ADUM1412ARW [ADI]

暂无描述;
ADUM1412ARW
型号: ADUM1412ARW
厂家: ADI    ADI
描述:

暂无描述

文件: 总24页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad-Channel Digital Isolators  
ADuM1410/ADuM1411/ADuM1412  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Low power operation  
5 V operation  
1
2
3
16  
15  
14  
V
V
DD1  
DD2  
ADuM1410  
GND  
GND  
1
2
1.3 mA per channel maximum @ 0 Mbps to 2 Mbps  
4.0 mA per channel maximum @ 10 Mbps  
3 V operation  
0.8 mA per channel maximum @ 0 Mbps to 2 Mbps  
1.8 mA per channel maximum @ 10 Mbps  
Bidirectional communication  
3 V/5 V level translation  
High temperature operation: 105°C  
Up to 10 Mbps data rate (NRZ)  
Programmable default output state  
High common-mode transient immunity: >25 kV/μs  
16-lead, RoHS-compliant, SOIC wide body package  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA component acceptance notice #5A  
VDE certificate of conformity  
V
V
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
V
V
V
IA  
OA  
OB  
OC  
OD  
4
5
13  
12  
IB  
V
IC  
6
7
8
11  
10  
9
V
ID  
DISABLE  
GND  
CTRL  
2
GND  
1
2
Figure 1. ADuM1410  
1
16  
V
V
DD1  
DD2  
ADuM1411  
2
3
15  
14  
GND  
GND  
2
1
V
V
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
V
V
V
V
IA  
OA  
OB  
OC  
ID  
4
5
13  
12  
IB  
V
IC  
6
7
8
11  
10  
9
V
OD  
CTRL  
GND  
CTRL  
2
1
GND  
1
2
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12  
Figure 2. ADuM1411  
V
IORM = 560 V peak  
TÜV approval: IEC/EN 60950-1  
1
2
3
16  
15  
14  
V
V
DD2  
DD1  
ADuM1412  
GND  
GND  
1
2
APPLICATIONS  
V
V
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
V
V
V
V
IA  
OA  
OB  
IC  
4
5
13  
12  
General-purpose multichannel isolation  
SPI interface/data converter isolation  
RS-232/RS-422/RS-485 transceivers  
Industrial field bus isolation  
IB  
V
V
OC  
6
7
8
11  
10  
9
OD  
ID  
CTRL  
GND  
CTRL  
2
1
GND  
1
2
Figure 3. ADuM1412  
devices consume one-tenth to one-sixth the power of optocou-  
plers at comparable signal data rates.  
GENERAL DESCRIPTION  
The ADuM141x1 are four-channel digital isolators based on  
Analog Devices, Inc. iCoupler® technology. Combining high  
speed CMOS and monolithic air core transformer technologies,  
these isolation components provide outstanding performance  
characteristics superior to alternatives such as optocoupler devices.  
The ADuM141x isolators provide four independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide) up to 10 Mbps. All models operate  
with the supply voltage on either side ranging from 2.7 V to 5.5 V,  
providing compatibility with lower voltage systems as well as  
enabling voltage translation functionality across the isolation  
barrier. All products also have a default output control pin. This  
allows the user to define the logic state the outputs are to adopt  
in the absence of the input power. Unlike other optocoupler  
alternatives, the ADuM141x isolators have a patented refresh  
feature that ensures dc correctness in the absence of input logic  
transitions and during power-up/power-down conditions.  
By avoiding the use of LEDs and photodiodes, iCoupler devices  
remove the design difficulties commonly associated with opto-  
couplers. The usual concerns that arise with optocouplers, such  
as uncertain current transfer ratios, nonlinear transfer functions,  
and temperature and lifetime effects, are eliminated with the simple  
iCoupler digital interfaces and stable performance characteristics.  
The need for external drivers and other discrete components is  
eliminated with these iCoupler products. Furthermore, iCoupler  
1 Protected by U.S. Patents 5,952,849, 6,873,065 and 7,075,329.  
Rev. H  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2004–2010 Analog Devices, Inc. All rights reserved.  
 
ADuM1410/ADuM1411/ADuM1412  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 11  
Absolute Maximum Ratings ......................................................... 12  
ESD Caution................................................................................ 12  
Pin Configurations and Function Descriptions......................... 13  
Typical Performance Characteristics ........................................... 17  
Applications Information.............................................................. 19  
PC Board Layout ........................................................................ 19  
Propagation Delay-Related Parameters................................... 19  
DC Correctness and Magnetic Field Immunity........................... 19  
Power Consumption .................................................................. 20  
Insulation Lifetime..................................................................... 20  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3 V Operation................................ 5  
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V  
Operation....................................................................................... 7  
Package Characteristics ............................................................. 10  
Regulatory Information............................................................. 10  
Insulation and Safety-Related Specifications.......................... 10  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12  
Insulation Characteristics.......................................................... 11  
REVISION HISTORY  
11/10—Rev. G to Rev. H  
2/07—Rev. E to Rev F  
Added TÜV Approval to Features Section.................................... 1  
Added TÜV Column, Table 5....................................................... 10  
Added ADuM1410ARWZ ...............................................Universal  
Updated Pin Name CTRL to CTRL2 Throughout ........................1  
Changes to Ordering Guide.......................................................... 21  
6/07—Rev. F to Rev. G  
10/06—Rev. D to Rev. E  
Updated VDE Certification Throughout ...................................... 1  
Changes to Features and Applications........................................... 1  
Changes to DC Specifications in Table 1....................................... 3  
Changes to DC Specifications in Table 2....................................... 5  
Changes to DC Specifications in Table 3....................................... 7  
Changes to Regulatory Information Section .............................. 10  
Added Table 10 ............................................................................... 12  
Added Insulation Lifetime Section .............................................. 21  
Added ADuM1411 and ADuM1412 ...............................Universal  
Deleted ADuM1310...........................................................Universal  
Changes to Features ..........................................................................1  
Changes to Specifications Section...................................................3  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide.......................................................... 20  
3/06—Rev. C to Rev. D  
Added Note 1 and Changes to Figure 2..........................................1  
Changes to Absolute Maximum Ratings..................................... 11  
11/05—Rev. SpB to Rev. C: Initial Version  
Rev. H | Page 2 of 24  
 
ADuM1410/ADuM1411/ADuM1412  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. All voltages are relative to their respective ground.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel,  
Quiescent  
Output Supply Current per Channel,  
Quiescent  
IDDI (Q)  
0.50  
0.38  
0.73  
0.53  
mA  
mA  
IDDO (Q)  
ADuM1410, Total Supply Current,  
Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
10 Mbps (BRWZ Version Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.4  
1.2  
3.2  
1.6  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
IDD1 (10)  
IDD2 (10)  
8.8  
2.8  
12  
4.0  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1411, Total Supply Current,  
Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.2  
1.8  
2.8  
2.4  
mA  
mA  
DC to 1 MHz logic signal  
frequency  
DC to 1 MHz logic signal  
frequency  
VDD2 Supply Current  
10 Mbps (BRWZ Version Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
5.4  
3.8  
7.6  
5.3  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1412, Total Supply Current,  
Four Channels1  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
IDD1 (Q), IDD2 (Q)  
2.0  
4.6  
2.6  
6.5  
mA  
DC to 1 MHz logic signal  
frequency  
10 Mbps (BRWZ Version Only)  
VDD1 or VDD2 Supply Current  
All Models  
IDD1 (10), IDD2 (10)  
mA  
μA  
5 MHz logic signal frequency  
Input Currents  
IIA, IIB, IIC,  
IID, ICTRL1  
−10  
2.0  
+0.01 +10  
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2,  
0 V ≤ VCTRL1, VCTRL2 ≤ VDD1 or VDD2  
0 V ≤ VDISABLE ≤ VDD1  
,
,
ICTRL2, IDISABLE  
VIH  
VIL  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
V
V
V
V
V
V
V
0.8  
VOAH, VOBH  
,
(VDD1 or VDD2) − 0.1 5.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
VOCH, VODH  
(VDD1 or VDD2)0.4  
4.8  
0.0  
Logic Low Output Voltages  
VOAL, VOBL  
,
0.1  
0.1  
0.4  
VOCL, VODL  
0.04  
0.2  
Rev. H | Page 3 of 24  
 
ADuM1410/ADuM1411/ADuM1412  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
ADuM141xARWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ADuM141xBRWZ  
PW  
1000 ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
20  
tPHL, tPLH  
PWD  
tPSK  
65  
100  
40  
ns  
ns  
ns  
ns  
4
|
50  
tPSKCD/OD  
50  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
100  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
30  
5
50  
5
4
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching,  
Codirectional Channels6  
|
tPSK  
tPSKCD  
30  
5
ns  
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels6  
All Models  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity |CMH|  
at Logic High Output7  
Common-Mode Transient Immunity |CML|  
at Logic Low Output7  
tR/tF  
2.5  
35  
ns  
kV/μs  
CL = 15 pF, CMOS signal levels  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
25  
25  
35  
kV/μs  
Refresh Rate  
Input Enable Time8  
Input Disable Time8  
Input Dynamic Supply Current  
per Channel9  
Output Dynamic Supply Current  
per Channel9  
fr  
1.2  
Mbps  
μs  
μs  
mA/  
Mbps  
tENABLE  
tDISABLE  
IDDI (D)  
2.0  
5.0  
VIA, VIB, VIC, VID = 0 V or VDD1  
VIA, VIB, VIC, VID = 0 V or VDD1  
0.12  
0.04  
IDDO (D)  
mA/  
Mbps  
1 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1410/ADuM1411/ADuM1412 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. |CML| is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Input enable time is the duration from when VDISABLE is set low until the output states are guaranteed to match the input states in the absence of any input data logic  
transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the  
much shorter duration as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VDISABLE is set high  
until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL2 logic state (see Table 14).  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 4 of 24  
 
 
 
 
 
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
ELECTRICAL CHARACTERISTICS—3 V OPERATION  
2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V. All voltages are relative to their respective ground.  
Table 2.  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel,  
Quiescent  
Output Supply Current per Channel,  
Quiescent  
IDDI (Q)  
0.25 0.38  
0.19 0.33  
mA  
mA  
IDDO (Q)  
ADuM1410, Total Supply Current,  
Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.2  
0.8  
1.6  
1.0  
mA  
mA  
DC to 1 MHz logic signal  
frequency  
DC to 1 MHz logic signal  
frequency  
VDD2 Supply Current  
10 Mbps (BRWZ Version Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
4.5  
1.4  
6.5  
1.8  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1411, Total Supply Current,  
Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.0  
0.9  
1.9  
1.7  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal  
frequency  
10 Mbps (BRWZ Version Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.1  
2.1  
4.5  
3.0  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1412, Total Supply Current,  
Four Channels1  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
IDD1 (Q), IDD2 (Q)  
1.0  
2.6  
1.8  
3.8  
mA  
DC to 1 MHz logic signal  
frequency  
10 Mbps (BRWZ Version Only)  
VDD1 or VDD2 Supply Current  
All Models  
IDD1 (10), IDD2 (10)  
mA  
μA  
5 MHz logic signal frequency  
Input Currents  
IIA, IIB, IIC,  
IID, ICTRL1  
CTRL2, IDISABLE  
−10  
1.6  
+0.01 +10  
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2,  
0 V ≤ VCTRL1, VCTRL2 ≤ VDD1 or VDD2  
0 V ≤ VDISABLE ≤ VDD1  
,
,
I
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH  
VIL  
V
V
V
V
V
V
V
0.4  
VOAH, VOBH  
,
(VDD1 or VDD2) − 0.1 3.0  
(VDD1 or VDD2) − 0.4 2.8  
0.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
V
OCH, VODH  
Logic Low Output Voltages  
VOAL, VOBL  
,
0.1  
0.04 0.1  
0.2 0.4  
V
OCL, VODL  
Rev. H | Page 5 of 24  
 
ADuM1410/ADuM1411/ADuM1412  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
ADuM141xARWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ADuM141xBRWZ  
PW  
1000  
ns  
CL = 15 pF, CMOS signal levels  
1
20  
Mbps CL = 15 pF, CMOS signal levels  
tPHL, tPLH  
PWD  
tPSK  
75  
100  
40  
50  
ns  
ns  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
4
|
tPSKCD/OD  
50  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
100  
ns  
CL = 15 pF, CMOS signal levels  
10  
20  
Mbps CL = 15 pF, CMOS signal levels  
ns  
ns  
ps/°C CL = 15 pF, CMOS signal levels  
ns  
ns  
Propagation Delay4  
tPHL, tPLH  
PWD  
40  
5
60  
5
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
4
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching,  
Codirectional Channels6  
|
tPSK  
tPSKCD  
30  
5
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels6  
All Models  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity  
at Logic High Output7  
Common-Mode Transient Immunity  
at Logic Low Output7  
tR/tF  
|CMH|  
2.5  
35  
ns  
CL = 15 pF, CMOS signal levels  
25  
25  
kV/μs VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
kV/μs VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
|CML|  
35  
Refresh Rate  
fr  
1.1  
Mbps  
Input Enable Time8  
Input Disable Time8  
Input Dynamic Supply Current  
per Channel9  
tENABLE  
tDISABLE  
IDDI (D)  
2.0  
5.0  
0.07  
μs  
μs  
mA/  
VIA, VIB, VIC, VID = 0 V or VDD1  
VIA, VIB, VIC, VID = 0 V or VDD1  
Mbps  
Output Dynamic Supply Current  
per Channel9  
IDDO (D)  
0.02  
mA/  
Mbps  
1 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1410/ADuM1411/ADuM1412 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. |CML| is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Input enable time is the duration from when VDISABLE is set low until the output states are guaranteed to match the input states in the absence of any input data logic  
transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the  
much shorter duration as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VDISABLE is set high  
until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL2 logic state (see Table 14).  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 6 of 24  
 
 
 
 
 
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION  
5 V/3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V; 3 V/5 V operation: 2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all  
minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications  
are at TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V; or VDD1 = 5 V, VDD2 = 3.0 V. All voltages are relative to their respective ground.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel,  
Quiescent  
IDDI (Q)  
5 V/3 V Operation  
3 V/5 V Operation  
0.50  
0.25  
0.73 mA  
0.38 mA  
Output Supply Current per Channel,  
Quiescent  
IDDO (Q)  
5 V/3 V Operation  
3 V/5 V Operation  
0.19  
0.38  
0.33 mA  
0.53 mA  
ADuM1410, Total Supply Current,  
Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (Q)  
2.4  
1.2  
3.2  
1.6  
mA  
mA  
DC to 1 MHz logic signal  
frequency  
DC to 1 MHz logic signal  
frequency  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (Q)  
0.8  
1.2  
1.0  
1.6  
mA  
mA  
DC to 1 MHz logic signal  
frequency  
DC to 1 MHz logic signal  
frequency  
3 V/5 V Operation  
10 Mbps (BRWZ Version Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
8.6  
3.4  
11  
6.5  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.4  
2.6  
1.8  
3.0  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1411, Total Supply Current,  
Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (Q)  
2.2  
1.0  
2.8  
1.9  
mA  
mA  
DC to 1 MHz logic signal  
frequency  
DC to 1 MHz logic signal  
frequency  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (Q)  
0.9  
1.7  
1.7  
2.4  
mA  
mA  
DC to 1 MHz logic signal  
frequency  
DC to 1 MHz logic signal  
frequency  
3 V/5 V Operation  
10 Mbps (BRWZ Version Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
5.4  
3.1  
7.6  
4.5  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
3 V/5 V Operation  
Rev. H | Page 7 of 24  
 
ADuM1410/ADuM1411/ADuM1412  
Parameter  
VDD2 Supply Current  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
IDD2 (10)  
5 V/3 V Operation  
3 V/5 V Operation  
2.1  
3.8  
3.0  
5.3  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
ADuM1412, Total Supply Current,  
Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (Q)  
2.0  
1.0  
2.6  
1.8  
mA  
mA  
DC to 1 MHz logic signal  
frequency  
DC to 1 MHz logic signal  
frequency  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
IDD2 (Q)  
1.0  
2.0  
1.8  
2.6  
mA  
mA  
DC to 1 MHz logic signal  
frequency  
DC to 1 MHz logic signal  
frequency  
3 V/5 V Operation  
10 Mbps (BRWZ Version Only)  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
All Models  
IDD1 (10)  
4.6  
2.6  
6.5  
3.8  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
IDD2 (10)  
2.6  
4.6  
3.8  
6.5  
mA  
mA  
5 MHz logic signal frequency  
5 MHz logic signal frequency  
Input Currents  
IIA, IIB, IIC, IID, −10  
ICTRL1, ICTRL2  
IDISABLE  
+0.01  
+10 μA  
0 V ≤ VIA,VIB, VIC,VID ≤ VDD1 or VDD2  
0 V ≤ VCTRL1,VCTRL2 ≤ VDD1 or VDD2  
0 V ≤ VDISABLE ≤ VDD1  
,
,
,
Logic High Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIH  
2.0  
1.6  
V
V
Logic Low Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIL  
0.8  
0.4  
V
V
V
V
V
V
V
Logic High Output Voltages  
VOAH, VOBH  
VOCH, VODH  
,
(VDD1 or VDD2) − 0.1 (VDD1 or VDD2)  
(VDD1 or VDD2) − 0.4 (VDD1 or VDD2) − 0.2  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
SWITCHING SPECIFICATIONS  
ADuM141xARWZ  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ADuM141xBRWZ  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
25  
tPHL, tPLH  
PWD  
tPSK  
70  
4
|
40  
50  
50  
ns  
ns  
ns  
tPSKCD/OD  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
25  
Propagation Delay4  
tPHL, tPLH  
PWD  
35  
5
60  
5
4
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
|
ns  
ps/°C  
ns  
tPSK  
30  
Rev. H | Page 8 of 24  
ADuM1410/ADuM1411/ADuM1412  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
Channel-to-Channel Matching,  
tPSKCD  
5
ns  
CL = 15 pF, CMOS signal levels  
Codirectional Channels6  
Channel-to-Channel Matching,  
Opposing-Directional Channels6  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
All Models  
Output Rise/Fall Time (10% to 90%) tR/tF  
5 V/3 V Operation  
3 V/5 V Operation  
CL = 15 pF, CMOS signal levels  
2.5  
2.5  
35  
ns  
ns  
kV/μs  
Common-Mode Transient  
|CMH|  
25  
25  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V, transient  
magnitude = 800 V  
Immunity at Logic High Output7  
Common-Mode Transient  
|CML|  
fr  
35  
kV/μs  
Immunity at Logic Low Output7  
Refresh Rate  
5 V/3 V Operation  
3 V/5 V Operation  
Input Enable Time8  
Input Disable Time8  
Input Dynamic Supply Current  
per Channel9  
1.2  
1.1  
2.0  
5.0  
Mbps  
Mbps  
μs  
tENABLE  
tDISABLE  
IDDI (D)  
VIA, VIB, VIC, VID = 0 V or VDD1  
VIA, VIB, VIC, VID = 0 V or VDD1  
μs  
5 V Operation  
0.12  
0.07  
mA/  
Mbps  
mA/  
3 V Operation  
Mbps  
Output Dynamic Supply Current  
per Channel9  
IDDO (D)  
5 V Operation  
0.04  
0.02  
mA/  
Mbps  
mA/  
3 V Operation  
Mbps  
1 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM1410/ADuM1411/ADuM1412 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. |CML| is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Input enable time is the duration from when VDISABLE is set low until the output states are guaranteed to match the input states in the absence of any input data logic  
transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the  
much shorter duration as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VDISABLE is set high  
until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL2 logic state (see Table 14).  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. H | Page 9 of 24  
 
 
 
ADuM1410/ADuM1411/ADuM1412  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol Min Typ Max Unit  
Test Conditions  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1012  
Ω
pF  
pF  
2.2  
4.0  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance  
Side 1  
Side 2  
θJCI  
θJCO  
33  
28  
°C/W  
°C/W  
Thermocouple located at center of package underside  
1 The device is considered a 2-terminal device; Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM141x have been approved by the organizations listed in Table 5. See Table 10 and the Insulation Lifetime section for  
recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.  
Table 5.  
UL  
CSA  
VDE  
TÜV  
Recognized Under 1577  
Component Recognition  
Program1  
Approved under CSA  
Component Acceptance  
Notice #5A  
Certified according to DIN V VDE V  
Approved according to:  
0884-10 (VDE V 0884-10): 2006-122 IEC 60950-1:2005 and  
EN 60950-1:2006  
Double/reinforced insulation,  
2500 V rms isolation voltage  
Basic insulation per CSA  
60950-1-03 and IEC 60950-1,  
800 V rms (1131 V peak)  
maximum working voltage.  
Reinforced insulation, 560 V peak  
3000 V rms reinforced isolation  
at a 400 V rms working voltage.  
3000 V rms basic isolation at a  
600 V rms working voltage.  
Reinforced insulation per  
CSA 60950-1-03 and IEC  
60950-1, 400 V rms (566 V  
peak) maximum working  
voltage.  
File E214100  
File 205078  
File 2471900-4880-0001  
Certificate B 10 03 56232 006  
1 In accordance with UL 1577, each ADuM141x is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 μA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM141x is proof tested by applying an insulation test voltage ≥1050 V peak for 1 second (partial discharge detection  
limit = 5 pC). The asterisk (*) marked on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol Value  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
7.7  
V rms  
1-minute duration  
L(I01)  
L(I02)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum External Tracking (Creepage)  
8.1  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017  
>175  
IIIa  
mm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
Rev. H | Page 10 of 24  
 
 
ADuM1410/ADuM1411/ADuM1412  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation within the safety limit data only. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marked on packages denotes DIN V VDE V 0884-10 approval.  
Table 7.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
and Subgroup 3  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC  
VPR  
896  
672  
V peak  
V peak  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of a failure;  
see Figure 4  
VTR  
4000  
V peak  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Ω
Insulation Resistance at TS  
VIO = 500 V  
RECOMMENDED OPERATING CONDITIONS  
350  
300  
250  
Table 8.  
Parameter  
Symbol  
Min Max  
Unit  
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
TA  
−40 +105 °C  
V
DD1, VDD2 2.7  
5.5  
1.0  
V
ms  
SIDE #2  
200  
150  
100  
50  
1 All voltages are relative to their respective ground. See the DC Correctness  
and Magnetic Field Immunity section for information on immunity to external  
magnetic fields.  
SIDE #1  
0
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per DIN V VDE V 0884-10  
Rev. H | Page 11 of 24  
 
 
 
ADuM1410/ADuM1411/ADuM1412  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 9.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Storage Temperature (TST) Range  
Ambient Operating Temperature  
−65°C to +150°C  
−40°C to +105°C  
(TA) Range  
Supply Voltages (VDD1, VDD2  
1
)
−0.5 V to +7.0 V  
Input Voltages (VIA, VIB, VIC, VID, VCTRL1  
,
−0.5 V to VDDI + 0.5 V  
1, 2  
ESD CAUTION  
VCTRL2, VDISABLE  
Output Voltages (VOA, VOB, VOC, VOD  
Average Output Current per Pin3  
)
1, 2  
)
−0.5 V to VDDO + 0.5 V  
Side 1 (IO1  
Side 2 (IO2  
Common-Mode Transients4  
)
)
−18 mA to +18 mA  
−22 mA to +22 mA  
−100 kV/ꢀs to +100 kV/ꢀs  
1
All voltages are relative to their respective ground.  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the PC Board Layout section.  
3 See Figure 4 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum ratings may cause  
latch-up or permanent damage.  
Table 10. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
565  
V peak  
50-year minimum lifetime  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Basic Insulation  
Reinforced Insulation  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
Rev. H | Page 12 of 24  
 
 
 
ADuM1410/ADuM1411/ADuM1412  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
GND *  
15 GND *  
1
2
V
V
V
V
14  
13  
12  
11  
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
ADuM1410  
TOP VIEW  
(Not to Scale)  
DISABLE  
GND *  
10 CTRL  
2
9
GND *  
2
1
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH  
TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED. CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 5. ADuM1410 Pin Configuration  
Table 11. ADuM1410 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VDD1  
GND1  
Supply Voltage for Isolator Side 1 (2.7 V to 5.5 V).  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
3
4
5
6
7
VIA  
VIB  
VIC  
VID  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Input D.  
DISABLE  
Input Disable. Disables the isolator inputs and halts the dc refresh circuits. Outputs take on the logic state  
determined by CTRL2.  
8
GND1  
GND2  
CTRL2  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOA, VOB, VOC, and  
VOD outputs are high when CTRL2 is high or disconnected and VDD1 is off. VOA, VOB, VOC, and VOD outputs are low when  
CTRL2 is low and VDD1 is off. When VDD1 power is on, this pin has no effect.  
9
10  
11  
12  
13  
14  
15  
VOD  
VOC  
VOB  
VOA  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
GND2  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
16  
VDD2  
Supply Voltage for Isolator Side 2 (2.7 V to 5.5 V).  
Rev. H | Page 13 of 24  
 
 
ADuM1410/ADuM1411/ADuM1412  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
GND *  
15 GND *  
1
2
V
V
V
14  
13  
12  
11  
V
V
V
V
IA  
IB  
IC  
OA  
OB  
OC  
ID  
ADuM1411  
TOP VIEW  
(Not to Scale)  
V
OD  
CTRL  
10 CTRL  
1
2
GND *  
9
GND *  
2
1
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH  
TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED. CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 6. ADuM1411 Pin Configuration  
Table 12. ADuM1411 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VDD1  
GND1  
Supply Voltage for Isolator Side 1 (2.7 V to 5.5 V).  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
3
4
5
6
7
VIA  
VIB  
VIC  
VOD  
CTRL1  
Logic Input A.  
Logic Input B.  
Logic Input C.  
Logic Output D.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOD output is high  
when CTRL1 is high or disconnected and VDD2 is off. VOD output is low when CTRL1 is low and VDD2 is off. When VDD2  
power is on, this pin has no effect.  
8
GND1  
GND2  
CTRL2  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOA, VOB, and VOC  
outputs are high when CTRL2 is high or disconnected and VDD1 is off. VOA, VOB, and VOC outputs are low when CTRL2 is  
low and VDD1 is off. When VDD1 power is on, this pin has no effect.  
9
10  
11  
12  
13  
14  
15  
VID  
VOC  
VOB  
VOA  
GND2  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
16  
VDD2  
Supply Voltage for Isolator Side 2 (2.7 V to 5.5 V).  
Rev. H | Page 14 of 24  
 
ADuM1410/ADuM1411/ADuM1412  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
GND *  
15 GND *  
1
2
V
V
14  
13  
12  
11  
V
V
V
V
IA  
OA  
OB  
IC  
ADuM1412  
IB  
TOP VIEW  
(Not to Scale)  
V
V
OC  
OD  
ID  
CTRL  
10 CTRL  
2
1
GND *  
9
GND *  
2
1
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH  
TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY  
1
CONNECTED. CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 7. ADuM1412 Pin Configuration  
Table 13. ADuM1412 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VDD1  
GND1  
Supply Voltage for Isolator Side 1 (2.7 V to 5.5 V).  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
3
4
5
6
7
VIA  
VIB  
VOC  
VOD  
CTRL1  
Logic Input A.  
Logic Input B.  
Logic Output C.  
Logic Output D.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOC and VOD  
outputs are high when CTRL1 is high or disconnected and VDD2 is off. VOC and VOD outputs are low when CTRL1 is low  
and VDD2 is off. When VDD2 power is on, this pin has no effect.  
8
GND1  
GND2  
CTRL2  
Ground 1. Ground reference for Isolator Side 1. Pin 2 and Pin 8 are internally connected, and connecting both to GND1 is  
recommended.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
Default Output Control. Controls the logic state the outputs assume when the input power is off. VOA and VOB  
outputs are high when CTRL2 is high or disconnected and VDD1 is off. VOA and VOB outputs are low when CTRL2 is low  
and VDD1 is off. When VDD1 power is on, this pin has no effect.  
9
10  
11  
12  
13  
14  
15  
VID  
VIC  
VOB  
VOA  
GND2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for Isolator Side 2. Pin 9 and Pin 15 are internally connected, and connecting both to GND2 is  
recommended.  
16  
VDD2  
Supply Voltage for Isolator Side 2 (2.7 V to 5.5 V).  
Rev. H | Page 15 of 24  
 
ADuM1410/ADuM1411/ADuM1412  
Table 14. Truth Table (Positive Logic)  
VIx  
CTRLX  
VDISABLE VDDI  
VDDO  
VOx  
Input1 Input2  
State3  
State4  
State5  
Output1 Description  
H
L
X
X
X
L or NC Powered  
L or NC Powered  
Powered  
Powered  
Powered  
H
L
H
Normal operation, data is high.  
Normal operation, data is low.  
Inputs disabled. Outputs are in the default state as determined  
by CTRLX.  
Inputs disabled. Outputs are in the default state as determined  
by CTRLX.  
H or NC  
H
H
X
X
X
X
L
X
Powered  
Powered  
L
H or NC  
Unpowered  
H
Input unpowered. Outputs are in the default state as determined  
by CTRLX.  
Outputs return to input state within 1 μs of VDDI power restoration.  
See the pin function descriptions (Table 11, Table 12, and Table 13)  
for more details.  
X
X
L
X
X
Unpowered  
Powered  
Powered  
L
Input unpowered. Outputs are in the default state as determined  
by CTRLX.  
Outputs return to input state within 1 μs of VDDI power restoration.  
See the pin function descriptions (Table 11, Table 12, and Table 13)  
for more details.  
Output unpowered. Output pins are in high impedance state.  
Outputs return to input state within 1 μs of VDDO power restoration.  
See the pin function descriptions (Table 11, Table 12, and Table 13)  
for more details.  
X
Unpowered  
Z
1 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D).  
2 CTRLX refers to the default output control signal on the input side of a given channel (A, B, C, or D).  
3 Available only on ADuM1410.  
4 VDDI refers to the power supply on the input side of a given channel (A, B, C, or D).  
5 VDDO refers to the power supply on the output side of a given channel (A, B, C, or D).  
Rev. H | Page 16 of 24  
 
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
10  
8
1.5  
6
5V  
1.0  
5V  
3V  
4
3V  
0.5  
2
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Supply Current per Input Channel vs. Data Rate  
for 5 V and 3 V Operation  
Figure 11. Typical ADuM1410 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
1.0  
0.9  
0.8  
0.7  
10  
8
0.6  
6
5V  
0.5  
0.4  
0.3  
4
5V  
3V  
0.2  
2
0.1  
0
3V  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Typical Supply Current per Output Channel vs. Data Rate  
for 5 V and 3 V Operation (No Output Load)  
Figure 12. Typical ADuM1410 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
1.4  
1.2  
1.0  
10  
8
6
0.8  
5V  
0.6  
0.4  
4
5V  
3V  
2
0.2  
3V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 10. Typical Supply Current per Output Channel vs. Data Rate  
for 5 V and 3 V Operation (15 pF Output Load)  
Figure 13. Typical ADuM1411 VDD1 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Rev. H | Page 17 of 24  
 
 
 
 
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
10  
10  
8
8
6
6
4
4
5V  
3V  
5V  
2
2
3V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 14. Typical ADuM1411 VDD2 Supply Current vs. Data Rate  
for 5 V and 3 V Operation  
Figure 15. Typical ADuM1412 VDD1 or VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Rev. H | Page 18 of 24  
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
APPLICATIONS INFORMATION  
PC BOARD LAYOUT  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
The ADuM141x digital isolator requires no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins  
(see Figure 16). Bypass capacitors are most conveniently con-  
nected between Pin 1 and Pin 2 for VDD1, and between Pin 15  
and Pin 16 for VDD2. The capacitor value should be between  
0.01 μF and 0.1 μF. The total lead length between both ends of  
the capacitor and the input power supply pin should not exceed  
20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9  
and Pin 16 should also be considered unless both ground pins  
on each package are connected together close to the package.  
Positive and negative logic transitions at the isolator input  
cause narrow (~1 ns) pulses to be sent to the decoder using the  
transformer. The decoder is bistable and is, therefore, either set  
or reset by the pulses, indicating input logic transitions. In the  
absence of logic transitions at the input for more than ~1 μs, a  
periodic set of refresh pulses indicative of the correct input state  
is sent to ensure dc correctness at the output. If the decoder  
receives no internal pulses of more than approximately 5 μs, the  
input side is assumed to be unpowered or nonfunctional, in  
which case the isolator output is forced to a default state (see  
Table 14) by the watchdog timer circuit.  
V
GND  
V
DD1  
DD2  
GND  
The magnetic field immunity of the ADuM141x is determined  
by the changing magnetic field, which induces a voltage in the  
transformer’s receiving coil large enough to either falsely set or  
reset the decoder. The following analysis defines the conditions  
under which this can occur. The 3 V operating condition of the  
ADuM141x is examined because it represents the most suscep-  
tible mode of operation.  
1
IA  
IB  
IC  
ID  
2
V
V
V
V
V
V
V
V
OA  
OB  
OC  
OD  
ADuM1410  
DISABLE  
GND  
CTRL  
2
GND  
1
2
Figure 16. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients, it  
is important to minimize board coupling across the isolation  
barrier. Furthermore, users should design the board layout  
so that any coupling that does occur equally affects all pins  
on a given component side. Failure to ensure this can cause  
voltage differentials between pins exceeding the absolute  
maximum ratings of the device, thereby leading to latch-up  
or permanent damage.  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus  
establishing a 0.5 V margin in which induced voltages can be  
tolerated. The voltage induced across the receiving coil is given by  
2
V = (−dβ / dt) ∑ π rn ; n = 1, 2, … , N  
where:  
β is magnetic flux density (gauss).  
rn is the radius of the nth turn in the receiving coil (cm).  
N is the number of turns in the receiving coil.  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The input-to-  
output propagation delay time for a high-to-low transition may  
differ from the propagation delay time of a low-to-high  
transition.  
Given the geometry of the receiving coil in the ADuM141x and  
an imposed requirement that the induced voltage be, at most,  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field at a given frequency can be calculated. The result  
is shown in Figure 18.  
INPUT (V  
)
50%  
Ix  
100  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
Ox  
10  
Figure 17. Propagation Delay Parameters  
1
Pulse width distortion is the maximum difference between  
these two propagation delay values and an indication of how  
accurately the timing of the input signal is preserved.  
0.1  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM141x component.  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM141x  
components operating under the same conditions.  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 18. Maximum Allowable External Magnetic Flux Density  
Rev. H | Page 19 of 24  
 
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event occurred during a transmitted pulse  
(and had the worst-case polarity), it would reduce the received  
pulse from >1.0 V to 0.75 V, still well above the 0.5 V sensing  
threshold of the decoder.  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM141x  
isolator is a function of the supply voltage, the data rate of the  
channel, and the output load of the channel.  
For each input channel, the supply current is given by  
IDDI = IDDI (Q)  
DDI = IDDI (D) × (2f fr) + IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
I
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM141x transformers. Figure 19 shows these allowable  
current magnitudes as a function of frequency for selected  
distances. As shown, the ADuM141x is extremely immune and  
can be affected only by extremely large currents operated at  
high frequency very close to the component. For the 1 MHz  
example noted previously, a 0.5 kA current would have to be  
placed 5 mm away from the ADuM141x to affect the operation  
of the component.  
For each output channel, the supply current is given by  
I
I
DDO = IDDO (Q)  
f ≤ 0.5 fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
I
per channel (mA/Mbps).  
CL is the output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
1000  
f is the input logic signal frequency (MHz); it is half the input  
data rate, expressed in units of Mbps.  
fr is the input stage refresh rate (Mbps).  
DISTANCE = 1m  
100  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent  
10  
supply currents (mA).  
DISTANCE = 100mm  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
1
DISTANCE = 5mm  
VDD1 and VDD2 are calculated and totaled. Figure 8 and Figure 9  
0.1  
show per-channel supply currents as a function of data rate for  
an unloaded output condition. Figure 10 shows the per-channel  
supply current as a function of data rate for a 15 pF output  
condition. Figure 11 through Figure 15 show the total VDD1 and  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
VDD2 supply current as a function of data rate for ADuM1410/  
Figure 19. Maximum Allowable Current for Various  
Current-to-ADuM141x Spacings  
ADuM1411/ADuM1412 channel configurations.  
INSULATION LIFETIME  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces can  
induce error voltages sufficiently large enough to trigger the  
thresholds of succeeding circuitry. Care should be taken in the  
layout of such traces to avoid this possibility.  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation. In addition to  
the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the ADuM141x.  
Analog Devices performs accelerated life testing using voltage  
levels higher than the rated continuous working voltage.  
Acceleration factors for several operating conditions are  
determined. These factors allow calculation of the time to  
failure at the actual working voltage. The values shown in  
Table 10 summarize the peak voltage for 50 years of service life  
for a bipolar ac operating condition and the maximum  
CSA/VDE approved working voltages. In many cases, the  
approved working voltage is higher than 50-year service life  
voltage. Operation at these high working voltages can lead to  
shortened insulation life in some cases.  
Rev. H | Page 20 of 24  
 
 
 
 
 
 
 
ADuM1410/ADuM1411/ADuM1412  
The insulation lifetime of the ADuM141x depends on the  
voltage waveform type imposed across the isolation barrier. The  
iCoupler insulation structure degrades at different rates  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure 20, Figure 21, and Figure 22 illustrate these  
different isolation voltage waveforms.  
Note that the voltage presented in Figure 21 is shown as  
sinusoidal for illustration purposes only. It is meant to represent  
any voltage waveform varying between 0 V and some limiting  
value. The limiting value can be positive or negative, but the  
voltage cannot cross 0 V.  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines the Analog Devices recommended maximum  
working voltage.  
RATED PEAK VOLTAGE  
0V  
Figure 20. Bipolar AC Waveform  
In the case of unipolar ac or dc voltage, the stress on the  
insulation is significantly lower. This allows operation at higher  
working voltages while still achieving a 50-year service life. The  
working voltages listed in Table 10 can be applied while  
maintaining the 50-year minimum lifetime provided the voltage  
conforms to either the unipolar ac or dc voltage case. Any cross-  
insulation voltage waveform that does not conform to Figure 21  
or Figure 22 should be treated as a bipolar ac waveform, and its  
peak voltage should be limited to the 50-year lifetime voltage  
value listed in Table 10.  
RATED PEAK VOLTAGE  
0V  
Figure 21. Unipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
Figure 22. DC Waveform  
Rev. H | Page 21 of 24  
 
 
 
ADuM1410/ADuM1411/ADuM1412  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0  
.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 23. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Number Number  
Maximum Maximum  
of Inputs, of Inputs, Maximum Propagation Pulse Width Temperature  
DD1 Side DD2 Side Data Rate Delay, 5 V Distortion Range  
Package  
Option  
Model1  
V
V
Package Description  
ADuM1410ARWZ  
4
0
1 Mbps  
1 Mbps  
10 Mbps  
10 Mbps  
1 Mbps  
1 Mbps  
10 Mbps  
10 Mbps  
1 Mbps  
1 Mbps  
10 Mbps  
10 Mbps  
100 ns  
100 ns  
50 ns  
40 ns  
40 ns  
5 ns  
−40°C to +105°C 16-Lead SOIC_W  
RW-16  
ADuM1410ARWZ-RL 4  
ADuM1410BRWZ  
ADuM1410BRWZ-RL 4  
ADuM1411ARWZ  
ADuM1411ARWZ-RL 3  
ADuM1411BRWZ  
ADuM1411BRWZ-RL 3  
ADuM1412ARWZ  
ADuM1412ARWZ-RL 2  
ADuM1412BRWZ  
0
0
0
1
1
1
1
2
2
2
2
−40°C to +105°C 16-Lead SOIC_W, 13” Tape and Reel RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W, 13” Tape and Reel RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W, 13” Tape and Reel RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W, 13” Tape and Reel RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W, 13” Tape and Reel RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W, 13” Tape and Reel RW-16  
4
50 ns  
5 ns  
3
100 ns  
100 ns  
50 ns  
40 ns  
40 ns  
5 ns  
3
50 ns  
5 ns  
2
100 ns  
100 ns  
50 ns  
40 ns  
40 ns  
5 ns  
2
ADuM1412BRWZ-RL 2  
50 ns  
5 ns  
1
Z = RoHS Compliant Part.  
Rev. H | Page 22 of 24  
 
 
ADuM1410/ADuM1411/ADuM1412  
NOTES  
Rev. H | Page 23 of 24  
ADuM1410/ADuM1411/ADuM1412  
NOTES  
©2004–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06580-0-11/10(H)  
Rev. H | Page 24 of 24  

相关型号:

ADUM1412ARWZ

Quad-Channel Digital Isolators
ADI

ADUM1412ARWZ-R

暂无描述
ADI

ADUM1412ARWZ-RL

Quad-Channel Digital Isolators
ADI

ADUM1412BRW

IC SPECIALTY INTERFACE CIRCUIT, PDSO16, LEAD FREE, MS-013AA, SOIC-16, Interface IC:Other
ADI

ADUM1412BRWZ

Quad-Channel Digital Isolators
ADI

ADUM1412BRWZ-RL

Quad-Channel Digital Isolators
ADI

ADUM1412_15

Quad-Channel Digital Isolators
ADI

ADUM141D

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D0BRWZ

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D0BRWZ-RL

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D0BRZ

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI

ADUM141D0BRZ-RL7

3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
ADI