFXTAL) via interrupt.  
10. SensorStrobe™ for precise time synchronized sampling of  
external sensors. Works in hibernate mode, resulting in drastic  
current reduction in system solutions. Current consumption  
reduces by 10 times when using, for example, the ADXL363  
accelerometer. Software intervention is not required after  
setup. No pulse drift due to software execution.  
The ADuCM4050 features cryptographic hardware supporting  
advanced encryption standard (AES)-128 and AES-256 with  
secure hash algorithm (SHA)-256 and the following modes:  
electronic code book (ECB), cipher block chaining (CBC),  
counter (CTR), and cipher block chaining-message  
authentication code (CCM/CCM*) modes.  
The ADuCM4050 has protected key storage with key wrap/  
unwrap, and keyed hashed message authentication code (HMAC)  
with key unwrap.  
The ADuCM4050 supports serial port (SPORT), serial peripheral  
interface (SPI), I2C, and universal asynchronous receiver/  
transmitter (UART) peripheral interfaces.  
Rev. A | Page 3 of 46  
 
 
ADuCM4050  
Data Sheet  
SPECIFICATIONS  
OPERATING CONDITIONS AND ELECTRICAL CHARACTERISTICS  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
EXTERNAL BATTERY SUPPLY VOLTAGE1, 2  
INPUT VOLTAGE  
High Level  
VBAT  
1.74  
3.0  
3.6  
V
VIH  
VIL  
2.5  
V
V
V
VBAT = 3.6 V  
VBAT = 1.74 V  
Low Level  
0.45  
3.6  
ADC SUPPLY VOLTAGE  
OUTPUT VOLTAGE3  
High Level  
VBAT_ADC  
1.74  
1.4  
3.0  
VOH  
VOL  
V
V
VBAT = 1.74 V, IOH = −1.0 mA  
VBAT = 1.74 V, IOL = 1.0 mA  
Low Level  
0.4  
INPUT CURRENT PULL-UP4  
High Level  
Low Level  
IIHPU  
IILPU  
0.01  
0.01  
0.01  
0.2  
100  
µA  
µA  
VBAT = 3.6 V, VIN = 3.6 V  
VBAT = 3.6 V, VIN = 0 V  
THREE-STATE LEAKAGE CURRENT  
High Level5  
IOZH  
0.15  
0.30  
100  
0.15  
100  
0.15  
µA  
µA  
µA  
µA  
µA  
µA  
pF  
V
VBAT = 3.6 V, VIN = 3.6 V  
VBAT = 3.6 V, VIN = 3.6 V  
VBAT = 3.6 V, VIN = 3.6 V  
VBAT = 3.6 V, VIN = 0 V  
VBAT = 3.6 V, VIN = 0 V  
VBAT = 3.6 V, VIN = 0 V  
TJ = 25°C  
Pull-Up6  
IOZHPU  
IOZHPD  
IOZL  
IOZLPU  
IOZLPD  
CIN  
Pull-Down7  
Low Level5  
Pull-Up6  
Pull-Down7  
INPUT CAPACITANCE  
VBAT POWER-ON RESET  
10  
VVBAT_POR  
1.49  
−40  
1.59  
1.64  
+85  
Power-on reset level on VBAT; trip point  
is detected when battery is decaying8  
Junction Temperature  
TJ  
°C  
TAMBIENT = −40°C to +85°C  
1 Value applies to VBAT_ANA1, VBAT_ANA2, VBAT_DIG1, and VBAT_DIG2 pins.  
2 Must remain powered (even if the associated function is not used).  
3 Applies to the output and bidirectional pins: P0_00 to P0_15, P1_00 to P1_15, P2_00 to P2_15, and P3_00 to P3_03.  
4
SYS_HWRST  
Applies to the  
input pin with pull-up.  
5 Applies to the three-state pins: P0_00 to P0_05, P0_08 to P0_15, P1_00 to P1_15, P2_00 to P2_15, P3_00 to P3_03.  
6 Applies to the three-state pins with pull-ups: P0_00 to P0_05, P0_07 to P0_15, P1_00 to P1_15, P2_00 to P2_15, and P3_00 to P3_03.  
7 Applies to the P0_06 three-state pin with pull-down.  
8 This specification is valid when the device is powered up; if the battery decays and falls below 1.71 V, power-on reset is detected. For safer operation of the device,  
adhere to the VBAT specification.  
EMBEDDED FLASH SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
FLASH  
Endurance  
Data Retention  
10,000  
Cycles  
Years  
10  
Rev. A | Page 4 of 46  
 
 
 
Data Sheet  
ADuCM4050  
POWER SUPPLY CURRENT SPECIFICATIONS  
Active Mode  
Table 3.  
Parameter  
ACTIVE MODE3  
Min Typ 1 Max2 Unit  
Test Conditions/Comments  
Current consumption when VBAT = 3.0 V  
Buck Enabled  
1.27 2.71  
mA  
Code executing from flash, cache enabled, system peripheral clock (PCLK) disabled,  
advanced high performance clock (HCLK) = 26 MHz4  
1.83 3.28  
1.40 2.84  
1.97 3.41  
2.33 3.78  
2.94 4.39  
2.59 4.04  
3.21 4.65  
1.43 2.87  
1.56 3.00  
2.64 4.09  
2.90 4.35  
41  
2.34 4.78  
3.38 5.82  
2.60 5.04  
3.65 6.09  
4.46 6.90  
5.61 8.05  
4.98 7.42  
6.14 8.58  
2.66 5.10  
2.92 5.36  
5.08 7.52  
5.60 8.04  
82  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Code executing from flash, cache disabled, PCLK disabled, HCLK = 26 MHz4  
Code executing from flash, cache enabled, PCLK = 26 MHz, HCLK = 26 MHz4  
Code executing from flash, cache disabled, PCLK = 26 MHz, HCLK = 26 MHz4  
Code executing from flash, cache enabled, PCLK disabled, HCLK = 52 MHz5  
Code executing from flash, cache disabled, PCLK disabled, HCLK = 52 MHz5  
Code executing from flash, cache enabled, PCLK = 52 MHz, HCLK = 52 MHz5  
Code executing from flash, cache disabled, PCLK = 52 MHz, HCLK = 52 MHz5  
Code executing from SRAM, PCLK disabled, HCLK = 26 MHz4  
Code executing from SRAM, PCLK = 26 MHz, HCLK = 26 MHz4  
Code executing from SRAM, PCLK disabled, HCLK = 52 MHz5  
Code executing from SRAM, PCLK = 52 MHz, HCLK = 52 MHz5  
Dynamic Current  
Buck Disabled  
µA/MHz Code executing from flash, cache enabled  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Code executing from flash, cache enabled, PCLK disabled, HCLK = 26 MHz4  
Code executing from flash, cache disabled, PCLK disabled, HCLK = 26 MHz4  
Code executing from flash, cache enabled, PCLK = 26 MHz, HCLK = 26 MHz4  
Code executing from flash, cache disabled, PCLK = 26 MHz, HCLK = 26 MHz4  
Code executing from flash, cache enabled, PCLK disabled, HCLK = 52 MHz5  
Code executing from flash, cache disabled, PCLK disabled, HCLK = 52 MHz5  
Code executing from flash, cache enabled, PCLK = 52 MHz, HCLK = 52 MHz5  
Code executing from flash, cache disabled, PCLK = 52 MHz, HCLK = 52 MHz5  
Code executing from SRAM, PCLK disabled, HCLK = 26 MHz4  
Code executing from SRAM, PCLK = 26 MHz, HCLK = 26 MHz4  
Code executing from SRAM, PCLK disabled, HCLK = 52 MHz5  
Code executing from SRAM, PCLK = 52 MHz, HCLK = 52 MHz5  
Dynamic Current  
µA/MHz Code executing from flash, cache enabled  
1 TJ = 25°C  
2 TJ = 85°C  
3 The code being executed is a prime number generation in a continuous loop, with high frequency RC oscillator (HFOSC) as the system clock source.  
4 Zero wait states and low buck load.  
5 One wait state and high buck load.  
Rev. A | Page 5 of 46  
 
 
ADuCM4050  
Data Sheet  
Flexi Mode  
Table 4.  
Parameter  
FLEXI™ MODE  
Buck Enabled  
Min Typ 1 Max2 Unit  
Test Conditions/Comments  
Current consumption when VBAT = 3.0 V  
PCLK disabled, HCLK = 26 MHz  
PCLK = 26 MHz, HCLK = 26 MHz  
PCLK disabled, HCLK = 52 MHz  
PCLK = 52 MHz, HCLK = 52 MHz  
PCLK disabled, HCLK = 26 MHz  
PCLK = 26 MHz, HCLK = 26 MHz  
PCLK disabled, HCLK = 52 MHz  
PCLK = 52 MHz, HCLK = 52 MHz  
0.40 1.85  
0.54 1.98  
0.62 2.06  
0.88 2.33  
0.62 3.06  
0.88 3.32  
1.04 3.48  
1.57 4.01  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Buck Disabled  
1 TJ = 25°C.  
2 TJ = 85°C.  
Rev. A | Page 6 of 46  
 
Data Sheet  
ADuCM4050  
Deep Sleep Modes—VBAT = 1.8 V  
Table 5.  
Parameter  
HIBERNATE MODE1  
Min Typ Max  
Unit Test Conditions/Comments  
VBAT = 1.8 V  
TJ = 25°C  
0.78  
µA  
Real-Time Clock 1 (RTC1) and Real-Time Clock 0 (RTC0) disabled, 16 kB SRAM retained,  
LFXTAL off  
0.89  
0.96  
1.06  
1.35  
1.44  
1.51  
1.60  
0.85  
1.66  
1.08  
1.11  
1.14  
1.82  
1.84  
1.87  
2.79 6.90  
3.46 9.00  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
RTC1 and RTC0 disabled, 28 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 48 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 60 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 80 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 92 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 112 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 124 kB SRAM retained, LFXTAL off  
RTC1 enabled, 16 kB SRAM retained, low frequency RC oscillator (LFOSC) as RTC1 source  
RTC1 enabled, 124 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 16 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
RTC1 enabled, 124 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
RTC1 and RTC0 disabled, 16 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 28 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 48 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 60 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 80 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 92 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 112 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 124 kB SRAM retained, LFXTAL off  
RTC1 enabled, 16 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 124 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 16 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
RTC1 enabled, 124 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
VBAT = 1.8 V  
TJ = 85°C  
4.73 12.50 µA  
5.38 14.80 µA  
6.26 16.70 µA  
6.85 18.70 µA  
8.12 22.30 µA  
8.74 24.50 µA  
2.95 7.30  
8.92 25.50 µA  
µA  
3.16 7.77  
3.16 7.78  
3.22 7.92  
9.07 25.70 µA  
9.10 25.76 µA  
9.15 25.91 µA  
µA  
µA  
µA  
SHUTDOWN MODE1  
TJ = 25°C  
0.03  
0.37  
0.31 1.30  
0.78 2.93  
µA  
µA  
µA  
µA  
RTC0 disabled  
RTC0 enabled, LFXTAL as RTC0 source  
RTC0 disabled  
RTC0 enabled, LFXTAL as RTC0 source  
TJ = 85°C  
FAST SHUTDOWN  
MODE1  
VBAT = 1.8 V  
TJ = 25°C  
0.17  
0.51  
0.47 1.50  
0.94 3.53  
µA  
µA  
µA  
µA  
RTC0 disabled  
RTC0 enabled, LFXTAL as RTC0 source  
RTC0 disabled  
TJ = 85°C  
RTC0 enabled, LFXTAL as RTC0 source  
1 Buck enable/disable does not affect power consumption.  
Rev. A | Page 7 of 46  
ADuCM4050  
Data Sheet  
Deep Sleep Modes—VBAT = 3.0 V  
Table 6.  
Parameter  
HIBERNATE MODE1  
Min Typ  
Max  
Unit  
Test Conditions/Comments  
VBAT = 3.0 V  
TJ = 25°C  
0.65  
0.72  
0.77  
0.83  
1.09  
1.13  
1.17  
1.22  
0.68  
1.26  
0.87  
0.95  
0.97  
1.38  
1.46  
1.48  
2.00  
2.38  
2.98  
3.29  
4.04  
4.41  
4.94  
5.20  
2.11  
5.32  
2.53  
2.61  
2.64  
6.03  
6.10  
6.12  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
RTC1 and RTC0 disabled, 16 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 28 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 48 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 60 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 80 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 92 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 112 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 124 kB SRAM retained, LFXTAL off  
RTC1 enabled, 16 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 124 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 16 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
RTC1 enabled, 124 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
RTC1 and RTC0 disabled, 16 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 28 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 48 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 60 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 80 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 92 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 112 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 124 kB SRAM retained, LFXTAL off  
RTC1 enabled, 16 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 124 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 16 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
RTC1 enabled, 124 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
VBAT = 3.0 V  
TJ = 85°C  
4.60  
5.70  
7.80  
9.00  
10.06  
11.80  
13.70  
15.50  
5.00  
16.00  
5.75  
5.92  
5.98  
16.12  
16.30  
16.37  
SHUTDOWN MODE1  
TJ = 25°C  
0.05  
0.68  
0.45  
1.26  
µA  
µA  
µA  
µA  
RTC0 disabled  
RTC0 enabled, LFXTAL as RTC0 source  
RTC0 disabled  
RTC0 enabled, LFXTAL as RTC0 source  
TJ = 85°C  
1.60  
4.18  
FAST SHUTDOWN  
MODE1  
VBAT = 3.0 V  
TJ = 25°C  
0.20  
0.83  
0.62  
1.43  
µA  
µA  
µA  
µA  
RTC0 disabled  
RTC0 enabled, LFXTAL as RTC0 source  
RTC0 disabled  
TJ = 85°C  
1.80  
4.74  
RTC0 enabled, LFXTAL as RTC0 source  
1 Buck enable/disable does not affect power consumption.  
Rev. A | Page 8 of 46  
Data Sheet  
ADuCM4050  
Deep Sleep Modes—VBAT = 3.6 V  
Table 7.  
Parameter  
HIBERNATE MODE1  
Min Typ  
Max  
Unit  
Test Conditions/Comments  
VBAT = 3.6 V  
TJ = 25°C  
0.66  
0.73  
0.77  
0.82  
1.04  
1.08  
1.12  
1.16  
0.69  
1.19  
0.85  
0.96  
0.98  
1.32  
1.43  
1.45  
1.95  
2.29  
2.82  
3.14  
3.78  
4.10  
4.63  
4.95  
2.07  
5.06  
2.52  
2.63  
2.65  
5.51  
5.62  
5.64  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
RTC1 and RTC0 disabled, 16 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 28 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 48 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 60 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 80 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 92 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 112 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 124 kB SRAM retained, LFXTAL off  
RTC1 enabled, 16 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 124 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 16 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
RTC1 enabled, 124 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
RTC1 and RTC0 disabled, 16 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 28 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 48 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 60 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 80 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 92 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 112 kB SRAM retained, LFXTAL off  
RTC1 and RTC0 disabled, 124 kB SRAM retained, LFXTAL off  
RTC1 enabled, 16 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 124 kB SRAM retained, LFOSC as RTC1 source  
RTC1 enabled, 16 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 16 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
RTC1 enabled, 124 kB SRAM retained, LFXTAL as RTC1 source  
RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC0 source  
RTC1 and RTC0 enabled, 124 kB SRAM retained, LFXTAL as RTC1 and RTC0 source  
VBAT = 3.6 V  
TJ = 85°C  
5.00  
6.00  
7.20  
8.20  
10.00  
11.00  
12.30  
14.90  
5.30  
15.20  
6.19  
6.48  
6.53  
15.34  
15.64  
15.71  
SHUTDOWN MODE1  
TJ = 25°C  
0.07  
1.05  
0.58  
1.79  
µA  
µA  
µA  
µA  
RTC0 disabled  
RTC0 enabled, LFXTAL as RTC0 source  
RTC0 disabled  
RTC0 enabled, LFXTAL as RTC0 source  
TJ = 85°C  
1.90  
5.57  
FAST SHUTDOWN  
MODE1  
VBAT = 3.6 V  
TJ = 25°C  
0.22  
1.21  
0.75  
1.97  
µA  
µA  
µA  
µA  
RTC0 disabled  
RTC0 enabled, LFXTAL as RTC0 source  
RTC0 disabled  
TJ = 85°C  
2.10  
6.32  
RTC0 enabled, LFXTAL as RTC0 source  
1 Buck enable/disable does not affect power consumption.  
Rev. A | Page 9 of 46  
ADuCM4050  
Data Sheet  
ADC SPECIFICATIONS  
Table 8.  
Parameter1, 2  
Min Typ 3  
Max  
Unit  
Test Conditions/Comments  
1.8 V (VBAT)/1.25 V (internal/external VREF)  
INTEGRAL NONLINEARITY ERROR  
64-Lead LFCSP  
4
1.6  
LSB  
LSB  
4
64-Lead LFCSP  
3.0 V (VBAT)/2.5 V (internal/external VREF)  
1.7 to +1.3  
4
72-Ball WLCSP  
1.4  
LSB  
1.8 V (VBAT)/1.25 V (internal/external VREF  
)
DIFFERENTIAL NONLINEARITY ERROR  
64-Lead LFCSP  
4
LSB  
LSB  
LSB  
1.8 V (VBAT)/1.25 V (internal/external VREF  
)
0.7 to +1.15  
0.7 to +1.1  
0.75 to +1.0  
4
64-Lead LFCSP  
72-Ball WLCSP  
3.0 V (VBAT)/2.5 V (internal/external VREF)  
4
1.8 V (VBAT)/1.25 V (internal/external VREF  
)
OFFSET ERROR  
64-Lead LFCSP  
64-Lead LFCSP  
72-Ball WLCSP  
GAIN ERROR  
64-Lead LFCSP  
64-Lead LFCSP  
72-Ball WLCSP  
4
0.5  
0.5  
0.5  
LSB  
LSB  
LSB  
1.8 V (VBAT)/1.25 V (external VREF)  
4
3.0 V (VBAT)/2.5 V (external VREF  
)
4
4
4
1.8 V (VBAT)/1.25 V (external VREF  
)
2.5  
0.5  
3.0  
LSB  
LSB  
LSB  
1.8 V (VBAT)/1.25 V (external VREF  
)
4
3.0 V (VBAT)/2.5 V (external VREF  
)
1.8 V (VBAT)/1.25 V (external VREF  
)
5
I VBAT_ADC  
6
64-Lead LFCSP  
64-Lead LFCSP  
72-Ball WLCSP  
64-Lead LFCSP  
64-Lead LFCSP  
129  
157  
124  
47  
51  
46  
µA  
µA  
µA  
µA  
µA  
µA  
V
1.8 V (VBAT)/1.25 V (internal VREF)  
6
3.0 V (VBAT)/2.5 V (internal VREF  
)
6
1.8 V (VBAT)/1.25 V (internal VREF  
)
7
1.8 V (VBAT)/1.25 V (external VREF)  
7
3.0 V (VBAT)/2.5 V (external VREF  
)
7
72-Ball WLCSP  
1.8 V (VBAT)/1.25 V (external VREF)  
INTERNAL REFERENCE VOLTAGE  
1.25  
2.50  
Internal reference, 1.25 V selected  
Internal reference, 2.5 V selected  
V
ADC SAMPLING FREQUENCY (fS)8  
0.01  
1.8  
MSPS  
1 The ADC is characterized in standalone mode without core activity and minimal or no switching on the adjacent ADC channels and digital inputs/outputs.  
2 The specifications are characterized after performing internal ADC offset calibration.  
3 TJ = 25°C.  
4 fIN = 1068 Hz, fS = 100 kSPS, internal reference in low power mode, 400,000 samples end point method used.  
5 Current consumption from VBAT_ADC supply when ADC is performing the conversion.  
6 fIN = 1068 Hz, fS = 100 kSPS, internal reference in low power mode.  
7 fIN = 1068 Hz, fS = 100 kSPS, sine wave with 1.25 V p-p applied at ADC0_VIN1 channel input.  
8 Effects of analog source impedance must be considered when selecting ADC sampling frequency.  
Rev. A | Page 10 of 46  
 
Data Sheet  
ADuCM4050  
TEMPERATURE SENSOR SPECIFICATIONS  
Table 9.  
Parameter  
Min  
Typ  
Max Unit  
Test Conditions/Comments  
TEMPERATURE SENSOR  
Internal reference = 1.25 V with CLOAD = 0.1 μF and 4.7 μF  
on the VREFP_ADC pin  
Accuracy  
2
3
°C  
°C  
TAMBIENT = 25°C to +5°C  
TAMBIENT = −40°C to +85°C  
Rev. A | Page 11 of 46  
 
ADuCM4050  
Data Sheet  
SYSTEM CLOCKS  
External Crystal Oscillator Specifications  
Table 10.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOW FREQUENCY EXTERNAL CRYSTAL  
OSCILLATOR (LFXTAL)  
Frequency  
External Capacitance from  
fLFXTAL  
CLFXTAL  
32,768  
Hz  
pF  
6
10  
External capacitors on SYS_LFXTAL_IN  
and SYS_LFXTAL_OUT pins must be  
selected considering the printed circuit  
board (PCB) trace capacitance due to  
routing  
SYS_LFXTAL_IN Pin to Ground and  
from SYS_LFXTAL_OUT Pin to Ground  
Crystal Equivalent Series Resistance  
Crystal Drive Level1  
Oscillator Transconductance1  
ESRLFXTAL  
gmLFXTAL  
30  
8
50  
50  
kΩ  
nW  
µS  
HIGH FREQUENCY EXTERNAL CRYSTAL  
OSCILLATOR (HFXTAL)  
Frequency  
External Capacitance from  
SYS_HFXTAL_IN Pin to Ground and  
from SYS_HFXTAL_OUT Pin to Ground  
fHFXTAL  
CHFXTAL  
26  
MHz  
pF  
20  
50  
External capacitors on SYS_HFXTAL_IN  
and SYS_HFXTAL_OUT pins must be  
selected considering the PCB trace  
capacitance due to routing  
Crystal Equivalent Series Resistance  
1 Guaranteed by design.  
ESRHFXTAL  
Ω
On-Chip Resistor-Capacitor (RC) Oscillator Specifications  
Table 11.  
Parameter  
Symbol  
fLFOSC  
fHFOSC  
Min  
Typ  
Max  
Unit  
Hz  
LOW FREQUENCY RC OSCILLATOR (LFOSC)  
Frequency  
30,800  
25.03  
32,768  
26  
35,062  
27.07  
HIGH FREQUENCY RC OSCILLATOR (HFOSC)  
Frequency  
MHz  
System Clocks and Phase-Locked Loop (PLL) Specifications  
Table 12.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
PLL SPECIFICATIONS  
PLL Input Clock Frequency1  
fPLLIN  
fPLLOUT  
fPCLK  
16  
16  
0.8125  
0.8125  
26  
60  
52  
52  
MHz  
MHz  
MHz  
MHz  
PLL Output Clock Frequency2, 3  
System Peripheral Clock (PCLK) Frequency  
Advanced High Performance Bus Clock (HCLK) Frequency  
fHCLK  
1 The input to the PLL can come from either the high frequency external crystal (HFXTAL), SYS_CLKIN pin or from the high frequency internal RC oscillator (HFOSC).  
2 For the maximum value, the recommended settings are PLL MSEL = 13, PLL NSEL = 16, PLL DIV2 = 1 for PLL input clock = 26 MHz; and PLL MSEL = 13, PLL NSEL = 26,  
PLL DIV2 = 1 for PLL input clock = 16 MHz; see the ADuCM4050 Ultra Low Power ARM Cortex-M4F MCU with Integrated Power Management Hardware Reference for  
more information on these configuration options.  
3 For the minimum value, the recommended settings are PLL MSEL = 13, PLL NSEL = 30, PLL DIV2 = 0 for PLL input clock = 26 MHz; and PLL MSEL = 8, PLL NSEL = 30,  
PLL DIV2 = 0 for 16 MHz.  
Rev. A | Page 12 of 46  
 
Data Sheet  
ADuCM4050  
TIMING SPECIFICATIONS  
Reset Timing  
Table 13.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
RESET TIMING REQUIREMENTS  
SYS_HWRST Asserted Pulse Width Low1  
tWRST  
4
µs  
1 Applies after power-up sequence is complete.  
tWRST  
SYS_HWRST  
Figure 2. Reset Timing  
Serial Ports Timing  
Table 14.  
Parameter  
Symbol Min  
Typ Max Unit Test Conditions/Comments  
EXTERNAL CLOCK SERIAL PORTS  
Timing Requirements  
Frame Sync Setup Before SPORT Clock1  
tSFSE  
tHFSE  
5
5
ns  
ns  
Externally generated frame sync  
in transmit or receive mode  
Externally generated frame sync  
in transmit or receive mode  
Frame Sync Hold After SPORT Clock1  
Receive Data Setup Before Receive SPORT Clock1  
Receive Data Hold After SPORT Clock1  
SPORT Clock Width2  
tSDRE  
tHDRE  
tSCLKW  
tSPTCLK  
5
8
38.5  
77  
ns  
ns  
ns  
ns  
SPORT Clock Period2  
Switching Characteristics3  
Frame Sync Delay After SPORT Clock  
tDFSE  
20  
20  
ns  
ns  
Internally generated frame sync in  
transmit or receive mode  
Internally generated frame sync in  
transmit or receive mode  
Frame Sync Hold After SPORT Clock  
tHOFSE  
2
1
Transmit Data Delay After Transmit SPORT Clock  
Transmit Data Hold After Transmit SPORT Clock  
INTERNAL CLOCK SERIAL PORTS  
tDDTE  
tHDTE  
ns  
ns  
Timing Requirements1  
Receive Data Setup Before SPORT Clock  
Receive Data Hold After SPORT Clock  
Switching Characteristics  
tSDRI  
tHDRI  
25  
0
ns  
ns  
Frame Sync Delay After SPORT Clock3  
tDFSI  
20  
20  
ns  
ns  
Internally generated frame sync in  
transmit or receive mode  
Internally generated frame sync in  
transmit or receive mode  
Frame Sync Hold After SPORT Clock3  
tHOFSI  
−8  
Transmit Data Delay After SPORT Clock3  
Transmit Data Hold After SPORT Clock3  
SPORT Clock Width  
tDDTI  
tHDTI  
tSCLKIW  
tSPTCLK  
ns  
ns  
ns  
ns  
−7  
tPCLK − 1.5  
(2 × tPLCK) − 1  
SPORT Clock Period  
Rev. A | Page 13 of 46  
 
ADuCM4050  
Data Sheet  
Parameter  
Symbol Min  
Typ Max Unit Test Conditions/Comments  
ENABLE AND THREE-STATE SERIAL PORTS  
Switching Characteristics  
Data Enable from Internal Transmit SPORT Clock3 tDDTIN  
Data Disable from Internal Transmit SPORT Clock3 tDDTTI  
5
ns  
ns  
160  
1 This specification is referenced to the sample edge.  
2 This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPORT Clock.  
3 These specifications are referenced to the drive edge.  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
tDFSI  
tHOFSI  
SPT0_AFS/SPT0_BFS  
(FRAME SYNC)  
tSDRI  
tHDRI  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
Figure 3. Serial Ports (Data Receive Mode through Internal Clock)  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
SPT0_A/SPT0_BCLK  
(SPORT CLOCK)  
tDFSI  
tHOFSI  
SPT0_AFS/SPT0_BFS  
(FRAME SYNC)  
tDDTI  
tHDTI  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
Figure 4. Serial Ports (Data Transmit Mode through Internal Clock)  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKW  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
tDFSE  
tHOFSE  
tSFSE  
tHFSE  
SPT0_AFS/SPT0_BFS  
(FRAME SYNC)  
tSDRE  
tHDRE  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
Figure 5. Serial Ports (Data Receive Mode through External Clock)  
Rev. A | Page 14 of 46  
Data Sheet  
ADuCM4050  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK)  
tDFSI  
tHOFSI  
tSFSE  
tHFSE  
SPT0__AFS/SPT0__BFS  
(FRAME SYNC)  
tDDTE  
tHDTE  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
Figure 6. Serial Ports (Data Transmit Mode through External Clock)  
DRIVE EDGE  
DRIVE EDGE  
SPT0_ACLK/SPT0_BCLK  
(SPORT CLOCK INTERNAL)  
tDDTIN  
tDDTTI  
SPT0_AD0/SPT0_BD0  
(DATA CHANNEL A/B)  
Figure 7. Enable and Three-State Serial Ports  
Rev. A | Page 15 of 46  
ADuCM4050  
Data Sheet  
SPI Timing  
Table 15.  
Parameter1  
Symbol  
Min  
Typ  
Max  
Unit  
SPI MASTER MODE TIMING  
Timing Requirements  
Chip Select (CS) to Serial Clock (SCLK) Edge  
SCLK Low Pulse Width  
SCLK High Pulse Width  
Data Input Setup Time Before SCLK Edge  
Data Input Hold Time After SCLK Edge  
Switching Characteristics  
tCS  
tSL  
tSH  
tDSU  
tDHD  
(2 × tPCLK) − 6.5  
tPCLK − 3.5  
tPCLK − 3.5  
5
ns  
ns  
ns  
ns  
ns  
20  
Data Output Valid After SCLK Edge  
Data Output Setup Before SCLK Edge  
CS High After SCLK Edge  
tDAV  
tDOSU  
tSFS  
25  
ns  
ns  
ns  
tPCLK − 2.2  
tPCLK + 2  
High Speed SPI (SPIH) MASTER MODE TIMING  
Timing Requirements  
CS to SCLK Edge  
SCLK Low Pulse Width  
SCLK High Pulse Width  
Data Input Setup Time Before SCLK Edge  
Data Input Hold Time After SCLK Edge  
Switching Characteristics  
tCS  
tSL  
tSH  
tDSU  
tDHD  
(2 × tPCLK) − 6.5  
tPCLK − 2  
tPCLK − 2  
3.5  
ns  
ns  
ns  
ns  
ns  
12  
Data Output Valid After SCLK Edge  
Data Output Setup Before SCLK Edge  
CS High After SCLK Edge  
tDAV  
tDOSU  
tSFS  
12.5  
ns  
ns  
ns  
tPCLK − 2.2  
tPCLK + 2  
SPI SLAVE MODE TIMING  
Timing Requirements  
CS to SCLK Edge  
SCLK Low Pulse Width  
SCLK High Pulse Width  
Data Input Setup Time Before SCLK Edge  
Data Input Hold Time After SCLK Edge  
Switching Characteristics  
tCS  
tSL  
tSH  
tDSU  
tDHD  
38.5  
38.5  
38.5  
6
ns  
ns  
ns  
ns  
ns  
8
Data Output Valid After SCLK Edge  
Data Output Valid After CS Edge  
CS High After SCLK Edge  
tDAV  
tDOCS  
tSFS  
20  
20  
ns  
ns  
ns  
38.5  
SPIH SLAVE MODE TIMING  
Timing Requirements  
CS to SCLK Edge  
SCLK Low Pulse Width  
SCLK High Pulse Width  
Data Input Setup Time Before SCLK Edge  
Data Input Hold Time After SCLK Edge  
Switching Characteristics  
tCS  
tSL  
tSH  
tDSU  
tDHD  
19.23  
19.23  
19.23  
1
ns  
ns  
ns  
1
Data Output Valid After SCLK Edge  
Data Output Valid After CS Edge  
CS High After SCLK Edge  
tDAV  
tDOCS  
tSFS  
15  
15  
ns  
ns  
ns  
19.23  
1 These specifications are characterized with respect to double drive strength.  
Rev. A | Page 16 of 46  
Data Sheet  
ADuCM4050  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
MSB  
BIT 6 TO BIT 1  
BIT 6 TO BIT 1  
LSB  
MOSI  
MISO  
LSB IN  
MSB IN  
tDSU  
tDHD  
Figure 8. SPI Master Mode Timing (Phase Mode = 1)  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
tDOSU  
MOSI  
MISO  
MSB  
BIT 6 TO BIT 1  
LSB  
BIT 6 TO  
BIT 1  
LSB IN  
MSB IN  
tDSU  
tDHD  
Figure 9. SPI Master Mode Timing (Phase Mode = 0)  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
MISO  
MOSI  
MSB  
BIT 6 TO BIT 1  
BIT 6 TO BIT 1  
LSB  
LSB IN  
MSB IN  
tDSU  
tDHD  
Figure 10. SPI Slave Mode Timing (Phase Mode = 1)  
Rev. A | Page 17 of 46  
ADuCM4050  
Data Sheet  
CS  
tCS  
tSFS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
SCLK  
(POLARITY = 1)  
tDAV  
tDOCS  
MISO  
MSB  
BIT 6 TO BIT 1  
BIT 6 TO BIT 1  
LSB  
MOSI  
LSB IN  
MSB IN  
tDSU  
tDHD  
Figure 11. SPI Slave Mode Timing (Phase Mode = 0)  
Rev. A | Page 18 of 46  
Data Sheet  
ADuCM4050  
I2C Specifications  
Table 16.  
Parameter  
Symbol  
Min  
Typ  
Max  
Max  
Unit  
I2C SCLK FREQUENCY  
Standard Mode  
Fast Mode  
100  
400  
kHz  
kHz  
General-Purpose Port Timing  
Table 17.  
Parameter  
Symbol  
Min  
Typ  
Unit  
TIMING REQUIREMENTS  
General-Purpose Port Pin Input Pulse Width  
tWFI  
4 × tPCLK  
ns  
tWFI  
GPIO INPUT  
Figure 12. General-Purpose Timing  
RTC1 (FLEX_RTC) Specifications  
Table 18.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SensorStrobe  
Minimum Output Frequency  
Maximum Output Frequency  
RTC1 ALARM  
0.5  
16.384  
Hz  
kHz  
Minimum Time Resolution  
30.52  
µs  
Timer Pulse-Width Modulation (PWM) Output Cycle Timing  
Table 19.  
Parameter  
Symbol  
Min  
Typ  
Max  
256 × (216 − 1)  
Unit  
SWITCHING REQUIREMENTS  
Timer Pulse Width Modulation Output  
tPWMO  
(4 × tPCLK) − 6  
ns  
tPWMO  
PWM OUTPUTS  
Figure 13. Timer PWM Output Cycle Timing  
Rev. A | Page 19 of 46  
ADuCM4050  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 20.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required. θJA can be used for a first-order  
approximation of TJ by the following equation:  
Parameter  
Rating  
Supply  
VBAT_ANA1, VBAT_ANA2, VBAT_ADC, −0.3 V to +3.6 V  
VBAT_DIG1, VBAT_DIG2, and  
VREFP_ADC  
Analog  
TJ = TA + (θJA × PD)  
where:  
VDCDC_CAP1N, VDCDC_CAP1P,  
VDCDC_OUT, VDCDC_CAP2N, and  
VDCDC_CAP2P  
VLDO_OUT, SYS_HFXTAL_IN,  
SYS_HFXTAL_OUT, SYS_LFXTAL_IN,  
and SYS_LFXTAL_OUT  
−0.3 V to +3.6 V  
−0.3 V to +1.32 V  
TA is ambient temperature (°C).  
TJ is junction temperature (°C).  
PD is power dissipation (to calculate power dissipation.  
Table 21. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
Digital Input/Output  
CP-64-17  
26.3  
1.0  
°C/W  
P0_xx, P1_xx, P2_xx, P3_xx, and  
SYS_HWRST  
−0.3 V to +3.6 V  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 20 of 46  
 
 
 
Data Sheet  
ADuCM4050  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
VBAT_DIG2  
P0_13  
P1_05  
P1_02  
P3_02  
P0_10  
P0_03  
P0_00  
VBAT_ANA1  
A
B
C
D
E
F
P1_00  
P0_14  
P0_15  
P2_01  
P1_04  
P1_03  
P3_00  
P3_01  
P1_12  
P3_03  
P0_11  
P0_04  
P1_10  
P0_02  
P2_06  
P0_01  
GND_ANA  
P2_05  
SYS_HFXTAL_OUT SYS_HFXTAL_IN  
SYS_LFXTAL_IN  
VDCDC_CAP1N  
SYS_LFXTAL_OUT  
P1_13  
P1_14  
P2_02  
VBAT_ANA2  
P1_11  
P1_01  
P0_08  
P1_15  
P0_09  
P1_06  
P2_15  
P1_09  
GND_DIG  
SYS_HWRST  
VBAT_ADC  
VDCDC_OUT  
VDCDC_CAP1P  
VDCDC_CAP2N  
P2_14  
P2_08  
VREFP_ADC  
VDCDC_CAP2P  
P2_00  
P0_12  
P2_11  
P1_07  
P1_08  
P0_06  
P0_07  
P2_13  
P2_12  
P2_09  
P0_05  
P2_04  
P2_07  
GND_ADC  
VLDO_OUT  
G
H
VBAT_DIG1  
P2_03  
GND_VREFADC  
ADuCM4050  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 14. 72-Ball WLCSP Pin Configuration  
Table 22. 72-Ball WLCSP Pin Function Descriptions  
Pin No. Mnemonic  
Signal Names  
Description  
External Supply for Digital Circuits in the MCU.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
A1  
A2  
A3  
A4  
A5  
VBAT_DIG2  
P0_13  
P1_05  
P1_02  
P3_02  
Not applicable  
GPIO13/SYS_WAKE2  
GPIO21, SPI2_CS0  
GPIO18, SPI2_CLK  
GPIO50, RGB_TMR0_3,  
SPT0_AD0  
A6  
A7  
P0_10  
P0_03  
GPIO10, UART0_TX  
GPIO03, SPI0_CS0, SPT0_BCNV,  
SPI2_RDY  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
A8  
A9  
B1  
B2  
B3  
B4  
P0_00  
VBAT_ANA1  
P1_00  
P0_15  
P1_04  
GPIO00, SPI0_CLK, SPT0_BCLK  
Not applicable  
GPIO16/SYS_WAKE1  
GPIO15/SYS_WAKE0  
GPIO20, SPI2_MISO  
GPIO. See the GPIO Multiplexing section for more information.  
External Supply for Analog Circuits in the MCU.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
P3_00  
GPIO48, RGB_TMR0_1,  
SPT0_ACLK  
B5  
P3_03  
GPIO51, SPT0_ACNV  
GPIO. See the GPIO Multiplexing section for more information.  
Rev. A | Page 21 of 46  
 
ADuCM4050  
Data Sheet  
Pin No. Mnemonic  
Signal Names  
Description  
B6  
P1_10  
GPIO26, SPI0_CS1, SYS_CLKIN,  
SPI1_CS3  
GPIO. See the GPIO Multiplexing section for more information.  
B7  
B8  
B9  
C1  
C2  
C3  
C4  
P0_01  
GPIO01, SPI0_MOSI, SPT0_BFS  
GPIO. See the GPIO Multiplexing section for more information.  
High Frequency Crystal Output.  
High Frequency Crystal Input.  
SYS_HFXTAL_OUT Not applicable  
SYS_HFXTAL_IN  
P0_14  
P2_01  
P1_03  
Not applicable  
GPIO14, TMR0_OUT, SPI1_RDY  
GPIO33/SYS_WAKE3, TMR2_OUT GPIO. See the GPIO Multiplexing section for more information.  
GPIO19, SPI2_MOSI  
GPIO49, RGB_TMR0_2,  
SPT0_AFS  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
P3_01  
C5  
C6  
C7  
C8  
C9  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
E1  
P0_11  
P0_02  
GPIO11, UART0_RX  
GPIO02, SPI0_MISO, SPT0_BD0  
Not applicable  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
Ground Reference for Analog Circuits in the MCU.  
Low Frequency Crystal Output.  
Low Frequency Crystal Input.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
External Supply for Analog Circuits in the MCU.  
GND_ANA  
SYS_LFXTAL_OUT Not applicable  
SYS_LFXTAL_IN  
P1_13  
P1_14  
P2_02  
P1_12  
P0_04  
P2_06  
Not applicable  
GPIO29, TMR2_OUT  
GPIO30, SPI0_RDY  
GPIO34, SPT0_ACNV, SPI1_CS2  
GPIO28, RTC1_SS2  
GPIO04, I2C0_SCL  
GPIO38, ADC0_VIN3  
GPIO37, ADC0_VIN2  
Not applicable  
Not applicable  
GPIO27, TMR1_OUT  
GPIO08, BPR0_TONE_N  
GPIO09, BPR0_TONE_P,  
SPI2_CS1  
P2_05  
VBAT_ANA2  
VDCDC_CAP1N  
P1_11  
P0_08  
P0_09  
Buck Converter Capacitor 1 Negative Terminal.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
E2  
E3  
E4  
P2_15  
GPIO47, SPI2_CS2, SPI1_CS3,  
SPI0_CS1  
GPIO. See the GPIO Multiplexing section for more information.  
E5  
E6  
E7  
E8  
GND_DIG  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Ground Reference for Digital Circuits in the MCU.  
Hardware Reset Pin.  
SYS_HWRST  
VBAT_ADC  
VDCDC_OUT  
External Supply for Internal ADC.  
Buck Converter Output. This pin is only for connecting the decoupling  
capacitor. Do not connect to external load.  
E9  
F1  
F2  
F3  
F4  
F5  
F6  
VDCDC_CAP1P  
P1_01  
P1_15  
P1_06  
P1_09  
Not applicable  
SYS_BMODE0, GPIO17  
GPIO31, SPT0_ACLK, UART1_TX  
GPIO22, SPI1_CLK, RGB_TMR0_1 GPIO. See the GPIO Multiplexing section for more information.  
GPIO25, SPI1_CS0, SWV  
GPIO46, SPI0_CS3  
Buck Converter Capacitor 1 Positive Terminal.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
P2_14  
P2_08  
GPIO40, ADC0_VIN5, SPI0_CS2,  
RTC1_SS3  
F7  
F8  
F9  
G1  
G2  
VREFP_ADC  
VDCDC_CAP2P  
VDCDC_CAP2N  
P2_00  
Not applicable  
Not applicable  
Not applicable  
GPIO32, SPT0_AFS, UART1_RX  
GPIO12, SPT0_AD0,  
UART0_SOUT_EN  
External Reference Voltage for Internal ADC.  
Buck Converter Capacitor 2 Positive Terminal.  
Buck Converter Capacitor 2 Negative Terminal.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
P0_12  
G3  
P1_07  
GPIO23, SPI1_MOSI,  
RGB_TMR0_2  
GPIO. See the GPIO Multiplexing section for more information.  
G4  
G5  
G6  
P0_06  
P2_13  
P2_09  
SWD0_CLK, GPIO06  
GPIO45, UART1_RX, SPI0_CS2  
GPIO41, ADC0_VIN6, SPI0_CS3  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
Rev. A | Page 22 of 46  
Data Sheet  
ADuCM4050  
Pin No. Mnemonic  
Signal Names  
Description  
G7  
G8  
G9  
P2_04  
GND_ADC  
VLDO_OUT  
GPIO36, ADC0_VIN1  
Not applicable  
Not applicable  
GPIO. See the GPIO Multiplexing section for more information.  
Ground Pin for Internal ADC.  
Low Drop Out Regulator Output. This pin is only for connecting the  
decoupling capacitor. Do not connect to external load.  
H1  
H2  
VBAT_DIG1  
P2_11  
Not applicable  
External Supply for Digital Circuits in the MCU.  
GPIO43, SPI1_CS1, SYS_CLKOUT, GPIO. See the GPIO Multiplexing section for more information.  
RTC1_SS1  
H3  
P1_08  
GPIO24, SPI1_MISO,  
RGB_TMR0_3  
GPIO. See the GPIO Multiplexing section for more information.  
H4  
H5  
H6  
H7  
H8  
H9  
P0_07  
P2_12  
P0_05  
P2_07  
P2_03  
GND_VREFADC  
SWD0_DATA, GPIO07  
GPIO44, UART1_TX, SPI2_CS3  
GPIO05, I2C0_SDA  
GPIO39, ADC0_VIN4, SPI2_CS3  
GPIO35, ADC0_VIN0  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
Ground for ADC Reference Supply.  
Not applicable  
Rev. A | Page 23 of 46  
ADuCM4050  
Data Sheet  
48 GND_DIG  
47 P1_00  
46 P0_14  
45 P2_02  
44 P1_14  
43 P1_13  
42 P1_12  
41 P1_11  
40 P0_08  
39 P0_09  
38 P1_01  
37 P1_15  
36 P2_00  
35 P0_12  
34 VBAT_DIG1  
33 P2_11  
VBAT_ANA1  
SYS_HFXTAL_IN  
SYS_HFXTAL_OUT  
SYS_LFXTAL_IN  
SYS_LFXTAL_OUT  
VDCDC_CAP1N  
VDCDC_CAP1P  
VBAT_ANA2  
1
2
3
4
5
6
7
8
9
ADuCM4050  
TOP VIEW  
(Not to Scale)  
VDCDC_OUT  
VDCDC_CAP2N 10  
VDCDC_CAP2P 11  
VLDO_OUT 12  
VREF_ADC 13  
VBAT_ADC 14  
GND_VREFDAC 15  
P2_03 16  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD MUST BE GROUNDED.  
Figure 15. 64-Lead LFCSP Pin Configuration  
Table 23. 64-Lead LFCSP Pin Function Descriptions  
Pin No. Mnemonic  
Signal Names  
Not applicable  
Not applicable  
Description  
1
2
3
4
5
6
7
8
9
VBAT_ANA1  
SYS_HFXTAL_IN  
External Supply for Analog Circuits in the MCU.  
High Frequency Crystal Input.  
High Frequency Crystal Output.  
Low Frequency Crystal Input.  
Low Frequency Crystal Output.  
Buck Converter Capacitor 1 Negative Terminal.  
Buck Converter Capacitor 1 Positive Terminal.  
External Supply for Analog Circuits in the MCU.  
Buck Converter Output. This pin is only for connecting the decoupling  
capacitor. Do not connect to external load.  
SYS_HFXTAL_OUT Not applicable  
SYS_LFXTAL_IN Not applicable  
SYS_LFXTAL_OUT Not applicable  
VDCDC_CAP1N  
VDCDC_CAP1P  
VBAT_ANA2  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
VDCDC_OUT  
10  
11  
12  
VDCDC_CAP2N  
VDCDC_CAP2P  
VLDO_OUT  
Not applicable  
Not applicable  
Not applicable  
Buck Converter Capacitor 2 Negative Terminal.  
Buck Converter Capacitor 2 Positive Terminal.  
Low Dropout Regulator Output. This pin is only for connecting the  
decoupling capacitor. Do not connect to external load.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
VREF_ADC  
VBAT_ADC  
GND_VREFADC  
P2_03  
P2_04  
P2_05  
P2_06  
P2_07  
P2_08  
Not applicable  
Not applicable  
Not applicable  
GPIO35, ADC0_VIN0  
GPIO36, ADC0_VIN1  
GPIO37, ADC0_VIN2  
GPIO38, ADC0_VIN3  
GPIO39, ADC0_VIN4, SPI2_CS3  
External Reference Voltage for Internal ADC.  
External Supply for Internal ADC.  
Ground for Internal ADC.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO40, ADC0_VIN5, SPI0_CS2,  
RTC1_SS3  
22  
23  
24  
25  
26  
27  
P2_09  
P2_10  
P0_05  
SYS_HWRST  
P0_04  
GPIO41, ADC0_VIN6, SPI0_CS3  
GPIO42, ADC0_VIN7, SPI2_CS2  
GPIO05, I2C0_SDA  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO.  
GPIO. See the GPIO Multiplexing section for more information.  
Hardware Reset Pin.  
Not applicable  
GPIO04, I2C0_SCL  
SWD0_DATA, GPIO07  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
P0_07  
Rev. A | Page 24 of 46  
Data Sheet  
ADuCM4050  
Pin No. Mnemonic  
Signal Names  
Description  
28  
29  
30  
P0_06  
P1_09  
P1_08  
SWD0_CLK, GPIO06  
GPIO25, SPI1_CS0, SWV  
GPIO24, SPI1_MISO,  
RGB_TMR0_3  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
31  
P1_07  
GPIO23, SPI1_MOSI,  
RGB_TMR0_2  
GPIO. See the GPIO Multiplexing section for more information.  
32  
33  
P1_06  
P2_11  
GPIO22, SPI1_CLK, RGB_TMR0_1 GPIO. See the GPIO Multiplexing section for more information.  
GPIO43, SPI1_CS1, SYS_CLKOUT, GPIO. See the GPIO Multiplexing section for more information.  
RTC1_SS1  
34  
35  
VBAT_DIG1  
P0_12  
Not applicable  
GPIO12, SPT0_AD0,  
UART0_SOUT_EN  
External Supply for Digital Circuits in the MCU.  
GPIO. See the GPIO Multiplexing section for more information.  
36  
37  
38  
39  
P2_00  
P1_15  
P1_01  
P0_09  
GPIO32, SPT0_AFS, UART1_RX  
GPIO31, SPT0_ACLK, UART1_TX  
SYS_BMODE0, GPIO17  
GPIO09, BPR0_TONE_P,  
SPI2_CS1  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
P0_08  
P1_11  
P1_12  
P1_13  
P1_14  
P2_02  
P0_14  
P1_00  
GND_DIG  
VBAT_DIG2  
P0_15  
P0_13  
P2_01  
P1_05  
P1_04  
P1_03  
P1_02  
P0_11  
P0_10  
P1_10  
GPIO08, BPR0_TONE_N  
GPIO27, TMR1_OUT  
GPIO28, RTC1_SS2  
GPIO29, TMR2_OUT  
GPIO30, SPI0_RDY  
GPIO34, SPT0_ACNV, SPI1_CS2  
GPIO14, TMR0_OUT, SPI1_RDY  
GPIO16/SYS_WAKE1  
Not applicable  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
Ground Reference for Digital Circuits in the MCU.  
Not applicable  
GPIO15/SYS_WAKE0  
GPIO13/SYS_WAKE2  
External Supply for Digital Circuits in the MCU.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO33/SYS_WAKE3, TMR2_OUT GPIO. See the GPIO Multiplexing section for more information.  
GPIO21, SPI2_CS0  
GPIO20, SPI2_MISO  
GPIO19, SPI2_MOSI  
GPIO18, SPI2_CLK  
GPIO11, UART0_RX  
GPIO10, UART0_TX  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO26, SPI0_CS1, SYS_CLKIN,  
SPI1_CS3  
60  
P0_03  
GPIO03, SPI0_CS0, SPT0_BCNV,  
SPI2_RDY  
GPIO. See the GPIO Multiplexing section for more information.  
61  
62  
63  
64  
P0_02  
P0_01  
P0_00  
GND_ANA  
EPAD  
GPIO02, SPI0_MISO, SPT0_BD0  
GPIO01, SPI0_MOSI, SPT0_BFS  
GPIO00, SPI0_CLK, SPT0_BCLK  
Not applicable  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
GPIO. See the GPIO Multiplexing section for more information.  
Ground Reference for Analog Circuits in the MCU.  
Not applicable  
Exposed Pad. The exposed pad must be grounded.  
Rev. A | Page 25 of 46  
ADuCM4050  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 16 through Figure 21 show the typical current voltage characteristics for the output drivers of the MCU. The curves represent the  
current drive capability of the output drivers as a function of output voltage.  
V
(V)  
V
(V)  
OH  
OH  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
5
4
5
4
V
, V  
= 3.0V  
V
, V  
= 1.74V  
OH BAT  
OH BAT  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
V
V
V
V
, V  
= 1.74V  
0.2  
V
, V  
= 3.0V  
OL BAT  
OL BAT  
0
0.1  
0.3  
(V)  
0.4  
0.5  
0.6  
0
0.05  
0.10  
0.15  
V (V)  
OL  
0.20  
0.25  
0.30  
V
OL  
Figure 16. Output Double Drive Strength Characteristics (VBAT = 1.74 V)  
Figure 18. Output Double Drive Strength Characteristics (VBAT = 3.0 V)  
V
(V)  
V
(V)  
OH  
OH  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
= 1.74V  
1.8  
2.6  
2.7  
2.8  
2.9  
= 3.0V  
3.0  
2.5  
2.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
, V  
V
, V  
OH BAT  
OH BAT  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
V
V
V
V
TYPE A  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
TYPE B  
TYPE C  
TYPE D  
V
, V  
= 3.0V  
V
, V  
= 1.74V  
0.2  
OL BAT  
0.05  
OL BAT  
0
0.1  
0.3  
(V)  
0.4  
0.5  
0.6  
0
0.10  
0.15  
V (V)  
OL  
0.20  
0.25  
0.30  
V
OL  
Figure 17. Output Single Drive Strength Characteristics (VBAT = 1.74 V)  
Figure 19. Output Single Drive Strength Characteristics (VBAT = 3.0 V)  
Rev. A | Page 26 of 46  
 
 
Data Sheet  
ADuCM4050  
V
(V)  
V
(V)  
OH  
OH  
3.20  
5
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
3.2  
3.3  
3.4  
3.5  
, V  
3.6  
2.5  
2.0  
V
= 3.6V  
V
, V  
= 3.6V  
OH BAT  
OH BAT  
4
3
V
V
V
V
TYPE A  
V
V
V
V
TYPE A  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
TYPE B  
TYPE C  
TYPE D  
TYPE B  
TYPE C  
TYPE D  
1.5  
2
1.0  
1
0.5  
0
0
–1  
–2  
–3  
–4  
–5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
V
V
V
V
TYPE A  
TYPE B  
TYPE C  
TYPE D  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
V
V
V
V
, V  
= 3.6V  
V
, V  
= 3.6V  
OL BAT  
OL BAT  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0
0.05  
0.10  
0.15  
0.20  
0.25  
V
(V)  
V
(V)  
OL  
OL  
Figure 20. Output Double Drive Strength Characteristics (VBAT = 3.6 V)  
Figure 21. Output Single Drive Strength Characteristics (VBAT = 3.6 V)  
Rev. A | Page 27 of 46  
 
ADuCM4050  
Data Sheet  
THEORY OF OPERATION  
Code Region  
ARM CORTEX-M4F PROCESSOR  
The ARM Cortex-M4F core is a 32-bit reduced instruction set  
computer (RISC). The length of the data can be 8 bits, 16 bits,  
or 32 bits. The length of the instruction word is 16 bits or  
32 bits. The processor has the following features:  
Accesses in the code region (0x0000_0000 to 0x0007_FFFF  
except 0x0007_F000 to 0x0007_FFFF, which is meant for  
protected key storage) are performed by the core and target the  
memory and cache resources.  
SRAM Region  
ARM Cortex-M4F architecture  
Thumb-2 instruction set architecture (ISA) technology  
Three-stage pipeline with branch speculation  
Low latency interrupt processing with tail chaining  
Single-cycle multiply  
Hardware divide instructions  
Nested vectored interrupt controller (NVIC) (72 interrupts  
and 8 priorities)  
Six hardware breakpoints and one watchpoint (unlimited  
software breakpoints using the Segger JLink debug probe)  
Bit banding support  
Trace support—instruction trace macrocell (ITM), trace  
port interface unit (TPIU), and data watchpoint and trace  
(DWT) triggers and counters  
Memory protection unit (MPU)  
Eight-region MPU with subregions and background region  
Programmable clock generator unit  
Accesses in the SRAM region (see Figure 22) are performed by  
the ARM Cortex-M4F core. The SRAM region of the core can  
act as a data region for an application.  
Internal SRAM data region. This space can contain  
read/write data. Internal SRAM can be partitioned between  
code and data (the SRAM region in the ARM Cortex-M4F  
space) in 32 kB blocks. Access to this region occurs at core  
clock speed with no wait states. The SRAM data region also  
supports read/write access by the ARM Cortex-M4F core  
and read/write DMA access by system devices.  
System memory mapped registers (MMRs). Various system  
MMRs reside in this region.  
System Region  
Accesses in this region (0xE000_0000 to 0xFFFF_FFFF) are  
performed by the ARM Cortex-M4F core and handled within  
the ARM Cortex-M4F platform. This system region includes  
the following components:  
Configurable for ultralow power operation  
Deep sleep modes, dynamic power management  
Programmable clock generator unit  
CoreSight™ read only memory (ROM). The ROM table  
entries (see the ARM Cortex-M4F Technical Reference  
Manual) show the debug components of the processor.  
ARM advanced peripheral bus (APB) peripheral. This  
space is defined by ARM and occupies the bottom 256 kB  
of the system region (0xE000_0000 to 0xE004_0000). The  
space supports read/write access by the ARM Cortex-M4F  
core to the internal peripherals of the ARM core (NVIC,  
system control space (SCS), and wake-up interrupt controller  
(WIC)) and CoreSight ROM. It is not accessible by system  
DMA.  
Floating point unit (FPU)  
Supports single-precision add, subtract, multiply, divide,  
multiply and accumulate, and square root operations  
Provides conversions between fixed point and floating  
point data formats, and floating point constant instructions  
ARM Cortex-M4F Subsystem  
The ADuCM4050 MCU memory map (see the ADuCM4050  
Ultra Low Power ARM Cortex-M4F MCU with Integrated  
Power Management Hardware Reference) is based on the ARM  
Cortex-M4F memory model. By retaining the standardized  
memory mapping, it is easier to port applications across ARM  
Cortex-M4F platforms. The ADuCM4050 application  
development is based on memory blocks across code and  
SRAM regions. Sufficient internal memory is available via  
internal SRAM and internal flash.  
Platform control register. This space has registers within  
the ARM Cortex-M4F platform component that control  
the ARM core, its memory, and the code cache. It is  
accessible by the ARM Cortex-M4F core (but not  
accessible by system DMA).  
Rev. A | Page 28 of 46  
 
 
Data Sheet  
ADuCM4050  
For more information about the MMRs, refer to the  
ADuCM4050 Ultra Low Power ARM Cortex-M4F MCU with  
Integrated Power Management Hardware Reference.  
MEMORY ARCHITECTURE  
The internal memory of the ADuCM4050 MCU is shown in  
Figure 22. It incorporates 512 kB of embedded flash memory for  
program code and nonvolatile data storage, 96 kB of data SRAM,  
and 32 kB of SRAM (configured as instruction space or data space).  
Flash Memory  
The ADuCM4050 MCU includes 512 kB of embedded flash  
memory, which is accessed using a flash controller. The flash  
controller is coupled with a cache controller. A prefetch  
mechanism is implemented in the flash controller to optimize  
code performance.  
SRAM Region  
This memory space contains the application instructions and  
variables data, which must be accessed in real time. It supports  
read/write access by the ARM Cortex-M4F core and read/write  
DMA access by system peripherals. Byte, half-word and word  
accesses are supported.  
Flash writes are supported by a keyhole mechanism via APB  
writes to MMRs. The flash controller provides support for  
DMA-based keyhole writes.  
SRAM is divided into 96 kB data SRAM and 32 kB instruction  
SRAM. If instruction SRAM is not enabled, then the associated  
32 kB can be mapped as data SRAM, resulting in 128 kB of data  
SRAM.  
The device supports the following with consideration to flash  
integrity:  
A fixed user key required for running protected commands,  
including mass erase and page erase.  
An optional and user definable user failure analysis key  
(FAA key).  
An optional and user definable write protection for user-  
accessible memory.  
When the cache controller is enabled, 4 kB of the instruction  
SRAM is reserved as cache memory. Optional parity bit error  
detection is available on all SRAM memories. Multiple parity  
bits are associated with each 32-bit word.  
In hibernate mode, up to 124 kB of SRAM can be retained in  
the following ways:  
8-bit ECC.  
124 kB of data SRAM  
96 kB of data SRAM and 28 kB of instruction SRAM  
Cache Controller  
The ADuCM4050 MCU has an optional 4 kB instruction cache.  
In certain applications, enabling the cache and executing the code  
can result in lower power consumption rather than operating  
directly from flash. When enabling the cache controller, 4 kB  
of instruction SRAM is reserved as cache memory. In hibernate  
mode, the cache memory is not retained.  
MMRs (Peripheral Control and Status)  
For the address space containing MMRs, refer to Figure 22.  
These registers provide control and status for on-chip  
peripherals of the ADuCM4050 MCU.  
RESERVED  
RESERVED  
0x4000_70C4  
RESERVED  
0x4000_0C3C  
ADC0  
0x4004_C814  
RGB TIMER  
RESERVED  
0x4000_7000  
0x4000_5C0F  
0x4000_5C00  
0x4000_544C  
RESERVED  
BEEPER 0  
RESERVED  
0x4000_0C00  
0x4000_082C  
POWER MANAGEMENT, EXTERNAL  
INTERRUPTS, CLOCKING,  
MISCELLANEOUS REGISTERS  
GENERAL-PURPOSE TIMER 2  
RESERVED  
0x4000_0800  
0x4000_042C  
UART 1  
0x4004_C000  
0x4004_40C8  
RESERVED  
CRYPTOGRAPHIC ACCELERATOR  
RESERVED  
0x4000_5400  
0x4000_504C  
RESERVED  
GENERAL-PURPOSE TIMER 1  
RESERVED  
0x4000_0400  
0x4000_002C  
UART 0  
RESERVED  
0x4004_4000  
0x4004_0418  
0x4000_5000  
0x4000_4438  
GENERAL-PURPOSE TIMER 0  
RESERVED  
RANDOM NUMBER GENERATOR  
RESERVED  
0x4000_0000  
0x2005_4000  
SPI 1 MASTER/SLAVE  
RESERVED  
0x4004_0400  
0x4004_0018  
0x4000_4400  
0x4000_4038  
SYSTEM SRAM BANK 6 (16kB)  
PROGRAMMABLE CRC ENGINE  
RESERVED  
0x2005_0000  
0x2004_8000  
0x2004_4000  
SPI 0 MASTER/SLAVE  
RESERVED  
0x4004_0000  
0x4003_806C  
SYSTEM SRAM BANK 5 (32kB)  
SYSTEM SRAM BANK 4 (16kB)  
0x4000_4000  
0x4000_305C  
SPORT 0  
2
I C 0 MASTER/SLAVE  
0x4003_8000  
0x4002_4038  
RESERVED  
0x4000_3000  
0x4000_2C1C  
SYSTEM SRAM BANK 3 (16kB)  
RESERVED  
RESERVED  
WATCHDOG TIMER  
RESERVED  
0x2004_0000  
0x2000_4000  
SPIH 0 MASTER/SLAVE  
RESERVED  
0x4002_4000  
0x4002_00F8  
0x4000_2C00  
0x4000_2040  
SYSTEM SRAM BANK 0 (16kB)  
RESERVED  
GPIO  
0x2000_0000  
0x1000_8000  
SYSTEM ID AND DEBUG ENABLE  
RESERVED  
0x4002_0000  
0x4001_8064  
RESERVED  
0x4000_2000  
0x4000_14E8  
INSTRUCTION SRAM BANK 1,  
INSTRUCTION SRAM BANK 2,  
INSTRUCTION SRAM BANK 7  
(32kB)  
FLASH CONTROLLER  
REAL TIME CLOCK 1 (RTC1)  
RESERVED  
0x4001_8000  
0x4001_0FE4  
0x4001_0000  
0x4000_1400  
0x4000_10E8  
RESERVED  
DMA 0  
0x1000_0000  
0x0008 0000  
0x0000_0000  
RESERVED  
REAL TIME CLOCK 0 (RTC0)  
0x4000_1000  
512kB FLASH MEMORY  
Figure 22. ADuCM4050 Memory Map—SRAM Mode 0  
Rev. A | Page 29 of 46  
 
 
ADuCM4050  
Data Sheet  
Flexi Mode  
SYSTEM INTEGRATION FEATURES  
The ADuCM4050 MCU provides several features for  
development of ultra low power, secure, and robust systems.  
In flexi mode, the ARM Cortex-M4F core is clock gated, but the  
remainder of the system is active. No instructions can be executed  
in this mode, but DMA transfers can continue between peripherals  
as well as memory to memory. See Table 4 for details on flexi mode  
current consumption.  
Reset  
There are four kinds of resets: external, power-on, watchdog  
timeout, and software system reset. The software system reset is  
provided as part of the ARM Cortex-M4F core. The  
Hibernate Mode  
pin is toggled to perform a hardware reset.  
SYS_HWRST  
Hibernate mode provides state retention, configurable SRAM  
and port pin retention, a limited number of wake-up interrupts  
(SYS_WAKEx, UART0_RX, and optionally, RTC0 and RTC1  
(FLEX_RTC™)).  
Booting  
The ADuCM4050 MCU supports two boot modes: booting from  
internal flash and upgrading software through UART download  
(see Table 24). If SYS_BMODE0 (Pin P1_01) is pulled low  
during power-up or a hard reset, the MCU enters into serial  
download mode. In this mode, an on-chip loader routine  
initiates in the kernel, which configures the UART port and  
communicates with the host to manage the firmware upgrade  
via a specific serial download protocol.  
Shutdown Mode  
Shutdown mode is the deepest sleep mode, in which all the digital  
and analog circuits are powered down with an option to wake  
from four possible wake-up sources. The RTC0 can be (optionally)  
enabled in this mode, and the device can be periodically woken  
up by the RTC0 interrupt.  
Shutdown Mode—Fast Wake-Up  
Table 24. Boot Modes  
Boot Mode Description  
This mode has a faster wake-up time than shutdown mode at  
the expense of higher power consumption. See Table 25 for  
wake-up time specifications.  
0
1
UART download mode.  
Flash boot. Boot from integrated flash memory.  
Power Management and Control  
Power Management and Modes  
The following features are available for power management and  
control:  
The ADuCM4050 MCU has an integrated power management  
system that optimizes performance and extends the battery life  
of the device. The power management system consists of the  
following:  
Voltage range of 1.74 V to 3.6 V using a single supply (such  
as the CR2032 coin cell battery).  
GPIOs are driven directly from the battery. The pin state is  
retained in hibernate and shutdown modes. The GPIO  
configuration is only retained in hibernate mode.  
Wake-up from external interrupts (via GPIOs),  
UART0_RX interrupt, and RTCs for hibernate mode.  
Wake-up from external interrupts (via GPIOs) and RTC0  
for shutdown mode.  
Integrated 1.2 V low dropout regulator (LDO) and optional  
capacitive buck regulator  
Integrated power switches for low standby current in  
hibernate and shutdown modes  
Additional power management features include the following:  
Customized clock gating for active modes  
Power gating to reduce leakage in hibernate and shutdown  
modes  
Optional high power buck converter for 1.2 V full on support  
(MCU use only). See Figure 23 for suggested external circuitry.  
Flexible sleep modes  
VBAT  
VDCDC_CAP1P  
VDCDC_CAP1N  
VDCDC_OUT  
Shutdown mode with no retention  
Optional high efficiency buck converter to reduce power  
Integrated low power oscillators  
0.1µF  
0.1µF  
BUCK  
ENABLED  
1µF  
VDCDC_CAP2P  
VDCDC_CAP2N  
The PMU provides control of the ADuCM4050 MCU power  
modes and allows the ARM Cortex-M4F to control the clocks  
and power gating to reduce the power consumption. Several  
power modes are available, offering options to balance power  
consumption and functionality. The power modes available in the  
ADuCM4050 are described in the following sections.  
VLDO_OUT  
0.47µF  
LDO  
Active Mode  
NOTES  
1. FOR DESIGNS IN WHICH THE OPTIONAL BUCK IS NOT USED,  
THE FOLLOWING PINS MUST BE LEFT UNCONNECTED: VDCDC_CAP1P,  
VDCDC_CAP1N, VDCDC_OUT, VDCDC_CAP2P, AND VDCDC_CAP2N.  
In active mode, all peripherals can be enabled. Active power is  
managed by optimized clock management. See Table 3 for  
details on active mode current consumption.  
Figure 23. Buck Enable Design  
Rev. A | Page 30 of 46  
 
 
 
Data Sheet  
ADuCM4050  
Table 25. Power Modes Wake-Up Times  
Mode  
VTOR1  
Flash  
Flash  
SRAM  
Flash  
Flash  
Flash  
Flash  
Flash  
Flash  
Flash  
Root Clock  
HFOSC  
HFOSC  
HFOSC  
HFXTAL  
PLL_HFOSC  
PLL_HFXTAL  
PLL_HFOSC  
PLL_HFXTAL  
HFOSC  
HCLK/PCLK  
26 MHz  
26 MHz  
26 MHz  
26 MHz  
26 MHz  
26 MHz  
52 MHz  
52 MHz  
26 MHz  
26 MHz  
Wake-Up Time  
Flexi  
Hibernate  
1.605 µs  
10.356 µs  
4.984 µs  
686.452 µs  
14.487 µs  
742.668 µs  
15.730 µs  
726.101 µs  
68.144 ms  
1.220 ms  
Shutdown  
Shutdown (Fast Wake-Up)  
HFOSC  
1 VTOR means vector table offset register.  
True Random Number Generator (TRNG)  
Security Features  
The TRNG is used during operations where nondeterministic  
values are required. This can include generating challenges for  
secure communication or keys used for an encrypted commu-  
nication channel. The generator can run multiple times to  
generate a sufficient number of bits for the strength of the  
intended operation. The true random number generator can  
seed a deterministic random bit generator.  
The ADuCM4050 MCU provides a combination of hardware  
and software protection mechanisms that lock out access to the  
device in secure mode, but grant access in open mode. These  
mechanisms include the password protected slave boot mode  
(UART), as well as password protected serial wire debug (SWD)  
interfaces. Mechanisms are provided to protect the device  
contents (flash, SRAM, CPU registers, and peripheral registers)  
from being read through an external interface by an  
Reliability and Robustness Features  
unauthorized user. This is referred to as read protection.  
The ADuCM4050 MCU provides several features that can  
enhance or help achieve certain levels of system safety and  
reliability. Whereas the level of safety is mainly dominated by  
system considerations, the following features are provided to  
enhance robustness.  
It is possible to protect the device from being reprogrammed in  
circuit with unauthorized code. This is referred to as in circuit  
write protection.  
The device can be configured with no protection, read protection,  
or read and in circuit write protection. It is not necessary to  
provide in circuit write protection without read protection.  
ECC Enabled Flash Memory  
The entire flash array is protected to either correct single-bit  
errors or detect two bit errors per 64-bit flash data.  
This product includes security features that can be used to protect  
embedded nonvolatile memory contents and prevent execution  
of unauthorized code. When security is enabled on this device  
(either by the ordering party or the subsequent receiving parties),  
the ability of Analog Devices to conduct failure analysis on  
returned devices is limited. Contact Analog Devices for details  
on the failure analysis limitations for this device.  
Multiparity Bit Protected SRAM  
Each word of the SRAM and cache memory is protected by  
multiple parity bits to allow detection of random soft errors.  
Software Watchdog  
The on-chip watchdog timer can provide software-based  
supervision of the ADuCM4050 core.  
Cryptographic Accelerator  
The cryptographic accelerator is a 32-bit APB DMA capable  
peripheral. There are two 128-bit buffers provided for data  
input/output operations. These buffers read in or read out  
128 bits in four data accesses. Big endian and little endian data  
formats are supported, as are the following modes:  
ECB mode—AES mode  
CTR mode  
CBC mode  
Message authentication code (MAC) mode  
CCM/CCM* mode  
SHA-256 modes  
Protected key storage with key wrap and unwrap—HMAC  
signature generation  
Rev. A | Page 31 of 46  
 
ADuCM4050  
Data Sheet  
CRC Accelerator  
ADC Subsystem  
The CRC accelerator computes the CRC for a block of memory  
locations, that can be in the SRAM, flash, or any combination of  
MMRs. The CRC accelerator generates a checksum that can be  
compared with an expected signature. The main features of the  
CRC include the following:  
The ADuCM4050 MCU integrates a 12-bit SAR ADC with up  
to eight external channels. Conversions can be performed in  
single or autocycle mode. In single mode, the ADC can be  
configured to convert on a particular channel by selecting one  
of the ADC channels. Autocycle mode is provided to convert  
over multiple channels with reduced MCU overhead of  
sampling and reading individual channel registers. The ADC  
can also be used for temperature sensing and measuring battery  
voltage using the ADC channels.  
Generates a CRC signature for a block of data.  
Supports programmable polynomial length of up to 32 bits.  
Operates on 32 bits of data at a time, and generates CRC  
for any data length.  
Temperature sensing and battery monitoring cannot be  
included in autocycle mode.  
Supports MSB first and LSB first CRC implementations.  
Various data mirroring capabilities.  
Initial seed to be programmed by user.  
DMA controller (memory to memory transfer) used for  
data transfer to offload the MCU.  
The digital comparator on the device allows an interrupt to be  
triggered if ADC input is above or below a programmable  
threshold. Use the following GPIO multiplexed channels with  
the digital comparator (see the GPIO Multiplexing section):  
ADC0_VIN0, ADC0_VIN1, ADC0_VIN2, and ADC0_VIN3.  
Programmable GPIOs  
The ADuCM4050 MCU has 44 and 51 GPIO pins in the LFCSP  
and WLCSP packages, respectively, with multiple, configurable  
functions defined by user code. They can be configured as  
input/output pins and have programmable pull-up resistors. All  
GPIO pins are functional over the full supply range. In deep  
sleep modes, GPIO pins retain their state. On reset, they tristate.  
Use the ADC in DMA mode to reduce MCU overhead by  
moving ADC results directly into SRAM with a single interrupt  
asserted when the required number of ADC conversions  
completely logs to memory. The main features of the ADC  
subsystem include the following:  
12-bit resolution.  
Programmable ADC update rate from 10 kSPS to  
1.8 MSPS.  
Timers  
The ADuCM4050 MCU contains three general-purpose timers,  
a watchdog timer, and an RGB timer. All timers support event  
capture feature, where they can take 40 different interrupts.  
Integrated input mux that supports up to eight channels.  
Temperature sensing support.  
Battery monitoring support.  
Software selectable on-chip reference voltage generation—  
1.25 V or 2.50 V.  
General-Purpose Timers  
The ADuCM4050 MCU has three identical general-purpose  
timers, each with a 16-bit up or down counter. The up or down  
counter can be clocked from one of four user-selectable clock  
sources. Any selected clock source can be scaled down using a  
prescaler of 1, 16, 64, or 256.  
Software-selectable internal or external reference.  
Autocycle mode provides the ability to automatically select  
a sequence of input channels for conversion.  
Multiple conversions over a single channel or multiple  
channels can be performed without core interruption.  
Averaging function—converted data on a single channel or  
multiple channels can be averaged up to 256 samples.  
Alert function that contains an internal digital comparator  
for the ADC0_VIN0, ADC0_VIN1, ADC0_VIN2, and  
ADC0_VIN3 channels. An interrupt is generated if the  
digital comparator detects an ADC result above or below a  
user defined threshold. In addition, up to eight cycles of  
hysteresis are built in.  
Watchdog Timer (WDT)  
The watchdog timer (WDT) is a 16-bit count down timer with a  
programmable prescaler. The prescaler source is selectable and  
can be scaled by a factor of 1, 16, or 256. The WDT is clocked by  
the 32 kHz on-chip oscillator (LFOSC) and helps recover from  
an illegal software state. The WDT requires periodic servicing  
to prevent it from forcing a reset or interrupt to the MCU.  
RGB Timer  
The ADuCM4050 MCU has an RGB timer that supports a  
common anode RGB LED. It has a timer counter and three  
compare registers. It can generate three distinct pulse width  
modulation (PWM) waveforms on three GPIO pins  
simultaneously so different colors can be realized using a  
common anode RGB LED.  
Dedicated DMA channel support.  
Each channel, including temperature sensor and battery  
monitoring, has a data register for conversion result.  
When the RGB timer is in operation, the other three timers are  
available for user software.  
Rev. A | Page 32 of 46  
Data Sheet  
ADuCM4050  
Clocking  
Real-Time Clock (RTC)  
The ADuCM4050 MCU has the following clocking options:  
The ADuCM4050 MCU has two RTC blocks: RTC0 and RTC1,  
also called flexible real-time clock (FLEX_RTC™). The RTC  
blocks share a low power crystal oscillation circuit that operates  
in conjunction with a 32,768 Hz external crystal.  
High frequency clocks  
Internal high frequency oscillator (HFOSC) at  
26 MHz  
The RTC has an alarm that interrupts the core when the  
programmed alarm value matches the RTC count. The software  
enables and configures the RTC.  
High frequency external crystal oscillator (HFXTAL)  
at 26 MHz or 16 MHz  
GPIO clock in (SYS_CLKIN)  
Phase-locked loop (PLL)  
The RTC also has a digital trim capability to allow a positive or  
negative adjustment to the RTC count at fixed intervals.  
Low frequency clocks at 32 kHz  
Internal low frequency oscillator (LFOSC)  
Low frequency external crystal oscillator (LFXTAL)  
The FLEX_RTC supports three SensorStrobe outputs:  
RTC1_SS1, RTC1_SS2, and RTC1_SS3 (see the ADuCM4050  
Ultra Low Power ARM Cortex-M4F MCU with Integrated  
Power Management Hardware Reference). Using this  
mechanism, the ADuCM4050 MCU can be used as a  
programmable clock generator in all power modes except  
shutdown mode. In this way, the external sensors can have their  
timing domains mastered by the ADuCM4050 MCU, as the  
SensorStrobe output is a programmable divider from the  
FLEX_RTC, which can operate at 0.5 Hz to 16.384 kHz. The  
sensors and MCU are in sync, which removes the need for  
additional resampling of data to time align it.  
The clock options have software configurability with the  
following exceptions: the HFOSC cannot be disabled when  
using an internal buck regulator, and the LFOSC cannot be  
disabled even if using LFXTAL.  
Clock sources with a frequency greater than 26 MHz can be  
achieved by using a PLL. The maximum frequency sourced  
from the PLL is 52 MHz.  
When core frequency is greater than 26 MHz, program the flash  
wait states to 1.  
In the absence of the SensorStrobe mechanism, the external  
sensor uses an RC oscillator (approximately 30% typical  
variation). The MCU must sample the data and resample it on  
the time domain of the MCU before using it.  
As PLL is disabled and relock is transparent to user software,  
hibernate mode can enter and exit seamlessly when the system  
frequency is sourced from PLL.  
Clock Fail Detection  
Alternatively, the MCU remains in a higher power state and  
drives each data conversion on the sensor side.  
The LFOSC clock continuously monitors the LFXTAL in  
hibernate, active, and flexi power modes. If the LFXTAL stops  
running, there is an option to detect and generate an interrupt  
and/or automatically switch to the LFOSC without software  
intervention. The HFOSC clock monitors the HFXTAL clock,  
GPIO clock, and the PLL clock. If using any of these clocks as  
the system clock and it fails to toggle, the clock can be detected  
through an interrupt. There is an option to automatically switch  
to the HFOSC.  
The SensorStrobe mechanism allows the ADuCM4050 MCU to  
be in a lower power state for a long duration and avoids  
unnecessary data processing, extending the battery life of the  
end product. The key differences between RTC0 and RTC1 are  
shown in Table 26.  
Rev. A | Page 33 of 46  
ADuCM4050  
Data Sheet  
Table 26. RTC Features  
Features  
RTC0  
RTC1 (FLEX_RTC)  
Resolution of  
Time Base  
(Prescaling)  
Counts time at 1 Hz in units of seconds. Operationally, Can prescale the clock by any power of two from 0 to 15. It can  
RTC0 always prescales to 1 Hz (for example, divide  
by 32,768) and always counts real time in units of  
seconds.  
count time in units of any of these 16 possible prescale settings.  
For example, the clock can be prescaled by 1, 2, 4, 8, …, 16,384, or  
32,768.  
Source Clock  
LFXTAL.  
Depending on the low frequency multiplexer configuration, the  
RTC is clocked by the LFXTAL or the LFOSC.  
Wake-Up Timer  
Wake-up time is specified in units of seconds.  
Supports alarm times down to a resolution of 30.52 µs, that is,  
where the time is specified down to a specific 32 kHz clock cycle.  
Number of  
Alarms  
One alarm only. Uses an absolute, nonrepeating  
alarm time, specified in units of 1 sec.  
Two alarms. One absolute alarm time and one periodic alarm,  
repeating every 60 prescaled time units.  
SensorStrobe  
Mechanism  
Not available.  
Four independent channels with fine control on duty cycle and  
frequency (0.5 Hz to 16.384 kHz).  
SensorStrobe is an alarm function in the RTC that can send an  
output pulse via GPIOs to an external device to instruct that  
device to take a measurement or perform some action at a  
specific time. SensorStrobe events are scheduled at a specific  
target time relative to the real-time count of the RTC.  
SensorStrobe can be enabled in active, flexi, and hibernate  
modes.  
Input Capture  
Not available.  
Input capture takes a snapshot of the RTC real-time count when  
an external device signals an event via a transition on one of the  
GPIO inputs to the ADuCM4050 MCU. Typically, an input capture  
event is triggered by an autonomous measurement or action on  
such a device, which then signals to the ADuCM4050 MCU that  
the RTC must take a snapshot of time corresponding to the event.  
Taking this snapshot can wake up the ADuCM4050 MCU and  
cause an interrupt to the CPU. The CPU can subsequently obtain  
information from the RTC on the exact 32 kHz cycle on which the  
input capture event occurred.  
Input Sampling  
Not available.  
Each SensorStrobe channel has up to three separate GPIO inputs  
from an external device, which can be sampled based on the  
output pulse sent to the external device. Each channel can be  
configured to interrupt the ADuCM4050 MCU when any activity  
happens on these GPIO inputs from the external device. These  
inputs can broadcast sensor states such as first in, first out (FIFO)  
buffer full, switch open, and threshold crossed. This feature allows  
the ADuCM4050 MCU to remain in a low power state and wake  
up to process the data only when a specific programmed  
sequence from an external device is detected.  
Rev. A | Page 34 of 46  
 
Data Sheet  
ADuCM4050  
ADCs and DACs require two control signals for their  
Beeper Driver  
conversion processes. To interface with such devices,  
SPT0_ACNV and SPT0_BCNV signals are provided. To use  
these signals, enable the timer enable mode. In this mode, a  
PWM timer inside the SPORT module generates the  
programmable SPT0_ACNV and SPT0_BCNV signals.  
The ADuCM4050 MCU has an integrated audio driver for a  
beeper. The beeper driver module in the ADuCM4050 MCU  
generates a differential square wave of programmable frequency.  
It drives an external piezoelectric sound component with two  
terminals that connect to the differential square wave output.  
Serial ports operate in two modes: the standard digital signal  
processor (DSP) serial mode and timer enable mode.  
The beeper driver consists of a module that can deliver  
frequencies ranging from 8 kHz to approximately 0.25 kHz; the  
minimum frequency is determined by the maximum value of a  
divide register that can be programmed to 127. This results in a  
beeper frequency of,  
SPI Ports  
The ADuCM4050 MCU provides three SPIs. The SPI is an  
industry-standard, full duplex, synchronous serial interface that  
allows eight bits of data to be synchronously transmitted and  
simultaneously received. Each SPI incorporates two DMA  
channels that interface with the DMA controller. One DMA  
channel transmits and the other receives. The SPI on the MCU  
eases interfacing to external serial flash devices.  
32.768 kHz/127 = 0.25802 kHz  
The beeper driver allows programmable tone durations in 4 ms  
increments. Pulse (single-tone) and sequence (multitone)  
modes provide versatile playback options.  
In sequence mode, the beeper can be programmed to play any  
number of tone pairs from 1 to 254 (2 to 508 tones) or be  
programmed to play forever (until stopped by the user).  
Interrupts are available to indicate the start or end of any beep,  
the end of a sequence, or when the sequence is nearing  
completion.  
The SPI features include the following:  
Serial clock phase mode and serial clock polarity mode  
Loopback mode  
Continuous transfer mode  
Wire-ORd output mode  
Read command mode for half-duplex operation (transmit  
followed by receive)  
Debug Capability  
The ADuCM4050 MCU supports a 2-wire serial wire debug  
(SWD) interface and trace feature via a single-wire viewer port.  
The ADuCM4050 MCU also has a full flash patch and  
breakpoint (FPB) unit with support for up to six hardware  
breakpoints.  
Flow control support  
Multiple chip select (CS) line support  
CS software override support  
Support for 3-pin SPI  
ON-CHIP PERIPHERAL FEATURES  
UART Ports  
The ADuCM4050 MCU contains a rich set of peripherals  
connected to the core via several concurrent high bandwidth  
buses, providing flexibility in system configuration as well as  
excellent overall system performance (see Figure 1).  
The ADuCM4050 MCU provides two full duplex UART ports  
that are fully compatible with PC standard UARTs. The UART  
port provides a simplified UART interface to other peripherals  
or hosts, supporting full duplex, DMA supported, asynchronous  
transfers of serial data. The UART port includes support for  
five to eight data bits, and none, even, or odd parity. A frame  
is terminated by one, one and a half, or two stop bits.  
The ADuCM4050 MCU contains high speed serial ports, an  
interrupt controller for flexible management of interrupts  
from the on-chip peripherals or external sources, and power  
management control functions to tailor the performance and  
power characteristics of the MCU and system to many  
application scenarios.  
I2C  
The ADuCM4050 MCU provides an I2C bus peripheral that has  
two pins for data transfer. SCL (Pin P0_04) is a serial clock pin  
and SDA (Pin P0_05) is a serial data pin. The pins are  
Serial Ports (SPORT)  
configured in a wire-ANDe d format that allows arbitration in a  
multimaster system. A master device can be configured to  
generate the serial clock. The frequency is programmed by the  
user in the serial clock divisor register. The master channel can  
operate in fast mode (400 kHz) or standard mode (100 kHz).  
The ADuCM4050 MCU provides two single-direction half  
SPORTs or one bidirectional full SPORT. The synchronous  
serial ports provide an inexpensive interface to a wide variety of  
digital and mixed-signal peripheral devices such as Analog  
Devices audio codecs, ADCs, and DACs. The serial ports  
contain two data lines, a clock, and a frame sync. The data lines  
can be programmed to either transmit or receive, and each data  
line has a dedicated DMA channel.  
Serial port data can be automatically transferred to and from  
on-chip memory or external memory via dedicated DMA  
channels. The frame sync and clock can be shared. Some of the  
Rev. A | Page 35 of 46  
 
ADuCM4050  
Data Sheet  
DEVELOPMENT SUPPORT  
MCU TEST CONDITIONS  
Development support for the ADuCM4050 MCU includes  
documentation, evaluation hardware, and development  
software tools.  
The ac signal specifications (timing parameters) appearing in  
this data sheet include output disable time, output enable time,  
and others. Timing is measured on signals when they cross the  
voltage threshold (VMEAS ) level as described in Figure 24. All  
delays (in nanoseconds or microseconds) are measured between  
the point that the first signal reaches VMEAS and the point that  
the second signal reaches VMEAS. The value of VMEAS is set to  
Documentation  
The ADuCM4050 Ultra Low Power ARM Cortex-M4F MCU  
with Integrated Power Management Hardware Reference details  
the functionality of each block on the ADuCM4050 MCU. It  
includes power management, clocking, memories, and peripherals.  
V
BAT/2. The tester pin electronics is shown in Figure 25.  
The ADuCM4050 Ultra Low Power ARM Cortex-M4F MCU  
with Integrated Power Management Hardware Reference can be  
ordered from any Analog Devices sales office or accessed  
electronically on the Analog Devices website at www.analog.com.  
INPUT  
V
V
MEAS  
OR  
MEAS  
OUTPUT  
Figure 24. Voltage Reference Levels for AC Measurements (Except Output  
Enable/Disable)  
50Ω  
Hardware  
V
LOAD  
T1  
DUT  
OUTPUT  
The EV-COG-AD4050LZ is available to prototype sensor  
configuration with the ADuCM4050 MCU.  
70Ω  
45Ω  
ZO = 50Ω (IMPEDANCE)  
Software  
50Ω  
TD = 4.04ns ± 1.18ns  
0.5pF  
4pF  
2pF  
The EV-COG-AD4050LZ includes a complete development and  
debug environment for the ADuCM4050 MCU. The device  
family pack for the ADuCM4050 MCU is provided for the IAR  
Embedded Workbench for ARM, Keil™, and CrossCore®  
embedded studio (CCES) environments.  
400Ω  
NOTES  
1. THE WORST-CASE TRANSMISSION LINE DELAY (TD) IS SHOWN AND  
CAN BE USED FOR THE OUTPUT TIMINGANALYSIS TO REFLECT THE  
TRANSMISSION LINE EFFECTAND MUST BE CONSIDERED.  
TRANSMISSION LINE IS FOR LOAD ONLY AND DOES NOT AFFECT  
THE DATA SHEET TIMING SPECIFICATIONS.  
The device family pack also includes operating system (OS)  
aware drivers and example code for peripherals on the device.  
2. ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING  
FORA GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM  
CAN INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR  
ANY TIMING DIFFERENCES.  
REFERENCE DESIGNS  
The Circuits from the Lab® web page provides the following for  
the ADuCM4050 reference design:  
Figure 25. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
Drill down links for components in each chain to selection  
guides and application information  
DRIVER TYPES  
Table 27 shows the driver types.  
Table 27. Driver Types  
Driver Type1, 2, 3 Associated Pins  
Reference designs applying best practice design techniques  
SECURITY FEATURES DISCLAIMER  
Type A  
P0_00 to P0_03, P0_07, P0_10 to P0_13, P0_15,  
To the knowledge of Analog Devices, the security features,  
when used in accordance with the data sheet and hardware  
reference manual specifications, provide a secure method of  
implementing code and data safeguards. However, Analog  
Devices does not guarantee that this technology provides  
absolute security. Accordingly, analog devices hereby disclaims  
any and all express and implied warranties that the security  
features cannot be breached, compromised, or otherwise  
circumvented and in no event is Analog Devices liable for any  
loss, damage, destruction, or release of data, information,  
physical property, or intellectual property.  
P1_00 to P1_10, P1_15, P2_00, P2_01, P2_04 to  
P2_14, P3_00 to P3_03, and SYS_HWRST  
P0_08, P0_09, P0_14, P1_11 to P1_14, and P2_02  
P0_04 and P0_05  
P0_06  
Type B  
Type C  
Type D  
1 In single drive mode, the maximum source/sink capacity is 2 mA.  
2 In double drive mode, the maximum source/sink capacity is 4 mA.  
3 At maximum drive capacity, only 16 GPIOs are allowed to switch at any given  
point in time.  
Rev. A | Page 36 of 46  
 
 
 
 
 
 
 
 
Data Sheet  
ADuCM4050  
Table 28. EEMBC ULPMark™-CP Profile Configuration  
EEMBC ULPMARK™-CP SCORE  
Profile Configuration  
Value  
Using the following software configuration and the profile  
configuration shown in Table 28, the EEMBC ULPMark-CP  
score is 189.  
Wake-Up Timer Module  
RTC1  
Wake-Up Timer Clock Source  
Wake-Up Timer Frequency  
Wake-Up Timer Accuracy  
Active Power Mode Name  
Active Mode Clock Configuration  
Active Mode Voltage Integrity  
Inactive Power Mode Name  
Inactive Clock Configuration  
Inactive Mode Voltage Integrity  
External crystal  
32768 Hz  
20 ppm  
Active mode  
52 MHz (CPU), 32 kHz (RTC)  
1.74 V  
Hibernate  
Off (CPU), 32 kHz (RTC)  
1.74 V  
Compiler name and version: IAR EWARM 8.20.1  
Compiler flags:  
--no_size_constraints --cpu=Cortex-M4 -D  
__ADUCM4050__ --no_code_motion -Ohs -e --  
fpu=VFPv4_sp --endian=little  
ULPBench Profile and Version: Core Profile v1.1  
EnergyMonitor Software Version: V2.0  
Rev. A | Page 37 of 46  
 
 
ADuCM4050  
Data Sheet  
GPIO MULTIPLEXING  
The following tables capture signal multiplexing options for the GPIO pins.  
Table 29. Signal Multiplexing for Port 01  
Pin  
Multiplexed Function 0  
GPIO00  
GPIO01  
GPIO02  
GPIO03  
GPIO04  
GPIO05  
SWD0_CLK  
SWD0_DATA  
GPIO08  
GPIO09  
GPIO10  
GPIO11  
GPIO12  
GPIO13/SYS_WAKE2  
GPIO14  
GPIO15/SYS_WAKE0  
Multiplexed Function 1  
SPI0_CLK  
SPI0_MOSI  
SPI0_MISO  
SPI0_CS0  
I2C0_SCL  
I2C0_SDA  
GPIO06  
GPIO07  
BPR0_TONE_N  
BPR0_TONE_P  
UART0_TX  
UART0_RX  
SPT0_AD0  
Not applicable  
TMR0_OUT  
Not applicable  
Multiplexed Function 2  
SPT0_BCLK  
SPT0_BFS  
SPT0_BD0  
SPT0_BCNV  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
SPI2_CS1  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
SPI1_RDY  
Multiplexed Function 3  
Not applicable  
Not applicable  
Not applicable  
SPI2_RDY  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
UART0_SOUT_EN  
Not applicable  
Not applicable  
Not applicable  
P0_00  
P0_01  
P0_02  
P0_03  
P0_04  
P0_05  
P0_06  
P0_07  
P0_08  
P0_09  
P0_10  
P0_11  
P0_12  
P0_13  
P0_14  
P0_15  
Not applicable  
1 Available in WLCSP and LFCSP.  
Table 30. Signal Multiplexing for Port 11  
Pin  
Multiplexed Function 0  
GPIO16/SYS_WAKE1  
SYS_BMODE0  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
Multiplexed Function 1  
Multiplexed Function 2  
Multiplexed Function 3  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
RGB_TMR0_1  
RGB_TMR0_2  
RGB_TMR0_3  
SWV  
P1_00  
P1_01  
P1_02  
P1_03  
P1_04  
P1_05  
P1_06  
P1_07  
P1_08  
P1_09  
P1_10  
P1_11  
P1_12  
P1_13  
P1_14  
P1_15  
Not applicable  
GPIO17  
SPI2_CLK  
SPI2_MOSI  
SPI2_MISO  
SPI2_CS0  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
SYS_CLKIN  
TMR1_OUT  
RTC1_SS2  
Not applicable  
SPI0_RDY  
UART1_TX  
SPI1_CLK  
SPI1_MOSI  
SPI1_MISO  
SPI1_CS0  
SPI0_CS1  
SPI1_CS3  
Not applicable  
Not applicable  
TMR2_OUT  
Not applicable  
SPT0_ACLK  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
1 Available in WLCSP and LFCSP.  
Rev. A | Page 38 of 46  
 
Data Sheet  
ADuCM4050  
Table 31. Signal Multiplexing for Port 2  
Availability  
Pin  
WLCSP LFCSP Multiplexed Function 0 Multiplexed Function 1 Multiplexed Function 2 Multiplexed Function 3  
P2_00 Yes  
P2_01 Yes  
P2_02 Yes  
P2_03 Yes  
P2_04 Yes  
P2_05 Yes  
P2_06 Yes  
P2_07 Yes  
P2_08 Yes  
P2_09 Yes  
P2_10 No  
P2_11 Yes  
P2_12 Yes  
P2_13 Yes  
P2_14 Yes  
P2_15 Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
GPIO32  
GPIO33/SYS_WAKE3  
GPIO34  
GPIO35  
GPIO36  
GPIO37  
GPIO38  
GPIO39  
GPIO40  
GPIO41  
GPIO42  
GPIO43  
GPIO44  
GPIO45  
GPIO46  
GPIO47  
SPT0_AFS  
UART1_RX  
TMR2_OUT  
SPI1_CS2  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
SPI2_CS3  
SPI0_CS2  
SPI0_CS3  
SPI2_CS2  
SYS_CLKOUT  
SPI2_CS3  
Not applicable  
Not applicable  
SPT0_ACNV  
ADC0_VIN0  
ADC0_VIN1  
ADC0_VIN2  
ADC0_VIN3  
ADC0_VIN4  
ADC0_VIN5  
ADC0_VIN6  
ADC0_VIN7  
SPI1_CS1  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
RTC1_SS3  
Not applicable  
Not applicable  
RTC1_SS1  
Not applicable  
Not applicable  
Not applicable  
SPI0_CS1  
UART1_TX  
UART1_RX  
SPI0_CS3  
No  
No  
No  
SPI0_CS2  
Not applicable  
SPI1_CS3  
SPI2_CS2  
Table 32. Signal Multiplexing for Port 31  
Pin  
Multiplexed Function 0  
GPIO48  
GPIO49  
GPIO50  
GPIO51  
Multiplexed Function 1  
Multiplexed Function 2  
SPT0_ACLK  
SPT0_AFS  
SPT0_AD0  
SPT0_ACNV  
Multiplexed Function 3  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
P3_00  
P3_01  
P3_02  
P3_03  
RGB_TMR0_1  
RGB_TMR0_2  
RGB_TMR0_3  
Not applicable  
1 Only available in WLCSP.  
Rev. A | Page 39 of 46  
ADuCM4050  
Data Sheet  
APPLICATIONS INFORMATION  
This section contains circuit diagrams that show the recommended  
external components for proper operation of the ADuCM4050  
in example application scenarios.  
VBAT  
IO  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
14  
1
8
34  
VBAT_DIG1  
49  
VBAT_DIG2  
VBAT_ADC  
VBAT_ANA1  
VBAT_ANA2  
2
SYS_HFXTAL_IN  
SYS_LFXTAL_IN  
VREF_ADC  
3
5
SYS_HFXTAL_OUT  
SYS_LFXTAL_OUT  
VDCDC_OUT  
4
1µF  
13  
25  
9
SYS_HWRST_N  
ADuCM4050BCPZ  
VLDO_OUT  
12  
0.1µF  
0.1µF  
0.47µF  
6
VDCDC_CAP1N  
VDCDC_CAP1P  
VDCDC_CAP2N  
SPI1_CS0/GPIO25/SWV  
SPI1_MISO/RGB_TMR0_3/GPIO24  
SPI1_CLK/RGB_TMR0_1/GPIO22  
29  
30  
32  
7
10  
11 VDCDC_CAP2P  
RTC1_SS1  
SPI1_CS1/SYS_CLKOUT/RTC1_SS1/GPIO43 33  
IO  
16 ADC0_VIN0/GPIO35  
ADC0_VIN1/GPIO36  
31  
SPI1_MOSI/RGB_TMR0_2GPIO23  
17  
53  
54  
55  
56  
SPI2_CS0/GPIO21  
SPI2_MISO/GPIO20  
SPI2_MOSI/GPIO19  
SPI2_CLK/GPIO18  
18 ADC0_VIN2/GPIO37  
19 ADC0_VIN3/GPIO38  
20 ADC0_VIN4/SPI2_CS3/GPIO39  
21 ADC0_VIN5/SPI0_CS2/RTC1_SS3/GPIO40  
22 ADC0_VIN6/SPI0_CS3/GPIO41  
23 ADC0_VIN7/SPI2_CS2/GPIO42  
SPT0_AD0/UART0_SOUT_EN/GPIO12  
SPT0_AFS/UART1_RX/GPIO32  
SPT0_ACLK/UART1_TX/GPIO31  
SPT0_ACNV/SPI1_CS2/GPIO34  
35  
36  
37  
45  
39 BPR0_TONE_P/SPI2_CS1/GPIO09  
BPR0_TONE_N/GPIO08  
40  
SYS_WAKE1/GPIO16  
SYS_WAKE0/GPIO15  
47  
50  
28 GPIO06/SWD0_CLK  
GPIO07/SWD0_DATA  
GPIO17/SYS_BMODE0  
RTC1_SS2/GPIO28  
TMR2_OUT/GPIO29  
27  
38  
42  
43  
SYS_WAKE2/GPIO13 51  
52  
SYS_WAKE3/TRM2_OUT/GPIO33  
TMR1_OUT/GPIO27  
41  
46  
TMR0_OUT/SPI1_RDY/GPIO14  
I2C0_SDA/GPIO05  
I2C0_SCL/GPIO04  
24  
26  
UART0_RX/GPIO11 57  
UART0_TX/GPIO10 58  
SPI0_RDY/GPIO30  
44  
59  
60  
SPI0_MOSI/SPT0_BFS/GPIO1  
62  
SPI0_CS1/SYS_CLKIN/SPI1_CS3/GPIO26  
SPI0_CS0/SPT0_BCNV/SPI2_RDY/GPIO03  
63  
SPI0_CLK/SPT0_BCLK/GPIO0  
61 SPI0_MISO/SPT0_BD0/GPIO2  
GND_ANA  
64  
GND_DIG  
48  
GND_VREFADC  
15  
PAD  
Figure 26. Recommended External Components when Using the Internal Buck Converter  
Rev. A | Page 40 of 46  
 
Data Sheet  
ADuCM4050  
VBAT  
HFCLK CRYSTAL  
26.000MHz  
IO  
LFCLK CRYSTAL  
32.7680kHz  
LFXTAL_IN  
8pF  
LFXTAL_OUT  
HFXTAL_IN  
18pF  
HFXTAL_OUT  
18pF  
8pF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
14  
1
8
34  
VBAT_DIG1  
49  
VBAT_DIG2  
VBAT_ADC  
VBAT_ANA1  
VBAT_ANA2  
2
SYS_HFXTAL_IN  
SYS_LFXTAL_IN  
VREF_ADC  
3
5
SYS_HFXTAL_OUT  
SYS_LFXTAL_OUT  
VDCDC_OUT  
4
13  
25  
9
SYS_HWRST_N  
ADuCM4050BCPZ  
VLDO_OUT  
12  
0.47µF  
6
VDCDC_CAP1N  
VDCDC_CAP1P  
VDCDC_CAP2N  
SPI1_CS0/GPIO25/SWV  
SPI1_MISO/RGB_TMR0_3/GPIO24  
SPI1_CLK/RGB_TMR0_1/GPIO22  
29  
30  
32  
7
10  
11 VDCDC_CAP2P  
RTC1_SS1  
SPI1_CS1/SYS_CLKOUT/RTC1_SS1/GPIO43 33  
IO  
16 ADC0_VIN0/GPIO35  
ADC0_VIN1/GPIO36  
31  
SPI1_MOSI/RGB_TMR0_2GPIO23  
17  
53  
54  
55  
56  
SPI2_CS0/GPIO21  
SPI2_MISO/GPIO20  
SPI2_MOSI/GPIO19  
SPI2_CLK/GPIO18  
18 ADC0_VIN2/GPIO37  
19 ADC0_VIN3/GPIO38  
20 ADC0_VIN4/SPI2_CS3/GPIO39  
21 ADC0_VIN5/SPI0_CS2/RTC1_SS3/GPIO40  
22 ADC0_VIN6/SPI0_CS3/GPIO41  
23 ADC0_VIN7/SPI2_CS2/GPIO42  
SPT0_AD0/UART0_SOUT_EN/GPIO12  
SPT0_AFS/UART1_RX/GPIO32  
SPT0_ACLK/UART1_TX/GPIO31  
SPT0_ACNV/SPI1_CS2/GPIO34  
35  
36  
37  
45  
39 BPR0_TONE_P/SPI2_CS1/GPIO09  
BPR0_TONE_N/GPIO08  
40  
SYS_WAKE1/GPIO16  
SYS_WAKE0/GPIO15  
47  
50  
28 GPIO06/SWD0_CLK  
GPIO07/SWD0_DATA  
GPIO17/SYS_BMODE0  
RTC1_SS2/GPIO28  
TMR2_OUT/GPIO29  
27  
38  
42  
43  
SYS_WAKE2/GPIO13 51  
52  
SYS_WAKE3/TRM2_OUT/GPIO33  
TMR1_OUT/GPIO27  
41  
46  
TMR0_OUT/SPI1_RDY/GPIO14  
I2C0_SDA/GPIO05  
I2C0_SCL/GPIO04  
24  
26  
UART0_RX/GPIO11 57  
UART0_TX/GPIO10 58  
SPI0_RDY/GPIO30  
44  
59  
60  
SPI0_MOSI/SPT0_BFS/GPIO1  
62  
SPI0_CS1/SYS_CLKIN/SPI1_CS3/GPIO26  
SPI0_CS0/SPT0_BCNV/SPI2_RDY/GPIO03  
63  
SPI0_CLK/SPT0_BCLK/GPIO0  
61 SPI0_MISO/SPT0_BD0/GPIO2  
GND_ANA  
64  
GND_DIG  
48  
GND_VREFADC  
15  
PAD  
Figure 27. Recommended External Components when Using LFXTAL and HFXTAL  
Rev. A | Page 41 of 46  
ADuCM4050  
Data Sheet  
VBAT  
IO  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
14  
1
8
34  
VBAT_DIG1  
49  
VBAT_DIG2  
VBAT_ADC  
VBAT_ANA1  
VBAT_ANA2  
2
SYS_HFXTAL_IN  
SYS_LFXTAL_IN  
VREF_ADC  
3
5
SYS_HFXTAL_OUT  
SYS_LFXTAL_OUT  
VDCDC_OUT  
4
VREF_ADC  
IO  
13  
25  
9
SYS_HWRST_N  
ADuCM4050BCPZ  
VLDO_OUT  
12  
0.1µF  
4.7µF  
0.47µF  
6
VDCDC_CAP1N  
VDCDC_CAP1P  
VDCDC_CAP2N  
SPI1_CS0/GPIO25/SWV  
SPI1_MISO/RGB_TMR0_3/GPIO24  
SPI1_CLK/RGB_TMR0_1/GPIO22  
29  
30  
32  
7
10  
11 VDCDC_CAP2P  
RTC1_SS1  
SPI1_CS1/SYS_CLKOUT/RTC1_SS1/GPIO43 33  
IO  
ANALOG_IN  
33Ω  
IO  
16 ADC0_VIN0/GPIO35  
31  
SPI1_MOSI/RGB_TMR0_2GPIO23  
0.0056µF  
ADC0_VIN1/GPIO36  
17  
53  
54  
55  
56  
SPI2_CS0/GPIO21  
SPI2_MISO/GPIO20  
SPI2_MOSI/GPIO19  
SPI2_CLK/GPIO18  
18 ADC0_VIN2/GPIO37  
19 ADC0_VIN3/GPIO38  
20 ADC0_VIN4/SPI2_CS3/GPIO39  
21 ADC0_VIN5/SPI0_CS2/RTC1_SS3/GPIO40  
22 ADC0_VIN6/SPI0_CS3/GPIO41  
23 ADC0_VIN7/SPI2_CS2/GPIO42  
SPT0_AD0/UART0_SOUT_EN/GPIO12  
SPT0_AFS/UART1_RX/GPIO32  
SPT0_ACLK/UART1_TX/GPIO31  
SPT0_ACNV/SPI1_CS2/GPIO34  
35  
36  
37  
45  
39 BPR0_TONE_P/SPI2_CS1/GPIO09  
BPR0_TONE_N/GPIO08  
40  
SYS_WAKE1/GPIO16  
SYS_WAKE0/GPIO15  
47  
50  
28 GPIO06/SWD0_CLK  
GPIO07/SWD0_DATA  
GPIO17/SYS_BMODE0  
RTC1_SS2/GPIO28  
TMR2_OUT/GPIO29  
27  
38  
42  
43  
SYS_WAKE2/GPIO13 51  
52  
SYS_WAKE3/TRM2_OUT/GPIO33  
TMR1_OUT/GPIO27  
41  
46  
TMR0_OUT/SPI1_RDY/GPIO14  
I2C0_SDA/GPIO05  
I2C0_SCL/GPIO04  
24  
26  
UART0_RX/GPIO11 57  
UART0_TX/GPIO10 58  
SPI0_RDY/GPIO30  
44  
59  
60  
SPI0_MOSI/SPT0_BFS/GPIO1  
62  
SPI0_CS1/SYS_CLKIN/SPI1_CS3/GPIO26  
SPI0_CS0/SPT0_BCNV/SPI2_RDY/GPIO03  
63  
SPI0_CLK/SPT0_BCLK/GPIO0  
61 SPI0_MISO/SPT0_BD0/GPIO2  
GND_ANA  
64  
GND_DIG  
48  
GND_VREFADC  
15  
PAD  
Figure 28. Recommended External Components on VREF_ADC Pin and ADC Input Channel (ADC0_VIN0 Used as Example) when Using the Internal ADC  
Rev. A | Page 42 of 46  
Data Sheet  
ADuCM4050  
SILICON ANOMALY  
This anomaly list describes the known bugs, anomalies, and workarounds for the ADuCM4050. These anomalies represent the currently  
known differences between revisions of the ADuCM4050 product and the functionality specified in the ADuCM4050 data sheet and the  
hardware reference manual.  
Analog Devices, Inc., is committed, through future silicon revisions, to continuously improve silicon functionality. Analog Devices tries  
to ensure that these future silicon revisions remain compatible with your present software/systems by implementing the recommended  
workarounds outlined here.  
ADuCM4050 FUNCTIONALITY ISSUES  
Silicon Revision Identifier  
Silicon Status  
No. of Reported Anomalies  
0.1  
Released  
3 (21000011, 21000016, 21000017)  
A silicon revision number with the form x.y is branded on all devices. The silicon revision can be electronically determined by reading Bits[3:0]  
of the SYS_CHIPID register. SYS_CHIPID = 0x1 indicates Silicon Revision 0.1, and SYS_CHIPID = 0x0 indicates Silicon Revision 0.0.  
FUNCTIONALITY ISSUES  
Table 33. 21000011—I2C Master Mode Fails to Generate Clock when Clock Dividers are Too Small  
When the I2C clock dividers are configured in master mode such that the sum of the low and high bit fields in the  
Issue  
I2C_DIV register is less than 16, the I2C fails to generate a clock.  
Program the I2C clock dividers such that I2C_DIV.LOW + I2C_DIV.HIGH ≥ 16.  
0.1  
Workaround  
Revision  
Table 34. 21000016—Possible Receive Data Loss with I2C Automatic Clock Stretching  
When the I2C Rx FIFO is full and new I2C data is received, a data overflow occurs. When automatic clock stretching is  
enabled, the transaction is paused by holding the SCL (Pin P0_04) line low. This function works as expected when the  
next read happens after the clock is stretched (that is, after the overflow is detected). However, if the read occurs after  
the last bit of the I2C data is received but before the clock is stretched, the received data is not written to the Rx FIFO and  
is lost.  
Issue  
When I2C automatic clock stretching is enabled, read the FIFO should only after the overflow flag is set in the status  
register to ensure that that Rx FIFO is never read at the same time that the overflow is asserted.  
0.1  
Workaround  
Revision  
Table 35. 21000017—SPI Read Command Mode Does Not Work Properly when SPI_CNT is 1 and DMA is Enabled  
When SPI master is enabled and uses the DMA mode with SPI_CNT = 1, the read command mode may not function  
properly. Consider the following configurations: SPI_RD_CTL = 0x07; SPI_CNT = 1; the transmit and receive DMA  
channels are configured for 1 half-word.  
Issue  
In this configuration, the read command sent in the first byte on the MOSI output is repeated in the second byte (in the  
address slot). Therefore, the slave device responds on the MISO line with whatever content is at the address equivalent to the  
read command value (for example, if the read command is 0xB, the response is the data read from Slave Address 0xB).  
The following workarounds can be used. Utilize the overlap mode to align the transmit/receive SPI operations and  
discard the junk bytes, as follows:  
Workaround  
1. Set SPI_RD_CTL.OVERLAP = 1 to enable overlap mode.  
2. Set SPI_RD_CTL.TXBYTES = 1 to configure a single transmit byte (8-bit address register).  
3. Set SPI_CNT.VALUE = 3 to configure the transfer count: one byte for the address register, one byte for the command,  
and one dummy byte to obtain the read value.  
4. On the receive side, discard the first two junk bytes received during the transfer of the address and command bytes  
before processing the actual read value in the third byte.  
Alternatively, do not use Tx DMA operation on the SPI transmit side, by taking the following steps:  
1. Enable only SPI RX DMA requests.  
2. Fill the SPI Tx FIFO by using core accesses to write the SPI_TX register.  
3. Perform a dummy read of the SPI_RX register to kick off the SPI transfers.  
0.1  
Revision  
Rev. A | Page 43 of 46  
 
 
 
 
 
 
ADuCM4050  
Data Sheet  
SECTION 1. ADuCM4050 FUNCTIONALITY ISSUES  
Reference No.  
Description  
Status  
21000011  
21000016  
21000017  
I2C master mode fails to generate clock when clock dividers are too small  
Possible receive data loss with I2C automatic clock stretching  
SPI read command mode does not work properly when SPI_CNT is 1 and DMA is enabled  
Identified  
Identified  
Identified  
This completes the Silicon Anomaly section.  
Rev. A | Page 44 of 46  
 
Data Sheet  
ADuCM4050  
OUTLINE DIMENSIONS  
3.61  
3.57  
3.53  
9
8
7
6
5
4
3
2
1
0.355  
A
B
C
D
E
F
BALL A1  
IDENTIFIER  
3.20  
3.16  
3.12  
2.45 REF  
G
H
0.35  
BALL PITCH  
BOTTOM VIEW  
TOP VIEW  
(
BALL SIDE UP)  
(BALL SIDE DOWN)  
0.385  
2.80 REF  
0.320  
0.290  
0.260  
0.530  
0.470  
0.410  
SIDE VIEW  
COPLANARITY  
0.05  
SEATING  
PLANE  
0.280  
0.240  
0.200  
0.210  
0.180  
0.150  
Figure 29. 72-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-72-3)  
Dimensions shown in millimeters  
DETAIL A  
(JEDEC 95)  
9.10  
9.00 SQ  
8.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
49  
48  
64  
1
0.50  
BSC  
6.30  
6.20 SQ  
6.10  
EXPOSED  
PAD  
33  
32  
16  
17  
0.45  
0.40  
0.35  
TOP VIEW  
END VIEW  
BOTTOM VIEW  
0.20 MIN  
7.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.08  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WMMD  
Figure 30. 64-Lead Lead Frame Chip Scale Package [LFCSP]  
9 mm × 9 mm Body and 0.75 mm Package Height  
(CP-64-17)  
Dimensions shown in millimeters  
Rev. A | Page 45 of 46  
 
ADuCM4050  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CB-72-3  
CB-72-3  
CP-64-17  
CP-64-17  
ADUCM4050BCBZ-RL  
ADUCM4050BCBZ-R7  
ADUCM4050BCPZ  
ADUCM4050BCPZ-RL  
ADUCM4050BCPZ-R7  
EV-COG-AD4050LZ  
EV-COG-AD4050WZ  
72-Ball Wafer Level Chip Scale Package [WLCSP], 13” Reel  
72-Ball Wafer Level Chip Scale Package [WLCSP], 7” Reel  
64-Lead Lead Frame Chip Scale Package [LFCSP]  
64-Lead Lead Frame Chip Scale Package [LFCSP], 13” Reel  
64-Lead Lead Frame Chip Scale Package [LFCSP], 7” Reel  
ADuCM4050 LFCSP Development Board  
CP-64-17  
ADuCM4050 WLCSP Development Board  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14745-0-4/19(A)  
Rev. A | Page 46 of 46  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY