ADUM3201BRZ-RL7 [ADI]

Dual-Channel, Digital Isolators, Enhanced System-Level ESD Reliability; 双通道数字隔离器,增强的系统级ESD可靠性
ADUM3201BRZ-RL7
型号: ADUM3201BRZ-RL7
厂家: ADI    ADI
描述:

Dual-Channel, Digital Isolators, Enhanced System-Level ESD Reliability
双通道数字隔离器,增强的系统级ESD可靠性

驱动程序和接口 接口集成电路 光电二极管
文件: 总20页 (文件大小:543K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Channel, Digital Isolators,  
Enhanced System-Level ESD Reliability  
ADuM3200/ADuM3201  
GENERAL DESCRIPTION  
FEATURES  
Enhanced system-level ESD performance per IEC 61000-4-x  
Narrow body, 8-lead SOIC, Pb-free package  
Low power operation  
The ADuM320x1 are dual-channel, digital isolators based on  
Analog Devices’ iCoupler® technology. Combining high speed  
CMOS and monolithic transformer technology, these isolation  
components provide outstanding performance characteristics  
superior to alternatives such as optocoupler devices.  
5 V operation  
1.6 mA per channel maximum @ 0 Mbps to 2 Mbps  
3.7 mA per channel maximum @ 10 Mbps  
7.5 mA per channel maximum @ 25 Mbps  
3 V operation  
1.4 mA per channel maximum @ 0 Mbps to 2 Mbps  
2.4 mA per channel maximum @ 10 Mbps  
4.6 mA per channel maximum @ 25 Mbps  
Bidirectional communication  
By avoiding the use of LEDs and photodiodes, iCoupler devices  
remove the design difficulties commonly associated with  
optocouplers. The typical optocoupler concerns regarding  
uncertain current transfer ratios, nonlinear transfer functions,  
and temperature and lifetime effects are eliminated with the  
simple iCoupler digital interfaces and stable performance  
characteristics. The need for external drivers and other discrete  
components is eliminated with these iCoupler products.  
Furthermore, iCoupler devices consume one-tenth to one-sixth  
the power of optocouplers at comparable signal data rates.  
3 V/5 V level translation  
High temperature operation: 105°C  
High data rate: dc to 25 Mbps (NRZ)  
Precise timing characteristics  
3 ns maximum pulse-width distortion  
3 ns maximum channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE Certificate of Conformity  
The ADuM320x isolators provide two independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide). Both parts operate with the supply  
voltage on either side ranging from 2.7 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling a  
voltage translation functionality across the isolation barrier. The  
ADuM320x isolators have a patented refresh feature that ensures  
dc correctness in the absence of input logic transitions and  
during power-up/power-down conditions.  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01  
DIN EN 60950 (VDE 0805): 2001-12; DIN EN 60950: 2000  
VIORM = 560 V peak  
In comparison to the ADuM120x isolators, the ADuM320x  
isolators contain various circuit and layout changes to provide  
increased capability relative to system-level IEC 61000-4-x  
testing (ESD, burst, surge). The precise capability in these tests  
for either the ADuM120x or ADuM320x products is strongly  
determined by the design and layout of the user’s board or  
module. For more information, see Application Note AN-793,  
ESD/Latch-Up Considerations with iCoupler Isolation Products.  
APPLICATIONS  
Size-critical multichannel isolation  
SPI® interface/data converter isolation  
RS-232/RS-422/RS-485 transceiver isolation  
Digital field bus isolation  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and other pending patents.  
FUNCTIONAL BLOCK DIAGRAMS  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
V
V
V
V
V
V
V
DD1  
DD2  
OA  
OB  
DD1  
DD2  
IA  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
DECODE  
V
V
V
OA  
IA  
V
IB  
IB  
OB  
GND  
GND  
GND  
GND  
2
1
2
1
Figure 1. ADuM3200 Functional Block Diagram  
Figure 2. ADuM3201 Functional Block Diagram  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADuM3200/ADuM3201  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 11  
Absolute Maximum Ratings ......................................................... 12  
ESD Caution................................................................................ 12  
Pin Configurations and Function Descriptions......................... 13  
Typical Performance Characteristics ........................................... 14  
Application Information................................................................ 15  
PC Board Layout ........................................................................ 15  
System-Level ESD Considerations and Enhancements ........ 15  
Propagation Delay-Related Parameters................................... 15  
DC Correctness and Magnetic Field Immunity........................... 15  
Power Consumption .................................................................. 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3 V Operation................................ 5  
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V  
Operation....................................................................................... 7  
Package Characteristics ............................................................. 10  
Regulatory Information............................................................. 10  
Insulation and Safety-Related Specifications.......................... 10  
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation  
Characteristics ............................................................................ 11  
REVISION HISTORY  
7/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADuM3200/ADuM3201  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All voltages are relative to their respective ground. 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V. All minimum/maximum specifications  
apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, per Channel, Quiescent  
Output Supply Current, per Channel, Quiescent  
ADuM3200, Total Supply Current, Two Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.4  
0.5  
0.8  
0.6  
mA  
mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.3  
1.0  
1.7  
1.6  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BR and CR Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
3.5  
1.7  
4.6  
2.8  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
25 Mbps (CR Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (25)  
IDD2 (25)  
7.7  
3.1  
10.0  
3.9  
mA  
mA  
12.5 MHz logic signal freq.  
12.5 MHz logic signal freq.  
ADuM3201, Total Supply Current, Two Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.1  
1.3  
1.5  
1.8  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BR and CR Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
2.6  
3.1  
3.4  
4.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
25 Mbps (CR Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (25)  
IDD2 (25)  
5.3  
6.4  
6.8  
8.3  
mA  
mA  
12.5 MHz logic signal freq.  
12.5 MHz logic signal freq.  
For All Models  
Input Currents  
Logic High Input Threshold  
IIA, IIB  
VIH  
−10  
0.7 VDD1  
+0.01 +10  
μA  
V
0 ≤ VIA, VIB ≤ VDD1 or VDD2  
,
VDD2  
Logic Low Input Threshold  
Logic High Output Voltages  
VIL  
0.3 VDD1,  
VDD2  
V
V
V
VOAH  
VOBH  
VDD1  
VDD2 − 0.1  
VDD1  
,
5.0  
4.8  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
,
V
DD2 − 0.5  
Logic Low Output Voltages  
VOAL  
VOBL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
V
V
V
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM320xAR  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
1000  
ns  
Mbps  
ns  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
tPSK  
tPSKCD/OD  
tR/tF  
150  
40  
100  
50  
4
Pulse-Width Distortion, |tPLH − tPHL  
|
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ns  
ns  
Output Rise/Fall Time (10% to 90%)  
10  
Rev. 0 | Page 3 of 20  
 
ADuM3200/ADuM3201  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
ADuM320xBR  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
Pulse-Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
PW  
100  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
20  
tPHL, tPLH  
PWD  
50  
3
4
|
5
tPSK  
tPSKCD  
15  
3
Channel-to-Channel Matching,  
Codirectional Channels6  
ns  
Channel-to-Channel Matching,  
tPSKOD  
tR/tF  
15  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Opposing Directional Channels6  
Output Rise/Fall Time (10% to 90%)  
ADuM320xCR  
2.5  
Minimum Pulse Width2  
PW  
20  
50  
40  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
25  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
45  
3
4
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching,  
Codirectional Channels6  
|
5
tPSK  
tPSKCD  
15  
3
ns  
Channel-to-Channel Matching,  
tPSKOD  
tR/tF  
15  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Opposing Directional Channels6  
Output Rise/Fall Time (10% to 90%)  
For All Models  
2.5  
Common-Mode Transient Immunity  
at Logic High Output7  
Common-Mode Transient Immunity  
at Logic Low Output7  
|CMH|  
|CML|  
25  
25  
35  
35  
kV/μs  
kV/μs  
VIx = VDD1, VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current, per Channel8  
Output Dynamic Supply Current, per Channel8  
IDDI (D)  
IDDO (D)  
0.19  
0.05  
mA/Mbps  
mA/Mbps  
1 The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See  
Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 11  
for total IDD1 and IDD2 supply currents as a function of data rate for ADuM3200 and ADuM3201 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating temperature, supply voltages, and output  
load within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for  
information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply  
current for a given data rate.  
Rev. 0 | Page 4 of 20  
 
 
 
ADuM3200/ADuM3201  
ELECTRICAL CHARACTERISTICS—3 V OPERATION  
All voltages are relative to their respective ground. 2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V. All minimum/maximum specifications  
apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at TA = 25°C,  
VDD1 = VDD2 = 3.0 V.  
Table 2.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, per Channel, Quiescent IDDI (Q)  
0.3  
0.3  
0.5  
0.5  
mA  
mA  
Output Supply Current, per Channel, Quiescent  
ADuM3200, Total Supply Current, Two Channels1  
DC to 2 Mbps  
IDDO (Q)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.8  
0.7  
1.3  
1.0  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BR and CR Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
2.0  
1.1  
3.2  
1.7  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
25 Mbps (CR Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (25)  
IDD2 (25)  
4.3  
1.8  
6.4  
2.4  
mA  
mA  
12.5 MHz logic signal freq.  
12.5 MHz logic signal freq.  
ADuM3201,Total Supply Current,Two Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
0.7  
0.8  
1.3  
1.6  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BR and CR Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
1.5  
1.9  
2.1  
2.4  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
25 Mbps (CR Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (25)  
IDD2 (25)  
3.0  
3.6  
4.2  
5.1  
mA  
mA  
12.5 MHz logic signal freq.  
12.5 MHz logic signal freq.  
For All Models  
Input Currents  
Logic High Input Threshold  
IIA, IIB  
VIH  
−10  
0.7 VDD1,  
VDD2  
+0.01 +10  
μA  
V
0 ≤ VIA, VIB, ≤ VDD1 or VDD2  
Logic Low Input Threshold  
Logic High Output Voltages  
VIL  
0.3 VDD1  
VDD2  
,
V
V
V
VOAH  
VOBH  
VDD1  
VDD2 − 0.1  
VDD1  
VDD2 − 0.5  
,
3.0  
2.8  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
,
Logic Low Output Voltages  
VOAL  
VOBL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
V
V
V
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM320xAR  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
1000  
ns  
Mbps  
ns  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
Propagation Delay4  
tPHL, tPLH 20  
PWD  
tPSK  
tPSKCD/OD  
tR/tF  
150  
40  
100  
50  
4
Pulse-Width Distortion, |tPLH − tPHL  
|
Propagation Delay Skew5  
Channel-to-Channel Matching6  
ns  
ns  
Output Rise/Fall Time (10% to 90%)  
10  
Rev. 0 | Page 5 of 20  
 
ADuM3200/ADuM3201  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
ADuM320xBR  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
Pulse-Width Distortion, |tPLH −tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
PW  
100  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
tPHL, tPLH 20  
PWD  
60  
3
4
|
5
tPSK  
tPSKCD  
22  
3
Channel-to-Channel Matching,  
Codirectional Channels6  
ns  
Channel-to-Channel Matching,  
tPSKOD  
tR/tF  
22  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Opposing Directional Channels6  
Output Rise/Fall Time (10% to 90%)  
ADuM320xCR  
3.0  
Minimum Pulse Width2  
PW  
20  
50  
40  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
25  
tPHL, tPLH 20  
PWD  
Propagation Delay4  
55  
3
4
Pulse-Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching,  
Codirectional Channels6  
|
5
tPSK  
tPSKCD  
16  
3
ns  
Channel-to-Channel Matching,  
tPSKOD  
tR/tF  
16  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Opposing Directional Channels6  
Output Rise/Fall Time (10% to 90%)  
For All Models  
3.0  
Common Mode Transient Immunity  
at Logic High Output7  
Common Mode Transient Immunity  
at Logic Low Output7  
|CMH|  
|CML|  
25  
25  
35  
35  
kV/μs  
kV/μs  
VIx = VDD1, VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
0.10  
0.03  
Mbps  
mA/Mbps  
mA/Mbps  
Input Dynamic Supply Current, per Channel8  
IDDI (D)  
Output Dynamic Supply Current, per Channel8 IDDO (D)  
1 The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See  
Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 11  
for total IDD1 and IDD2 supply currents as a function of data rate for ADuM3200 and ADuM3201 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating temperature, supply voltages, and output  
load within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for  
information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply  
current for a given data rate.  
Rev. 0 | Page 6 of 20  
 
 
 
ADuM3200/ADuM3201  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION  
All voltages are relative to their respective ground. 5 V/3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V. 3 V/5 V operation:  
2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V. All minimum/maximum specifications apply over the entire recommended operating range,  
unless otherwise noted. All typical specifications are at TA = 25°C; VDD1 = 3.0 V, VDD2 = 5.0 V; or VDD1 = 5.0 V, VDD2 = 3.0 V.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, per Channel, Quiescent  
5 V/3 V Operation  
IDDI (Q)  
0.4  
0.3  
0.8  
0.5  
mA  
mA  
3 V/5 V Operation  
Output Supply Current, per Channel, Quiescent  
5 V/3 V Operation  
3 V/5 V Operation  
ADuM3200, Total Supply Current, Two Channels1  
IDDO (Q)  
0.3  
0.5  
0.5  
0.6  
mA  
mA  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.3  
0.8  
1.7  
1.3  
mA  
mA  
DCto1MHzlogicsignalfreq.  
DCto1MHzlogicsignalfreq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.7  
1.0  
1.0  
1.6  
mA  
mA  
DCto1MHzlogicsignalfreq.  
DCto1MHzlogicsignalfreq.  
10 Mbps (BR and CR Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
3.5  
2.0  
4.6  
3.2  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.1  
1.7  
1.7  
2.8  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
25 Mbps (CR Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (25)  
7.7  
4.3  
10.0  
6.4  
mA  
mA  
12.5 MHz logic signal freq.  
12.5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (25)  
1.8  
3.1  
2.4  
3.9  
mA  
mA  
12.5 MHz logic signal freq.  
12.5 MHz logic signal freq.  
ADuM3201, Total Supply Current, Two Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
1.1  
0.7  
1.5  
1.3  
mA  
mA  
DCto1MHzlogicsignalfreq.  
DCto1MHzlogicsignalfreq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.8  
1.3  
1.6  
1.8  
mA  
mA  
DCto1MHzlogicsignalfreq.  
DCto1MHzlogicsignalfreq.  
10 Mbps (BR and CR Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
2.6  
1.5  
3.4  
2.1  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.9  
3.1  
2.4  
4.0  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
Rev. 0 | Page 7 of 20  
 
ADuM3200/ADuM3201  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
25 Mbps (CR Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
For All Models  
IDD1 (25)  
5.3  
3.0  
6.8  
4.2  
mA  
mA  
12.5 MHz logic signal freq.  
12.5 MHz logic signal freq.  
IDD2 (25)  
3.6  
6.4  
5.1  
8.3  
mA  
mA  
12.5 MHz logic signal freq.  
12.5 MHz logic signal freq.  
Input Currents  
Logic High Input Threshold  
IIA, IIB  
VIH  
−10  
0.7 VDD1  
+0.01  
+10  
μA  
V
0 ≤ VIA, VIB ≤ VDD1 or VDD2  
,
VDD2  
Logic Low Input Threshold  
VIL  
0.3 VDD1  
,
V
VDD2  
5 V/3 V Operation  
3 V/5 V Operation  
Logic High Output Voltages  
0.8  
0.4  
V
V
V
VOAH, VOBH VDD1  
VDD2 − 0.1 VDD2  
VDD1 VDD1  
,
VDD1  
,
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
,
,
V
VDD2 − 0.5  
VDD2 − 0.2  
Logic Low Output Voltages  
VOAL, VOBL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
V
V
V
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM320xAR  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
1000  
ns  
Mbps  
ns  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
15  
Propagation Delay4  
tPHL, tPLH  
PWD  
tPSK  
tPSKCD/OD  
tR/tF  
150  
40  
50  
4
Pulse-Width Distortion, |tPLH − tPHL  
Propagation Delay Skew5  
Channel-to-Channel Matching6  
Output Rise/Fall Time (10% to 90%)  
ADuM320xBR  
|
50  
ns  
ns  
10  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
100  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
10  
15  
Propagation Delay4  
tPHL, tPLH  
PWD  
55  
3
4
Pulse-Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching,  
Codirectional Channels6  
|
5
tPSK  
tPSKCD  
22  
3
ns  
Channel-to-Channel Matching,  
tPSKOD  
tR/tf  
22  
ns  
CL = 15 pF, CMOS signal levels  
Opposing Directional Channels6  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3.0  
2.5  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3 V/5 V Operation  
Rev. 0 | Page 8 of 20  
ADuM3200/ADuM3201  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
ADuM320xCR  
Minimum Pulse Width2  
PW  
20  
50  
40  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate3  
25  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
50  
3
4
Pulse-Width Distortion, |tPLH – tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching,  
Codirectional Channels6  
|
5
tPSK  
tPSKCD  
15  
3
ns  
Channel-to-Channel Matching,  
tPSKOD  
tR/tf  
15  
ns  
CL = 15 pF, CMOS signal levels  
Opposing Directional Channels6  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3.0  
2.5  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3 V/5 V Operation  
For All Models  
Common-Mode Transient Immunity  
at Logic High Output7  
Common-Mode Transient Immunity  
at Logic Low Output7  
|CMH|  
|CML|  
fr  
25  
25  
35  
35  
kV/μs  
kV/μs  
VIx = VDD1, VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
transient magnitude = 800 V  
Refresh Rate  
5 V/3 V Operation  
3 V/5 V Operation  
1.2  
1.1  
Mbps  
Mbps  
Input Dynamic Supply Current,  
per Channel8  
IDDI (D)  
5 V/3 V Operation  
3 V/5 V Operation  
0.19  
0.10  
mA/Mbps  
mA/Mbps  
Output Dynamic Supply Current,  
per Channel8  
IDDO (D)  
5 V/3 V Operation  
3 V/5 V Operation  
0.03  
0.05  
mA/Mbps  
mA/Mbps  
1 The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See  
Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 11  
for total IDD1 and IDD2 supply currents as a function of data rate for ADuM3200 and ADuM3201 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating temperature, supply voltages, and output  
load within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 6 through Figure 8 for  
information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply  
current for a given data rate.  
Rev. 0 | Page 9 of 20  
 
 
 
ADuM3200/ADuM3201  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
1.0  
4.0  
46  
Max  
Unit  
Ω
pF  
pF  
°C/W  
Test Conditions  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
Thermocouple located at center  
of package underside  
IC Junction-to-Case Thermal Resistance, Side 2  
θJCO  
41  
°C/W  
1 The device is considered a 2-terminal device; Pin 1, Pin 2, Pin 3, and Pin 4 are shorted together, and Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together.  
REGULATORY INFORMATION  
The ADuM3200/ADuM3201 is approved by the following organizations.  
Table 5.  
UL  
CSA  
VDE  
Recognized under 1577 Component  
Recognition Program1  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN EN 60747-5-2 (VDE 0884 Part 2):  
2003-012  
2500 V rms isolation voltage  
File E214100  
Basic insulation, 560 V peak  
File 2471900-4880-0001  
File 205078  
1 In accordance with UL1577, each ADuM320x is proof-tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (current leakage detection limit = 5 μA).  
2 In accordance with DIN EN 60747-5-2, each ADuM320x is proof-tested by applying an insulation test voltage ≥ 1050 V peak for 1 second (partial discharge detection  
limit = 5 pC).  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol Value  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
4.90 min  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum External Tracking (Creepage)  
4.01 min  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>175  
IIIa  
V
Rev. 0 | Page 10 of 20  
 
 
ADuM3200/ADuM3201  
DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS  
Table 7.  
Description  
Symbol  
Characteristic  
Unit  
Installation Classification Per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
VIORM × 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VIORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
After Input and/or Safety Test Subgroup 2/3  
VIORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage (Transient Overvoltage, tTR = 10 sec)  
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure; also See Figure 3)  
Case Temperature  
I−IV  
I−III  
I−II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VPR  
896  
V peak  
672  
4000  
V peak  
V peak  
VTR  
TS  
IS1  
IS2  
RS  
150  
160  
170  
>109  
°C  
Side 1 Current  
Side 2 Current  
Insulation Resistance at TS, VIO = 500 V  
mA  
mA  
Ω
Note that the “*” marking on the package denotes DIN EN 60747-5-2 approval for a 560 V peak working voltage.  
This isolator is suitable for basic isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.  
200  
RECOMMENDED OPERATING CONDITIONS  
180  
160  
Table 8.  
Parameter  
140  
SIDE #2  
Symbol Min Max  
Unit  
SIDE #1  
120  
100  
80  
60  
40  
20  
0
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
TA  
−40 +105 °C  
VDD1, VDD2 2.7  
5.5  
1.0  
V
ms  
1 All voltages are relative to their respective ground. See the DC Correctness and  
Magnetic Field Immunity section for information on immunity to external  
magnetic fields.  
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
Figure 3. Thermal Derating Curve, Dependence of Safety-  
Limiting Values on Case Temperature, per DIN EN 60747-5-2  
Rev. 0 | Page 11 of 20  
 
 
 
ADuM3200/ADuM3201  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Table 9.  
Parameter  
Symbol  
Min  
−55  
−40  
−0.5  
−0.5  
−0.5  
−35  
−100  
Max  
Unit  
°C  
°C  
V
V
Storage Temperature  
Ambient Operating Temperature  
Supply Voltages1  
Input Voltage1, 2  
Output Voltage1, 2  
Average Output Current, per Pin3  
Common-Mode Transients4  
TST  
TA  
VDD1, VDD2  
VIA, VIB  
VOA, VOB  
IO  
+150  
+105  
+7.0  
VDDI + 0.5  
VDDO + 0.5  
+35  
V
mA  
kV/μs  
CMH, CML  
+100  
1 All voltages are relative to their respective ground.  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a given channel, respectively.  
3 See Figure 3 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Rating can cause latch-up or  
permanent damage.  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
Functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Table 10. ADuM3200 Truth Table (Positive Logic)  
VIA Input  
VIB Input  
VDD1 State  
Powered  
Powered  
Powered  
Powered  
Unpowered  
VDD2 State  
Powered  
Powered  
Powered  
Powered  
Powered  
VOA Output  
VOB Output  
Notes  
H
L
H
L
H
L
L
H
X
H
L
H
L
H
L
L
H
H
X
H
Outputs return to the input state within  
1 μs of VDDI power restoration.  
X
X
Powered  
Unpowered  
Indeterminate  
Indeterminate  
Outputs return to the input state within  
1 μs of VDDO power restoration.  
Table 11. ADuM3201 Truth Table (Positive Logic)  
VIA Input VIB Input VDD1 State  
VDD2 State  
Powered  
Powered  
Powered  
Powered  
VOA Output  
VOB Output  
Notes  
H
L
H
L
H
L
L
H
X
Powered  
Powered  
Powered  
Powered  
H
L
H
L
H
L
L
H
H
X
Unpowered Powered  
Indeterminate  
Outputs return to the input state within  
1 μs of VDDI power restoration.  
X
X
Powered Unpowered  
H
Indeterminate  
Outputs return to the input state within  
1 μs of VDDO power restoration.  
Rev. 0 | Page 12 of 20  
 
 
 
ADuM3200/ADuM3201  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
8
7
6
5
V
V
V
V
1
2
3
4
8
7
6
5
V
V
V
DD1  
DD2  
OA  
OB  
DD1  
DD2  
IA  
ADuM3200  
ADuM3201  
V
V
OA  
IA  
IB  
V
V
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
IB  
OB  
GND  
GND  
GND  
GND  
2
1
2
1
Figure 4. ADuM3200 Pin Configuration  
Figure 5. ADuM3201 Pin Configuration  
Table 12. ADuM3200 Pin Function Descriptions  
Table 13. ADuM3201 Pin Function Descriptions  
Pin  
Pin  
No. Mnemonic Function  
No. Mnemonic Function  
1
2
3
4
5
6
7
8
VDD1  
VIA  
VIB  
GND1  
GND2  
VOB  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Logic Input A.  
Logic Input B.  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Logic Output B.  
1
2
3
4
5
6
7
8
VDD1  
VOA  
VIB  
GND1  
GND2  
VOB  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Logic Output A.  
Logic Input B.  
Ground 1. Ground reference for Isolator Side 1.  
Ground 2. Ground reference for Isolator Side 2.  
Logic Output B.  
VOA  
VDD2  
Logic Output A.  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
VIA  
VDD2  
Logic Input A.  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. 0 | Page 13 of 20  
 
ADuM3200/ADuM3201  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
20  
15  
10  
5
8
6
4
5V  
5V  
2
3V  
3V  
0
0
0
10  
20  
30  
0
10  
20  
30  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 6. Typical Input Supply Current per Channel vs.  
Data Rate for 5 V and 3 V Operation  
Figure 9. Typical ADuM3200 VDD1 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
4
3
2
1
0
4
3
2
1
0
5V  
5V  
3V  
3V  
0
10  
20  
30  
0
10  
20  
30  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 7. Typical Output Supply Current per Channel vs.  
Data Rate for 5 V and 3 V Operation (No Output Load)  
Figure 10. Typical ADuM3200 VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
4
10  
8
3
2
1
0
6
5V  
4
5V  
2
3V  
3V  
0
0
10  
20  
30  
0
10  
20  
30  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Output Supply Current per Channel vs.  
Data Rate for 5 V and 3 V Operation (15 pF Output Load)  
Figure 11. Typical ADuM3201 VDD1 or VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
 
ADuM3200/ADuM3201  
APPLICATION INFORMATION  
Channel-to-channel matching refers to the maximum amount  
that the propagation delay differs between channels within a  
single ADuM320x component.  
PC BOARD LAYOUT  
The ADuM320x digital isolators require no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins. The  
capacitor value should be between 0.01 μF and 0.1 μF. The total  
lead length between both ends of the capacitor and the input  
power supply pin should not exceed 20 mm.  
Propagation delay skew refers to the maximum amount that the  
propagation delay differs between multiple ADuM320x  
components operating under the same conditions.  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
SYSTEM-LEVEL ESD CONSIDERATIONS AND  
ENHANCEMENTS  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder via the transformer.  
The decoder is bistable and is therefore either set or reset by the  
pulses, indicating input logic transitions. In the absence of logic  
transitions of more than 2 μs at the input, a periodic set of  
refresh pulses indicative of the correct input state are sent to  
ensure dc correctness at the output. If the decoder receives no  
internal pulses for more than about 5 μs, the input side is  
assumed to be unpowered or nonfunctional, in which case,  
the isolator output is forced to a default state (see Table 8) by  
the watchdog timer circuit.  
System-level ESD reliability (for example, per IEC 61000-4-x)  
is highly dependent on system design which varies widely by  
application. The ADuM320x incorporate many enhancements  
to make ESD reliability less dependent on system design. The  
enhancements include:  
ESD protection cells added to all input/output interfaces.  
Key metal trace resistances reduced using wider geometry  
and paralleling of lines with vias.  
The ADuM320x are extremely immune to external magnetic  
fields. The limitation on the ADuM320xs magnetic field  
immunity is set by the condition in which induced voltage in  
the transformer’s receiving coil is sufficiently large to either  
falsely set or reset the decoder. The following analysis defines  
the conditions under which this can occur. The 3 V operating  
condition of the ADuM320x is examined because it represents  
the most susceptible mode of operation.  
The SCR effect inherent in CMOS devices minimized by use  
of guarding and isolation technique between PMOS and  
NMOS devices.  
Areas of high electric field concentration eliminated using  
45° corners on metal traces.  
Supply pin overvoltage prevented with larger ESD clamps  
between each supply pin and its respective ground.  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V,  
therefore establishing a 0.5 V margin in which induced voltages  
can be tolerated. The voltage induced across the receiving coil is  
given by  
While the ADuM320x improve system-level ESD reliability,  
they are no substitute for a robust system-level design. See  
Application Note AN-793, ESD/Latch-Up Considerations with  
iCoupler Isolation Products for detailed recommendations on  
board layout and system-level design.  
2
V = (−dβ/dt) ∑π rn , n = 1, 2, . . . , N  
PROPAGATION DELAY-RELATED PARAMETERS  
where:  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a logic low output can differ from the propagation  
delay to a logic high.  
β is the magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
INPUT (V  
)
Given the geometry of the receiving coil in the ADuM320x and  
an imposed requirement that the induced voltage be at most  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated, as shown in Figure 13.  
50%  
IX  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
OX  
Figure 12. Propagation Delay Parameters  
Pulse-width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the input signals timing is preserved.  
Rev. 0 | Page 15 of 20  
 
ADuM3200/ADuM3201  
100  
Note that at combinations of strong magnetic fields and high  
frequencies, any loops formed by printed circuit board traces  
could induce sufficiently large error voltages to trigger the  
threshold of succeeding circuitry. Care should be taken in the  
layout of such traces to avoid this possibility.  
10  
1
POWER CONSUMPTION  
0.1  
The supply current at a given channel of the ADuM320x  
isolator is a function of the supply voltage, the channels data  
rate, and the channels output load.  
0.01  
0.001  
For each input channel, the supply current is given by  
1k  
10k  
100k  
1M  
10M  
100M  
IDDI = IDDI (Q)  
f ≤ 0.5fr  
f > 0.5fr  
MAGNETIC FIELD FREQUENCY (Hz)  
IDDI = IDDI (D) × (2f – fr) + IDDI (Q)  
Figure 13. Maximum Allowable External Magnetic Flux Density  
for each output channel, the supply current is given by  
IDDO = IDDO (Q) f ≤ 0.5fr  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and had the worst-case polarity), it would reduce the  
received pulse from >1.0 V to 0.75 V—still well above the 0.5 V  
sensing threshold of the decoder.  
I
DDO = (IDDO (D) + (0.5 × 10−3) × CLVDDO) × (2f – fr) + IDDO (Q)  
f > 0.5fr  
where:  
I
DDI (D), IDDO (D) are the input and output dynamic supply currents  
per channel (mA/Mbps).  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances away from the  
ADuM320x transformers. Figure 14 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As seen, the ADuM320x are extremely immune and  
can be affected only by extremely large currents operated at  
high frequency and very close to the component. For the 1 MHz  
example, one would have to place a 0.5 kA current 5 mm away  
from the ADuM320x to affect the component’s operation.  
CL is the output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
f is the input logic signal frequency (MHz, half of the input data  
rate, NRZ signaling).  
fr is the input stage refresh rate (Mbps).  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent  
1000  
supply currents (mA).  
DISTANCE = 1m  
To calculate the total IDD1 and IDD2 supply current, the supply  
currents for each input and output channel corresponding to  
100  
I
DD1 and IDD2 are calculated and totaled. Figure 6 provides per-  
10  
channel input supply currents as a function of data rate. Figure 7  
and Figure 8 provide per-channel output supply currents as a  
function of data rate for an unloaded output condition and for a  
15 pF output condition, respectively. Figure 9 through Figure 11  
provide total IDD1 and IDD2 supply current as a function of data  
rate for ADuM3200 and ADuM3201 channel configurations.  
DISTANCE = 100mm  
1
DISTANCE = 5mm  
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 14. Maximum Allowable Current for Various  
Current-to-ADuM320x Spacings  
Rev. 0 | Page 16 of 20  
 
 
 
ADuM3200/ADuM3201  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 15. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters (inches)  
ORDERING GUIDE  
Number  
of Inputs,  
Number  
of Inputs,  
Maximum  
Data Rate  
(Mbps)  
Maximum  
Propagation  
Delay, 5 V (ns)  
Maximum  
Pulse-Width  
Distortion (ns)  
Temperature  
Range (°C)  
Package  
Option1  
Model  
V
2
2
2
2
2
2
1
1
1
1
1
1
DD1 Side  
V
0
0
0
0
0
0
1
1
1
1
1
1
DD2 Side  
ADuM3200ARZ2  
ADuM3200ARZ-RL72  
ADuM3200BRZ2  
ADuM3200BRZ-RL72  
ADuM3200CRZ2  
ADuM3200CRZ-RL72  
ADuM3201ARZ2  
ADuM3201ARZ-RL72  
ADuM3201BRZ2  
ADuM3201BRZ-RL72  
ADuM3201CRZ2  
ADuM3201CRZ-RL72  
1
1
150  
150  
50  
50  
45  
40  
40  
3
3
3
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
10  
10  
25  
25  
1
45  
3
150  
150  
50  
50  
45  
40  
40  
3
3
3
1
10  
10  
25  
25  
45  
3
1 R-8 = 8-lead narrow body SOIC_N.  
2 Z = Pb-free part.  
Rev. 0 | Page 17 of 20  
 
 
 
ADuM3200/ADuM3201  
NOTES  
Rev. 0 | Page 18 of 20  
ADuM3200/ADuM3201  
NOTES  
Rev. 0 | Page 19 of 20  
ADuM3200/ADuM3201  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05927-0-7/06(0)  
Rev. 0 | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY