ADUM1301BRW [ADI]

Triple-Channel Digital Isolators; 三通道数字隔离器
ADUM1301BRW
型号: ADUM1301BRW
厂家: ADI    ADI
描述:

Triple-Channel Digital Isolators
三通道数字隔离器

文件: 总20页 (文件大小:846K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Triple-Channel Digital Isolators  
ADuM1300/ADuM1301  
GENERAL DESCRIPTION  
FEATURES  
Low power operation  
5 V operation  
The ADuM130x are 3-channel digital isolators based on Analog  
Devices’ iCoupler® technology. Combining high speed CMOS  
and monolithic transformer technology, these isolation compo-  
nents provide outstanding performance characteristics superior  
to alternatives such as optocoupler devices.  
1.2 mA per channel max @ 0 Mbps to 2 Mbps  
3.5 mA per channel max @ 10 Mbps  
32 mA per channel max @ 90 Mbps  
3 V operation  
0.8 mA per channel max @ 0 Mbps to 2 Mbps  
2.2 mA per channel max @ 10 Mbps  
20 mA per channel max @ 90 Mbps  
Bidirectional communication  
By avoiding the use of LEDs and photodiodes, iCoupler devices  
remove the design difficulties commonly associated with  
optocouplers. The typical optocoupler concerns regarding  
uncertain current transfer ratios, nonlinear transfer functions,  
and temperature and lifetime effects are eliminated with the  
simple iCoupler digital interfaces and stable performance  
characteristics. The need for external drivers and other discretes  
is eliminated with these iCoupler products. Furthermore,  
iCoupler devices consume one-tenth to one-sixth the power of  
optocouplers at comparable signal data rates.  
3 V/5 V level translation  
High temperature operation: 105°C  
High data rate: dc to 90 Mbps (NRZ)  
Precise timing characteristics  
2 ns max pulse-width distortion  
2 ns max channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
The ADuM130x isolators provide three independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide). Both models operate with the supply  
voltage on either side ranging from 2.7 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling a  
voltage translation functionality across the isolation barrier. In  
addition, the ADuM130x provides low pulse-width distortion  
(<2 ns for CRW grade) and tight channel-to-channel matching  
(<2 ns for CRW grade). Unlike other optocoupler alternatives,  
the ADuM130x isolators have a patented refresh feature that  
ensures dc correctness in the absence of input logic transitions  
and during power-up/power-down conditions.  
Wide body 16-lead SOIC package, Pb-free models available  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA component acceptance notice #5A  
VDE certificate of conformity  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950:2000  
VIORM = 560 V peak  
APPLICATIONS  
General-purpose multichannel isolation  
SPI® interface/data converter isolation  
RS-232/RS-422/RS-485 transceiver  
Industrial field bus isolation  
FUNCTIONAL BLOCK DIAGRAMS  
V
1
2
3
4
5
6
7
8
16  
V
V
1
16  
V
DD2  
DD1  
DD2  
DD1  
GND  
V
15 GND  
GND  
2
3
4
5
6
7
8
15 GND  
1
2
1
IA  
IB  
2
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
V
V
14  
13  
12  
V
V
V
14  
13  
12  
V
V
V
OA  
OB  
IC  
IA  
IB  
IC  
OA  
OB  
OC  
V
V
V
OC  
NC  
11 NC  
NC  
NC  
11 NC  
V
10  
9
V
OR V  
E2  
10  
9
V
E1  
E2  
GND  
GND  
2
GND  
GND  
1
1
2
Figure 2. ADuM1301 Functional Block Diagram  
Figure 1. ADuM1300 Functional Block Diagram  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADuM1300/ADuM1301  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
ESD Caution................................................................................ 12  
Pin Configurations and Pin Function Descriptions.................. 13  
Typical Performance Characteristics ........................................... 14  
Application Information................................................................ 16  
PC Board Layout ........................................................................ 16  
Propagation Delay-Related Parameters................................... 16  
DC Correctness and Magnetic Field Immunity........................... 16  
Power Consumption .................................................................. 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3 V Operation................................ 5  
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V  
Operation....................................................................................... 7  
Package Characteristics ............................................................. 10  
Regulatory Information............................................................. 10  
Insulation and Safety-Related Specifications.......................... 10  
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation  
Characteristics ............................................................................ 11  
Recommended Operation Conditions .................................... 11  
Absolute Maximum Ratings.......................................................... 12  
REVISION HISTORY  
6/04—Data Sheet Changed from Rev. B to Rev. C.  
Changes to Format .............................................................Universal  
Changes to Features.......................................................................... 1  
Changes to Electrical Characteristics—5 V Operation ............... 3  
Changes to Electrical Characteristics—3 V Operation ............... 5  
Changes to Electrical Characteristics—Mixed 5 V/3 V or  
3 V/5 V Operation ............................................................................ 7  
Changes to Ordering Guide .......................................................... 18  
5/04—Data Sheet Changed from Rev. A to Rev. B.  
Changes to the Format.......................................................Universal  
Changes to the Features................................................................... 1  
Changes to Table 7 and Table 8..................................................... 14  
Changes to Table 9.......................................................................... 15  
Changes to the DC Correctness and Magnetic Field Immunity  
Section.............................................................................................. 19  
Changes to the Power Consumption Section ............................. 20  
Changes to the Ordering Guide.................................................... 21  
9/03—Data Sheet Changed from Rev. 0 to Rev. A.  
Edits to Regulatory Information................................................... 13  
Edits to Absolute Maximum Ratings ........................................... 15  
Deleted the Package Branding Information................................ 16  
Rev. C | Page 2 of 20  
ADuM1300/ADuM1301  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION1  
4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all min/max specifications apply over the entire recommended operation range, unless other-  
wise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V.  
Table 1.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, per Channel, Quiescent  
Output Supply Current, per Channel, Quiescent  
ADuM1300, Total Supply Current, Three Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50 0.53 mA  
0.19 0.21 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.6  
0.7  
2.5 mA  
1.0 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
6.5  
1.9  
8.1 mA  
2.5 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
57  
16  
77  
18  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1301, Total Supply Current, Three Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.3  
1.0  
2.1 mA  
1.4 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
5.0  
3.4  
6.2 mA  
4.2 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
43  
29  
57  
37  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC,  
IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH  
–10  
2.0  
+0.01 +10 µA  
V
0 ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.8  
V
V
V
V
V
V
,
VDD1, VDD2 – 0.1 5.0  
VDD1, VDD2 – 0.4 4.8  
VOAL, VOBL, VOCL 0.0  
IOx = –20 µA, VIx = VIxH  
IOx = –4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM130xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
65  
5
Pulse-Width Distortion, |tPLH – tPHL  
|
40  
50  
50  
ns  
ns  
ns  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
tPSKCD/OD  
Rev. C | Page 3 of 20  
 
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
ADuM130xBRW  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
PW  
100 ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
tPHL, tPLH  
PWD  
32  
5
50  
3
ns  
ns  
5
|
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
15  
3
Channel-to-Channel Matching,  
Codirectional Channels7  
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
ADuM130xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
8.3  
120  
27  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
18  
Propagation Delay5  
tPHL, tPLH  
PWD  
32  
2
5
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
10  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Disable Propagation Delay  
(High/Low-to-High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at  
Logic High Output8  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/µs  
25  
25  
Common-Mode Transient Immunity at  
Logic Low Output8  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
0.19  
0.05  
Mbps  
mA/Mbps  
mA/Mbps  
Input Dynamic Supply Current, per Channel9  
IDDI (D)  
Output Dynamic Supply Current, per Channel9 IDDO (D)  
1 All voltages are relative to their respective ground.  
2 The supply current values for all three channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section on  
Page 17. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9  
through Figure 12 for total IDD1 and IDD2 supply currents as a function of data rate for ADuM1300/ADuM1301 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section on Page 17 for guidance on calculating the per-channel  
supply current for a given data rate.  
Rev. C | Page 4 of 20  
 
 
 
 
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—3 V OPERATION1  
2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V; all min/max specifications apply over the entire recommended operation range, unless other-  
wise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V.  
Table 2.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, per Channel, Quiescent  
Output Supply Current, per Channel, Quiescent  
ADuM1300, Total Supply Current, Three Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26 0.31 mA  
0.11 0.14 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.9  
0.4  
1.7  
0.7  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.4  
1.1  
4.9  
1.6  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
31  
8
48  
13  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1301, Total Supply Current, Three Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.7  
0.6  
1.4  
0.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
2.6  
1.8  
3.7  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
24  
16  
36  
23  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC,  
IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH  
–10  
1.6  
+0.01 +10 µA  
V
0 ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 ≤ VE1,VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.4  
V
V
V
V
V
V
,
VDD1, VDD2 – 0.1 3.0  
VDD1, VDD2 – 0.4 2.8  
VOAL, VOBL, VOCL 0.0  
IOx = –20 µA, VIx = VIxH  
IOx = –4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM130xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
75  
5
Pulse-Width Distortion, |tPLH – tPHL  
|
40  
50  
50  
ns  
ns  
ns  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
tPSKCD/OD  
Rev. C | Page 5 of 20  
 
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
ADuM130xBRW  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
PW  
100 ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
tPHL, tPLH  
PWD  
38  
5
50  
3
ns  
ns  
5
|
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
26  
3
Channel-to-Channel Matching,  
Codirectional Channels7  
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
ADuM130xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
8.3  
120  
34  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
45  
2
5
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
16  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Disable Propagation Delay  
(High/Low-to-High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
3
ns  
Common-Mode Transient Immunity at  
Logic High Output8  
Common-Mode Transient Immunity at  
Logic Low Output8  
|CMH|  
25  
25  
35  
kV/µs  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current, per Channel9  
Output Dynamic Supply Current, per Channel9  
IDDI (D)  
IDDO (D)  
0.10  
0.03  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all three channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section on  
Page 17. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9  
through Figure 12 for total IDD1 and IDD2 supply currents as a function of data rate for ADuM1300/ADuM1301 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section on Page 17 for guidance on calculating the per-channel  
supply current for a given data rate.  
Rev. C | Page 6 of 20  
 
 
 
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION1  
5 V/3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V; 3 V/5 V operation: 2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all min/max  
specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at  
TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V; or VDD1 = 5 V, VDD2 = 3.0 V.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, per Channel, Quiescent  
5 V/3 V Operation  
IDDI (Q)  
0.50  
0.26  
0.53 mA  
0.31 mA  
3 V/5 V Operation  
Output Supply Current, per Channel, Quiescent  
5 V/3 V Operation  
3 V/5 V Operation  
ADuM1300, Total Supply Current, Three Channels2  
IDDO (Q)  
0.11  
0.19  
0.14 mA  
0.21 mA  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.6  
0.9  
2.5 mA  
1.7 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2(Q)  
0.4  
0.7  
0.7 mA  
1.0 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
6.5  
3.4  
8.1 mA  
4.9 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.1  
1.9  
1.6 mA  
2.5 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
57  
31  
77  
48  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (90)  
8
16  
13  
18  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1301, Total Supply Current, Three Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.3  
0.7  
2.1 mA  
1.4 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.6  
1.0  
0.9 mA  
1.4 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
5.0  
2.6  
6.2 mA  
3.7 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.8  
3.4  
2.5 mA  
4.2 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
Rev. C | Page 7 of 20  
 
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
For All Models  
IDD1 (90)  
43  
24  
57  
36  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
IDD2 (90)  
16  
29  
23  
37  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
Input Currents  
IIA, IIB, IIC,  
IE1, IE2  
–10  
+0.01  
+10 µA  
0 ≤ VIA,VIB, VIC ≤ VDD1 or VDD2  
0 ≤ VE1,VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIH, VEH  
2.0  
1.6  
V
V
Logic Low Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIL, VEL  
0.8  
0.4  
V
V
V
Logic High Output Voltages  
VOAH, VOBH  
VOCH  
,
VDD1, VDD2  
0.1  
V
DD1/VDD2  
IOx = –20 µA, VIx = VIxH  
IOx = –4 mA, VIx = VIxH  
VDD1  
,
VDD1  
/
V
VDD2 – 0.4  
VDD2 – 0.2  
Logic Low Output Voltages  
VOAL, VOBL, VOCL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
V
V
V
IOx = 20 µA, VIx = VIxL  
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM130xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
70  
5
Pulse-Width Distortion, |tPLH – tPHL  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
ADuM130xBRW  
|
40  
50  
50  
ns  
ns  
ns  
tPSKCD/OD  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF,CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
15  
Propagation Delay5  
tPHL, tPLH  
PWD  
35  
5
50  
3
5
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
6
3
Channel-to-Channel Matching,  
tPSKOD  
22  
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
ADuM130xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
8.3  
120  
30  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
40  
2
5
Pulse-Width Distortion, |tPLH-tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
14  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
Rev. C | Page 8 of 20  
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay  
(High/Low-to-High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3 V/5 V Operation  
Common-Mode Transient Immunity at  
Logic High Output8  
Common-Mode Transient Immunity at  
Logic Low Output8  
Refresh Rate  
tPHZ, tPLH  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
tPZH, tPZL  
tR/tf  
3.0  
2.5  
35  
ns  
ns  
kV/µs  
|CMH|  
|CML|  
fr  
25  
25  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
35  
kV/µs  
transient magnitude = 800 V  
5 V/3 V Operation  
3 V/5 V Operation  
1.2  
1.1  
Mbps  
Mbps  
Input Dynamic Supply Current, per Channel9 IDDI (D)  
5 V/3 V Operation  
0.19  
0.10  
mA/Mbps  
mA/Mbps  
3 V/5 V Operation  
Output Dynamic Supply Current, per Channel9  
IDDI (D)  
5 V/3 V Operation  
3 V/5 V Operation  
0.03  
0.05  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 Supply current values for all three channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The  
supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section on Page 17. See Figure 6  
through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total IDD1 and IDD2  
supply currents as a function of data rate for ADuM1300/ADuM1301 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured  
from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
7 Co-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation  
barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing  
sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be  
sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the  
range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-  
channel supply current for unloaded and loaded conditions. See the Power Consumption section on Page 17 for guidance on calculating the per-channel supply current for a  
given data rate.  
Rev. C | Page 9 of 20  
 
 
ADuM1300/ADuM1301  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
1.7  
4.0  
33  
Max  
Unit  
pF  
pF  
°C/W  
°C/W  
Test Conditions  
Resistance (Input-Output)1  
Capacitance (Input-Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
IC Junction-to-Case Thermal Resistance, Side 2  
Thermocouple located  
at center of package  
underside  
θJCO  
28  
1 Device considered a 2-terminal device; Pins 1, 2, 3, 4, 5, 6, 7, and 8 shorted together and Pins 9, 10, 11, 12, 13, 14, 15, and 16 shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM130x have been approved by the organizations listed in Table 5.  
Table 5.  
UL  
CSA  
VDE  
Recognized under 1577  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN EN 60747-5-2  
(VDE 0884 Part 2): 2003-012  
component recognition program1  
Double insulation, 2500 V rms  
isolation voltage  
Reinforced insulation per  
CSA 60950-1-03 and IEC 60950-1,  
400 V rms maximum working voltage  
Basic insulation, 560 V peak  
Complies with DIN EN 60747-5-2 (VDE 0884 Part 2):2003-01,  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950:2000  
Reinforced insulation, 560 V peak  
File 205078  
File E214100  
File 2471900-4880-0001  
1 In accordance with UL1577, each ADuM130x is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (current leakage detection limit = 5 µA).  
2 In accordance with DIN EN 60747-5-2, each ADuM130x is proof tested by applying an insulation test voltage ≥ 1050 V peak for 1 second (partial discharge detection  
limit = 5 pC). A “*” mark branded on the component designates DIN EN 60747-5-2 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol  
Value  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
V rms  
1 minute duration  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
L(I01)  
L(I02)  
8.40 min mm  
8.10 min mm  
0.017 min mm  
>175  
IIIa  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
V
Material Group (DIN VDE 0110, 1/89, Table 1)  
Rev. C | Page 10 of 20  
 
 
 
 
 
ADuM1300/ADuM1301  
DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS  
Table 7.  
Description  
Symbol  
Characteristic  
Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b1  
I–IV  
I–III  
I–II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
V
IORM × 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VPR  
896  
V peak  
V peak  
V peak  
V
IORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
After Input and/or Safety Test Subgroup 2/3  
IORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
672  
V
Highest Allowable Overvoltage (Transient Overvoltage, tTR = 10 sec)  
VTR  
4000  
Safety-Limiting Values (Maximum value allowed in the event of a failure; also see Thermal  
Derating Curve, Figure 3)  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Insulation Resistance at TS, VIO = 500 V  
This isolator is suitable for basic isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.  
The * marking on packages denotes DIN EN 60747-5-2 approval for 560 V peak working voltage.  
350  
300  
250  
RECOMMENDED OPERATION CONDITIONS  
SIDE #2  
200  
Table 8.  
150  
Parameter  
Symbol Min Max Unit  
TA –40 +105 °C  
SIDE #1  
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
100  
50  
0
VDD1, VDD2 2.7 5.5  
1.0  
V
ms  
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
Figure 3. Thermal Derating Curve, Dependence of Safety Limiting  
Values with Case Temperature per DIN EN 60747-5-2  
1 All voltages are relative to their respective ground.  
See the DC Correctness and Magnetic Field Immunity section on Page 16  
for information on immunity to external magnetic fields.  
Rev. C | Page 11 of 20  
 
 
 
ADuM1300/ADuM1301  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Table 9.  
Parameter  
Symbol  
TST  
TA  
VDD1, VDD2  
VIA, VIB, VIC, VE1, VE2  
VOA, VOB, VOC  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
Max  
Unit  
°C  
°C  
V
V
V
Storage Temperature  
Ambient Operating Temperature  
Supply Voltages1  
Input Voltage1, 2  
Output Voltage1, 2  
Average Output Current, Per Pin3  
Side 1  
+150  
+105  
+7.0  
VDDI + 0.5  
VDDO + 0.5  
IO1  
IO2  
–23  
–30  
–100  
+23  
+30  
+100  
mA  
mA  
kV/µs  
Side 2  
Common-Mode Transients4  
1 All voltages are relative to their respective ground.  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a given channel, respectively. See PC Board Layout section.  
3 See Figure 3 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Rating may cause latch-up or  
permanent damage.  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions may affect device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features proprie-  
tary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic  
discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of  
functionality.  
Table 10. Truth Table (Positive Logic)  
VIX Input1  
VEX Input2 VDDI State1 VDDO State1 VOX Output1 Notes  
H
L
X
X
H or NC  
H or NC  
L
Powered  
Powered  
Powered  
Powered  
Powered  
Powered  
H
L
Z
H
H or NC  
Unpowered Powered  
Outputs return to the input state within 1 µs of VDDI power restora-  
tion.  
X
X
L
X
Unpowered Powered  
Z
Powered  
Unpowered Indeterminate Outputs return to the input state within 1 µs of VDDO power restora-  
tion, if VEX state is H or NC. Outputs returns to high impedance state  
within 8 ns of VDDO power restoration, if VEX state is L.  
1 VIX and VOX refer to the input and output signals of a given channel (A, B, or C). VEX refers to the output enable signal on the same side as the VOX outputs. VDDI and VDDO  
refer to the supply voltages on the input and output sides of the given channel, respectively.  
2 In noisy environments, connecting VEX to an external logic high or low is recommended.  
Rev. C | Page 12 of 20  
 
 
 
 
 
 
 
 
 
 
ADuM1300/ADuM1301  
PIN CONFIGURATIONS AND PIN FUNCTION DESCRIPTIONS  
V
V
V
V
DD2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DD1  
DD2  
DD1  
*GND  
V
GND *  
2
*GND  
V
GND *  
2
1
1
ADuM1300  
TOP VIEW  
(Not to Scale)  
ADuM1301  
TOP VIEW  
(Not to Scale)  
V
V
IA  
IB  
IC  
OA  
IA  
IB  
OA  
V
V
V
V
V
OB  
OB  
V
V
V
IC  
OC  
OC  
NC  
NC  
NC  
NC  
NC  
V
V
V
E2  
E1  
*GND  
E2  
*GND  
GND *  
2
GND *  
2
1
1
NC = NO CONNECT  
NC = NO CONNECT  
Figure 4. ADuM1300 Pin Configuration  
Figure 5. ADuM1301 Pin Configuration  
*
Pins 2 and 8 are internally connected. Connecting both to GND1 is recommended. Pins 9 and 15 are internally connected. Connecting both to GND2 is recommended.  
Output enable Pin 10 on the ADuM1300 may be left disconnected if outputs are to be always enabled. Output enable Pins 7 and 10 on the ADuM1301 may be left  
disconnected if outputs are to be always enabled. In noisy environments, connecting Pin 7 (for ADuM1301) and Pin 10 (for both models) to an external logic high or  
low is recommended.  
Table 11. ADuM1300 Pin Function Descriptions  
Table 12. ADuM1301 Pin Function Descriptions  
Pin  
Pin  
No. Mnemonic Function  
No. Mnemonic Function  
1
VDD1  
Supply Voltage for Isolator Side 1, 2.7 V to  
5.5 V.  
1
VDD1  
Supply Voltage for Isolator Side 1, 2.7 V to  
5.5 V.  
2
3
4
5
6
7
8
9
GND1  
VIA  
VIB  
VIC  
NC  
NC  
GND1  
GND2  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Input C.  
No Connect.  
No Connect.  
Ground 1. Ground Reference for Isolator Side 1.  
Ground 2. Ground Reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB,  
and VOC outputs are enabled when VE2 ishigh or  
disconnected. VOA, VOB, and VOC outputs are dis-  
abled when VE2 is low. In noisy environments,  
connecting VE2 to an external logic high or low is  
recommended.  
No Connect.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground Reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2, 2.7 V to  
5.5 V.  
2
3
4
5
6
7
GND1  
VIA  
VIB  
VOC  
NC  
VE1  
Ground 1. Ground Reference for Isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Output C.  
No Connect.  
Output Enable 1. Active high logic input. VOC out-  
put is enabled when VE1 ishigh or disconnected.  
VOC is disabled when VE1 is low. In noisy environ-  
ments, connecting to VE1 to an external logic high  
or low is recommended.  
Ground 1. Ground Reference for Isolator Side 1.  
Ground 2. Ground Reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA and  
VOB outputs are enabled when VE2 ishigh or dis-  
connected. VOA and VOB outputs are disabled  
when VE2 is low. In noisy environments, connect-  
ing VE2 to an external logic high or low is recom-  
mended.  
No Connect.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
10 VE2  
8
9
GND1  
GND2  
10 VE2  
11 NC  
12 VOC  
13 VOB  
14 VOA  
15 GND2  
16 VDD2  
11 NC  
12 VIC  
13 VOB  
14 VOA  
15 GND2  
16 VDD2  
Ground 2. Ground Reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2, 2.7 V to  
5.5 V.  
Rev. C | Page 13 of 20  
 
ADuM1300/ADuM1301  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
18  
16  
14  
60  
50  
40  
30  
20  
10  
0
12  
5V  
10  
8
5V  
6
3V  
3V  
4
2
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 6. Typical Input Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation  
Figure 9. Typical ADuM1300 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
6
5
4
3
16  
14  
12  
10  
8
5V  
5V  
6
4
2
3V  
3V  
1
2
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 7. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (No Output Load)  
Figure 10. Typical ADuM1300 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
10  
9
50  
45  
40  
35  
30  
8
7
6
5
25  
5V  
4
20  
3V  
15  
5V  
3
2
3V  
10  
5
1
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (15 pF Output Load)  
Figure 11. Typical ADuM1301 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Rev. C | Page 14 of 20  
 
 
 
 
 
ADuM1300/ADuM1301  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
3V  
5V  
3V  
5V  
0
0
20  
40  
60  
80  
100  
–50  
–25  
0
25  
50  
75  
100  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 12. Typical ADuM1301 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Figure 13. Propagation Delay vs. Temperature, C Grade  
Rev. C | Page 15 of 20  
 
ADuM1300/ADuM1301  
APPLICATION INFORMATION  
PC BOARD LAYOUT  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
The ADuM130x digital isolator requires no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins  
(Figure 14). Bypass capacitors are most conveniently connected  
between Pins 1 and 2 for VDD1 and between Pins 15 and 16 for  
VDD2. The capacitor value should be between 0.01 µF and 0.1 µF.  
The total lead length between both ends of the capacitor and  
the input power supply pin should not exceed 20 mm. Bypass-  
ing between Pins 1 and 8 and between Pins 9 and 16 should also  
be considered unless the ground pair on each package side is  
connected close to the package.  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder via the trans-  
former. The decoder is bistable and is therefore either set or  
reset by the pulses, indicating input logic transitions. In the  
absence of logic transitions of more than 2 µs at the input, a  
periodic set of refresh pulses indicative of the correct input state  
are sent to ensure dc correctness at the output. If the decoder  
receives no internal pulses for more than about 5 µs, the input  
side is assumed to be unpowered or nonfunctional, in which  
case the isolator output is forced to a default state (see Table 10)  
by the watchdog timer circuit.  
V
GND  
V
DD2  
DD1  
The ADuM130x is extremely immune to external magnetic  
fields. The limitation on the ADuM130xs magnetic field  
immunity is set by the condition in which induced voltage in  
the transformer’s receiving coil is sufficiently large to either  
falsely set or reset the decoder. The following analysis defines  
the conditions under which this may occur. The 3 V operating  
condition of the ADuM130x is examined because it represents  
the most susceptible mode of operation.  
GND  
1
IA  
IB  
2
V
V
V
V
V
OA  
OB  
V
IC/OC  
NC  
OC/IC  
NC  
V
E2  
GND  
2
V
E1  
GND  
1
Figure 14. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients, care  
should be taken to ensure that board coupling across the isola-  
tion barrier is minimized. Furthermore, the board layout should  
be designed such that any coupling that does occur equally  
affects all pins on a given component side. Failure to ensure this  
could cause voltage differentials between pins exceeding the  
device’s Absolute Maximum Ratings, thereby leading to latch-up  
or permanent damage.  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V,  
therefore establishing a 0.5 V margin in which induced voltages  
can be tolerated. The voltage induced across the receiving coil is  
given by  
2
V = (/dt)rn ; n = 1, 2,…, N  
PROPAGATION DELAY-RELATED PARAMETERS  
where:  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propaga-  
tion delay to a logic low output may differ from the propagation  
delay to a logic high.  
β is magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
Given the geometry of the receiving coil in the ADuM130x and  
an imposed requirement that the induced voltage be at most  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 16.  
INPUT (V  
)
50%  
IX  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
OX  
Figure 15. Propagation Delay Parameters  
Pulse-width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the input signals timing is preserved.  
Channel-to-channel matching refers to the maximum amount  
that the propagation delay differs between channels within a  
single ADuM130x component.  
Propagation delay skew refers to the maximum amount that  
the propagation delay differs between multiple ADuM130x  
components operating under the same conditions.  
Rev. C | Page 16 of 20  
 
 
ADuM1300/ADuM1301  
100.000  
10.000  
1.000  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce sufficiently large error voltages to trigger the  
thresholds of succeeding circuitry. Care should be taken in  
the layout of such traces to avoid this possibility.  
POWER CONSUMPTION  
0.100  
The supply current at a given channel of the ADuM130x isola-  
tor is a function of the supply voltage, the channels data rate,  
and the channel’s output load.  
0.010  
For each input channel, the supply current is given by  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
IDDI = IDDI (Q)  
f ≤ 0.5fr  
f > 0.5fr  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 16. Maximum Allowable External Magnetic Flux Density  
IDDI = IDDI (D) × (2f – fr) + IDDI (Q)  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and was of the worst-case polarity), it would reduce the  
received pulse from > 1.0 V to 0.75 V—still well above the 0.5 V  
sensing threshold of the decoder.  
For each output channel, the supply current is given by  
IDDO = IDDO (Q) f ≤ 0.5fr  
I
DDO = (IDDO (D) + (0.5 × 10−3) × CLVDDO) × (2f – fr) + IDDO (Q)  
f > 0.5fr  
where:  
IDDI (D), IDDO (D) are the input and output dynamic supply currents  
per channel (mA/Mbps).  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM130x transformers. Figure 17 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As seen, the ADuM130x is extremely immune and  
can be affected only by extremely large currents operated at  
high frequency, very close to the component. For the 1 MHz  
example, one would have to place a 0.5 kA current 5 mm away  
from the ADuM130x to affect the component’s operation.  
CL is output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
f is the input logic signal frequency (MHz, half of the input data  
rate, NRZ signaling).  
fr is the input stage refresh rate (Mbps).  
1000.00  
IDDI (Q), IDDO (Q) are the specified input and output quiescent sup-  
ply currents (mA).  
DISTANCE = 1m  
100.00  
To calculate the total IDD1 and IDD2 supply current, the supply  
currents for each input and output channel corresponding to  
IDD1 and IDD2 are calculated and totaled. Figure 6 and Figure 7  
provide per-channel supply currents as a function of data rate  
for an unloaded output condition. Figure 8 provides per-  
channel supply current as a function of data rate for a 15 pF  
output condition. Figure 9 through Figure 12 provide total  
IDD1 and IDD2 supply current as a function of data rate for  
ADuM1300/ADuM1301 channel configurations.  
10.00  
DISTANCE = 100mm  
1.00  
DISTANCE = 5mm  
0.10  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 17. Maximum Allowable Current  
for Various Current-to-ADuM130x Spacings  
Rev. C | Page 17 of 20  
 
 
ADuM1300/ADuM1301  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1.27 (0.0500)  
BSC  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
× 45°  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 18. 16-Lead Standard Small Outline Package [SOIC]  
Wide Body (RW-16)  
Dimensions shown in millimeters (inches)  
ORDERING GUIDE  
Number  
Number  
Maximum  
Maximum  
of Inputs, of Inputs, Data Rate Maximum Propagation  
Pulse-Width  
Distortion (ns)  
Temperature Package  
Model  
VDD1 Side VDD2 Side (Mbps)  
Delay, 5 V (ns)  
Range (°C)  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
–40 to +105  
Option1  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
ADuM1300ARW2  
ADuM1300BRW2  
ADuM1300CRW2  
ADuM1300ARWZ2, 3  
ADuM1300BRWZ2, 3  
ADuM1300CRWZ2, 3  
ADuM1301ARW2  
ADuM1301BRW2  
ADuM1301CRW2  
ADuM1301ARWZ2, 3  
ADuM1301BRWZ2, 3  
ADuM1301CRWZ2, 3  
3
3
3
3
3
3
2
2
2
3
3
3
0
0
0
0
0
0
1
1
1
0
0
0
1
100  
50  
32  
100  
50  
32  
40  
3
2
40  
3
2
10  
90  
1
10  
90  
1
10  
90  
1
10  
90  
100  
50  
32  
100  
50  
32  
40  
3
2
40  
3
2
1 RW-16 = 16-lead wide body SOIC.  
2 Tape and reel are available. The addition of an “-RL” suffix designates a 13” (1,000 units) tape and reel option.  
3 Z = Pb-free part.  
Rev. C | Page 18 of 20  
 
 
 
 
 
 
ADuM1300/ADuM1301  
NOTES  
Rev. C | Page 19 of 20  
ADuM1300/ADuM1301  
NOTES  
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and regis-  
tered trademarks are the property of their respective owners.  
C03787–0–6/04(C)  
Rev. C | Page 20 of 20  

相关型号:

ADUM1301BRW-RL

Triple-Channel Digital Isolator
ADI

ADUM1301BRW-RL

SPECIALTY ANALOG CIRCUIT, PDSO16, MS-013AA, SOIC-16
ROCHESTER

ADUM1301BRWZ

Triple-Channel Digital Isolators
ADI

ADUM1301BRWZ

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER

ADUM1301BRWZ-RL

Triple-Channel Digital Isolator
ADI

ADUM1301BRWZ-RL

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER

ADUM1301BRWZN

Interface Circuit, CMOS, PDSO16
ADI

ADUM1301CRW

Triple-Channel Digital Isolators
ADI

ADUM1301CRW

SPECIALTY ANALOG CIRCUIT, PDSO16, MS-013AA, SOIC-16
ROCHESTER

ADUM1301CRW-RL

IC SPECIALTY ANALOG CIRCUIT, PDSO16, MS-013AA, SOIC-16, Analog IC:Other
ADI

ADUM1301CRWZ

Triple-Channel Digital Isolators
ADI

ADUM1301CRWZ

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER