ADUM1301CRW [ROCHESTER]

SPECIALTY ANALOG CIRCUIT, PDSO16, MS-013AA, SOIC-16;
ADUM1301CRW
型号: ADUM1301CRW
厂家: Rochester Electronics    Rochester Electronics
描述:

SPECIALTY ANALOG CIRCUIT, PDSO16, MS-013AA, SOIC-16

光电二极管 接口集成电路
文件: 总33页 (文件大小:1879K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Triple-Channel Digital Isolators  
ADuM1300/ADuM1301  
Data Sheet  
FEATURES  
Qualified for automotive applications  
Low power operation  
5 V operation  
1.2 mA per channel maximum @ 0 Mbps to 2 Mbps  
3.5 mA per channel maximum @ 10 Mbps  
32 mA per channel maximum @ 90 Mbps  
3 V operation  
0.8 mA per channel maximum @ 0 Mbps to 2 Mbps  
2.2 mA per channel maximum @ 10 Mbps  
20 mA per channel maximum @ 90 Mbps  
Bidirectional communication  
GENERAL DESCRIPTION  
The ADuM130x1 are triple-channel digital isolators based on the  
Analog Devices, Inc., iCoupler® technology. Combining high  
speed CMOS and monolithic transformer technology, these  
isolation components provide outstanding performance  
characteristics superior to alternatives, such as optocouplers.  
By avoiding the use of LEDs and photodiodes, iCoupler  
devices remove the design difficulties commonly associated  
with optocouplers. The typical optocoupler concerns regarding  
uncertain current transfer ratios, nonlinear transfer functions,  
and temperature and lifetime effects are eliminated with the  
simple iCoupler digital interfaces and stable performance  
characteristics. The need for external drivers and other  
discrete components is eliminated with these iCoupler products.  
Furthermore, iCoupler devices consume one-tenth to one-sixth  
of the power of optocouplers at comparable signal data rates.  
3 V/5 V level translation  
High temperature operation: 125°C  
High data rate: dc to 90 Mbps (NRZ)  
Precise timing characteristics  
2 ns maximum pulse width distortion  
2 ns maximum channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
16-lead SOIC wide body package  
RoHS-compliant models available  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE Certificate of Conformity  
The ADuM130x isolators provide three independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide). Both models operate with the supply  
voltage on either side ranging from 2.7 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling a  
voltage translation functionality across the isolation barrier. In  
addition, the ADuM130x provide low pulse width distortion  
(<2 ns for CRW grade) and tight channel-to-channel matching  
(<2 ns for CRW grade). Unlike other optocoupler alternatives,  
the ADuM130x isolators have a patented refresh feature that  
ensures dc correctness in the absence of input logic transitions  
and when power is not applied to one of the supplies.  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 560 V peak  
TÜV approval: IEC/EN/UL/CSA 61010-1  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329.  
APPLICATIONS  
General-purpose multichannel isolation  
SPI interface/data converter isolation  
RS-232/RS-422/RS-485 transceivers  
Industrial field bus isolation  
Automotive systems  
FUNCTIONAL BLOCK DIAGRAMS  
1
2
3
4
5
6
7
8
16  
V
V
DD1  
DD2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
DD1  
DD2  
GND  
15 GND  
2
1
IA  
IB  
IC  
GND  
GND  
1
IA  
IB  
2
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
OA  
OB  
OC  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
ENCODE  
V
V
V
V
V
OA  
OB  
IC  
V
OC  
NC  
NC  
NC  
NC  
NC  
V
E2  
V
V
E1  
E2  
GND  
GND  
2
1
GND  
GND  
1
2
Figure 1. ADuM1300 Functional Block Diagram  
Figure 2. ADuM1301 Functional Block Diagram  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2012 Analog Devices, Inc. All rights reserved.  
 
 
ADuM1300/ADuM1301  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
Insulation Characteristics ......................................................... 20  
Recommended Operating Conditions .................................... 20  
Absolute Maximum Ratings ......................................................... 21  
ESD Caution................................................................................ 21  
Pin Configurations and Function Descriptions......................... 22  
Typical Performance Characteristics ........................................... 23  
Applications Information.............................................................. 25  
PC Board Layout ........................................................................ 25  
Propagation Delay-Related Parameters................................... 25  
DC Correctness and Magnetic Field Immunity........................... 25  
Power Consumption .................................................................. 26  
Insulation Lifetime..................................................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Automotive Products................................................................. 29  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Electrical Characteristics—5 V, 105°C Operation ................... 4  
Electrical Characteristics—3 V, 105°C Operation ................... 6  
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V,  
105°C Operation........................................................................... 8  
Electrical Characteristics—5 V, 125°C Operation ................. 11  
Electrical Characteristics—3 V, 125°C Operation ................. 13  
Electrical Characteristics—Mixed 5 V/3 V, 125°C Operation... 15  
Electrical Characteristics—Mixed 3 V/5 V 125°C Operation... 17  
Package Characteristics ............................................................. 19  
Regulatory Information............................................................. 19  
Insulation and Safety-Related Specifications.......................... 19  
Rev. I | Page 2 of 32  
Data Sheet  
ADuM1300/ADuM1301  
REVISION HISTORY  
3/12—Rev. H to Rev. I  
2/06—Rev. D to Rev. E  
Created Hyperlink for Safety and Regulatory Approvals  
Entry in Features Section .................................................................1  
Change to PC Board Layout Section ............................................25  
Updated Outline Dimensions........................................................28  
Moved Automotive Products Section...........................................28  
Updated Format ................................................................. Universal  
Added TÜV Approval ....................................................... Universal  
Changes to Figure 2 ..........................................................................1  
5/05—Rev. C to Rev. D  
Changes to Format............................................................. Universal  
Changes to Figure 2 ..........................................................................1  
Changes to Table 6 ..........................................................................10  
Changes to Ordering Guide...........................................................18  
5/08—Rev. G to Rev. H  
Added ADuM1300W and ADuM1301W Parts............. Universal  
Changes to Features List...................................................................1  
Added Table 4 ..................................................................................11  
Added Table 5 ..................................................................................13  
Added Table 6 ..................................................................................15  
Added Table 7 ..................................................................................17  
Changes to Table 12 ........................................................................20  
Changes to Table 13 ........................................................................21  
Added Automotive Products Section ...........................................27  
Changes to Ordering Guide...........................................................28  
6/04—Rev. B to Rev. C  
Changes to Format............................................................. Universal  
Changes to Features..........................................................................1  
Changes to Electrical Characteristics—5 V Operation................3  
Changes to Electrical Characteristics—3 V Operation................5  
Changes to Electrical Characteristics—Mixed 5 V/3 V or  
3 V/5 V Operation ............................................................................7  
Changes to Ordering Guide...........................................................18  
11/07—Rev. F to Rev. G  
Changes to Note 1 and Figure 2 ......................................................1  
Added ADuM130xARW Change vs. Temperature Parameter ...3  
Added ADuM130xARW Change vs. Temperature Parameter ...5  
Added ADuM130xARW Change vs. Temperature Parameter ...8  
Changes to Figure 14 ......................................................................16  
5/04—Rev. A to Rev. B  
Changes to the Format ...................................................... Universal  
Changes to the Features....................................................................1  
Changes to Table 7 and Table 8 .....................................................14  
Changes to Table 9 ..........................................................................15  
Changes to the DC Correctness and Magnetic Field Immunity  
Section ..............................................................................................19  
Changes to the Power Consumption Section..............................20  
Changes to the Ordering Guide ....................................................21  
6/07—Rev. E to Rev. F  
Updated VDE Certification Throughout.......................................1  
Changes to Features, Note 1, Figure 1, and Figure 2 ....................1  
Changes to Regulatory Information Section...............................10  
Added Table 10 ................................................................................12  
Added Insulation Lifetime Section ...............................................17  
Updated Outline Dimensions........................................................19  
Changes to Ordering Guide...........................................................19  
9/03—Rev. 0 to Rev. A  
Edits to Regulatory Information...................................................13  
Edits to Absolute Maximum Ratings............................................15  
Deleted the Package Branding Information ................................16  
9/03—Revision 0: Initial Version  
Rev. I | Page 3 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V, 105°C OPERATION  
All voltages are relative to their respective ground. 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. These  
specifications do not apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 1.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300 Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50 0.53 mA  
0.19 0.24 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.6  
0.7  
2.5  
1.0  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
6.5  
1.9  
8.1  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
57  
16  
77  
18  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1301 Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.3  
1.0  
2.1  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
5.0  
3.4  
6.2  
4.2  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
43  
29  
57  
37  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01 +10 μA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
2.0  
0.8  
V
V
V
V
V
V
VOAH, VOBH, VOCH (VDD1 or VDD2) − 0.1 5.0  
(VDD1 or VDD2) − 0.4 4.8  
VOAL, VOBL, VOCL  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.0  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM130xARW  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
65  
11  
4
40  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
ps/°C  
ns  
ns  
Propagation Delay Skew5  
tPSK  
tPSKCD/tPSKOD  
50  
50  
Channel-to-Channel Matching6  
Rev. I | Page 4 of 32  
 
 
Data Sheet  
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
ADuM130xBRW  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
PW  
100 ns  
CL = 15 pF, CMOS signal levels  
10  
20  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
tPHL, tPLH  
PWD  
32  
5
50  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ps/°C  
ns  
tPSK  
15  
3
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
ADuM130xCRW  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
PW  
8.3  
120  
27  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
18  
tPHL, tPLH  
PWD  
32  
2
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew5  
ps/°C  
ns  
tPSK  
10  
2
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at Logic  
High Output7  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/μs  
25  
25  
Common-Mode Transient Immunity at Logic  
Low Output7  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.19  
0.05  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through  
Figure 12 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1300/ADuM1301 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. I | Page 5 of 32  
 
 
 
 
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
ELECTRICAL CHARACTERISTICS—3 V, 105°C OPERATION  
All voltages are relative to their respective ground. 2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V.  
These specifications do not apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 2.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300 Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26 0.31 mA  
0.11 0.15 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.9  
0.4  
1.7  
0.7  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.4  
1.1  
4.9  
1.6  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
31  
8
48  
13  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1301 Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.7  
0.6  
1.4  
0.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
2.6  
1.8  
3.7  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
24  
16  
36  
23  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01 +10 μA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
1.6  
0.4  
V
V
V
V
V
V
VOAH, VOBH, VOCH (VDD1 or VDD2) − 0.1 3.0  
(VDD1 or VDD2) − 0.4 2.8  
VOAL, VOBL, VOCL  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.0  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM130xARW  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
75  
11  
4
40  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
ps/°C  
ns  
ns  
Propagation Delay Skew5  
tPSK  
tPSKCD/tPSKOD  
50  
50  
Channel-to-Channel Matching6  
Rev. I | Page 6 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
ADuM130xBRW  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
PW  
100 ns  
CL = 15 pF, CMOS signal levels  
10  
20  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
tPHL, tPLH  
PWD  
38  
5
50  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ps/°C  
ns  
tPSK  
26  
3
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
ADuM130xCRW  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
PW  
8.3  
120  
34  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
tPHL, tPLH  
PWD  
45  
2
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew5  
ps/°C  
ns  
tPSK  
16  
2
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low to  
High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
3
ns  
Common-Mode Transient Immunity at  
Logic High Output7  
Common-Mode Transient Immunity at  
Logic Low Output7  
|CMH|  
25  
25  
35  
kV/μs  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.10  
0.03  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through  
Figure 12 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1300/ADuM1301 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. I | Page 7 of 32  
 
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V, 105°C OPERATION  
All voltages are relative to their respective ground. 5 V/3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V; 3 V/5 V operation:  
2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V or VDD1 = 5 V, VDD2 = 3.0 V. These specifica-  
tions do not apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
5 V/3 V Operation  
IDDI (Q)  
0.50  
0.26  
0.53 mA  
0.31 mA  
3 V/5 V Operation  
Output Supply Current per Channel, Quiescent  
5 V/3 V Operation  
3 V/5 V Operation  
IDDO (Q)  
0.11  
0.19  
0.15 mA  
0.24 mA  
ADuM1300 Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.6  
0.9  
2.5 mA  
1.7 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.4  
0.7  
0.7 mA  
1.0 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
6.5  
3.4  
8.1  
4.9  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.1  
1.9  
1.6  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
57  
31  
77  
48  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (90)  
8
16  
13  
18  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1301 Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.3  
0.7  
2.1 mA  
1.4 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.6  
1.0  
0.9 mA  
1.4 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
5.0  
2.6  
6.2  
3.7  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.8  
3.4  
2.5  
4.2  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
Rev. I | Page 8 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (90)  
43  
24  
57  
36  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
IDD2 (90)  
16  
29  
23  
37  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01  
+10 μA  
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIH, VEH  
2.0  
1.6  
V
V
Logic Low Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIL, VEL  
0.8  
0.4  
V
V
V
V
V
V
V
Logic High Output Voltages  
VOAH, VOBH, VOCH (VDD1 or VDD2) − 0.1 (VDD1 or VDD2  
)
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
(VDD1 or VDD2) − 0.4 (VDD1 or VDD2) − 0.2  
Logic Low Output Voltages  
VOAL, VOBL, VOCL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
SWITCHING SPECIFICATIONS  
ADuM130xARW  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
70  
11  
4
40  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ADuM130xBRW  
|
ps/°C  
ns  
ns  
tPSK  
tPSKCD/tPSKOD  
50  
50  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
15  
tPHL, tPLH  
PWD  
35  
5
50  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ps/°C  
ns  
tPSK  
6
3
Channel-to-Channel Matching, Codirectional tPSKCD  
Channels6  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
22  
ns  
CL = 15 pF, CMOS signal levels  
ADuM130xCRW  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
PW  
8.3  
120  
30  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
tPHL, tPLH  
PWD  
40  
2
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew5  
ps/°C  
ns  
tPSK  
14  
2
Channel-to-Channel Matching,  
Codirectional Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels6  
Rev. I | Page 9 of 32  
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay  
(High/Low to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3 V/5 V Operation  
Common-Mode Transient Immunity at  
Logic High Output7  
Common-Mode Transient Immunity at  
Logic Low Output7  
tPHZ, tPLH  
tPZH, tPZL  
tR/tF  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3.0  
2.5  
35  
ns  
ns  
kV/μs  
|CMH|  
|CML|  
fr  
25  
25  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
35  
kV/μs  
Refresh Rate  
5 V/3 V Operation  
3 V/5 V Operation  
1.2  
1.1  
Mbps  
Mbps  
Input Dynamic Supply Current per Channel8  
5 V/3 V Operation  
3 V/5 V Operation  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
0.19  
0.10  
mA/Mbps  
mA/Mbps  
IDDO (D)  
5 V/3 V Operation  
3 V/5 V Operation  
0.03  
0.05  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load present. The  
supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 6 through  
Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total VDD1 and VDD2  
supply currents as a function of data rate for ADuM1300/ADuM1301 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured  
from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation  
barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing  
sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be  
sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the  
range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on  
per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given  
data rate.  
Rev. I | Page 10 of 32  
 
 
 
Data Sheet  
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—5 V, 125°C OPERATION  
All voltages are relative to their respective ground. 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. These  
specifications apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 4.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50 0.53 mA  
0.19 0.24 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.6  
0.7  
2.5 mA  
1.0 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
6.5  
1.9  
8.1 mA  
2.5 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
ADuM1301W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.3  
1.0  
2.1 mA  
1.4 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
5.0  
3.4  
6.2 mA  
4.2 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01 +10 μA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
2.0  
0.8  
V
V
V
V
V
V
VOAH, VOBH, VOCH VDD1, VDD2 − 0.1 5.0  
VDD1, VDD2 − 0.4 4.8  
VOAL, VOBL, VOCL  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.0  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM130xWSRWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
tPSK  
65  
4
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ADuM130xWTRWZ  
|
40  
50  
50  
ns  
ns  
ns  
tPSKCD/tPSKOD  
Minimum Pulse Width2  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
10  
18  
Propagation Delay4  
tPHL, tPLH  
PWD  
27  
5
32  
3
4
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching, Codirectional  
Channels6  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
15  
3
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Rev. I | Page 11 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay  
(High/Low to High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at Logic  
High Output7  
tPHZ, tPLH  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tPZH, tPZL  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/μs  
25  
25  
Common-Mode Transient Immunity at Logic  
Low Output7  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
0.19  
0.05  
Mbps  
mA/Mbps  
mA/Mbps  
Input Dynamic Supply Current per Channel8  
IDDI (D)  
Output Dynamic Supply Current per Channel8 IDDO (D)  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through  
Figure 12 for total VDD1 and VDD2 supply currents as a function of data rate for ADUM1300W/ADUM1301W channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. I | Page 12 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—3 V, 125°C OPERATION  
All voltages are relative to their respective ground. 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V.  
These specifications apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26 0.31 mA  
0.11 0.15 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.9  
0.4  
1.7  
0.7  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.4  
1.1  
4.9  
1.6  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
ADuM1301W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.7  
0.6  
1.4  
0.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
2.6  
1.8  
3.7  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01 +10 μA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
1.6  
0.4  
V
V
V
V
V
V
VOAH, VOBH, VOCH VDD1, VDD2 − 0.1 3.0  
VDD1, VDD2 − 0.4 2.8  
VOAL, VOBL, VOCL  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
0.0  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM130xWSRWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
75  
4
40  
50  
50  
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ADuM130xWTRWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
|
tPSK  
tPSKCD/tPSKOD  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
34  
5
45  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ps/°C  
ns  
tPSK  
26  
3
Channel-to-Channel Matching,  
Codirectional Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels6  
Rev. I | Page 13 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay (High/Low to  
High Impedance)  
Output Enable Propagation Delay (High Impedance tPZH, tPZL  
to High/Low)  
tPHZ, tPLH  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
3
ns  
Common-Mode Transient Immunity at  
Logic High Output7  
Common-Mode Transient Immunity at  
Logic Low Output7  
|CMH|  
25  
25  
35  
kV/μs  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.10  
0.03  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through  
Figure 12 for total VDD1 and VDD2 supply currents as a function of data rate for ADUM1300W/ADUM1301W channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. I | Page 14 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V, 125°C OPERATION1  
All voltages are relative to their respective ground. 4.5 V ≤ VDD1 ≤ 5.5 V, 3.0 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C; VDD1 = 5 V, VDD2 = 3.0 V.  
These specifications apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 6.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300W, Total Supply Current, Three Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50  
0.11  
0.53 mA  
0.15 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.6  
0.4  
2.5  
0.7  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
6.5  
1.1  
8.1  
1.6  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
ADuM1301W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.3  
0.6  
2.1  
0.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
5.0  
1.8  
6.2  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01  
+10 μA  
V
0 V ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
2.0  
0.8  
V
V
V
VOAH, VOBH, VOCH VDD1, VDD2 − 0.1 VDD1, VDD2  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
VDD1, VDD2 − 0.4 VDD1  
,
VDD2 − 0.2  
Logic Low Output Voltages  
VOAL, VOBL, VOCL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
V
V
V
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM130xWSRWZ  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
70  
4
40  
50  
50  
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
ADuM130xWTRWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
|
tPSK  
tPSKCD/tPSKOD  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
30  
5
40  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ps/°C  
ns  
tPSK  
6
3
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
22  
ns  
CL = 15 pF, CMOS signal levels  
Rev. I | Page 15 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at  
Logic High Output8  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tR/tF  
|CMH|  
3.0  
35  
ns  
kV/μs  
25  
25  
Common-Mode Transient Immunity at  
Logic Low Output7  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current per Channel9  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.19  
0.03  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load present. The  
supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 6 through  
Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total VDD1 and VDD2  
supply currents as a function of data rate for ADUM1300W/ADUM1301W channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured  
from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation  
barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing  
sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be  
sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the  
range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on  
per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a  
given data rate.  
Rev. I | Page 16 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V, 125°C OPERATION  
All voltages are relative to their respective ground. 3.0 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted; all typical specifications are at TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V.  
These apply to ADuM1300W and ADuM1301W automotive grade versions.  
Table 7.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1300W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26  
0.19  
0.31 mA  
0.24 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2(Q)  
0.9  
0.7  
1.7  
1.0  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.4  
1.9  
4.9  
2.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
ADuM1301W, Total Supply Current, Three Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.7  
1.0  
1.4  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
2.6  
3.4  
3.7  
4.2  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC, IE1, IE2 −10  
+0.01  
+10 μA  
V
0 7 ≤ VIA, VIB, VIC ≤ VDD1 or VDD2  
0 7 ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
1.6  
0.4  
V
V
V
VOAH, VOBH, VOCH VDD1, VDD2 − 0.1 VDD1, VDD2  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
VDD1, VDD2 − 0.4 VDD1  
,
VDD2 − 0.2  
Logic Low Output Voltages  
VOAL, VOBL, VOCL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
V
V
V
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM130xWSRWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay4  
tPHL, tPLH  
PWD  
70  
4
40  
50  
50  
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ADuM130xWTRWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
|
tPSK  
tPSKCD/tPSKOD  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
30  
5
40  
3
4
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ps/°C  
ns  
tPSK  
6
3
Channel-to-Channel Matching, Codirectional  
Channels6  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels6  
tPSKOD  
22  
ns  
CL = 15 pF, CMOS signal levels  
Rev. I | Page 17 of 32  
 
ADuM1300/ADuM1301  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3 V/5 V Operation  
Common-Mode Transient Immunity at Logic  
High Output7  
Common-Mode Transient Immunity at Logic  
Low Output7  
tPHZ, tPLH  
tPZH, tPZL  
tR/tF  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3.0  
2.5  
35  
ns  
ns  
kV/μs  
|CMH|  
|CML|  
25  
25  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
0.10  
0.05  
mA/Mbps  
mA/Mbps  
1 The supply current values are for all three channels combined when running at identical data rates. Output supply current values are specified with no output load present. The  
supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 6 through  
Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total VDD1 and VDD2  
supply currents as a function of data rate for ADUM1300W/ADUM1301W channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is measured  
from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load within the  
recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation  
barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing  
sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate that can be  
sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the  
range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on  
per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a  
given data rate.  
Rev. I | Page 18 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
PACKAGE CHARACTERISTICS  
Table 8.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
1.7  
4.0  
33  
Max  
Unit  
Ω
pF  
pF  
°C/W  
Test Conditions  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
Thermocouple located at center of  
package underside  
IC Junction-to-Case Thermal Resistance, Side 2  
θJCO  
28  
°C/W  
1 Device is considered a 2-terminal device; Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together and Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 14,  
Pin 15, and Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM130x are approved by the organizations listed in Table 9. Refer to Table 14 and the Insulation Lifetime section for details  
regarding recommended maximum working voltages for specific crossisolation waveforms and insulation levels.  
Table 9.  
UL  
CSA  
VDE  
TÜV  
Recognized under 1577  
Approved under CSA Component  
Certified according  
Approved according to  
Component Recognition Acceptance Notice #5A  
to DIN V VDE V 0884-10  
IEC 61010-1:2001 (2nd Edition),  
Program1  
(VDE V 0884-10):2006-122 EN 61010-1:2001 (2nd Edition),  
UL 61010-1:2004 CSA C22.2.61010.1:2005  
Reinforced insulation, 400 V rms  
maximum working voltage  
Double/reinforced  
insulation, 2500 V rms  
isolation voltage  
Basic insulation per CSA 60950-1-03 and  
IEC 60950-1, 800 V rms (1131 V peak)  
maximum working voltage  
Reinforced insulation,  
560 V peak  
Reinforced insulation per CSA 60950-1-03  
and IEC 60950-1, 400 V rms (566 V peak)  
maximum working voltage  
File E214100  
File 205078  
File 2471900-4880-0001 Certificate U8V 05 06 56232 002  
1 In accordance with UL 1577, each ADuM130x is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 μA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM130x is proof tested by applying an insulation test voltage ≥1050 V peak for 1 sec (partial discharge detection  
limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 10.  
Parameter  
Symbol Value  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
7.7 min  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum External Tracking (Creepage)  
8.1 min  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>175  
IIIa  
V
Rev. I | Page 19 of 32  
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval for 560 V peak working voltage.  
Table 11.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
and Subgroup 3  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC  
VPR  
896  
672  
V peak  
V peak  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of a failure  
(see Figure 3)  
VTR  
4000  
V peak  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Ω
Insulation Resistance at TS  
VIO = 500 V  
350  
300  
250  
RECOMMENDED OPERATING CONDITIONS  
Table 12.  
Parameter  
Rating  
Operating Temperature (TA)1  
Operating Temperature (TA)2  
−40°C to +105°C  
−40°C to +125°C  
2.7 V to 5.5 V  
3.0 V to 5.5 V  
1.0 ms  
SIDE #2  
200  
150  
100  
50  
1, 3  
Supply Voltages (VDD1, VDD2  
Supply Voltages (VDD1, VDD2  
)
)
2, 3  
SIDE #1  
Input Signal Rise and Fall Times  
1 Does not apply to ADuM1300W and ADuM1301W automotive grade versions.  
2 Applies to ADuM1300W and ADuM1301W automotive grade versions.  
3 All voltages are relative to their respective ground. See the DC Correctness  
and Magnetic Field Immunity section for information on immunity to external  
magnetic fields.  
0
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting  
Values with Case Temperature per DIN V VDE V 0884-10  
Rev. I | Page 20 of 32  
 
 
 
Data Sheet  
ADuM1300/ADuM1301  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 13.  
Parameter  
Rating  
Storage Temperature (TST)  
−65°C to +150°C  
Ambient Operating Temperature (TA)1 −40°C to +105°C  
Ambient Operating Temperature (TA)2 −40°C to +125°C  
Supply Voltages (VDD1, VDD2  
3
)
−0.5 V to +7.0 V  
Input Voltage (VIA, VIB, VIC, VE1, VE2)3, 4  
Output Voltage (VOA, VOB, VOC)3, 4  
Average Output Current per Pin5  
Side 1 (IO1)  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDDO + 0.5 V  
ESD CAUTION  
−23 mA to +23 mA  
Side 2 (IO2)  
Common-Mode Transients6  
−30 mA to +30 mA  
−100 kV/μs to +100 kV/μs  
1 Does not apply to ADuM1300W and ADuM1301W automotive grade  
versions.  
2 Applies to ADuM1300W and ADuM1301W automotive grade versions.  
3 All voltages are relative to their respective ground.  
4 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the PC Board Layout section.  
5 See Figure 3 for maximum rated current values for various temperatures.  
6 This refers to common-mode transients across the insulation barrier.  
Common-mode transients exceeding the Absolute Maximum Ratings may  
cause latch-up or permanent damage.  
Table 14. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
565  
V peak  
50-year minimum lifetime  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Basic Insulation  
Reinforced Insulation  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
Table 15. Truth Table (Positive Logic)  
VIx Input1 VEx Input1, 2 VDDI State1 VDDO State1 VOx Output1  
Notes  
H
L
X
X
X
X
H or NC  
H or NC  
L
H or NC  
L
X
Powered  
Powered  
Powered  
Unpowered Powered  
Unpowered Powered  
Powered  
Powered  
Powered  
H
L
Z
H
Z
Outputs return to the input state within 1 μs of VDDI power restoration.  
Powered  
Unpowered Indeterminate Outputs return to the input state within 1 μs of VDDO power restoration  
if the VEx state is H or NC. Outputs return to a high impedance state  
within 8 ns of VDDO power restoration if the VEx state is L.  
1 VIx and VOx refer to the input and output signals of a given channel (A, B, or C). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and VDDO  
refer to the supply voltages on the input and output sides of the given channel, respectively.  
2 In noisy environments, connecting VEx to an external logic high or low is recommended.  
Rev. I | Page 21 of 32  
 
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
DD2  
DD1  
*GND  
15 GND *  
*GND  
15 GND *  
1
IA  
IB  
IC  
2
1
IA  
IB  
2
V
14  
13  
12  
V
V
V
V
V
14  
13  
12  
V
V
V
OA  
OB  
OC  
OA  
OB  
IC  
ADuM1300  
TOP VIEW  
(Not to Scale)  
ADuM1301  
V
V
TOP VIEW  
(Not to Scale)  
V
OC  
NC  
NC  
11 NC  
NC  
11 NC  
10  
9
V
V
10  
9
V
E2  
E1  
E2  
*GND  
GND *  
*GND  
GND *  
1
2
1
2
NC = NO CONNECT  
NC = NO CONNECT  
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED, AND CONNECTING  
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED, AND CONNECTING  
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
CONNECTED, AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
CONNECTED, AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
1
1
Figure 4. ADuM1300 Pin Configuration  
Figure 5. ADuM1301 Pin Configuration  
Table 16. ADuM1300 Pin Function Descriptions  
Pin  
No. Mnemonic Description  
Table 17. ADuM1301 Pin Function Descriptions  
Pin  
No. Mnemonic Description  
1
2
3
4
5
6
7
8
VDD1  
GND1  
VIA  
VIB  
VIC  
NC  
NC  
GND1  
GND2  
VE2  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Input C.  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
VIB  
VOC  
NC  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Output C.  
No Connect.  
No Connect.  
No Connect.  
VE1  
Output Enable 1. Active high logic input. VOC output  
is enabled when VE1 is high or disconnected. VOC  
output is disabled when VE1 is low. In noisy environ-  
ments, connecting VE1 to an external logic high  
or low is recommended.  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA and  
VOB outputs are enabled when VE2 is high or discon-  
nected. VOA and VOB outputs are disabled when VE2 is  
low. In noisy environments, connecting VE2 to an  
external logic high or low is recommended.  
No Connect.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2.  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB,  
and VOC outputs are enabled when VE2 is high or  
disconnected. VOA, VOB, and VOC outputs are disabled  
when VE2 is low. In noisy environments, connecting  
VE2 to an external logic high or low is recommended.  
No Connect.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
9
10  
8
9
10  
GND1  
GND2  
VE2  
11  
12  
13  
14  
15  
16  
NC  
VOC  
VOB  
VOA  
GND2  
VDD2  
11  
12  
13  
14  
15  
16  
NC  
VIC  
VOB  
VOA  
GND2  
VDD2  
Ground 2. Ground reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2.  
Rev. I | Page 22 of 32  
 
Data Sheet  
ADuM1300/ADuM1301  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
18  
16  
14  
60  
50  
40  
30  
20  
10  
0
12  
5V  
10  
8
5V  
6
3V  
3V  
4
2
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 6. Typical Input Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation  
Figure 9. Typical ADuM1300 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
6
5
4
3
16  
14  
12  
10  
8
5V  
5V  
6
4
2
3V  
3V  
1
2
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 7. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (No Output Load)  
Figure 10. Typical ADuM1300 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
50  
45  
40  
35  
30  
10  
9
8
7
6
5
25  
5V  
4
20  
3V  
15  
5V  
3
2
3V  
10  
5
1
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (15 pF Output Load)  
Figure 11. Typical ADuM1301 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Rev. I | Page 23 of 32  
 
 
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
30  
25  
20  
15  
40  
35  
30  
25  
3V  
5V  
10  
3V  
5
0
5V  
0
20  
40  
60  
80  
100  
–50  
–25  
0
25  
50  
75  
100  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 12. Typical ADuM1301 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Figure 13. Propagation Delay vs. Temperature, C Grade  
Rev. I | Page 24 of 32  
 
 
Data Sheet  
ADuM1300/ADuM1301  
APPLICATIONS INFORMATION  
PC BOARD LAYOUT  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
Positive and negative logic transitions at the isolator input  
cause narrow (~1 ns) pulses to be sent to the decoder via the  
transformer. The decoder is bistable and is therefore either set  
or reset by the pulses, indicating input logic transitions. In the  
absence of logic transitions at the input for more than ~1 μs, a  
periodic set of refresh pulses indicative of the correct input state  
are sent to ensure dc correctness at the output. If the decoder  
receives no internal pulses for more than about 5 μs, the input  
side is assumed to be unpowered or nonfunctional, in which  
case the isolator output is forced to a default state (see Table 15)  
by the watchdog timer circuit.  
The ADuM130x digital isolator requires no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins (see  
Figure 14). Bypass capacitors are most conveniently connected  
between Pin 1 and Pin 2 for VDD1 and between Pin 15 and  
Pin 16 for VDD2. The capacitor value should be between 0.01 μF  
and 0.1 μF. The total lead length between both ends of the  
capacitor and the input power supply pin should not exceed  
20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9  
and Pin 16 should also be considered unless the ground pair on  
each package side is connected close to the package.  
The ADuM130x is extremely immune to external magnetic  
fields. The limitation on the magnetic field immunity of the  
ADuM130x is set by the condition in which induced voltage in  
the receiving coil of the transformer is sufficiently large enough  
to either falsely set or reset the decoder. The following analysis  
defines the conditions under which this may occur. The 3 V  
operating condition of the ADuM130x is examined because it  
represents the most susceptible mode of operation.  
V
GND  
V
DD1  
DD2  
GND  
1
IA  
IB  
2
V
V
V
V
V
NC  
V
OA  
OB  
V
OC/ IC  
V
V
IC/ OC  
NC  
NC/V  
E1  
GND  
E2  
GND  
1
2
Figure 14. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients,  
care should be taken to ensure that board coupling across the  
isolation barrier is minimized. Furthermore, the board layout  
should be designed such that any coupling that does occur  
equally affects all pins on a given component side. Failure to  
ensure this could cause voltage differentials between pins  
exceeding the absolute maximum ratings of the device,  
thereby leading to latch-up or permanent damage.  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V,  
thus establishing a 0.5 V margin in which induced voltages can be  
tolerated. The voltage induced across the receiving coil is given by  
2
V = (−dβ/dt)∑∏rn ; n = 1, 2, … , N  
where:  
β is magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
See the AN-1109 Application Note for board layout guidelines.  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a logic low output may differ from the propagation  
delay to a logic high output.  
Given the geometry of the receiving coil in the ADuM130x and  
an imposed requirement that the induced voltage be 50% at  
most of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 16.  
100  
INPUT (V  
)
50%  
Ix  
tPLH  
tPHL  
10  
1
OUTPUT (V  
)
50%  
Ox  
Figure 15. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between  
these two propagation delay values and is an indication of  
how accurately the timing of the input signal is preserved.  
0.1  
Channel-to-channel matching refers to the maximum amount  
that the propagation delay differs between channels within a  
single ADuM130x component.  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
Propagation delay skew refers to the maximum amount that  
the propagation delay differs between multiple ADuM130x  
components operating under the same conditions.  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 16. Maximum Allowable External Magnetic Flux Density  
Rev. I | Page 25 of 32  
 
 
 
 
 
ADuM1300/ADuM1301  
Data Sheet  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event occurs during a transmitted pulse  
(and has the worst-case polarity), it reduces the received pulse  
from >1.0 V to 0.75 V—still well above the 0.5 V sensing  
threshold of the decoder.  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM130x  
isolator is a function of the supply voltage, the data rate of  
the channel, and the output load of the channel.  
For each input channel, the supply current is given by  
I
I
DDI = IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
DDI = IDDI (D) × (2f − fr) + IDDI (Q)  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM130x transformers. Figure 17 shows these allowable  
current magnitudes as a function of frequency for selected  
distances. The ADuM130x is extremely immune and can be  
affected only by extremely large currents operated at a high  
frequency very close to the component. For the 1 MHz example  
noted, one would have to place a 0.5 kA current 5 mm away  
from the ADuM130x to affect the operation of the component.  
1000  
For each output channel, the supply current is given by  
I
I
DDO = IDDO (Q)  
f ≤ 0.5 fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
I
per channel (mA/Mbps).  
CL is the output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
DISTANCE = 1m  
f is the input logic signal frequency (MHz); it is half of the input  
data rate expressed in units of Mbps.  
100  
fr is the input stage refresh rate (Mbps).  
IDDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
10  
DISTANCE = 100mm  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
1
DISTANCE = 5mm  
VDD1 and VDD2 are calculated and totaled. Figure 6 and Figure 7  
0.1  
provide per-channel supply currents as a function of data rate  
for an unloaded output condition. Figure 8 provides per-channel  
supply current as a function of data rate for a 15 pF output  
condition. Figure 9 through Figure 12 provide total VDD1 and  
VDD2 supply current as a function of data rate for ADuM1300/  
ADuM1301 channel configurations.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 17. Maximum Allowable Current  
for Various Current-to-ADuM130x Spacings  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce error voltages sufficiently large enough to trigger  
the thresholds of succeeding circuitry. Care should be taken in  
the layout of such traces to avoid this possibility.  
Rev. I | Page 26 of 32  
 
 
 
Data Sheet  
ADuM1300/ADuM1301  
In the case of unipolar ac or dc voltage, the stress on the insu-  
lation is significantly lower, which allows operation at higher  
working voltages while still achieving a 50-year service life. The  
working voltages listed in Table 14 can be applied while main-  
taining the 50-year minimum lifetime provided the voltage  
conforms to either the unipolar ac or dc voltage cases. Any cross  
insulation voltage waveform that does not conform to Figure 19  
or Figure 20 should be treated as a bipolar ac waveform, and its  
peak voltage should be limited to the 50-year lifetime voltage  
value listed in Table 14.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation. In addition to  
the testing performed by the regulatory agencies, Analog Devices  
carries out an extensive set of evaluations to determine the  
lifetime of the insulation structure within the ADuM130x.  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage. Accel-  
eration factors for several operating conditions are determined.  
These factors allow calculation of the time to failure at the  
actual working voltage. The values shown in Table 14 summarize  
the peak voltage for 50 years of service life for a bipolar ac  
operating condition and the maximum CSA/VDE approved  
working voltages. In many cases, the approved working voltage  
is higher than the 50-year service life voltage. Operation at these  
high working voltages can lead to shortened insulation life in  
some cases.  
Note that the voltage presented in Figure 19 is shown as sinusoidal  
for illustration purposes only. It is meant to represent any voltage  
waveform varying between 0 V and some limiting value. The  
limiting value can be positive or negative, but the voltage  
cannot cross 0 V.  
RATED PEAK VOLTAGE  
0V  
Figure 18. Bipolar AC Waveform  
The insulation lifetime of the ADuM130x depends on the  
voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure 18, Figure 19, and Figure 20 illustrate these  
different isolation voltage waveforms, respectively.  
RATED PEAK VOLTAGE  
0V  
Figure 19. Unipolar AC Waveform  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines the Analog Devices recommended maximum  
working voltage.  
RATED PEAK VOLTAGE  
0V  
Figure 20. DC Waveform  
Rev. I | Page 27 of 32  
 
 
 
 
 
 
ADuM1300/ADuM1301  
OUTLINE DIMENSIONS  
Data Sheet  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 21. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters (and inches)  
ORDERING GUIDE  
Number Number Maximum Maximum  
of Inputs, of Inputs, Data Rate Propagation  
Maximum  
Pulse Width  
Distortion (ns)  
Package  
Option5  
Model1, 2, 3, 4  
VDD1 Side VDD2 Side (Mbps)  
Delay, 5 V (ns)  
Temperature Range  
ADuM1300ARW  
ADuM1300CRW  
ADuM1300ARWZ  
ADuM1300BRWZ  
ADuM1300CRWZ  
ADuM1300WSRWZ  
ADuM1300WTRWZ  
ADuM1301ARW  
ADuM1301BRW  
ADuM1301CRW  
ADuM1301ARWZ  
ADuM1301BRWZ  
ADuM1301CRWZ  
ADuM1301WSRWZ  
ADuM1301WTRWZ  
EVAL-ADuMQSEBZ  
3
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
90  
1
10  
90  
1
10  
1
10  
90  
1
10  
90  
1
100  
32  
100  
50  
32  
100  
32  
40  
2
40  
3
2
40  
3
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +125°C  
−40°C to +125°C  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
3
3
3
3
3
3
2
2
2
2
2
2
2
2
100  
50  
32  
100  
50  
32  
40  
3
2
40  
3
2
100  
32  
40  
3
10  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 Tape and reel are available. The addition of an -RL suffix designates a 13” (1,000 units) tape-and-reel option.  
4 No tape-and-reel option is available for the ADuM1301CRW model.  
5 RW-16 = 16-lead wide body SOIC.  
Rev. I | Page 28 of 32  
 
 
 
Data Sheet  
ADuM1300/ADuM1301  
AUTOMOTIVE PRODUCTS  
The ADuM1300W/ADuM1301W models are available with controlled manufacturing to support the quality and reliability requirements  
of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for these models.  
Rev. I | Page 29 of 32  
 
ADuM1300/ADuM1301  
NOTES  
Data Sheet  
Rev. I | Page 30 of 32  
Data Sheet  
NOTES  
ADuM1300/ADuM1301  
Rev. I | Page 31 of 32  
ADuM1300/ADuM1301  
NOTES  
Data Sheet  
©2003–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03787-0-3/12(I)  
Rev. I | Page 32 of 32  
 

相关型号:

ADUM1301CRW-RL

IC SPECIALTY ANALOG CIRCUIT, PDSO16, MS-013AA, SOIC-16, Analog IC:Other
ADI

ADUM1301CRWZ

Triple-Channel Digital Isolators
ADI

ADUM1301CRWZ

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER

ADUM1301CRWZ-RL

Triple-Channel Digital Isolator
ADI

ADUM1301CRWZN

Interface Circuit, CMOS, PDSO16
ADI

ADuM1301WSRWZ

Triple-Channel Digital Isolators
ADI

ADUM1301WSRWZ

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER

ADUM1301WSRWZ-RL

Triple-Channel Digital Isolator
ADI

ADUM1301WSRWZ35

Interface Circuit
ADI

ADUM1301WSRWZ35-RL

Interface Circuit
ADI

ADUM1301WSRWZ53

Interface Circuit
ADI

ADUM1301WSRWZ53-RL

Interface Circuit
ADI