ADUM1402CRWZ-RL [ADI]

Quad-Channel Digital Isolator (2/2 Channel Directionality);
ADUM1402CRWZ-RL
型号: ADUM1402CRWZ-RL
厂家: ADI    ADI
描述:

Quad-Channel Digital Isolator (2/2 Channel Directionality)

文件: 总32页 (文件大小:490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad-Channel Digital Isolators  
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
FEATURES  
GENERAL DESCRIPTION  
Qualified for automotive applications  
Low power operation  
5 V operation  
The ADuM140x1 are quad-channel digital isolators based on  
Analog Devices, Inc., iCoupler® technology. Combining high  
speed CMOS and monolithic air core transformer technology,  
these isolation components provide outstanding performance  
characteristics superior to alternatives, such as optocoupler  
devices.  
1.0 mA per channel maximum @ 0 Mbps to 2 Mbps  
3.5 mA per channel maximum @ 10 Mbps  
31 mA per channel maximum @ 90 Mbps  
3 V operation  
0.7 mA per channel maximum @ 0 Mbps to 2 Mbps  
2.1 mA per channel maximum @ 10 Mbps  
20 mA per channel maximum @ 90 Mbps  
Bidirectional communication  
By avoiding the use of LEDs and photodiodes, iCoupler devices  
remove the design difficulties commonly associated with opto-  
couplers. The typical optocoupler concerns regarding uncertain  
current transfer ratios, nonlinear transfer functions, and  
temperature and lifetime effects are eliminated with the simple  
iCoupler digital interfaces and stable performance characteristics.  
3 V/5 V level translation  
High temperature operation: 125°C  
High data rate: dc to 90 Mbps (NRZ)  
Precise timing characteristics  
2 ns maximum pulse width distortion  
2 ns maximum channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
16-lead SOIC wide body package  
RoHS-compliant models available  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE Certificate of Conformity  
The need for external drivers and other discrete components  
is eliminated with these iCoupler products. Furthermore,  
iCoupler devices consume one-tenth to one-sixth of the power  
of optocouplers at comparable signal data rates.  
The ADuM140x isolators provide four independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide). All models operate with the supply  
voltage on either side ranging from 2.7 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling a  
voltage translation functionality across the isolation barrier. In  
addition, the ADuM140x provides low pulse width distortion  
(<2 ns for CRW grade) and tight channel-to-channel matching  
(<2 ns for CRW grade). Unlike other optocoupler alternatives,  
the ADuM140x isolators have a patented refresh feature that  
ensures dc correctness in the absence of input logic transitions  
and when power is not applied to one of the supplies.  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 560 V peak  
TÜV approval: IEC/EN/UL/CSA 61010-1  
APPLICATIONS  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329.  
General-purpose multichannel isolation  
SPI interface/data converter isolation  
RS-232/RS-422/RS-485 transceivers  
Industrial field bus isolation  
Automotive systems  
FUNCTIONAL BLOCK DIAGRAMS  
1
2
3
16  
15  
14  
1
2
3
16  
15  
14  
1
2
3
16  
15  
14  
V
V
V
V
DD2  
V
V
DD1  
DD2  
DD1  
DD1  
DD2  
GND  
V
GND  
GND  
V
GND  
2
GND  
GND  
1
2
1
2
1
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
V
V
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
V
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
V
V
V
IA  
OA  
OB  
OC  
IA  
IB  
OA  
IA  
IB  
OA  
V
V
4
5
13  
12  
4
5
13  
12  
4
5
13  
12  
V
V
IB  
OB  
OB  
V
V
V
V
V
V
IC  
ID  
IC  
OC  
OC  
OD  
IC  
6
7
8
11  
10  
9
6
7
8
11  
10  
9
6
7
8
11  
10  
9
V
V
V
V
V
V
V
V
OD  
E2  
OD  
ID  
ID  
NC  
GND  
V
V
E1  
E2  
E1  
E2  
GND  
GND  
GND  
GND  
GND  
2
1
2
1
2
1
Figure 1. ADuM1400  
Figure 2. ADuM1401  
Figure 3. ADuM1402  
Rev. H  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2003–2012 Analog Devices, Inc. All rights reserved.  
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics ............................................................................ 20  
Recommended Operating Conditions .................................... 20  
Absolute Maximum Ratings ......................................................... 21  
ESD Caution................................................................................ 21  
Pin Configurations and Function Descriptions......................... 22  
Typical Performance Characteristics ........................................... 25  
Applications Information.............................................................. 27  
PC Board Layout ........................................................................ 27  
Propagation Delay-Related Parameters................................... 27  
DC Correctness and Magnetic Field Immunity..................... 27  
Power Consumption .................................................................. 28  
Insulation Lifetime..................................................................... 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
Automotive Products................................................................. 31  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Electrical Characteristics—5 V, 105°C Operation ................... 4  
Electrical Characteristics—3 V, 105°C Operation ................... 6  
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V,  
105°C Operation........................................................................... 8  
Electrical Characteristics—5 V, 125°C Operation ................. 11  
Electrical Characteristics—3 V, 125°C Operation ................. 13  
Electrical Characteristics—Mixed 5 V/3 V, 125°C Operation 15  
Electrical Characteristics—Mixed 3 V/5 V, 125°C Operation 17  
Package Characteristics ............................................................. 19  
Regulatory Information............................................................. 19  
Insulation and Safety-Related Specifications.......................... 19  
Rev. H | Page 2 of 32  
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
REVISION HISTORY  
3/12—Rev. G to Rev. H  
2/06—Rev. C to Rev. D  
Created Hyperlink for Safety and Regulatory Approvals  
Entry in Features Section .................................................................1  
Change to PC Board Layout Section ............................................27  
Updated Outline Dimensions........................................................30  
Moved Automotive Products Section...........................................31  
Updated Format ................................................................. Universal  
Added TÜV Approval ....................................................... Universal  
5/05—Rev. B to Rev. C  
Changes to Format............................................................. Universal  
Changes to Figure 2 ..........................................................................1  
Changes to Table 3 ............................................................................8  
Changes to Table 6 ..........................................................................12  
Changes to Ordering Guide...........................................................21  
5/08—Rev. F to Rev. G  
Added ADuM1400W, ADuM1401W, and ADuM1402W  
Parts ..................................................................................... Universal  
Added Table 4 ..................................................................................11  
Added Table 5 ..................................................................................13  
Added Table 6 ..................................................................................15  
Added Table 7 ..................................................................................17  
Changes to Table 12 ........................................................................20  
Changes to Table 13 ........................................................................21  
Added Automotive Products Section ...........................................29  
Changes to Ordering Guide...........................................................30  
6/04—Rev. A to Rev. B  
Changes to Format............................................................. Universal  
Changes to Features..........................................................................1  
Changes to Electrical Characteristics—5 V Operation................3  
Changes to Electrical Characteristics—3 V Operation................5  
Changes to Electrical Characteristics—Mixed 5 V/3 V or  
3 V/5 V Operation ............................................................................7  
Changes to DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation  
Characteristics Title........................................................................11  
Changes to the Ordering Guide ....................................................19  
11/07—Rev. E to Rev. F  
Changes to Note 1 .............................................................................1  
Added ADuM140xARW Change vs. Temperature Parameter ...4  
Added ADuM140xARW Change vs. Temperature Parameter ...5  
Added ADuM140xARW Change vs. Temperature Parameter ...8  
Changes to Figure 17 ......................................................................18  
5/04—Rev. 0 to Rev. A  
Updated Format ................................................................. Universal  
Changes to the Features....................................................................1  
Changes to Table 7 and Table 8 .....................................................14  
Changes to Table 9 ..........................................................................15  
Changes to the DC Correctness and Magnetic Field Immunity  
Section ..............................................................................................20  
Changes to the Power Consumption Section..............................21  
Changes to the Ordering Guide ....................................................22  
6/07—Rev. D to Rev. E  
Updated VDE Certification Throughout.......................................1  
Changes to Features and Note 1......................................................1  
Changes to Figure 1, Figure 2, and Figure 3 ..................................1  
Changes to Regulatory Information Section...............................10  
Changes to Table 7 ..........................................................................11  
Added Table 10 ................................................................................12  
Added Insulation Lifetime Section ...............................................20  
Updated Outline Dimensions........................................................21  
Changes to Ordering Guide...........................................................21  
9/03—Revision 0: Initial Version  
Rev. H | Page 3 of 32  
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V, 105°C OPERATION1  
4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. These specifications do not apply to ADuM1400W,  
ADuM1401W, and ADuM1402W automotive grade versions.  
Table 1.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1400 Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50 0.53 mA  
0.19 0.21 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.2  
0.9  
2.8 mA  
1.4 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
8.6  
2.6  
10.6 mA  
3.5 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
70  
18  
100 mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
25  
mA  
ADuM1401 Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.8  
1.2  
2.4 mA  
1.8 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
7.1  
4.1  
9.0 mA  
5.0 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
57  
31  
82  
43  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1402 Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (BRW and CRW Grades Only)  
VDD1 or VDD2 Supply Current  
90 Mbps (CRW Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
IDD1 (90), IDD2 (90)  
1.5  
5.6  
44  
2.1 mA  
7.0 mA  
DC to 1 MHz logic signal freq.  
5 MHz logic signal freq.  
62  
mA  
45 MHz logic signal freq.  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH, VODH  
−10  
2.0  
+0.01 +10 μA  
V
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.8  
V
V
V
V
V
V
,
(VDD1 or VDD2) − 0.1 5.0  
(VDD1 or VDD2) − 0.4 4.8  
0.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
VOAL, VOBL,  
VOCL, VODL  
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM140xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
tPHL, tPLH  
65  
Rev. H | Page 4 of 32  
 
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
5
PWD  
40  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
ADuM140xBRW  
11  
ps/°C  
ns  
ns  
tPSK  
tPSKCD/tPSKOD  
50  
50  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
tPHL, tPLH  
PWD  
32  
5
50  
3
5
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
|
ps/°C  
ns  
tPSK  
15  
3
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
ADuM140xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
8.3  
120  
27  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
18  
tPHL, tPLH  
PWD  
32  
2
5
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew6  
ps/°C  
ns  
tPSK  
10  
2
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at Logic  
High Output8  
Common-Mode Transient Immunity at Logic  
Low Output8  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/μs  
25  
25  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current per Channel9  
Output Dynamic Supply Current per Channel9  
IDDI (D)  
IDDO (D)  
0.19  
0.05  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 5 of 32  
 
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
ELECTRICAL CHARACTERISTICS—3 V, 105°C OPERATION1  
2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V. These specifications do not apply to ADuM1400W,  
ADuM1401W, and ADuM1402W automotive grade versions.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max Unit Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1400 Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26 0.31 mA  
0.11 0.14 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.2  
0.5  
1.9  
0.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
4.5  
1.4  
6.5  
2.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
37  
11  
65  
15  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1401 Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.0  
0.7  
1.6  
1.2  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.7  
2.2  
5.4  
3.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
30  
18  
52  
27  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM1402 Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (BRW and CRW Grades Only)  
VDD1 or VDD2 Supply Current  
90 Mbps (CRW Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
IDD1 (90), IDD2 (90)  
0.9  
3.0  
24  
1.5  
4.2  
39  
mA  
mA  
mA  
DC to 1 MHz logic signal freq.  
5 MHz logic signal freq.  
45 MHz logic signal freq.  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH, VODH  
−10  
1.6  
+0.01 +10 μA  
V
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.4  
V
V
V
V
V
V
,
(VDD1 or VDD2) − 0.1 3.0  
(VDD1 or VDD2) − 0.4 2.8  
0.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM140xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
CL = 15 pF, CMOS signal levels  
1
50  
Mbps CL = 15 pF, CMOS signal levels  
100 ns  
Propagation Delay5  
tPHL, tPLH  
PWD  
75  
11  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
5
40  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
ps/°C CL = 15 pF, CMOS signal levels  
Propagation Delay Skew6  
tPSK  
tPSKCD/tPSKOD  
50  
50  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Channel-to-Channel Matching7  
Rev. H | Page 6 of 32  
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
Parameter  
Symbol  
Min  
Typ  
Max Unit Test Conditions  
ADuM140xBRW  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
100 ns  
CL = 15 pF, CMOS signal levels  
10  
20  
Mbps CL = 15 pF, CMOS signal levels  
tPHL, tPLH  
PWD  
38  
5
50  
3
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
5
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
|
ps/°C CL = 15 pF, CMOS signal levels  
tPSK  
22  
3
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
ADuM140xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
8.3  
120  
34  
0.5  
3
11.1 ns  
CL = 15 pF, CMOS signal levels  
90  
20  
Mbps CL = 15 pF, CMOS signal levels  
tPHL, tPLH  
PWD  
45  
2
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
5
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew6  
ps/°C CL = 15 pF, CMOS signal levels  
tPSK  
16  
2
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low to tPHZ, tPLH  
High Impedance)  
6
6
8
8
ns  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
tPZH, tPZL  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
3
Common-Mode Transient Immunity at Logic  
High Output8  
Common-Mode Transient Immunity at Logic  
Low Output8  
|CMH|  
25  
25  
35  
kV/μs VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
kV/μs VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
|CML|  
35  
Refresh Rate  
Input Dynamic Supply Current per Channel9  
fr  
1.1  
0.10  
Mbps  
mA/  
IDDI (D)  
Mbps  
mA/  
Output Dynamic Supply Current per Channel9  
IDDO (D)  
0.03  
Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 7 of 32  
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V, 105°C OPERATION1  
5 V/3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V; 3 V/5 V operation: 2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all  
minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications  
are at TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V or VDD1 = 5 V, VDD2 = 3.0 V. These specifications do not apply to ADuM1400W, ADuM1401W,  
and ADuM1402W automotive grade versions.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
5 V/3 V Operation  
IDDI (Q)  
0.50  
0.26  
0.53 mA  
0.31 mA  
3 V/5 V Operation  
Output Supply Current per Channel, Quiescent  
5 V/3 V Operation  
IDDO (Q)  
0.11  
0.19  
0.14 mA  
0.21 mA  
3 V/5 V Operation  
ADuM1400 Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (Q)  
2.2  
1.2  
2.8  
1.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (Q)  
0.5  
0.9  
0.9  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
3 V/5 V Operation  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
8.6  
4.5  
10.6 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
6.5  
mA  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (10)  
1.4  
2.6  
2.0  
3.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
70  
37  
100 mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
65  
mA  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (90)  
11  
18  
15  
25  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
ADuM1401 Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (Q)  
1.8  
1.0  
2.4  
1.6  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (Q)  
0.7  
1.2  
1.2  
1.8  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
3 V/5 V Operation  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
7.1  
3.7  
9.0  
5.4  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (10)  
2.2  
4.1  
3.0  
5.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
Rev. H | Page 8 of 32  
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
57  
30  
82  
52  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (90)  
18  
31  
27  
43  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
ADuM1402 Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (Q)  
1.5  
0.9  
2.1  
1.5  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (Q)  
0.9  
1.5  
1.5  
2.1  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
3 V/5 V Operation  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
5.6  
3.0  
7.0  
4.2  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (10)  
3.0  
5.6  
4.2  
7.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
44  
24  
62  
39  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (90)  
24  
44  
39  
62  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
For All Models  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
−10  
+0.01  
+10 μA  
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
5 V/3 V Operation  
VIH, VEH  
2.0  
1.6  
V
V
3 V/5 V Operation  
Logic Low Input Threshold  
5 V/3 V Operation  
VIL, VEL  
0.8  
0.4  
V
V
V
V
V
V
V
3 V/5 V Operation  
Logic High Output Voltages  
VOAH, VOBH  
,
(VDD1 or VDD2) − 0.1 (VDD1 or VDD2  
)
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
V
OCH, VODH  
VOAL, VOBL  
VOCL, VODL  
(VDD1 or VDD2) − 0.4 (VDD1 or VDD2) − 0.2  
Logic Low Output Voltages  
,
0.0  
0.1  
0.1  
0.4  
IOx = 20 μA, VIx = VIxL  
0.04  
0.2  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM140xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
Propagation Delay5  
tPHL, tPLH  
PWD  
50  
70  
11  
5
40  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
ADuM140xBRW  
Minimum Pulse Width3  
Maximum Data Rate4  
|
ps/°C  
ns  
tPSK  
50  
50  
tPSKCD/tPSKOD  
PW  
PHL, tPLH  
ns  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
15  
Propagation Delay5  
t
35  
50  
Rev. H | Page 9 of 32  
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
Parameter  
Pulse Width Distortion, |tPLH − tPHL  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
5
PWD  
3
ns  
CL = 15 pF, CMOS signal levels  
|
Change vs. Temperature  
Propagation Delay Skew6  
5
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
tPSK  
22  
3
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
ADuM140xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
PHL, tPLH  
8.3  
120  
30  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
t
40  
2
5
PWD  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Change vs. Temperature  
Propagation Delay Skew6  
ps/°C  
ns  
tPSK  
14  
2
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low tPHZ, tPLH  
to High Impedance)  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
tPZH, tPZL  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
tR/tF  
3.0  
2.5  
35  
ns  
3 V/5 V Operation  
ns  
Common-Mode Transient Immunity at Logic  
High Output8  
|CMH|  
|CML|  
fr  
25  
25  
kV/μs  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
Common-Mode Transient Immunity at Logic  
Low Output8  
35  
kV/μs  
VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
Refresh Rate  
5 V/3 V Operation  
1.2  
1.1  
Mbps  
Mbps  
3 V/5 V Operation  
Input Dynamic Supply Current per Channel9  
IDDI (D)  
5 V/3 V Operation  
0.19  
0.10  
mA/Mbps  
mA/Mbps  
3 V/5 V Operation  
Output Dynamic Supply Current per Channel9  
IDDO (D)  
5 V/3 V Operation  
0.03  
0.05  
mA/Mbps  
mA/Mbps  
3 V/5 V Operation  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 10 of 32  
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
ELECTRICAL CHARACTERISTICS—5 V, 125°C OPERATION1  
4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. These specifications apply to ADuM1400W,  
ADuM1401W, and ADuM1402W automotive grade versions.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1400W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50 0.53 mA  
0.19 0.21 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.2  
0.9  
2.8  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
8.6  
2.6  
10.6 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3.5  
mA  
ADuM1401W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.8  
1.2  
2.4  
1.8  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
7.1  
4.1  
9.0  
5.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
ADuM1402W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (TRWZ Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
1.5  
5.6  
2.1  
7.0  
mA  
mA  
DC to 1 MHz logic signal freq.  
5 MHz logic signal freq.  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH, VODH  
−10  
2.0  
+0.01 +10 μA  
V
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.8  
V
V
V
V
V
V
,
(VDD1 or VDD2) − 0.1 5.0  
(VDD1 or VDD2) − 0.4 4.8  
0.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.1  
0.04 0.1  
0.2  
0.4  
SWITCHING SPECIFICATIONS  
ADuM140xWSRWZ  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
65  
5
40  
50  
50  
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Propagation Delay Skew6  
tPSK  
tPSKCD/tPSKOD  
Channel-to-Channel Matching7  
Rev. H | Page 11 of 32  
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
ADuM140xWTRWZ  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
100 ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
18  
tPHL, tPLH  
PWD  
27  
5
32  
3
ns  
5
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
|
ps/°C  
ns  
tPSK  
15  
3
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at Logic  
High Output8  
Common-Mode Transient Immunity at Logic  
Low Output8  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/μs  
25  
25  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current per Channel9  
Output Dynamic Supply Current per Channel9  
IDDI (D)  
IDDO (D)  
0.19  
0.05  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1400W/ADuM1401W/ADuM1402W channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 12 of 32  
 
 
 
 
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
ELECTRICAL CHARACTERISTICS—3 V, 125°C OPERATION1  
3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V. These specifications apply to ADuM1400W,  
ADuM1401W, and ADuM1402W automotive grade versions.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1400W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.26  
0.11  
0.31 mA  
0.14 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.2  
0.5  
1.9  
0.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
4.5  
1.4  
6.5  
2.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
ADuM1401W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.0  
0.7  
1.6  
1.2  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.7  
2.2  
5.4  
3.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
ADuM1402W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (TRWZ Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
0.9  
3.0  
1.5  
4.2  
mA  
mA  
DC to 1 MHz logic signal freq.  
5 MHz logic signal freq.  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH, VODH  
−10  
1.6  
+0.01 +10 μA  
V
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.4  
V
V
V
V
V
V
,
(VDD1 or VDD2) − 0.1 3.0  
(VDD1 or VDD2) − 0.4 2.8  
0.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.1  
0.1  
0.4  
0.04  
0.2  
SWITCHING SPECIFICATIONS  
ADuM140xWSRWZ  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
75  
5
40  
50  
50  
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Propagation Delay Skew6  
tPSK  
tPSKCD/tPSKOD  
Channel-to-Channel Matching7  
Rev. H | Page 13 of 32  
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
ADuM140xWTRWZ  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
100 ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
tPHL, tPLH  
PWD  
34  
5
45  
3
ns  
5
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
|
ps/°C  
ns  
tPSK  
22  
3
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
tPHZ, tPLH  
tPZH, tPZL  
tR/tF  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Rise/Fall Time (10% to 90%)  
3
ns  
Common-Mode Transient Immunity at Logic |CMH|  
High Output8  
Common-Mode Transient Immunity at Logic |CML|  
Low Output8  
25  
25  
35  
kV/μs  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
0.10  
0.03  
Mbps  
mA/Mbps  
mA/Mbps  
Input Dynamic Supply Current per Channel9 IDDI (D)  
Output Dynamic Supply Current per Channel9  
1 All voltages are relative to their respective ground.  
IDDO (D)  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1400W/ADuM1401W/ADuM1402W channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 14 of 32  
 
 
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V, 125°C OPERATION1  
4.5 V ≤ VDD1 ≤ 5.5 V, 3.0 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C; VDD1 = 5 V, VDD2 = 3.0 V. These specifications apply to ADuM1400W,  
ADuM1401W, and ADuM1402W automotive grade versions.  
Table 6.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1400W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.50  
0.11  
0.53 mA  
0.14 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.2  
0.5  
2.8 mA  
0.9 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
8.6  
1.4  
10.6 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
2.0  
mA  
ADuM1401W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.8  
0.7  
2.4 mA  
1.2 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
7.1  
2.2  
9.0  
3.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
ADuM1402W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.5  
0.9  
2.1 mA  
1.5 mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
5.6  
3.0  
7.0  
4.2  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
−10  
+0.01  
+10 μA  
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1  
or VDD2, 0 V ≤ VE1, VE2 ≤ VDD1  
or VDD2  
Logic High Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIH, VEH  
2.0  
1.6  
V
V
Logic Low Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIL, VEL  
0.8  
0.4  
V
V
V
V
V
V
V
Logic High Output Voltages  
VOAH, VOBH  
,
(VDD1 or VDD2) − 0.1 VDD1 or VDD2  
(VDD1 or VDD2) − 0.4 VDD1, VDD2 − 0.2  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
VOCH, VODH  
VOAL, VOBL  
VOCL, VODL  
Logic Low Output Voltages  
,
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
SWITCHING SPECIFICATIONS  
ADuM140xWSRWZ  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
70  
5
40  
50  
50  
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Propagation Delay Skew6  
tPSK  
tPSKCD/tPSKOD  
Channel-to-Channel Matching7  
Rev. H | Page 15 of 32  
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
ADuM140xWTRWZ  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
100 ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
tPHL, tPLH  
PWD  
30  
5
40  
3
ns  
5
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
|
ps/°C  
ns  
tPSK  
22  
3
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low  
to High Impedance)  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at Logic  
High Output8  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tR/tF  
|CMH|  
3.0  
35  
ns  
kV/μs  
25  
25  
Common-Mode Transient Immunity at Logic  
Low Output8  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current per Channel9  
Output Dynamic Supply Current per Channel9  
IDDI (D)  
IDDO (D)  
0.19  
0.03  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1400W/ADuM1401W/ADuM1402W channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 16 of 32  
 
 
 
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V, 125°C OPERATION1  
3.0 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V. These specifications apply to ADuM1400W,  
ADuM1401W, and ADuM1402W automotive grade versions.  
Table 7.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM1400W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
0.26  
0.19  
0.31  
0.21  
mA  
mA  
IDDO (Q)  
VDD1 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.2  
0.9  
1.9  
1.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
IDD1 (10)  
IDD2 (10)  
4.5  
2.6  
6.5  
3.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
VDD2 Supply Current  
ADuM1401W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.0  
1.2  
1.6  
1.8  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.7  
4.1  
5.4  
5.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
VDD2 Supply Current  
ADuM1402W, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.9  
1.5  
1.5  
2.1  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
10 Mbps (TRWZ Grade Only)  
VDD1 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.0  
5.6  
4.2  
7.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
VDD2 Supply Current  
For All Models  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
−10  
1.6  
+0.01  
+10  
0.4  
μA  
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
0 V ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
V
V
V
V
V
V
V
VIL, VEL  
VOAH, VOBH  
,
(VDD1 or VDD2) − 0.1 VDD1, VDD2  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
V
OCH, VODH  
VOAL, VOBL  
OCL, VODL  
(VDD1 or VDD2) − 0.4 VDD1, VDD2 − 0.2  
Logic Low Output Voltages  
,
0.0  
0.1  
0.1  
0.4  
V
0.04  
0.2  
SWITCHING SPECIFICATIONS  
ADuM140xWSRWZ  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
50  
70  
100  
40  
5
ns  
ns  
ns  
Pulse Width Distortion, |tPLH − tPHL  
|
Propagation Delay Skew6  
50  
Channel-to-Channel Matching7  
tPSKCD/tPSKOD  
50  
Rev. H | Page 17 of 32  
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
ADuM140xWTRWZ  
Minimum Pulse Width3  
Maximum Data Rate4  
Propagation Delay5  
PW  
100  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
Mbps  
ns  
tPHL, tPLH  
30  
5
40  
3
5
PWD  
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
|
ps/°C  
ns  
tPSK  
22  
3
Channel-to-Channel Matching, Codirectional  
Channels7  
tPSKCD  
ns  
Channel-to-Channel Matching, Opposing-  
Directional Channels7  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
For All Models  
Output Disable Propagation Delay (High/Low tPHZ, tPLH  
to High Impedance)  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Enable Propagation Delay (High  
Impedance to High/Low)  
tPZH, tPZL  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
2.5  
35  
ns  
Common-Mode Transient Immunity at Logic  
High Output8  
|CMH|  
25  
25  
kV/μs  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
Common-Mode Transient Immunity at Logic  
Low Output8  
|CML|  
35  
kV/μs  
VIx = 0 V, VCM = 1000 V, transient  
magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current per Channel9  
Output Dynamic Supply Current per Channel9  
IDDI (D)  
IDDO (D)  
0.10  
0.05  
mA/Mbps  
mA/Mbps  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1400W/ADuM1401W/ADuM1402W channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 18 of 32  
 
 
 
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
PACKAGE CHARACTERISTICS  
Table 8.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
2.2  
4.0  
33  
Max  
Unit  
Ω
pF  
pF  
°C/W  
°C/W  
Test Conditions  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
IC Junction-to-Case Thermal Resistance, Side 2  
Thermocouple located at  
center of package underside  
θJCO  
28  
1 Device is considered a 2-terminal device; Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together and Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 14,  
Pin 15, and Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM140x are approved by the organizations listed in Table 9. Refer to Table 14 and the Insulation Lifetime section for details  
regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.  
Table 9.  
UL  
CSA  
VDE  
TÜV  
Recognized under  
1577 Component  
Recognition  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V  
0884-10 (VDE V 0884-10):2006-122  
Approved according to  
IEC 61010-1:2001 (2nd Edition),  
EN 61010-1:2001 (2nd Edition)  
UL 61010-1:2004  
Program1  
CSA C22.2.61010.1:2005  
Double/reinforced  
insulation,  
2500 V rms  
Basic insulation per CSA 60950-1-03 and  
IEC 60950-1, 800 V rms (1131 V peak)  
maximum working voltage  
Reinforced insulation per CSA 60950-1-03  
and IEC 60950-1, 400 V rms (566 V peak)  
maximum working voltage  
Reinforced insulation, 560 V peak  
File 2471900-4880-0001  
Reinforced insulation,  
400 V rms maximum working  
voltage  
isolation voltage  
File E214100  
File 205078  
Certificate U8V 05 06 56232 002  
1 In accordance with UL 1577, each ADuM140x is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 μA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM140x is proof tested by applying an insulation test voltage ≥1050 V peak for 1 sec (partial discharge detection  
limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 10.  
Parameter  
Symbol Value  
Unit Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
7.7 min  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External Tracking (Creepage)  
8.1 min  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>175  
IIIa  
V
Rev. H | Page 19 of 32  
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 11.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
and Subgroup 3  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC  
VPR  
896  
672  
V peak  
V peak  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of a failure  
(see Figure 4)  
VTR  
4000  
V peak  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Ω
Insulation Resistance at TS  
VIO = 500 V  
350  
300  
250  
RECOMMENDED OPERATING CONDITIONS  
Table 12.  
Parameter  
Rating  
Operating Temperature (TA)1  
Operating Temperature (TA)2  
−40°C to +105°C  
−40°C to +125°C  
2.7 V to 5.5 V  
3.0 V to 5.5 V  
1.0 ms  
SIDE #2  
200  
150  
100  
50  
1, 3  
Supply Voltages (VDD1, VDD2  
Supply Voltages (VDD1, VDD2  
)
)
2, 3  
SIDE #1  
Input Signal Rise and Fall Times  
1 Does not apply to ADuM1400W, ADuM1401W, and ADuM1402W automotive  
grade versions.  
2 Applies to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade  
versions.  
0
3 All voltages are relative to their respective ground. See the DC Correctness  
and Magnetic Field Immunity section for information on immunity to  
external magnetic fields.  
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per DIN V VDE V 0884-10  
Rev. H | Page 20 of 32  
 
 
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 13.  
Parameter  
Rating  
Storage Temperature (TST)  
Ambient Operating Temperature (TA)1  
Ambient Operating Temperature (TA)2  
−65°C to +150°C  
−40°C to +105°C  
−40°C to +125°C  
−0.5 V to +7.0 V  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDDO + 0.5 V  
3
Supply Voltages (VDD1, VDD2  
)
Input Voltage (VIA, VIB, VIC, VID, VE1, VE2)3, 4  
3, 4  
Output Voltage (VOA, VOB, VOC, VOD  
)
ESD CAUTION  
Average Output Current per Pin5  
Side 1 (IO1)  
−18 mA to +18 mA  
Side 2 (IO2)  
Common-Mode Transients6  
−22 mA to +22 mA  
−100 kV/μs to +100 kV/μs  
1 Does not apply to ADuM1400W, ADuM1401W, and ADuM1402W  
automotive grade versions.  
2 Applies to ADuM1400W, ADuM1401W, and ADuM1402W automotive grade  
versions.  
3 All voltages are relative to their respective ground.  
4 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the PC Board Layout section.  
5 See Figure 4 for maximum rated current values for various temperatures.  
6 This refers to common-mode transients across the insulation barrier.  
Common-mode transients exceeding the Absolute Maximum Ratings  
may cause latch-up or permanent damage.  
Table 14. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
565  
V peak  
50-year minimum lifetime  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Basic Insulation  
Reinforced Insulation  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
Table 15. Truth Table (Positive Logic)  
VIx Input1 VEx Input1, 2 VDDI State1 VDDO State1 VOx Output1  
Notes  
H
L
X
X
X
X
H or NC  
H or NC  
L
H or NC  
L
X
Powered  
Powered  
Powered  
Unpowered Powered  
Unpowered Powered  
Powered  
Powered  
Powered  
H
L
Z
H
Z
Outputs return to the input state within 1 μs of VDDI power restoration.  
Powered  
Unpowered Indeterminate Outputs return to the input state within 1 μs of VDDO power restoration  
if the VEx state is H or NC. Outputs return to a high impedance state  
within 8 ns of VDDO power restoration if the VEx state is L.  
1 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and  
VDDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
2 In noisy environments, connecting VEx to an external logic high or low is recommended.  
Rev. H | Page 21 of 32  
 
 
 
 
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
IA  
IB  
IC  
ID  
2
V
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
OD  
E2  
ADuM1400  
TOP VIEW  
(Not to Scale)  
NC  
*GND  
GND *  
1
2
NC = NO CONNECT  
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED, AND CONNECTING  
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED, AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 5. ADuM1400 Pin Configuration  
Table 16. ADuM1400 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
VIC  
Logic Input C.  
6
VID  
Logic Input D.  
7
NC  
No Connect.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB, VOC, and VOD outputs are enabled when VE2 is high or disconnected.  
VOA, VOB, VOC, and VOD outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic  
high or low is recommended.  
11  
12  
13  
14  
15  
16  
VOD  
VOC  
VOB  
VOA  
GND2  
VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2.  
Rev. H | Page 22 of 32  
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
IA  
IB  
IC  
2
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
ID  
ADuM1401  
TOP VIEW  
(Not to Scale)  
V
OD  
V
E1  
E2  
*GND  
GND *  
1
2
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED, AND CONNECTING  
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED, AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 6. ADuM1401 Pin Configuration  
Table 17. ADuM1401 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
VIB  
VIC  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Input C.  
VOD  
VE1  
Logic Output D.  
Output Enable 1. Active high logic input. VOD output is enabled when VE1 is high or disconnected. VOD is disabled  
when VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is recommended.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB, and VOC outputs are enabled when VE2 is high or disconnected. VOA,  
VOB, and VOC outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or  
low is recommended.  
11  
12  
13  
14  
15  
16  
VID  
VOC  
VOB  
VOA  
GND2  
VDD2  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2.  
Rev. H | Page 23 of 32  
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
IA  
IB  
2
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
IC  
ADuM1402  
TOP VIEW  
(Not to Scale)  
V
V
OC  
OD  
ID  
V
E1  
E2  
*GND  
GND *  
1
2
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED, AND CONNECTING  
BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED, AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 7. ADuM1402 Pin Configuration  
Table 18. ADuM1402 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Output C.  
VIB  
VOC  
VOD  
VE1  
Logic Output D.  
Output Enable 1. Active high logic input. VOC and VOD outputs are enabled when VE1 is high or disconnected. VOC and  
VOD outputs are disabled when VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is  
recommended.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA and VOB outputs are enabled when VE2 is high or disconnected. VOA and  
VOB outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low is  
recommended.  
11  
12  
13  
14  
15  
16  
VID  
VIC  
VOB  
VOA  
GND2  
VDD2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2.  
Supply Voltage for Isolator Side 2.  
Rev. H | Page 24 of 32  
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
80  
70  
60  
50  
40  
30  
20  
10  
0
15  
10  
5V  
5V  
3V  
3V  
5
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Input Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation  
Figure 11. Typical ADuM1400 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
6
5
4
3
25  
20  
15  
10  
5V  
5V  
2
3V  
3V  
5
1
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (No Output Load)  
Figure 12. Typical ADuM1400 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
10  
8
35  
30  
25  
20  
6
15  
5V  
10  
4
5V  
3V  
3V  
2
5
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 10. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3 V Operation (15 pF Output Load)  
Figure 13. Typical ADuM1401 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Rev. H | Page 25 of 32  
 
 
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
40  
35  
30  
25  
20  
40  
35  
30  
25  
3V  
5V  
15  
10  
3V  
5V  
5
0
0
20  
40  
60  
80  
100  
–50  
–25  
0
25  
50  
75  
100  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 14. Typical ADuM1401 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Figure 16. Propagation Delay vs. Temperature, C Grade  
50  
45  
40  
35  
30  
25  
20  
5V  
15  
3V  
10  
5
0
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
Figure 15. Typical ADuM1402 VDD1 or VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Rev. H | Page 26 of 32  
 
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
APPLICATIONS INFORMATION  
PC BOARD LAYOUT  
DC CORRECTNESS AND MAGNETIC FIELD  
IMMUNITY  
The ADuM140x digital isolator requires no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins (see  
Figure 17). Bypass capacitors are most conveniently connected  
between Pin 1 and Pin 2 for VDD1 and between Pin 15 and Pin 16  
for VDD2. The capacitor value should be between 0.01 μF and  
0.1 μF. The total lead length between both ends of the capacitor  
and the input power supply pin should not exceed 20 mm.  
Bypassing between Pin 1 and Pin 8 and between Pin 9 and  
Pin 16 should also be considered, unless the ground pair on  
each package side is connected close to the package.  
Positive and negative logic transitions at the isolator input  
cause narrow (~1 ns) pulses to be sent to the decoder via the  
transformer. The decoder is bistable and is, therefore, either set  
or reset by the pulses, indicating input logic transitions. In the  
absence of logic transitions at the input for more than ~1 μs, a  
periodic set of refresh pulses indicative of the correct input state  
are sent to ensure dc correctness at the output. If the decoder  
receives no internal pulses of more than about 5 μs, the input  
side is assumed to be unpowered or nonfunctional, in which  
case the isolator output is forced to a default state (see Table 15)  
by the watchdog timer circuit.  
V
V
DD1  
DD2  
GND  
GND  
1
IA  
IB  
2
The limitation on the magnetic field immunity of the ADuM140x  
is set by the condition in which induced voltage in the receiving  
coil of the transformer is sufficiently large enough to either  
falsely set or reset the decoder. The following analysis defines  
the conditions under which this may occur. The 3 V operating  
condition of the ADuM140x is examined because it represents  
the most susceptible mode of operation.  
V
V
V
V
V
V
V
OA  
OB  
V
/V  
V
IC OC  
OC/ IC  
V
V
V
ID/ OD  
NC/V  
OD/ ID  
E1  
GND  
E2  
GND  
1
2
Figure 17. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients, care  
should be taken to ensure that board coupling across the isolation  
barrier is minimized. Furthermore, the board layout should be  
designed such that any coupling that does occur equally affects  
all pins on a given component side. Failure to ensure this could  
cause voltage differentials between pins exceeding the Absolute  
Maximum Ratings of the device, thereby leading to latch-up or  
permanent damage.  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus  
establishing a 0.5 V margin in which induced voltages can be  
tolerated. The voltage induced across the receiving coil is given by  
2
V = (−dβ/dt)rn ; n = 1, 2, … , N  
where:  
β is magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
See the AN-1109 Application Note for board layout guidelines.  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a Logic 0 output may differ from the propagation delay  
to a Logic 1 output.  
Given the geometry of the receiving coil in the ADuM140x and  
an imposed requirement that the induced voltage be 50% at  
most of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 19.  
100  
INPUT (V  
)
50%  
Ix  
tPLH  
tPHL  
10  
1
OUTPUT (V  
)
50%  
Ox  
Figure 18. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the timing of the input signal is preserved.  
0.1  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM140x component.  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM140x  
components operating under the same conditions.  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 19. Maximum Allowable External Magnetic Flux Density  
Rev. H | Page 27 of 32  
 
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
Data Sheet  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event occurs during a transmitted pulse  
(and has the worst-case polarity), it reduces the received pulse  
from >1.0 V to 0.75 V—still well above the 0.5 V sensing  
threshold of the decoder.  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM140x isolator  
is a function of the supply voltage, the data rate of the channel,  
and the output load of the channel.  
For each input channel, the supply current is given by  
I
I
DDI = IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
DDI = IDDI (D) × (2f fr) + IDDI (Q)  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM140x transformers. Figure 20 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As shown, the ADuM140x is extremely immune  
and can be affected only by extremely large currents operated  
at high frequency very close to the component. For the 1 MHz  
example noted, one would have to place a 0.5 kA current 5 mm  
away from the ADuM140x to affect the operation of the  
component.  
For each output channel, the supply current is given by  
I
I
DDO = IDDO (Q)  
f ≤ 0.5 fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
I
per channel (mA/Mbps).  
CL is the output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
1000  
f is the input logic signal frequency (MHz); it is half of the input  
data rate expressed in units of Mbps.  
fr is the input stage refresh rate (Mbps).  
DISTANCE = 1m  
100  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
10  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
DISTANCE = 100mm  
1
VDD1 and VDD2 are calculated and totaled. Figure 8 and Figure 9  
DISTANCE = 5mm  
provide per-channel supply currents as a function of data rate  
for an unloaded output condition. Figure 10 provides per-  
channel supply current as a function of data rate for a 15 pF  
output condition. Figure 11 through Figure 15 provide total  
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
V
DD1 and VDD2 supply current as a function of data rate for  
ADuM1400/ADuM1401/ADuM1402 channel configurations.  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 20. Maximum Allowable Current  
for Various Current-to-ADuM140x Spacings  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce error voltages sufficiently large enough to trigger  
the thresholds of succeeding circuitry. Care should be taken in  
the layout of such traces to avoid this possibility.  
Rev. H | Page 28 of 32  
 
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
In the case of unipolar ac or dc voltage, the stress on the  
insulation is significantly lower, which allows operation at  
higher working voltages while still achieving a 50-year service  
life. The working voltages listed in Table 14 can be applied while  
maintaining the 50-year minimum lifetime, provided the voltage  
conforms to either the unipolar ac or dc voltage cases. Any cross-  
insulation voltage waveform that does not conform to Figure 22  
or Figure 23 should be treated as a bipolar ac waveform, and its  
peak voltage should be limited to the 50-year lifetime voltage  
value listed in Table 14.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of  
the voltage waveform applied across the insulation. In addition  
to the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the ADuM140x.  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage. Accel-  
eration factors for several operating conditions are determined.  
These factors allow calculation of the time to failure at the actual  
working voltage. The values shown in Table 14 summarize the  
peak voltage for 50 years of service life for a bipolar ac operating  
condition and the maximum CSA/VDE approved working  
voltages. In many cases, the approved working voltage is higher  
than a 50-year service life voltage. Operation at these high working  
voltages can lead to shortened insulation life in some cases.  
Note that the voltage presented in Figure 22 is shown as sinusoidal  
for illustration purposes only. It is meant to represent any voltage  
waveform varying between 0 V and some limiting value. The  
limiting value can be positive or negative, but the voltage cannot  
cross 0 V.  
RATED PEAK VOLTAGE  
0V  
Figure 21. Bipolar AC Waveform  
The insulation lifetime of the ADuM140x depends on the  
voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates  
depending on whether the waveform is bipolar ac, unipolar  
ac, or dc. Figure 21, Figure 22, and Figure 23 illustrate these  
different isolation voltage waveforms, respectively.  
RATED PEAK VOLTAGE  
0V  
Figure 22. Unipolar AC Waveform  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines the Analog Devices recommended maximum  
working voltage.  
RATED PEAK VOLTAGE  
0V  
Figure 23. DC Waveform  
Rev. H | Page 29 of 32  
 
 
 
 
 
 
ADuM1400/ADuM1401/ADuM1402  
OUTLINE DIMENSIONS  
Data Sheet  
10.50 (0.4134)  
10.10 (0.3976)  
16  
9
8
7.60 (0.2992)  
7.40 (0.2913)  
1
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0  
.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 24. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Number  
Number  
Maximum Maximum  
Maximum  
of Inputs, of Inputs, Data Rate Propagation  
Pulse Width  
Temperature  
Package  
Description  
Package  
Option  
Model1, 2, 3, 4  
VDD1 Side  
V
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
DD2 Side  
(Mbps)  
Delay, 5 V (ns) Distortion (ns) Range  
ADuM1400ARW  
ADuM1400BRW  
ADuM1400CRW  
ADuM1400ARWZ  
ADuM1400BRWZ  
ADuM1400CRWZ  
ADuM1400WSRWZ  
ADuM1400WTRWZ  
ADuM1401ARW  
ADuM1401BRW  
ADuM1401CRW  
ADuM1401ARWZ  
ADuM1401BRWZ  
ADuM1401CRWZ  
ADuM1401WSRWZ  
ADuM1401WTRWZ  
ADuM1402ARW  
ADuM1402BRW  
ADuM1402CRW  
ADuM1402ARWZ  
ADuM1402BRWZ  
ADuM1402CRWZ  
ADuM1402WSRWZ  
ADuM1402WTRWZ  
EVAL-ADuMQSEBZ  
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
1
100  
50  
32  
100  
50  
32  
40  
3
2
40  
3
2
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +125°C 16-Lead SOIC_W RW-16  
−40°C to +125°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +125°C 16-Lead SOIC_W RW-16  
−40°C to +125°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +125°C 16-Lead SOIC_W RW-16  
−40°C to +125°C 16-Lead SOIC_W RW-16  
Evaluation Board  
10  
90  
1
10  
90  
1
10  
1
10  
90  
1
10  
90  
1
10  
1
10  
90  
1
10  
90  
1
100  
32  
40  
3
100  
50  
32  
100  
50  
32  
40  
3
2
40  
3
2
100  
32  
40  
3
100  
50  
32  
100  
50  
32  
40  
3
2
40  
3
2
100  
32  
40  
3
10  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 Tape and reel are available. The addition of an -RL suffix designates a 13” (1,000 units) tape and reel option.  
4 No tape and reel option is available for the ADuM1402BRW model.  
Rev. H | Page 30 of 32  
 
 
Data Sheet  
ADuM1400/ADuM1401/ADuM1402  
AUTOMOTIVE PRODUCTS  
The ADuM1400W/ADuM1401W/ADuM1402W models are available with controlled manufacturing to support the quality and reliability  
requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial  
models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products  
shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product  
ordering information and to obtain the specific Automotive Reliability reports for these models.  
Rev. H | Page 31 of 32  
 
ADuM1400/ADuM1401/ADuM1402  
NOTES  
Data Sheet  
©2003–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03786-0-3/12(H)  
Rev. H | Page 32 of 32  

相关型号:

ADUM1402CRWZN

Interface Circuit, CMOS, PDSO16
ADI

ADuM1402WSRWZ

Quad-Channel Digital Isolators
ADI

ADUM1402WSRWZ-RL

Quad-Channel Digital Isolator (2/2 Channel Directionality)
ADI

ADUM1402WSRWZ35

Interface Circuit, CMOS, PDSO16
ADI

ADUM1402WSRWZ35-RL

Interface Circuit, CMOS, PDSO16
ADI

ADuM1402WTRWZ

Quad-Channel Digital Isolators
ADI

ADUM1402WTRWZ-RL

Quad-Channel Digital Isolator (2/2 Channel Directionality)
ADI

ADUM1402WTRWZ53

Interface Circuit, CMOS, PDSO16
ADI

ADUM1402WTRWZ53-RL

Interface Circuit, CMOS, PDSO16
ADI

ADUM1402_15

Quad-Channel Digital Isolators
ADI

ADUM140D

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM140D0

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI