ADUM5020-3BRWZ [ADI]

Low Emission, Isolated DC-to-DC Converters;
ADUM5020-3BRWZ
型号: ADUM5020-3BRWZ
厂家: ADI    ADI
描述:

Low Emission, Isolated DC-to-DC Converters

文件: 总20页 (文件大小:548K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Emission,  
Isolated DC-to-DC Converters  
Data Sheet  
ADuM5020/ADuM5028  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
isoPower integrated, isolated dc-to-dc converter  
100 mA output current for ADuM5020  
60 mA output current for ADuM5028  
Meets CISPR22 Class B emissions limits at full load on a  
2-layer PCB  
16-lead SOIC_W package with 7.8 mm minimum creepage  
8-lead SOIC_IC package with 8.3 mm minimum creepage  
High temperature operation: 125°C maximum  
Safety and regulatory approvals  
1
2
3
4
5
6
7
8
16  
NIC  
NIC  
ADuM5020  
15 GND  
GND  
ISO  
ISO  
ISO  
ISO  
1
14  
13  
12  
11  
10  
9
V
SEL  
PDIS  
PCS  
GND  
V
GND  
1
OSC  
V
RECT  
REG  
DDP  
ISO  
GND  
1
GND  
NIC  
NIC  
GND  
1
GND  
UL recognition (pending)  
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
3000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A (pending)  
VDE certificate of conformity (pending)  
VDE V 0884-10  
Figure 1. ADuM5020 Functional Block Diagram  
V
IORM = 565 V peak  
ADuM5028  
CQC certification per GB4943.1-2011 (pending)  
8
7
6
5
V
SEL  
PDIS  
1
2
3
4
PCS  
GND  
1
GND  
APPLICATIONS  
ISO  
V
OSC  
V
RECT  
REG  
DDP  
ISO  
RS-485/RS-422/CAN transceiver power  
Power supply start-up bias and gate drives  
Isolated sensor interfaces  
GND  
1
GND  
ISO  
Figure 2. ADuM5028 Functional Block Diagram  
Industrial PLCs  
GENERAL DESCRIPTION  
The ADuM5020 and ADuM50281 are isoPower®, integrated,  
isolated dc-to-dc converters. Based on the Analog Devices, Inc.,  
iCoupler® technology, these dc-to-dc converters provide  
regulated, isolated power that is below CISPR22 Class B limits at  
full load on a 2-layer printed circuit board (PCB) with ferrites.  
Common voltage combinations and the associated current  
output levels are shown in Table 1 through Table 6.  
The ADuM5020 and ADuM5028 isolated dc-to-dc converters  
provide two different package variants: the ADuM5020 in a  
wide body, 16-lead SOIC_W package, and the ADuM5028 in  
the space saving, 8-lead, wide body SOIC_IC. For 5 V input  
operations, use the ADuM5020-5BRWZ and the ADuM5028-  
5BRIZ. For 3.3 V input to 3.3 V output operations, use the  
ADuM5020-3BRWZ and the ADuM5028-3RIZ. See the Pin  
Configuration and Function Descriptions section and the  
Ordering Guide for more information.  
The ADuM5020 and ADuM5028 eliminate the need to design  
and build isolated dc-to-dc converters in applications up to  
500 mW. The iCoupler chip scale transformer technology is used  
for the magnetic components of the dc-to-dc converter. The  
result is a small form factor, isolated solution.  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. A Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADuM5020/ADuM5028  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .......................................9  
Absolute Maximum Ratings ......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 13  
Theory of Operation ...................................................................... 16  
Applications Information.............................................................. 17  
PCB Layout ................................................................................. 17  
Thermal Analysis ....................................................................... 18  
EMI Considerations................................................................... 18  
Insulation Lifetime..................................................................... 18  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Primary Input Supply/5 V  
Secondary Isolated Supply .......................................................... 3  
Electrical Characteristics—5 V Primary Input Supply/3.3 V  
Secondary Isolated Supply .......................................................... 4  
Electrical Characteristics—3.3 V Primary Input Supply/3.3 V  
Secondary Isolated Supply .......................................................... 5  
Regulatory Approvals................................................................... 6  
Insulation and Safety Related Specifications ............................ 6  
Package Characteristics ............................................................... 7  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics .............................................................................. 7  
REVISION HISTORY  
12/2018—Rev. 0 to Rev. A  
Change to Features Section ............................................................. 1  
Change to General Description Section........................................ 1  
Changes to Table 1 Table Title, Efficiency at IISO (MAX) Parameter,  
Table 1, and Table 2 .......................................................................... 3  
Changes to Table 3 and Table 4....................................................... 4  
Added Electrical Characteristics—3.3 V Primary Input  
Supply/3.3 V Secondary Isolated Supply Section, Table 5, and  
Table 6; Renumbered Sequentially................................................. 5  
Changes to Table 14.......................................................................... 9  
Changes to Table 17, Table 18, and Table 19............................... 11  
Changes to Figure 7, Figure 8, and Figure 9................................ 12  
Change to Theory of Operations Section.................................... 15  
Changes to Ordering Guide .......................................................... 20  
6/2018—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Data Sheet  
ADuM5020/ADuM5028  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDDP = VISO = 5 V. Minimum and maximum specifications apply over the entire recommended  
operation range, which is 4.5 V ≤ VDDP ≤ 5.5 V, 4.5 V ≤ VISO ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 1. ADuM5020-5BRIZ DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Line Regulation  
Load Regulation1  
Output Ripple1  
VISO  
4.75 5.0  
5.25  
5
V
VISO output current (IISO) = 10 mA  
IISO = 50 mA, VDDP = 4.5 V to 5.5 V  
IISO = 10 mA to 90 mA  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
2
1
75  
mV/V  
%
mV p-p 20 MHz bandwidth, bypass output capacitance (CBO) =  
0.1 µF||10 µF, IISO = 90 mA  
mV p-p CBO = 0.1 µF||10 µF, IISO = 90 mA  
MHz  
kHz  
Output Noise1  
Switching Frequency  
Pulse-Width Modulation (PWM)  
Frequency  
Output Supply Current1  
VISO (NOISE)  
fOSC  
fPWM  
200  
180  
625  
IISO (MAX)  
50  
mA  
mA  
%
4.75 V < VISO < 5.25 V  
4.5 V < VISO < 5.25 V  
IISO = 100 mA, TA = 25°C  
100  
33  
Efficiency at IISO (MAX)  
VDDP Supply Current  
No VISO Load  
IDDP (Q)  
IDDP (MAX)  
8
310  
25  
mA  
mA  
Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
154  
10  
°C  
°C  
1 Maximum VISO output current is derated by 1.75 mA/ºC for TA > 85ºC.  
Table 2. ADuM5028-5BRIZ DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Line Regulation  
Load Regulation1  
Output Ripple1  
Output Noise1  
Switching Frequency  
PWM Frequency  
Output Supply Current1  
Efficiency at IISO (MAX)  
VDDP Supply Current  
No VISO Load  
VISO  
4.75 5.0  
5.25  
5
V
IISO = 10 mA  
IISO = 30 mA, VDDP = 4.5 V to 5.5 V  
IISO = 6 mA to 54 mA  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
2
1
75  
mV/V  
%
mV p-p 20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 54 mA  
mV p-p CBO = 0.1 µF||10 µF, IISO = 54 mA  
MHz  
kHz  
mA  
%
200  
180  
625  
60  
fPWM  
IISO (MAX)  
4.75 V < VISO < 5.25 V  
IISO = 60 mA, TA = 25°C  
33  
IDDP (Q)  
IDDP (MAX)  
8
190  
25  
mA  
mA  
Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
154  
10  
°C  
°C  
1 Maximum VISO output current is derated by 1 mA/ºC for TA > 85ºC.  
Rev. A | Page 3 of 20  
 
 
 
ADuM5020/ADuM5028  
Data Sheet  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDDP = 5.0 V, VISO = 3.3 V. Minimum/maximum specifications apply over the entire  
recommended operation range, which is 4.5 V ≤ VDDP ≤ 5.5 V, 3.0 V ≤ VISO ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 3. ADuM5020-5BRIZ DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Line Regulation  
Load Regulation1  
Output Ripple1  
Output Noise1  
Switching Frequency  
PWM Frequency  
Output Supply Current1  
VISO  
3.135 3.3  
3.465  
5
V
IISO = 10 mA  
IISO = 50 mA, VDDP = 4.5 V to 5.5 V  
IISO = 10 mA to 90 mA  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
2
1
50  
mV/V  
%
mV p-p 20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 90 mA  
mV p-p CBO = 0.1 µF||10 µF, IISO = 90 mA  
130  
180  
625  
50  
100  
27  
MHz  
kHz  
mA  
mA  
%
fPWM  
IISO (MAX)  
3.135 V < VISO < 3.465 V  
3.0 V < VISO < 3.465 V  
IISO = 100 mA, TA = 25°C  
Efficiency at IISO (MAX)  
VDDP Supply Current  
No VISO Load  
IDDP (Q)  
IDDP (MAX)  
5
250  
18  
mA  
mA  
Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
154  
10  
°C  
°C  
1 Maximum VISO output current is derated by 1.75 mA/ºC for TA > 85ºC.  
Table 4. ADuM5028-5BRIZ DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Line Regulation  
Load Regulation1  
Output Ripple1  
Output Noise1  
Switching Frequency  
PWM Frequency  
Output Supply Current1  
VISO  
3.135 3.3  
3.465  
5
V
IISO = 10 mA  
IISO = 30 mA, VDDP = 4.5 V to 5.5 V  
IISO = 6 mA to 54 mA  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
2
1
50  
mV/V  
%
mV p-p 20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 54 mA  
mV p-p CBO = 0.1 µF||10 µF, IISO = 54 mA  
130  
180  
625  
30  
MHz  
kHz  
mA  
mA  
%
fPWM  
IISO (MAX)  
3.135 V < VISO < 3.465 V  
3.0 V < VISO < 3.465 V  
IISO = 60 mA, TA = 25°C  
60  
Efficiency at IISO (MAX)  
VDDP Supply Current  
No VISO Load  
27  
IDDP (Q)  
IDDP (MAX)  
5
150  
18  
mA  
mA  
Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
154  
10  
°C  
°C  
1 Maximum VISO output current is derated by 1 mA/ºC for TA > 85ºC.  
Rev. A | Page 4 of 20  
 
Data Sheet  
ADuM5020/ADuM5028  
ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VDDP = 3.3 V, VISO = 3.3 V. Minimum/maximum specifications apply over the entire  
recommended operation range, which is 3.0 V ≤ VDDP ≤ 3.6 V, 3.0 V ≤ VISO ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted.  
Table 5. ADuM5020-3BRWZ DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Line Regulation  
Load Regulation1  
Output Ripple1  
Output Noise1  
Switching Frequency  
PWM Frequency  
Output Supply Current1  
VISO  
3.135 3.3  
3.465  
5
V
IISO = 10 mA  
IISO = 50 mA, VDDP = 3.0 V to 3.6 V  
IISO = 7 mA to 63 mA  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
2
1
50  
mV/V  
%
mV p-p 20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 90 mA  
mV p-p CBO = 0.1 µF||10 µF, IISO = 90 mA  
130  
180  
625  
35  
MHz  
kHz  
mA  
mA  
%
fPWM  
IISO (MAX)  
3.135 V < VISO < 3.465 V  
3.0 V < VISO < 3.465 V  
IISO = 70 mA, TA = 25°C  
70  
Efficiency at IISO (MAX)  
VDDP Supply Current  
No VISO Load  
33  
IDDP (Q)  
IDDP (MAX)  
5
225  
15  
mA  
mA  
Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
154  
10  
°C  
°C  
1 Maximum VISO output current is derated by 2 mA/°C for TA > 105°C.  
Table 6. ADuM5028-3BRIZ DC-to-DC Converter Static Specifications  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Line Regulation  
Load Regulation1  
Output Ripple1  
Output Noise1  
Switching Frequency  
PWM Frequency  
Output Supply Current1  
VISO  
3.135 3.3  
3.465  
5
V
IISO = 10 mA  
IISO = 30 mA, VDDP = 3.0 V to 3.6 V  
IISO = 6 mA to 54 mA  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
VISO (NOISE)  
fOSC  
2
1
50  
mV/V  
%
mV p-p 20 MHz bandwidth, CBO = 0.1 µF||10 µF, IISO = 54 mA  
mV p-p CBO = 0.1 µF||10 µF, IISO = 54 mA  
130  
180  
625  
30  
MHz  
kHz  
mA  
mA  
%
fPWM  
IISO (MAX)  
3.135 V < VISO < 3.465 V  
3.0 V < VISO < 3.465 V  
IISO = 60 mA, TA = 25°C  
60  
Efficiency at IISO (MAX)  
VDDP Supply Current  
No VISO Load  
33  
IDDP (Q)  
IDDP (MAX)  
5
190  
15  
mA  
mA  
Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
154  
10  
°C  
°C  
1 Maximum VISO output current is derated by 2 mA/°C for TA > 105°C.  
Rev. A | Page 5 of 20  
 
 
ADuM5020/ADuM5028  
Data Sheet  
REGULATORY APPROVALS  
Table 7.  
UL (Pending)1  
CSA (Pending)  
VDE (Pending)2  
CQC (Pending)  
Recognized Under 1577 Component Approved under CSA Component  
DIN V VDE V 0884-10  
(VDE V 0884-10):2006-12  
Certified under  
CQC11-471543-2012  
Recognition Program1  
Acceptance Notice 5A  
Single Protection, 3000 V rms  
Isolation Voltage  
CSA 60950-1-07+A1+A2 and  
IEC 60950-1, second edition, +A1+A2  
Reinforced insulation  
565 V peak, surge isolation  
voltage (VIOSM) =  
GB4943.1-2011:  
Basic insulation at 780 V rms  
(1103 V peak)  
6000 V peak  
Basic insulation at 780 V rms  
(1103 V peak)  
Transient voltage (VIOTM) =  
4242 V peak  
Reinforced insulation at  
390 V rms (552 V peak)  
Reinforced insulation at 390 V rms  
(552 V peak)  
IEC 60601-1 Edition 3.1:  
Basic insulation (1 means of patient  
protection (1 MOPP)), 585 V rms  
(827 V peak)  
CSA 61010-1-12 and IEC 61010-1 third  
edition:  
Basic insulation at 300 V rms mains,  
780 V rms (1103 V peak)  
Reinforced insulation at 300 V rms  
mains, 390 V rms (552 V peak)  
File E214100  
File 205078  
File 2471900-4880-0001  
File (pending)  
1 In accordance with UL 1577, each ADuM5020 and ADuM5028 are proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec.  
2 In accordance with DIN V VDE V 0884-10, each ADuM5020 and ADuM5028 are proof tested by applying an insulation test voltage ≥ 1059 V peak for 1 sec (partial  
discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
For additional information, see www.analog.com/icouplersafety.  
Table 8. ADuM5020 Insulation and Safety  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3000  
7.8  
V rms  
1-minute duration  
L (I01)  
L (I02)  
L (PCB)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
mm min Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
Minimum External Tracking (Creepage)  
7.8  
8.3  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
25.5  
>600  
I
μm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
Table 9. ADuM5028 Insulation and Safety  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3000  
8.3  
V rms  
1-minute duration  
L (I01)  
L (I02)  
L (PCB)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
mm min Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
Minimum External Tracking (Creepage)  
8.3  
8.3  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
25.5  
>600  
I
μm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
Rev. A | Page 6 of 20  
 
 
 
 
Data Sheet  
ADuM5020/ADuM5028  
PACKAGE CHARACTERISTICS  
Table 10. ADuM5020 Package Characteristics  
Parameter  
Symbol Min Typ  
Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
2.2  
4.0  
45  
pF  
pF  
f = 1 MHz  
IC Junction to Ambient Thermal  
Resistance  
θJA  
°C/W Thermocouple located at center of package  
underside3  
1 This device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
3 The value of θJA is based on devices mounted on a JEDEC JESD-51 standard 2s2p board and still air.  
Table 11. ADuM5028 Package Characteristics  
Parameter  
Symbol Min Typ  
Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
2.2  
4.0  
80  
pF  
pF  
f = 1 MHz  
IC Junction to Ambient Thermal  
Resistance  
θJA  
°C/W Thermocouple located at center of package  
underside3  
1 This device is considered a 2-terminal device: Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
3 The value of θJA is based on devices mounted on a JEDEC JESD-51 standard 2s2p board and still air.  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
the protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 12. ADuM5020 VDE Characteristics  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b1  
I to IV  
I to III  
I to II  
40/125/21  
2
VIORM  
VPR  
565  
1059  
V peak  
V peak  
V
IORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input to Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VPR  
Vpd(m)  
V
IORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec,  
848  
678  
V peak  
V peak  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
After Input or Safety Test Subgroup 2  
and Subgroup 3  
Vpd(m)  
Highest Allowable Overvoltage  
Withstand Isolation Voltage  
Surge Isolation Voltage Reinforced  
Safety Limiting Values  
Transient overvoltage, tTR = 10 sec  
1 minute withstand rating  
VIOSM(TEST) = 10 kV; 1.2 µs rise time; 50 µs, 50% fall time VIOSM  
Maximum value allowed in the event of a failure  
(see Figure 3)  
VIOTM  
VISO  
4242  
3000  
6000  
V peak  
V rms  
V peak  
Case Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
2.78  
>109  
°C  
W
VIO = 500 V  
Rev. A | Page 7 of 20  
 
 
 
 
ADuM5020/ADuM5028  
Data Sheet  
Table 13. ADuM5028 VDE Characteristics  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b1  
I to IV  
I to III  
I to II  
40/125/21  
2
VIORM  
VPR  
565  
1059  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input to Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VPR  
Vpd(m)  
V
IORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec,  
848  
678  
V peak  
V peak  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Vpd(m)  
Highest Allowable Overvoltage  
Withstand Isolation Voltage  
Surge Isolation Voltage Reinforced  
Safety Limiting Values  
Transient overvoltage, tTR = 10 sec  
1 minute withstand rating  
VIOSM(TEST) = 10 kV; 1.2 µs rise time; 50 µs, 50% fall time VIOSM  
Maximum value allowed in the event of a failure  
(see Figure 4)  
VIOTM  
VISO  
4242  
3000  
6000  
V peak  
V rms  
V peak  
Case Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
1.56  
>109  
°C  
W
VIO = 500 V  
Rev. A | Page 8 of 20  
Data Sheet  
ADuM5020/ADuM5028  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
RECOMMENDED OPERATING CONDITIONS  
Table 14.  
Parameter  
Symbol Min Typ Max Unit  
Operating Temperature1  
Supply Voltages2  
TA  
VDDP  
−40  
+125 °C  
ADuM5020-5BRWZ,  
ADuM5028-5BRIZ,  
VDDP at VISO = 3.135 V  
to 3.465 V  
ADuM5020-3BRWZ,  
ADuM5028-3BRIZ,  
VDDP at VISO = 3.135 V  
to 3.465 V  
4.5  
5.5  
3.6  
5.5  
V
V
V
3.0  
4.5  
0
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
ADuM5020-5BRWZ,  
ADuM5028-5BRIZ,  
Figure 3. ADuM5020 Thermal Derating Curve, Dependence of Safety Limiting  
Values with Ambient Temperature per DIN V VDE V 0884-10  
VDDP at VISO = 4.75 V  
to 5.25 V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1 Operation at >85°C requires reduction of the maximum load current.  
2 Each voltage is relative to its respective ground.  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 4. ADuM5028 Thermal Derating Curve, Dependence of Safety Limiting  
Values with Ambient Temperature per DIN V VDE V 0884-10  
Rev. A | Page 9 of 20  
 
 
 
ADuM5020/ADuM5028  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 16. Maximum Continuous Working Voltage  
Supporting 50-Year Minimum Lifetime1  
Table 15.  
Applicable  
Certification  
Parameter  
Rating  
Parameter  
Max Unit  
Storage Temperature (TST)  
−55°C to +150°C  
AC Voltage  
Ambient Operating Temperature (TA) −40°C to +125°C  
Bipolar Waveform  
Unipolar Waveform  
Basic Insulation  
DC Voltage  
560  
560  
V peak 50-year operation  
V peak 50-year operation  
1
Supply Voltages (VDDP, VISO  
VISO Supply Current  
ADuM5020  
)
−0.5 V to +7.0 V  
100 mA  
ADuM5028  
60 mA  
−0.5 V to VDDI + 0.5 V  
−200 kV/µs to +200 kV/µs  
Basic Insulation  
1000 V peak 50-year operation  
Input Voltage (PDIS, VSEL)1, 2  
1 Maximum continuous working voltage refers to the continuous voltage  
magnitude imposed across the isolation barrier. See the Insulation Lifetime  
section for more information.  
Common-Mode Transients3  
1 All voltages are relative to their respective ground.  
2 VDDI is the input side supply voltage.  
3 Common-mode transients refer to common-mode transients across the  
insulation barrier. Common-mode transients exceeding the absolute  
maximum ratings may cause latch-up or permanent damage.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 10 of 20  
 
 
 
 
Data Sheet  
ADuM5020/ADuM5028  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NIC  
NIC  
GND  
GND  
1
ISO  
ISO  
ISO  
ISO  
V
PDIS  
SEL  
ADuM5020  
GND  
1
GND  
TOP VIEW  
V
V
DDP  
ISO  
(Not to Scale)  
GND  
1
GND  
NIC  
NIC  
GND  
GND  
1
NIC = NO INTERNAL CONNECTION.  
LEAVE THESE PINS FLOATING.  
Figure 5. Pin Configuration  
Table 17. ADuM5020 Pin Function Descriptions  
Pin No. Mnemonic Description  
1, 7, 10, 16 NIC No Internal Connection. Leave these pins floating.  
2, 4, 6, 8  
3
GND1  
PDIS  
Ground 1. Ground reference for the primary. It is recommended that these pins be connected to a common ground.  
Power Disable. When tied to any GND1 pin, the VISO output voltage is active. When a logic high voltage is applied,  
the VISO output voltage is shut down. Do not leave this pin floating.  
5
VDDP  
Primary Supply Voltage.  
9, 11, 13, 15 GNDISO  
Ground Reference for VISO on Side 2. It is recommended that these pins be connected to a common ground.  
Secondary Supply Voltage Output for External Loads.  
Output Voltage Selection. Connect VSEL to VISO for 5 V output or connect VSEL to GNDISO for 3.3 V output. This pin has a  
weak internal pull-up. Therefore, do not leave this pin floating. It is recommended that the ADuM5020-3BRWZ and  
12  
14  
VISO  
VSEL  
the ADuM5028-3BRIZ are only used for 3.3 V input to 3.3 V operation, therefore connect VSEL to GNDISO  
.
V
1
2
3
4
8
7
6
5
PDIS  
SEL  
ADuM5028  
GND  
1
GND  
ISO  
TOP VIEW  
V
V
DDP  
ISO  
(Not to Scale)  
GND  
1
GND  
ISO  
Figure 6. ADuM5028 Pin Configuration  
Table 18. ADuM5028 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
PDIS  
Power Disable. When tied to any GND1 pin, the VISO output voltage is active. When a logic high voltage is applied, the  
ISO output voltage is shut down. Do not leave this pin floating.  
V
2, 4  
3
GND1  
VDDP  
Ground 1. Ground reference for the primary. It is recommended that these pins be connected to a common ground.  
Primary Supply Voltage.  
5, 7  
6
GNDISO  
VISO  
Ground Reference for VISO on Side 2. It is recommended that these pins be connected together.  
Secondary Supply Voltage Output for External Loads.  
8
VSEL  
Output Voltage Selection. Connect VSEL to VISO for 5 V output or connect VSEL to GNDISO for 3.3 V output. This pin has a  
weak internal pull-up; therefore, do not leave this pin floating. It is recommended that the ADuM5020-3BRWZ and the  
ADuM5028-3BRIZ are only used for 3.3 V input to 3.3 V operation, therefore connect VSEL to GNDISO  
.
Table 19. Truth Table (Positive Logic)  
VDDP (V)  
VSEL Input  
PDIS Input  
Low  
VISO Output (V)  
Notes  
5
High  
5
5
5
3.3  
3.3  
3.3  
Low  
Don’t care  
Low  
High  
Don’t care  
Low  
High  
Low  
Low  
3.3  
0
3.3  
5
Configuration not recommended  
High  
0
Rev. A | Page 11 of 21  
 
ADuM5020/ADuM5028  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
35  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
30  
25  
20  
15  
10  
3.3V IN/3.3V OUT  
5V IN/5V OUT  
5V IN/3.3V OUT  
5
0
0
0.02  
0.04  
0.06  
0.08  
0.10  
0
0.02  
0.04  
0.06  
0.08  
0.10  
I
OUTPUT CURRENT (A)  
I
OUTPUT CURRENT (A)  
ISO  
ISO  
Figure 7. Typical Power Supply Efficiency in Supported Supply Configurations  
Figure 10. VISO vs. IISO Output Current, Input = 5 V, VISO = 5 V  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
0.02  
3.3V IN/3.3V OUT  
5V IN/5V OUT  
5V IN/3.3V OUT  
0.01  
0
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0
0.02  
0.04  
0.06  
0.08  
0.10  
INPUT CURRENT (A)  
I
OUTPUT CURRENT (A)  
ISO  
Figure 8. IISO Output Current vs. Input Current in Supported Power  
Configurations  
Figure 11. VISO vs. IISO Output Current, Input = 5 V,  
VISO = 3.3 V  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
0.2  
3.3V IN/3.3V OUT  
5V IN/5V OUT  
5V IN/3.3V OUT  
0.1  
0
0
0.02  
0.04  
0.06  
0.08  
0.10  
–50  
–25  
0
25  
50  
75  
100  
125  
I
OUTPUT CURRENT (A)  
ISO  
TEMPERATURE (°C)  
Figure 9. Total Power Dissipation vs. IISO Output Current in Supported Power  
Configurations  
Figure 12. VISO vs. Temperature, Input = 5 V, VISO Output = 5 V  
Rev. A | Page 12 of 20  
 
Data Sheet  
ADuM5020/ADuM5028  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.18  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
POWER DISSIPATION  
DD1  
I
–50  
–25  
0
25  
50  
75  
100  
125  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
V
(V)  
DDP  
Figure 13. VISO vs. Temperature, Input = 3.3 V, VISO Output = 3.3 V  
Figure 16. Short-Circuit Input Current (IDD1) and Power Dissipation vs. VDDP  
15  
10  
5
1,000  
V
AT 5V (mV)  
ISO  
PERCENT LOAD  
500  
0
0
–500  
–1,000  
–5  
–10  
–15  
100  
50  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
TIME (µs)  
TIME (ms)  
Figure 14. VISO Ripple, 5 V Input to 5 V Output at 90% Load,  
Bandwidth = 20 MHz  
Figure 17. VISO Transient Load Response 5 V Input to 5 V Output 10% to 90%  
Load Step  
15  
10  
5
1,000  
VISO AT 3.3V (mV)  
PERCENT LOAD  
500  
0
0
–500  
–5  
–10  
–15  
100  
50  
0
–1,000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
–1.0  
0
1.0  
2.0  
3.0  
4.0  
TIME (µs)  
TIME (ms)  
Figure 15. VISO Ripple, 5 V Input to 3.3 V Output at 90% Load,  
Bandwidth = 20 MHz  
Figure 18. VISO Transient Load Response 5 V Input to 3.3 V Output, 10% to  
90% Load Step  
Rev. A | Page 13 of 20  
ADuM5020/ADuM5028  
Data Sheet  
7
5
4
V
V
AT 10% LOAD (V)  
AT 90% LOAD (V)  
V
V
AT 10% LOAD (V)  
AT 90% LOAD (V)  
ISO  
ISO  
ISO  
ISO  
6
5
3
4
3
2
2
1
1
0
0
–1  
–1  
0
1
2
3
4
0
1
2
3
4
TIME (ms)  
TIME (ms)  
Figure 19. 5 V Input to 5 V Output VISO Start-Up Transient at 10% and 90%  
Load  
Figure 20. 5 V Input to 3.3 V Output VISO Start-Up Transient at 10% and 90%  
Load  
Rev. A | Page 14 of 20  
Data Sheet  
ADuM5020/ADuM5028  
THEORY OF OPERATION  
The ADuM5020/ADuM5028 dc-to-dc work on principles that  
are common to most standard power supplies. The converters  
have a split controller architecture with isolated PWM feedback.  
VDDP power is supplied to an oscillating circuit that switches  
current into a chip scale air core transformer. Power transferred to  
the secondary side is rectified and regulated to 3.3 V or 5.0 V,  
depending on the setting of the VSEL pin. Note that the  
ADuM5020-3BRWZ and the ADuM5028-3BRIZ can only be  
used for 3.3 V input to 3.3 V output applications, and the  
ADuM5020-5BRWZ and ADuM5028-5BRIZ operate best for  
5 V input applications. The secondary (VISO) side controller  
regulates the output by creating a PWM control signal that is sent  
to the primary (VDDP) side by a dedicated iCoupler data  
channel. The PWM modulates the oscillator circuit to control the  
power being sent to the secondary side. Feedback allows  
significantly higher power and efficiency.  
The ADuM5020/ADuM5028 implement undervoltage lockout  
(UVLO) with hysteresis on the primary and secondary side input  
and output pins as well as the VDDP power input. The UVLO  
feature ensures that the converters do not go into oscillation due  
to noisy input power or slow power-on ramp rates.  
Rev. A | Page 15 of 20  
 
ADuM5020/ADuM5028  
Data Sheet  
APPLICATIONS INFORMATION  
for several operating frequencies. Noise suppression requires a  
low inductance, high frequency capacitor, whereas ripple  
suppression and proper regulation require a large value capacitor.  
These capacitors are most conveniently connected between the  
PCB LAYOUT  
The ADuM5020 and ADuM5028 isoPower integrated dc-to-dc  
converters require power supply bypassing at the input and  
output supply pins (see Figure 21 and Figure 22). Low effective  
series resistance (ESR) 0.1 μF bypass capacitors are required  
between the VDDP pin and GND1 pin, as close to the chip pads  
as possible. Low ESR 0.1 μF or 0.22 μF capacitors are required  
between the VISO pin and GNDISO pin, as close to the chip pads  
as possible (see the CISO note in Figure 23 and Figure 24 for  
more information). The isoPower inputs require multiple  
passive components to bypass the power effectively, as well as  
set the output voltage and bypass the core voltage regulator (see  
Figure 21 through Figure 26).  
VDDP pin and GND1 pin, and between the VISO pin and GNDISO pin.  
To suppress noise and reduce ripple, a parallel combination of at  
least two capacitors is required. The recommended capacitor values  
are 0.1 μF and 10 μF for VDDP and VISO. The smaller capacitor  
must have a low ESR. For example, use of a ceramic capacitor is  
advised. The total lead length between the ends of the 0.1 μF low  
ESR capacitors, and the power supply pins must not exceed 2 mm.  
To reduce the level of electromagnetic radiation, the impedance  
to high frequency currents between the VISO and GNDISO pins and  
the PCB trace connections can be increased. Using this method  
of electromagnetic interference (EMI) suppression controls the  
radiating signal at its source by placing surface-mount ferrite beads  
in series with the VISO and GNDISO pins, as shown in Figure 25  
and Figure 26. The impedance of the ferrite bead is chosen to be  
about 1.8 kΩ between the 100 MHz and 1 GHz frequency range to  
reduce the emissions at the 180 MHz primary switching frequency  
and the 360 MHz secondary side rectifying frequency and  
harmonics. See Table 20 for examples of appropriate surface-  
mount ferrite beads.  
PDIS  
3
GND  
1
4
5
6
V
DDP  
GND  
1
10µF  
0.1µF  
Figure 21. ADuM5020 VDDP Bias and Bypass Components  
PDIS  
1
GND  
1
2
3
4
Table 20. Surface-Mount Ferrite Beads Example  
V
DDP  
Manufacturer  
Part No.  
GND  
1
10µF  
0.1µF  
Taiyo Yuden  
Murata Electronics  
BKH1005LM182-T  
BLM15HD182SN1  
Figure 22. ADuM5028 VDDP Bias and Bypass Components  
ADuM5020  
V
SEL  
14  
13  
12  
11  
NIC  
NIC  
GND  
ISO  
ISO  
GND  
GND  
ISO  
1
FB1  
V
V
PDIS  
GND  
ISO  
SEL  
VISO OUT  
GND  
V
1
ISO  
ISO  
GND  
C
10µF  
ISO  
V
V
OUT  
DDP  
ISO  
FB2  
GND  
NIC  
GND  
1
1
ISO  
10µF 0.1µF  
C
FERRITES 10µF  
ISO  
NIC  
GND  
GND  
ISO  
C
C
= 0.1µF FOR V  
= 0.22µF FOR V  
= 5V AND V  
= 5V,  
ISO  
ISO  
DDP  
ISO  
= 5V AND V  
= 3.3V  
ISO  
DDP  
BYPASS <2mm  
= 0.1µF FOR V = 5V AND V = 5V,  
ISO  
Figure 23. ADuM5020 VISO Bias and Bypass Components  
C
C
ISO  
ISO  
DDP  
= 0.22µF FOR V  
= 5V AND V  
= 3.3V  
DDP  
ISO  
V
SEL  
8
7
6
5
Figure 25. Recommended ADuM5020 PCB Layout  
GND  
ISO  
ISO  
ADuM5028  
FB1  
V
ISO  
VISO OUT  
V
PDIS  
GND  
SEL  
GND  
C
10µF  
FB2  
ISO  
GND  
1
ISO  
ISO  
V
V
VISO OUT  
DDP  
GND  
GND  
1
ISO  
10µF 0.1µF  
C
FERRITES 10µF  
ISO  
C
C
= 0.1µF FOR V  
= 0.22µF FOR V  
= 5V AND V  
= 5V,  
ISO  
ISO  
ISO  
DDP  
BYPASS <2mm  
= 0.1µF FOR V = 5V AND V = 5V,  
ISO  
= 5V AND V  
= 3.3V  
DDP  
ISO  
C
C
ISO  
ISO  
DDP  
Figure 24. ADuM5028 VISO Bias and Bypass Components  
= 0.22µF FOR V  
= 5V AND V  
= 3.3V  
DDP  
ISO  
The power supply section of the ADuM5020 and ADuM5028  
uses a 180 MHz oscillator frequency to efficiently pass power  
through its chip scale transformers. Bypass capacitors are required  
Figure 26. Recommended ADuM5028 PCB Layout  
Rev. A | Page 16 of 21  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADuM5020/ADuM5028  
In applications involving high common-mode transients, ensure  
that board coupling across the isolation barrier is minimized.  
Furthermore, design the board layout such that any coupling  
that does occur equally affects all pins on a given component  
side. Failure to ensure these steps can cause voltage differentials  
between pins, exceeding the absolute maximum ratings specified in  
Table 15, thereby leading to latch-up or permanent damage.  
surface insulation of components that allows the components to be  
categorized in different material groups. Lower material group  
ratings are more resistant to surface tracking and, therefore, can  
provide adequate lifetime with smaller creepage. The minimum  
creepage for a given working voltage and material group is in  
each system level standard and is based on the total rms voltage  
across the isolation, pollution degree, and material group. The  
material group and creepage for the ADuM5020 and ADuM5028  
are presented in Table 8 and Table 9.  
THERMAL ANALYSIS  
The ADuM5020 and ADuM5028 each consist of three internal  
die attached to a split lead frame. For thermal analysis, the die is  
treated as a thermal unit, with the highest junction temperature  
reflected in the θJA values, shown in Table 10 and Table 11. The  
value of θJA is based on measurements taken with the devices  
mounted on a JEDEC standard, 4-layer board with fine width  
traces and still air. Under normal operating conditions, the  
ADuM5020 and ADuM5028 can operate at full load, but at  
temperatures greater than 85°C, derating the output current  
may be needed, as shown in Figure 3 and Figure 4.  
Insulation Wear Out  
The lifetime of insulation caused by wear out is determined by  
its thickness, material properties, and the voltage stress applied.  
It is important to verify that the product lifetime is adequate at  
the application working voltage. The working voltage supported  
by an isolator for wear out may not be the same as the working  
voltage supported for tracking. The working voltage applicable  
to tracking is specified in most standards.  
Testing and modeling show that the primary driver of long-term  
degradation is displacement current in the polyimide insulation  
causing incremental damage. The stress on the insulation can be  
grouped into broad categories, such as dc stress, which causes very  
little wear out because there is no displacement current, and an  
ac component time varying voltage stress, which causes wear out.  
EMI CONSIDERATIONS  
The ADuM5020/ADuM5028 dc-to-dc converters must, of  
necessity, operate at a high frequency to allow efficient power  
transfer through the small transformers. This high frequency  
operation creates high frequency currents that can propagate in  
circuit board ground and power planes, requiring proper power  
supply bypassing at the input and output supply pins  
The ratings in certification documents are usually based on a  
60 Hz sinusoidal waveform because this stress reflects isolation  
from line voltage. However, many practical applications have  
combinations of 60 Hz ac and dc across the barrier as shown in  
Equation 1. Because only the ac portion of the stress causes  
wear out, the equation can be rearranged to solve for the ac rms  
voltage, as shown in Equation 2. For insulation wear out with the  
polyimide materials used in these products, the ac rms voltage  
determines the product lifetime.  
(see Figure 25 and Figure 26). Using proper layout, bypassing  
techniques, and surface-mount ferrite beads in series with the  
VISO and GNDISO pins, the dc-to-dc converters are designed to  
provide regulated, isolated power that is below CISPR22 Class B  
limits at full load on a 2-layer PCB with ferrites.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected to  
voltage stress over a sufficiently long period. The rate of insulation  
degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation, as well as on the materials  
and material interfaces.  
2
V
RMS VAC RMS2 VDC  
(1)  
or  
2
V
AC RMS VRMS2 VDC  
(2)  
where:  
The two types of insulation degradation of primary interest are  
breakdown along surfaces exposed to the air and insulation wear  
out. Surface breakdown is the phenomenon of surface tracking  
and the primary determinant of surface creepage requirements  
in system level standards. Insulation wear out is the phenomenon  
where charge injection or displacement currents inside the  
insulation material cause long-term insulation degradation.  
V
V
V
RMS is the total rms working voltage.  
AC RMS is the time varying portion of the working voltage.  
DC is the dc offset of the working voltage.  
Calculation and Use of Parameters Example  
The following example frequently arises in power conversion  
applications. Assume that the line voltage on one side of the  
Surface Tracking  
isolation is 240 V ac rms and a 400 V dc bus voltage is present  
on the other side of the isolation barrier. The isolator material is  
polyimide. To establish the critical voltages in determining the  
creepage, clearance, and lifetime of a device, see Figure 27 and  
the following equations.  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working voltage,  
the environmental conditions, and the properties of the insulation  
material. Safety agencies perform characterization testing on the  
Rev. A | Page 17 of 21  
 
 
 
ADuM5020/ADuM5028  
Data Sheet  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. To obtain the ac rms voltage,  
use Equation 2.  
V
AC RMS  
VAC RMS = VRMS2 VDC  
2
V
V
V
DC  
=
4662 4002  
PEAK  
RMS  
VAC RMS  
AC RMS = 240 V rms  
V
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform is  
not sinusoidal. The value is compared to the limits for working  
voltage in Table 16 for the expected lifetime, which is less than a  
60 Hz sine wave, and it is well within the limit for a 50-year  
service life.  
TIME  
Figure 27. Critical Voltage Example  
The working voltage across the barrier from Equation 1 is  
2
VRMS = VAC RMS2 +VDC  
Note that the dc working voltage limit is set by the creepage of  
the package as specified in IEC 60664-1. This value can differ  
for specific system level standards.  
VRMS = 2402 + 4002  
V
RMS = 466 V  
This VRMS value is the working voltage used together with the  
material group and pollution degree when looking up the creepage  
required by a system standard.  
Rev. A | Page 18 of 20  
 
Data Sheet  
ADuM5020/ADuM5028  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 28. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
6.05  
5.85  
5.65  
8
1
5
4
7.60  
7.50  
7.40  
10.51  
10.31  
10.11  
PIN 1  
MARK  
0.75  
0.50 45°  
0.25  
2.45  
2.35  
2.25  
2.65  
2.50  
2.35  
1.04  
BSC  
8°  
0°  
0.30  
0.33  
0.27  
0.20  
SEATING  
PLANE  
0.20  
0.10  
COPLANARITY  
0.10  
0.51  
0.41  
0.31  
1.27 BSC  
0.75  
0.58  
0.40  
Figure 29. 8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
Wide Body  
(RI-8-1)  
Dimensions shown in millimeters  
Rev. A | Page 19 of 20  
 
ADuM5020/ADuM5028  
Data Sheet  
ORDERING GUIDE  
Model1, 2, 3, 4  
Typical VDDP Voltage (V)  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
Package Option  
RW-16  
RW-16  
RW-16  
RW-16  
ADuM5020-5BRWZ  
ADuM5020-5BRWZ-RL  
ADuM5020-3BRWZ  
ADuM5020-3BRWZ-RL  
ADuM5028-5BRIZ  
ADuM5028-5BRIZ-RL  
ADuM5028-3BRIZ  
ADuM5028-3BRIZ-RL  
EVAL-ADuM5020EBZ  
EVAL-ADuM5028EBZ  
5.0  
5.0  
3.3  
3.3  
5.0  
5.0  
3.3  
3.3  
8-Lead SOIC_IC  
8-Lead SOIC_IC  
8-Lead SOIC_IC  
8-Lead SOIC_IC  
ADuM5020 Evaluation Board  
ADuM5028 Evaluation Board  
RI-8-1  
RI-8-1  
RI-8-1  
RI-8-1  
1 Z = RoHS Compliant Part.  
2 The EVAL-ADuM5020EBZ is packaged with the ADuM5020-5BRWZ installed and can be used for evaluating the ADuM6020.  
3 The EVAL-ADuM5028EBZ is packaged with the ADuM5028-5BRIZ installed and can be used for evaluating the ADuM6028.  
4 For 5 V input operations, use the ADuM5020-5BRWZ and ADuM5028-5BRIZ. For 3.3 V input to 3.3 V output operations, use the ADuM5020-3BRWZ and the ADuM5028-  
3BRIZ.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16520-0-12/18(A)  
Rev. A | Page 20 of 20  
 

相关型号:

ADUM5020-3BRWZ-RL

Low Emission, Isolated DC-to-DC Converters
ADI

ADUM5020-5BRWZ

ADUM5020-5BRWZ
ADI

ADUM5020-5BRWZ-RL

ADUM5020-5BRWZ-RL
ADI

ADUM5028

低辐射隔离式DC/DC转换器
ADI

ADUM5028-3BRIZ

Low Emission, Isolated DC-to-DC Converters
ADI

ADUM5028-3BRIZ-RL

Low Emission, Isolated DC-to-DC Converters
ADI

ADUM5028-5BRIZ

ADUM5028-5BRIZ
ADI

ADUM5028-5BRIZ-RL

ADUM5028-5BRIZ-RL
ADI

ADUM520

Quad-Channel, 2.5 kV Isolators with Integrated DC-to-DC Converter
ADI

ADUM5200

Isolated DC/DC Converter
ADI

ADUM5200ARWZ

Dual Channel Isolators with Integrated DC-to-DC Converter
ADI

ADUM5200ARWZ-RL

暂无描述
ADI