ADV212BBCZ-150 [ADI]

JPEG 2000 Video Codec; JPEG 2000视频编解码器
ADV212BBCZ-150
型号: ADV212BBCZ-150
厂家: ADI    ADI
描述:

JPEG 2000 Video Codec
JPEG 2000视频编解码器

解码器 编解码器
文件: 总44页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
JPEG 2000 Video Codec  
ADV212  
FEATURES  
GENERAL DESCRIPTION  
Complete single-chip JPEG 2000 compression and  
decompression solution for video and still images  
Identical in pinout and footprint to the ADV202 and  
supports all the functionality of the ADV202  
Power reduction of at least 30% compared with ADV202  
JTAG/boundary scan support  
Patented SURF® (spatial ultraefficient recursive filtering)  
technology enables low power, low cost wavelet-based  
compression  
The ADV212 is a single-chip JPEG 2000 codec targeted for  
video and high bandwidth image compression applications that  
can benefit from the enhanced quality and features provided by  
the JPEG 2000 (J2K)—ISO/IEC15444-1 image compression  
standard. The part implements the computationally intensive  
operations of the JPEG 2000 image compression standard and  
provides fully compliant code-stream generation for most  
applications.  
Supports both 9/7 and 5/3 wavelet transforms with up to  
6 levels of transform  
The dedicated video port of the ADV212 provides glueless con-  
nection to common digital video standards such as ITU-R BT.656,  
SMPTE 125M, SMPTE 293M (525p), ITU-R BT.1358 (625p),  
SMPTE 274M (1080i), or SMPTE 296M (720p). A variety of  
other high speed, synchronous pixel and video formats can also  
be supported by using the programmable framing and  
validation signals.  
Video interface directly supporting ITU-R BT.656,  
SMPTE 125M PAL/NTSC, SMPTE 274M, SMPTE 293M  
(525p), and ITU-R BT.1358 (625p), or any video format with  
a maximum input rate of 65 MSPS for irreversible mode or  
40 MSPS for reversible mode  
Programmable tile/image size with widths up to 4096 pixels  
in single-component mode; maximum tile/image height:  
4096 pixels  
2 or more ADV212s can be combined to support full-frame  
SMPTE 274M HDTV (1080i) or SMPTE 296M (720p)  
Flexible, asynchronous SRAM-style host interface allows glue-  
less connection to most 16-/32-bit microcontrollers and ASICs  
2.5 V or 3.3 V input/output and 1.5 V core supply  
12 mm × 12 mm, 121-ball CSPBGA with a speed grade of  
115 MHz, or 13 mm × 13 mm, 144-ball CSPBGA with a  
speed grade of 150 MHz  
The ADV212 is an upgrade version of the ADV202 that is  
identical in pinout and footprint. It supports all the functionality  
of the ADV202 and has the following additional options:  
JTAG/boundary scan support  
Power reduction of at least 30% compared with the  
ADV202  
APPLICATIONS  
Networked video and image distribution systems  
Wireless video and image distribution  
Image archival/retrieval  
Digital CCTV and surveillance systems  
Digital cinema systems  
Professional video editing and recording  
Digital still cameras  
Digital camcorders  
FUNCTIONAL BLOCK DIAGRAM  
WAVELET  
PIXEL I/F  
HOST I/F  
EC1  
EC2  
EC3  
PIXEL I/F  
ENGINE  
EXTERNAL  
DMA CTRL  
PIXEL FIFO  
CODE FIFO  
ATTR FIFO  
INTERNAL BUS AND DMA ENGINE  
EMBEDDED  
RISC  
PROCESSOR  
SYSTEM  
RAM  
ROM  
ADV212  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADV212  
TABLE OF CONTENTS  
Memory System.......................................................................... 25  
Internal DMA Engine................................................................ 25  
ADV212 Interface .......................................................................... 26  
Video Interface (VDATA Bus).................................................. 26  
Host Interface (HDATA Bus) ................................................... 26  
Direct and Indirect Registers.................................................... 26  
Control Access Registers ........................................................... 27  
Pin Configuration and Bus Sizes/Modes ................................ 27  
Stage Register.............................................................................. 27  
JDATA Mode............................................................................... 27  
External DMA Engine ............................................................... 27  
Internal Registers............................................................................ 28  
Direct Registers........................................................................... 28  
Indirect Registers........................................................................ 29  
PLL ............................................................................................... 30  
Hardware Boot............................................................................ 31  
Video Input Formats...................................................................... 32  
Applications..................................................................................... 34  
Encode—Multichip Mode......................................................... 34  
Decode—Multichip Master/Slave ............................................ 35  
Digital Still Camera/Camcorder .............................................. 36  
Encode/Decode SDTV Video Application ............................. 37  
32-Bit Host Application............................................................. 38  
HIPI (Host Interface—Pixel Interface) ................................... 39  
JDATA Interface ......................................................................... 40  
Outline Dimensions....................................................................... 41  
Ordering Guide .......................................................................... 42  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
JPEG 2000 Feature Support......................................................... 3  
Specificatons...................................................................................... 4  
Supply Voltages and Current ...................................................... 4  
Input/Output Specifications........................................................ 4  
RESET  
Clock and  
Specifications................................................ 5  
Normal Host Mode—Write Operation ..................................... 6  
Normal Host Mode—Read Operation ...................................... 7  
DREQ DACK  
/
DMA Mode—Single FIFO Write Operation .. 8  
DMA Mode—Single FIFO Read Operation . 10  
DREQ DACK  
/
External DMA Mode—FIFO Write, Burst Mode .................. 12  
External DMA Mode—FIFO Read, Burst Mode ................... 13  
Streaming Mode (JDATA)—FIFO Read/Write...................... 14  
VDATA Mode Timing............................................................... 15  
Raw Pixel Mode Timing ............................................................ 17  
JTAG Timing............................................................................... 18  
Absolute Maximum Ratings.......................................................... 19  
Thermal Resistance .................................................................... 19  
ESD Caution................................................................................ 19  
Pin Configurations and Function Descriptions ......................... 20  
Theory of Operation ...................................................................... 25  
Wavelet Engine ........................................................................... 25  
Entropy Codecs........................................................................... 25  
Embedded Processor System .................................................... 25  
REVISION HISTORY  
10/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 44  
 
ADV212  
The ADV212 can process images at a rate of 40 MSPS in reversible  
mode and at higher rates when used in irreversible mode. The  
ADV212 contains a dedicated wavelet transform engine, three  
entropy codecs, an on-board memory system, and an embedded  
reduced instruction set computer (RISC) processor that can  
provide a complete JPEG 2000 compression/decompression  
solution.  
JPEG 2000 FEATURE SUPPORT  
The ADV212 supports a broad set of features that are included  
in Part 1 of the JPEG 2000 standard (ISO/IEC 15444). See  
ADV212 User’s Guide for information on the JPEG 2000 features  
that the ADV212 currently supports.  
Depending on the particular application requirements, the  
ADV212 can provide varying levels of JPEG 2000 compression  
support. It can provide raw code block and attribute data output,  
which allows the host software to have complete control over  
the generation of the JPEG 2000 code stream and other aspects  
of the compression process such as bit-rate control. Otherwise,  
the ADV212 can create a complete, fully compliant JPEG 2000  
code stream (J2C) and enhanced file formats such as JP2.  
The wavelet processor supports the 9/7 irreversible wavelet  
transform and the 5/3 wavelet transform in reversible and  
irreversible modes. The entropy codecs support all features in  
the JPEG 2000 Part 1 specification, except maximum shift  
region of interest (ROI).  
The ADV212 operates on a rectangular array of pixel samples  
called a tile. A tile can contain a complete image, up to the  
maximum supported size, or some portion of an image. The  
maximum horizontal tile size supported depends on the wavelet  
transform selected and the number of samples in the tile.  
Images larger than the ADV212’s maximum tile size can be  
broken into individual tiles and then sent sequentially to the  
chip while maintaining a single, fully compliant JPEG 2000  
code stream for the entire image.  
Rev. 0 | Page 3 of 44  
 
ADV212  
SPECIFICATONS  
Specifications apply to IOVDD = 2.5 V or 3.3 V over operating temperature range, unless otherwise specified.  
SUPPLY VOLTAGES AND CURRENT  
Table 1.  
Parameter  
Mnemonic  
VDD  
IOVDD  
IOVDD  
VIN  
Min  
Typ  
1.5  
2.5  
3.3  
Max  
1.575  
2.625  
3.465  
VDDI/O + 0.3  
+85  
30  
440  
320  
290  
Unit  
V
V
V
V
DC Supply Voltage, Core  
1.425  
2.375  
3.135  
−0.3  
−40  
DC Supply Voltage, Input/Output  
DC Supply Voltage, Input/Output  
Input Range  
Operating Ambient Temperature Range in Free Air  
Static Current1  
Dynamic Current, Core (JCLK Frequency = 150 MHz)2  
Dynamic Current, Core (JCLK Frequency = 108 MHz)  
Dynamic Current, Core (JCLK Frequency = 81 MHz)  
Dynamic Current, Input/Output  
T
IDD  
+25  
15  
380  
280  
210  
40  
°C  
mA  
mA  
mA  
mA  
mA  
50  
1 No clock or input/output activity.  
2 ADV212-150 only.  
INPUT/OUTPUT SPECIFICATIONS  
Table 2.  
Parameter  
Mnemonic  
Min  
2.2  
1.9  
Typ  
Max  
Unit  
V
V
V
V
Test Conditions  
VDD = maximum  
VDD = maximum  
VDD = minimum  
VDD = minimum, IOH = −0.5 mA  
VDD = minimum, IOH = −0.5 mA  
VDD = minimum, IOL = +2 mA  
VDD = maximum, VIN = VDD  
VDD = maximum, VIN = 0 V  
VDD = maximum, VIN = VDD  
VDD = maximum, VIN = 0V  
High Level Input Voltage  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Current  
Low Level Input Current  
High Level Three-State Leakage Current  
Low Level Three-State Leakage Current  
Input Pin Capacitance  
VIH (3.3 V)  
VIH (2.5 V)  
VIL (3.3 V, 2.5 V)  
VOH (3.3 V)  
VOH (2.5 V)  
VOL (3.3 V, 2.5 V)  
IIH  
IIL  
IOZH  
IOZL  
CI  
0.6  
2.4  
2.0  
V
V
0.4  
1.0  
1.0  
1.0  
1.0  
8
μA  
μA  
μA  
μA  
pF  
pF  
Output Pin Capacitance  
CO  
8
Rev. 0 | Page 4 of 44  
 
ADV212  
CLOCK AND RESET SPECIFICATIONS  
Table 3.  
Parameter  
Mnemonic  
Min  
13.3  
10  
6
Typ  
Max  
100  
75.18  
Unit  
MCLK Period  
tMCLK  
fMCLK  
tMCLKL  
tMCLKH  
tVCLK  
ns  
MHz  
ns  
ns  
ns  
MHz  
ns  
ns  
MCLK Frequency  
MCLK Width Low  
MCLK Width High  
VCLK Period  
VCLK Frequency  
VCLK Width Low  
VCLK Width High  
RESET Width Low  
6
13.4  
20  
5
5
5
50  
74.60  
fVCLK  
tVCLKL  
tVCLKH  
tRESET  
MCLK cycles1  
1 For a definition of MCLK, see Figure 32.  
tMCLK  
tMCLKL  
tMCLKH  
MCLK  
VCLK  
tVCLK  
tVCLKL  
tVCLKH  
Figure 2. Input Clock  
Rev. 0 | Page 5 of 44  
 
ADV212  
NORMAL HOST MODE—WRITE OPERATION  
Table 4.  
Parameter  
Mnemonic  
Min  
Typ  
Max  
Unit  
WE to ACK, Direct Registers and FIFO Accesses  
t
t
ACK (direct)  
5
1.5 × JCLK + 7.0  
ns  
WE to ACK, Indirect Registers  
ACK (indirect)  
5
2.5 × JCLK + 7.0  
ns  
Data Setup  
Data Hold  
Address Setup  
Address Hold  
tSD  
tHD  
tSA  
tHA  
tSC  
3.0  
1.5  
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS to WE Setup  
0
CS Hold  
tHC  
tWH  
tWL  
tWCYC  
0
Write Inactive Pulse Width (Minimum Time Until Next WE Pulse)  
Write Active Pulse Width  
Write Cycle Time  
2.5 JCLK1  
2.5 JCLK  
5 JCLK  
1 For a definition of JCLK, see Figure 32.  
tSA  
tHA  
ADDR  
tSC  
tHC  
CS  
tWCYC  
tWL  
tWH  
WE  
tACK  
ACK  
tHD  
tSD  
VALID  
HDATA  
Figure 3. Normal Host Mode—Write Operation  
Rev. 0 | Page 6 of 44  
 
ADV212  
NORMAL HOST MODE—READ OPERATION  
Table 5.  
Parameter  
Mnemonic  
Min  
Typ  
Max  
Unit  
RD to ACK, Direct Registers and FIFO Accesses  
t
t
ACK (direct)1  
5
1.5 × JCLK + 7.0  
ns  
RD to ACK, Indirect Registers  
ACK (indirect)1  
10.5 × JCLK  
15.5 × JCLK + 7.0  
ns  
Read Access Time, Direct Registers  
Read Access Time, Indirect Registers  
Data Hold  
tDRD (direct)  
tDRD (indirect)  
tHZRD  
tSC  
5
1.5 × JCLK + 7.0  
15.5 × JCLK + 7.0  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10.5 × JCLK  
2
0
CS to RD Setup  
Address Setup  
CS Hold  
tSA  
tHC  
2
0
Address Hold  
tHA  
tRH  
tRL  
2
Read Inactive Pulse Width  
Read Active Pulse Width  
Read Cycle Time, Direct Registers  
2.5 JCLK 2  
2.5 JCLK  
5.0 JCLK  
tRCYC  
1
ACK  
RD  
rising transition. A  
Timing relationship between  
falling transition and HDATA valid is not guaranteed. HDATA valid hold time is guaranteed with respect to  
ACK  
RD  
minimum of three JCLK cycles is recommended between  
2 For a definition of JCLK, see Figure 32.  
assert and  
deassert.  
tSA  
tHA  
ADDR  
tSC  
tHC  
CS  
tRCYC  
tRL  
tRH  
RD  
ACK  
tACK  
tDRD  
tHZRD  
VALID  
HDATA  
Figure 4. Normal Host Mode—Read Operation  
Rev. 0 | Page 7 of 44  
 
ADV212  
DREQ/DACK DMA MODE—SINGLE FIFO WRITE OPERATION  
Table 6.  
Parameter  
Mnemonic  
DREQPULSE  
tDREQ  
Min  
Typ  
Max  
Unit  
ns  
DREQ Pulse Width  
1 JCLK1  
15 JCLK  
DACK Assert to Subsequent DREQ Delay  
2.5 JCLK  
3.5 × JCLK + 8.5  
ns  
WE to DACK Setup  
tWE  
0
ns  
SU  
Data to DACK Deassert Setup  
Data to DACK Deassert Hold  
DACK Assert Pulse Width  
tSU  
2
ns  
ns  
ns  
ns  
ns  
tHD  
2
DACKLO  
DACKHI  
2 JCLK  
2 JCLK  
0
DACK Deassert Pulse Width  
WE Hold After DACK Deassert  
tWE  
HD  
WE Assert to FSRQ Deassert (FIFO Full)  
DACK to DREQ Deassert (DR × PULS = 0)  
WFSRQ  
1.5 JCLK  
2.5 JCLK  
2.5 × JCLK + 7.5  
3.5 × JCLK + 9.0  
ns  
ns  
tDREQ  
RTN  
1 For a definition of JCLK, see Figure 32.  
DREQ  
PULSE  
tDREQ  
DREQ  
DACK  
DACK  
HI  
DACK  
LO  
tWESU  
tWEHD  
WE  
tHD  
tSU  
HDATA  
0
1
2
3
DREQ DACK  
DMA Mode for Assigned DMA Channel  
Figure 5. Single Write for  
/
(EDMOD0/EDMOD1 <14:11> Not Programmed to a Value of 0000)  
tDREQRTN  
DREQ  
DACK  
DACK  
HI  
DACK  
LO  
tWESU  
tWEHD  
WE  
tHD  
tSU  
HDATA  
0
1
2
DREQ DACK  
DMA Mode for Assigned DMA Channel  
Figure 6. Single Write for  
/
(EDMOD0/EDMOD1 <14:11> Programmed to a Value of 0000)  
Rev. 0 | Page 8 of 44  
 
ADV212  
DREQ  
PULSE  
tDREQ  
DREQ  
DACK  
HI  
DACK  
LO  
DACK  
WEFB  
tWESU  
tWEHD  
tHD  
tSU  
0
1
2
HDATA  
Figure 7. Single Write Cycle for Fly-By DMA Mode  
DREQ  
(
Pulse Width Is Programmable)  
FCS0  
RD  
WFSRQ  
FIFO NOT FULL  
FSRQ0  
HDATA  
FIFO FULL  
0
1
2
tSU  
tHD  
NOT WRITTEN TO FIFO  
Figure 8. Single Write Access for DCS DMA Mode  
Rev. 0 | Page 9 of 44  
ADV212  
DREQ/DACK DMA MODE—SINGLE FIFO READ OPERATION  
Table 7.  
Parameter  
Mnemonic  
DREQPULSE  
tDREQ  
Min  
Typ  
Max  
Unit  
ns  
1
DREQ Pulse Width  
1 JCLK  
15 JCLK  
DACK Assert to Subsequent DREQ Delay  
2.5 JCLK  
3.5 × JCLK + 9.0  
ns  
RD to DACK Setup  
DACK to Data Valid  
tRD  
0
ns  
ns  
SU  
tRD  
2.5  
11  
Data Hold  
tHD  
DACKLO  
DACKHI  
1.5  
ns  
ns  
ns  
ns  
DACK Assert Pulse Width  
DACK Deassert Pulse Width  
RD Hold after DACK Deassert  
2 JCLK  
2 JCLK  
0
tRD  
HD  
RD Assert to FSRQ Deassert (FIFO Empty)  
DACK to DREQ Deassert (DR × PULS = 0)  
RDFSRQ  
1.5 JCLK  
2.5 JCLK  
ns  
ns  
2.5 × JCLK + 9.0  
3.5 × JCLK + 9.0  
tDREQ  
RTN  
1 For a definition of JCLK, see Figure 32.  
DREQ  
PULSE  
tDREQ  
DREQ  
DACK  
HI  
DACK  
LO  
DACK  
RD  
tRDSU  
tRDHD  
tRD  
tHD  
HDATA  
0
1
2
DREQ DACK  
DMA Mode for Assigned DMA Channel  
Figure 9. Single Read for  
/
(EDMOD0/EDMOD1 <14:11> Not Programmed to a Value of 0000)  
tDREQRTN  
DREQ  
DACK  
HI  
DACK  
LO  
DACK  
RD  
tRDSU  
tRDHD  
tRD  
tHD  
HDATA  
0
1
2
DREQ DACK  
DMA Mode for Assigned DMA Channel  
Figure 10. Single Read for  
/
(EDMOD0/EDMOD1 <14:11> Programmed to a Value of 0000)  
Rev. 0 | Page 10 of 44  
 
ADV212  
DREQ  
PULSE  
tDREQ  
DREQ  
DACK  
DACK  
HI  
DACK  
LO  
tRDSU  
tRDHD  
RDFB  
tRD  
tHD  
HDATA  
0
1
2
Figure 11. Single Read Cycle for Fly-By DMA Mode  
DREQ  
(
Pulse Width Is Programmable)  
FCS0  
RD  
RDFSRQ  
FIFO NOT EMPTY  
FSRQ0  
HDATA  
FIFO EMPTY  
tHD  
tRD  
0
1
Figure 12. Single Read Access for DCS DMA Mode  
Rev. 0 | Page 11 of 44  
ADV212  
EXTERNAL DMA MODE—FIFO WRITE, BURST MODE  
Table 8.  
Parameter  
DREQ Pulse Width1  
Mnemonic  
Min  
Typ  
Max  
Unit  
ns  
2
DREQPULSE  
1 JCLK  
15 JCLK  
WE to DREQ Deassert (DR × PULS = 0)  
tDREQ  
2.5 JCLK  
0
3.5 × JCLK + 7.5  
ns  
RTN  
DACK to WE Setup  
tDACK  
ns  
SU  
Data Setup  
Data Hold  
WE Assert Pulse Width  
WE Deassert Pulse Width  
WEDeassert to Next DREQ  
tSU  
tHD  
WELO  
WEHI  
2.5  
2
1.5 JCLK  
1.5 JCLK  
2.5 JCLK  
ns  
ns  
ns  
ns  
ns  
tDREQ  
4.5 × JCLK + 9.0  
WAIT  
WE Deassert to DACK Deassert  
tWE_DACK  
0
ns  
1 Applies to assigned DMA channel, if EDMOD0 or EDMOD1 <14:11> is programmed to a nonzero value.  
2 For a definition of JCLK, see Figure 32.  
DREQ  
PULSE  
tDREQWAIT  
DREQ  
DACK  
tWE_DACK  
tDACKSU  
WE  
HI  
WE  
LO  
WE  
tHD  
tSU  
HDATA  
14  
15  
0
1
13  
DREQ  
Figure 13. Burst Write Cycle for  
/DMA Mode for Assigned DMA Channel  
(EDMOD0/EDMOD1 <14:11> Not Programmed to a Value of 0000)  
tDREQRTN  
tDREQWAIT  
DREQ  
DACK  
tWE_DACK  
tDACKSU  
WE  
LO  
WE  
HI  
WE  
tHD  
tSU  
0
1
13  
14  
15  
HDATA  
DREQ  
/DMA Mode for Assigned DMA Channel  
Figure 14. Burst Write Cycle for  
(EDMOD0/EDMOD1 <14:11> Programmed to a Value of 0000)  
tDREQRTN  
tDREQWAIT  
DREQ  
DACK  
tWE_DACK  
tDACKSU  
WE  
LO  
WE  
HI  
WEFB  
tHD  
tSU  
0
1
13  
14  
15  
HDATA  
Figure 15. Burst Write Cycle for Fly-By DMA Mode  
Rev. 0 | Page 12 of 44  
 
ADV212  
EXTERNAL DMA MODE—FIFO READ, BURST MODE  
Table 9.  
Parameter  
DREQ Pulse Width1  
Mnemonic  
Min  
Typ  
Max  
Unit  
ns  
2
DREQPULSE  
1 JCLK  
15 JCLK  
RD to DREQ Deassert (DR × PULS = 0)  
tDREQ  
2.5 JCLK  
0
3.5 × JCLK + 7.5  
ns  
RTN  
DACK to RD Setup  
RD to Data Valid  
tDACK  
ns  
ns  
SU  
tRD  
2.5  
9.7  
Data Hold  
tHD  
RDLO  
RDHI  
2.5  
ns  
ns  
ns  
ns  
RD Assert Pulse Width  
RD Deassert Pulse Width  
RD Deassert to Next DREQ  
1.5 JCLK  
1.5 JCLK  
2.5 JCLK  
tDREQ  
3.5 × JCLK + 7.5  
WAIT  
RD Deassert to DACK Deassert  
tRD_DACK  
0
ns  
1 Applies to assigned DMA channel if EDMOD0 or EDMOD1 <14:11> is programmed to a nonzero value.  
2 For a definition of JCLK, see Figure 32.  
tDREQPULSE  
tDREQWAIT  
DREQ  
tRD_DACK  
DACK  
tDACKSU  
RD  
RD  
HI  
LO  
RD  
tHD  
0
1
13  
14  
15  
HDATA  
tRD  
Figure 16. Burst Read Cycle for  
DREQ DACK  
/
DMA Mode for Assigned DMA Channel  
(EMOD0/EDMOD1 <14:11> Not Programmed to a Value of 0  
tDREQWAIT  
DREQ  
DACK  
tRD_DACK  
tDREQRTN  
tDACKSU  
RD  
RD  
HI  
LO  
RD  
tHD  
0
1
13  
14  
15  
HDATA  
tRD  
Figure 17. Burst Read Cycle for  
(EMOD0/EDMOD1 <14:11> Programmed to a Value of 0000)  
tDREQRTN  
DREQ DACK  
/
DMA Mode for Assigned DMA Channel  
tDREQWAIT  
DREQ  
DACK  
tRD_DACK  
tDACKSU  
RDFB  
tHD  
HDATA  
0
1
13  
14  
15  
tRD  
Figure 18. Burst Read Cycle for Fly-By DMA Mode  
RD  
Rev. 0 | Page 13 of 44  
 
ADV212  
STREAMING MODE (JDATA)—FIFO READ/WRITE  
Table 10.  
Parameter  
Mnemonic  
JDATATD  
VALIDTD  
HOLDSU  
HOLDHD  
JDATASU  
JDATAHD  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
MCLK to JDATA Valid  
1.5 JCLK1  
2.5 × JCLK + 9.5  
2.5 × JCLK + 8.0  
MCLK to VALID Assert/Deassert  
HOLD Setup to Rising MCLK  
HOLD Hold from Rising MCLK  
JDATA Setup to Rising MCLK  
JDATA Hold from Rising MCLK  
1.5 JCLK  
3
3
3
3
ns  
ns  
1 For a definition of JCLK, see Figure 32.  
MCLK  
JDATA  
JDATA  
HD  
TD  
JDATA  
VALID  
HOLD  
JDATA  
SU  
VALID  
TD  
HOLD  
HD  
HOLD  
SU  
Figure 19. Streaming Mode Timing—Encode Mode JDATA Output  
MCLK  
JDATA  
HD  
JDATA  
SU  
JDATA  
VALID  
TD  
VALID  
HOLD  
HOLD  
HD  
HOLD  
SU  
Figure 20. Streaming Mode Timing—Decode Mode JDATA Input  
Rev. 0 | Page 14 of 44  
 
ADV212  
VDATA MODE TIMING  
Table 11.  
Parameter  
Mnemonic  
VDATATD  
VDATASU  
VDATAHD  
HSYNCSU  
HSYNCHD  
HSYNCTD  
VSYNCSU  
VSYNCHD  
VSYNCTD  
FIELDSU  
Min  
Typ  
Max  
Unit  
VCLK to VDATA Valid Delay (VDATA Output)  
VDATA Setup to Rising VCLK (VDATA Input)  
VDATA Hold from Rising VCLK (VDATA Input)  
HSYNC Setup to Rising VCLK  
HSYNC Hold from Rising VCLK  
VCLK to HSYNC Valid Delay  
VSYNC Setup to Rising VCLK  
VSYNC Hold from Rising VCLK  
VCLK to VSYNC Valid Delay  
FIELD Setup to Rising VCLK  
FIELD Hold from Rising VCLK  
VCLK to FIELD Valid  
12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
4
3
4
12  
12  
12  
3
4
4
3
FIELDHD  
FIELDTD  
SYNC DELAY  
Decode Slave Data Sync Delay  
(HSYNC Low to First 0xFF of EAV/SAV Code)  
Decode Slave Data Sync Delay  
81  
VCLK cycles  
VCLK cycles  
101  
(HSYNC Low to First Data for HVF Mode)  
1 The sync delay value varies according to the application. Refer to the ADV212 User Guide for more information.  
VCLK  
VDATA  
SU  
VDATA  
HD  
VDATA (IN)  
Cr  
Y
Cb  
Y
FF  
00  
00  
EAV  
FF  
00  
00  
SAV  
Cb  
Y
Cr  
Figure 21. Encode Video Mode Timing—CCIR 656 Mode  
VCLK  
HSYNC  
HSYNC  
HSYNC  
Cb  
SU  
HD  
VDATA (IN)  
Cb  
Y
Cr  
Y
Y
Cr  
Y
Figure 22. Encode Video Mode Timing—HVF Mode (HSYNC Timing)  
(HSYNC Programmed for Negative Polarity)  
VCLK  
VSYNC  
HD  
VSYNC  
SU  
VSYNC  
FIELD  
SU  
FIELD  
HD  
FIELD  
Figure 23. Encode Video Mode Timing—HVF Mode (VSYNC and FIELD Timing)  
(VSYNC and FIELD Programmed for Negative Polarity)  
Rev. 0 | Page 15 of 44  
 
ADV212  
VCLK  
VDATA  
TD  
VDATA (OUT)  
HSYNC (IN)  
FF  
00  
00  
EAV  
Cb  
Y
HSYNC  
SU  
HSYNC  
HD  
VSYNC  
HD  
SYNC DELAY  
VSYNC  
SU  
VSYNC (IN)  
FIELD (IN)  
FIELD  
SU  
Figure 24. Decode Video Mode Timing—CCIR 656 Mode, Decode Slave  
(HSYNC, VSYNC, and FIELD Programmed to Negative Polarity)  
VCLK  
VDATA  
TD  
Cb  
Y
Cr  
Y
Cb  
Y
VDATA (OUT)  
HSYNC (IN)  
HSYNC  
SU  
HSYNC  
HD  
VSYNC  
HD  
SYNC DELAY  
VSYNC  
SU  
VSYNC (IN)  
FIELD (IN)  
FIELD  
SU  
Figure 25. Decode Video Mode Timing—HVF Mode, Decode Slave  
(HSYNC, VSYNC, and FIELD Programmed to Negative Polarity)  
VCLK  
VDATA  
TD  
VDATA (OUT)  
HSYNC (OUT)  
VSYNC (OUT)  
FF  
00  
Cr  
00  
SAV  
Cb  
Cb  
Y
HSYNC  
TD  
VSYNC  
TD  
FIELD  
TD  
FIELD (OUT)  
Figure 26. Decode Video Mode Timing—CCIR 656 Mode, Decode Master  
(HSYNC, VSYNC, and FIELD Programmed to Negative Polarity)  
VCLK  
VDATA  
TD  
Cb  
Y
Cr  
Y
Cb  
Y
Cb  
Y
Cr  
VDATA (OUT)  
HSYNC (OUT)  
VSYNC (OUT)  
FIELD (OUT)  
VSYNC  
TD  
FIELD  
TD  
Figure 27. Decode Video Mode Timing—HVF Mode, Decode Master  
(HSYNC, VSYNC, and FIELD Programmed to Negative Polarity)  
Rev. 0 | Page 16 of 44  
ADV212  
RAW PIXEL MODE TIMING  
Table 12.  
Parameter  
Mnemonic  
VDATATD  
VDATASU  
VDATAHD  
VRDYTD  
VFRMSU  
VFRMHD  
VFRMTD  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VCLK to PIXELDATA Valid Delay (PIXELDATA Output)  
PIXELDATA Setup to Rising VCLK (PIXELDATA Input)  
PIXELDATA Hold from Rising VCLK (PIXELDATA Input)  
VCLK to VRDY Valid Delay  
VFRM Setup to Rising VCLK (VFRAME Input)  
VFRM Hold from Rising VCLK (VFRAME Input)  
VCLK to VFRM Valid Delay (VFRAME Output)  
VSTRB Setup to Rising VCLK  
12  
4
4
12  
12  
3
4
VSTRBSU  
VSTRBHD  
4
3
VSTRB Hold from Rising VCLK  
ns  
VCLK  
VDATA  
VDATA  
SU  
HD  
PIXEL DATA (IN)  
PIXEL 1  
PIXEL 2  
PIXEL 3  
VFRM  
TD  
SU  
VFRM  
HD  
VFRM (IN)  
VRDY  
VRDY (OUT)  
VSTRB  
HD  
VSTRB  
SU  
VSTRB (IN)  
RAW PIXEL MODE—ENCODE  
VCLK  
VDATA  
TD  
PIXELDATA (OUT)  
PIXEL 1  
PIXEL 2  
PIXEL 3  
VFRM  
VRDY  
TD  
TD  
VFRM (OUT)  
VRDY (OUT)  
VSTRB  
HD  
VSTRB  
SU  
VSTRB (IN)  
RAW PIXEL MODE—DECODE  
Figure 28. Raw Pixel Modes  
Rev. 0 | Page 17 of 44  
 
ADV212  
JTAG TIMING  
Table 13.  
Parameter  
Mnemonic  
TCK  
TDISU  
Min  
134  
4.0  
4.0  
0.0  
Typ  
Max  
Unit  
TCK Period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TDI or TMS Setup Time  
TDI or TMS Hold Time  
TDO Hold Time  
TDO Valid  
TRST Hold Time  
TRST Setup Time  
TRST Pulse Width Low  
TDIHD  
TDOHD  
TDOVALID  
TRSTHD  
TRSTSU  
TRSTLO  
10.0  
4.0  
4.0  
4
TCK cycles  
TCK  
TDO  
VALID  
TDO  
HD  
TDO  
TDI  
TDI  
TDI  
HD  
SU  
TMS  
TRST  
HD  
TRST  
SU  
TRST  
Figure 29. JTAG Timing  
Rev. 0 | Page 18 of 44  
 
ADV212  
ABSOLUTE MAXIMUM RATINGS  
Table 14.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
VDD − Supply Voltage, Core  
IOVDD − Supply Voltage,  
Input/Output  
−0.3 V to +1.65 V  
−0.3 V to 3.63 V  
Table 15. Thermal Resistance  
Package Type  
144-Ball ADV212BBCZ  
121-Ball ADV212BBCZ  
θJA  
θJC  
Unit  
°C/W  
°C/W  
Storage Temperature [TS]  
Reflow Soldering  
−65°C to +150°C  
22.5  
32.8  
3.8  
7.92  
Pb-Free, 121-Ball  
Pb-Free, 144-Ball  
260°C [20 sec to 40 sec]  
260°C [20 sec to 40 sec]  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 19 of 44  
 
ADV212  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
12 10  
8
6
4
2
1110 9  
7 3  
8 6 5 4 2 1  
9
7
11  
5
3
1
A
B
C
D
E
F
G
H
J
A
B
C
D
E
F
G
H
J
K
L
M
K
L
BOTTOM VIEW  
(Not to Scale)  
BOTTOM VIEW  
(Not to Scale)  
Figure 30.121-Ball Pin Configuration  
Figure 31. 144-Ball Pin Configuration  
Rev. 0 | Page 20 of 44  
 
ADV212  
Table 16. Pin Function Descriptions  
121-Ball Package 144-Ball Package  
Pins  
Used Type  
Pin No.  
Location  
Pin No.  
132  
131  
Location  
L12  
L11  
Mnemonic  
MCLK  
RESET  
Description  
119  
117  
L9  
L7  
1
1
I
I
System Input Clock. See the PLL section.  
Reset. Causes the ADV212 to immediately reset.  
CS, RD, WE, DACK0, DACK1, DREQ0, and DREQ1  
must be held high when a RESET is applied.  
37 to 34,  
27 to 25,  
16, 15, 24,  
14 to 12,  
2, 6, 5  
D4 to D1,  
C5 to C3,  
B5, B4, C2,  
B3 to B1,  
A2, A6, A5  
64, 49 to 51, F4, E1 to E3,  
37 to 39, 25 D1 to D3,  
HDATA  
[15:0]  
16  
I/O  
Host Data Bus. With HDATA [23:16],  
HDATA [27:24], and HDATA [31:28], these pins  
make up the 32-bit wide host data bus. The  
async host interface is interfaced together  
with ADDR[3:0], CS, WE, RD, and ACK.  
Unused HDATA pins should be pulled down  
via a 10 kΩ resistor.  
to 27, 13 to  
15, 2 to 4  
C1 to C3,  
B1 to B3,  
A2 to A4  
88, 107,  
87, 97  
96  
H11, K8,  
H10, J9  
J8  
108 to 106,  
96  
95  
J12, J11,  
J10, H12  
H11  
ADDR [3:0]  
CS  
4
1
I
I
Address Bus for the Host Interface.  
Chip Select. This signal is used to qualify  
addressed read and write access to the  
ADV212 using the host interface.  
95  
J7  
94  
H10  
WE1  
RDFB2  
1
1
1
I
Write Enable Used with the Host Interface.  
Read Enable When Fly-By DMA Is Enabled.  
Simultaneous assertion of WE and DACK low  
activates the HDATA bus, even if the DMA  
channels are disabled.  
86  
85  
H9  
H8  
84  
83  
G12  
G11  
RD1  
WEFB3  
I
Read Enable Used with the Host Interface.  
Write Enable When Fly-By DMA Is Enabled.  
Simultaneous assertion of RD and DACK low  
activates the HDATA bus, even if the DMA  
channels are disabled.  
Acknowledge. Used for direct register accesses.  
This signal indicates that the last register access  
was successful. Due to synchronization issues,  
control and status register accesses might incur  
an additional delay; therefore, the host software  
should wait for acknowledgment from the  
ADV212 before attempting another register  
access.  
ACK  
O
Accesses to the FIFOs (external DMA modes),  
on the other hand, are guaranteed to occur  
immediately, provided that space is available;  
therefore, the host software does not need to  
wait for ACK before attempting another register  
access, provided that the timing constraints  
are observed.  
If ACK is shared with more than one device, ACK  
should be connected to a pull-up resistor (10 kΩ)  
and the PLL_HI register, Bit 4, must be set to 1.  
76  
G10  
82  
G10  
IRQ  
1
O
Interrupt. This pin indicates that the ADV212  
requires the attention of the host processor.  
This pin can be programmed to indicate the  
status of the internal interrupt conditions  
within the ADV212. The interrupt sources are  
enabled via the bits in register EIRQIE.  
Rev. 0 | Page 21 of 44  
ADV212  
121-Ball Package  
144-Ball Package  
Pins  
Used Type  
Pin No.  
Location  
Pin No.  
72  
Location  
Mnemonic  
Description  
63  
F8  
F12  
DREQ0  
1
O
Data Request for External DMA Interface.  
Indicates that the ADV212 is ready to  
send/receive data to/from the FIFO assigned  
to DMA Channel 0.  
FSRQ0  
VALID  
CFG1  
O
O
I
FIFO Service Request. Used in DCS-DMA  
Mode. Service request from the FIFO assigned  
to Channel 0 (asynchronous mode).  
Valid Indication for JDATA Input/Output Stream.  
Polarity of this pin is programmable in the  
EDMOD0 register. VALID is always an output.  
Boot Mode Configuration. This pin is read on  
reset to determine the boot configuration of  
the on-board processor. The pin should be tied  
to IOVDD or DGND through a 10 kΩ resistor.  
64  
F9  
71  
F11  
DACK0  
1
I
Data Acknowledge for External DMA Interface.  
Signal from the host CPU, which indicates that  
the data transfer request (DREQ0) has been  
acknowledged and that the data transfer can  
proceed. This pin must be held high at all  
times if the DMA interface is not used, even if  
the DMA channels are disabled.  
HOLD  
FCS0  
I
External Hold Indication for JDATA Input/Output  
Stream. Polarity is programmable in the  
EDMOD0 register. This pin is always an input.  
FIFO Chip Select. Used in DCS-DMA Mode.  
Chip select for the FIFO assigned to Channel 0  
(asynchronous mode).  
I
65  
F10  
70  
F10  
DREQ1  
1
O
Data Request for External DMA Interface.  
Indicates that the ADV212 is ready to  
send/receive data to/from the FIFO assigned  
to DMA Channel 1.  
FSRQ1  
CFG2  
O
I
FIFO Service Request. Used in DCS-DMA  
Mode. Service request from the FIFO assigned  
to Channel 1 (asynchronous mode).  
Boot Mode Configuration. This pin is read on  
reset to determine the boot configuration of  
the on-board processor. The pin should be tied  
to IOVDD or DGND through a 10 kΩ resistor.  
75  
G9  
69  
F9  
DACK1  
1
I
Data Acknowledge for External DMA Interface.  
Signal from the host CPU, which indicates that  
the data transfer request (DREQ1) has been  
acknowledged and data transfer can proceed.  
This pin must be held high at all times unless a  
DMA or JDATA access is occurring. This pin  
must be held high at all times if the DMA  
interface is not used, even if the DMA channels  
are disabled.  
FCS1  
I
FIFO Chip Select. Used in DCS-DMA Mode.  
Chip select for the FIFO assigned to Channel 1  
(asynchronous mode).  
90 to 92, 78  
79 to 81, 70  
J2 to J4, H1  
111,97 to 99 K3, J1 to J3  
HDATA  
[31:28]  
JDATA [7:4]  
HDATA  
[27:24]  
4
4
I/O  
Host Expansion Bus.  
I/O  
I/O  
JDATA Bus (JDATA Mode).  
Host Expansion Bus.  
H2 to H4, G4 100, 85 to 87 J4, H1 to H3  
JDATA [3:0]  
I/O  
JDATA Bus (JDATA Mode).  
Rev. 0 | Page 22 of 44  
ADV212  
121-Ball Package  
144-Ball Package  
Pins  
Used Type  
Pin No.  
Location  
Pin No.  
88,73 to 75  
Location  
Mnemonic  
Description  
69, 68,  
59, 58  
57, 46 to 48 F2, E2, E3,  
E4  
G3, G2,  
F4, F3  
H4, G1 to G3 HDATA  
[23:20]  
4
I/O  
I/O  
I/O  
Host Expansion Bus.  
76, 61 to 63 G4, F1 to F3 HDATA  
[19:16]  
4
Host Expansion Bus.  
VDATA  
[15:12]  
Video Data. Only used for raw pixel video  
mode. Unused pins should be pulled down via  
a 10 kΩ resistor.  
112  
113  
114  
L2  
L3  
L4  
134  
135  
136  
M2  
M3  
M4  
SCOMM7  
SCOMM6  
SCOMM5  
8
I/O  
I/O  
I/O  
Serial Communication. For internal use only.  
This pin should be tied low via a 10 kΩ resistor.  
Serial Communication. For internal use only.  
This pin should be tied low via a 10 kΩ resistor.  
Serial Communication. This pin must be used  
in multiple chip mode to align the outputs of  
two or more ADV212s. For details, see the  
Applications section and the AN-796  
Application Note. When not used, this pin  
should be tied low via a 10 kΩ resistor.  
100  
K1  
121  
L1  
SCOMM4  
O
LCODE Output in Encode Mode. When LCODE  
is enabled, the output on this pin indicates on  
a high transition that the last data-word for a  
field has been read from the FIFO. For an 8-bit  
interface, such as JDATA, LCODE is asserted for  
four consecutive bytes and is enabled  
by default.  
101  
K2  
122  
L2  
SCOMM3  
SCOMM2  
SCOMM1  
SCOMM0  
VCLK  
I
Serial Communication. For internal use only.  
This pin should be tied low via a 10 kΩ resistor.  
Serial Communication. For internal use only.  
This pin should be tied low via a 10 kΩ resistor.  
Serial Communication. For internal use only.  
This pin should be tied low via a 10 kΩ resistor.  
Serial Communication. This pin should be tied  
low via a10 kΩ resistor.  
115  
L5  
123  
L3  
O
I
103  
K4  
109  
K1  
K2  
E12  
102  
K3  
110  
O
I
53  
E9  
60  
1
Video Data Clock. This pin must be supplied if  
video data is input/output on the VDATA bus.  
44, 43, 29,  
31, 32, 18 to C7, C9, C10, 34 to 36,  
20, 22, 21, 7, B7, B8, B9,  
10  
D11, D10,  
46 to 48,  
D10 to D12, VDATA  
12  
I/O  
Video Data. Unused pins should be pulled  
down via a 10 kΩ resistor.  
C10 to C12,  
B10 to B12,  
A9 to A11  
[11:0]  
22 to 24,  
9 to 11  
B11, B10,  
A7, A10  
41  
D8  
58  
E10  
VSYNC  
VFRM  
1
I/O  
Vertical Sync for Video Mode.  
Raw Pixel Mode Framing Signal. When this pin  
is asserted high, it indicates the first sample of  
a tile.  
42  
54  
D9  
59  
57  
E11  
E9  
HSYNC  
VRDY  
FIELD  
VSTRB  
TCK  
1
1
I/O  
O
I/O  
I
Horizontal Sync for Video Mode.  
Raw Pixel Mode Ready Signal.  
Field Sync for Video Mode.  
Raw Pixel Mode Transfer Strobe.  
JTAG Clock. If not used, this pin should be  
connected to ground via a pull-down resistor.  
JTAG Reset. If the JTAG is used, this pin must  
be toggled low to high. If JTAG is not used, this  
pin must be held low.  
E10  
94  
J6  
120  
119  
K12  
K11  
1
1
I
108  
K9  
TRS  
I
Rev. 0 | Page 23 of 44  
ADV212  
121-Ball Package  
144-Ball Package  
Pins  
Used Type  
Pin No.  
Location  
Pin No.  
Location  
Mnemonic  
Description  
98  
J10  
118  
141  
130  
K10  
TMS  
1
1
1
I
JTAG Mode Select. If JTAG is used, connect  
10 kΩ pull-up resistor to this pin. If not used,  
this pin should be connected to ground via a  
pull-down resistor.  
JTAG Serial Data Input. If JTAG is used, connect  
a 10 kΩ pull-up resistor to this pin. If JTAG is  
not used, this pin should be connected to  
ground via a pull-down resistor.  
116  
109  
L6  
M9  
TDI  
I
K10  
L10  
TDO  
VDD  
O
V
JTAG Serial Data Output. If this pin is not used,  
do not connect it.  
Positive Supply for Core.  
3, 8, 40, 84,  
120  
A3, A8, D7,  
H7, L10  
18, 19, 30,  
31, 42, 43,  
102, 103,  
114, 115,  
126, 127,  
142  
B6, B7, C6,  
C7, D6, D7,  
J6, J7, K6,  
K7, L6, L7,  
M10  
1, 4, 9,11,  
23, 33, 39,  
A1, A4, A9,  
A11, C1,  
1, 5 to 8, 12, A1, A5 to  
DGND  
GND  
Ground.  
17, 20, 29,  
A8, A12, B5,  
45, 49 to 51, C11, D6, E1, 32, 41, 44,  
55, 56, 60 to E5 to E7,  
62, 66, 67, E11, F1, F5  
71 to 73, 77, to F7, F11,  
B8, C5, C8,  
52 to 56, 65 D5, D8, E4  
to 68, 77 to to E8, F5 to  
81, 89 to 93, F8, G5 to  
83, 89,99,  
110, 111,  
118, 121  
G1, G5 to  
G7, G11, H6, 105, 113,  
J1, J11, K11, 116, 125,  
L1, L8, L11  
101, 104,  
G9, H5 to  
H9, J5, J8,  
J9, K5, K8,  
L5, L8, M1,  
M5 to M8,  
M11, M12  
128, 133,  
137 to 140,  
143, 144  
17, 28, 30,  
38, 52, 74,  
82, 93, 104  
to 106  
B6, C6, C8,  
D5, E8, G8,  
H5, J5, K5 to 112, 117,  
K7 124, 129  
16, 21, 28,  
33, 40, 45,  
B4, B9, C4,  
C9, D4, D9,  
K4, K9, L4,  
L9  
IOVDD  
V
Positive Supply for Input/Output.  
1
RD  
WE  
signals (for DMA only) are reversed. This allows a host to move data between an external device and the ADV212  
In fly-by mode DMA, the function of the  
with the use of a single strobe.  
and  
2
3
RDFB  
WEFB  
WE  
signal (  
In encode mode with fly-by DMA, the host can use the  
In decode mode with fly-by DMA, the host can use the  
pin) to simultaneously read from the ADV212 and write to an external device like memory.  
RD  
signal ( pin) to simultaneously read from the external device and write to the ADV212.  
Rev. 0 | Page 24 of 44  
ADV212  
THEORY OF OPERATION  
The input video or pixel data is passed on to the ADV212s pixel  
interface, and samples are deinterleaved and passed on to the  
wavelet engine, which decomposes each tile or frame into  
subbands using the 5/3 or 9/7 filters. The resultant wavelet  
coefficients are then written to the internal memory. The  
entropy codecs code the image data so that it conforms to the  
JPEG 2000 standard. An internal DMA provides high  
bandwidth memory-to-memory transfers, as well as high  
performance transfers between functional blocks and memory.  
ENTROPY CODECS  
The entropy codec block performs context modeling and  
arithmetic coding on a code block of the wavelet coefficients.  
Additionally, this block also performs the distortion metric  
calculations during compression that are required for optimal  
rate and distortion performance. Because the entropy coding  
process is the most computationally intensive operation in the  
JPEG 2000 compression process, three dedicated hardware  
entropy codecs are provided on the ADV212.  
WAVELET ENGINE  
EMBEDDED PROCESSOR SYSTEM  
The ADV212 provides a dedicated wavelet transform processor  
based on the Analog Devices proven and patented SURF  
technology. This processor can perform up to six wavelet  
decomposition levels on a tile. In encode mode, the wavelet  
transform processor takes in uncompressed samples, performs  
the wavelet transform and quantization, and writes the wavelet  
coefficients in all frequency subbands to the internal memory.  
Each of these subbands is further broken down into code  
blocks. The code-block dimensions can be user defined and are  
used by the wavelet transform processor to organize the wavelet  
coefficients into code blocks when writing to the internal  
memory. Each completed code block is then entropy coded by  
one of the entropy codecs.  
The ADV212 incorporates an embedded 32-bit RISC processor.  
This processor is used for configuration, control, and manage-  
ment of the dedicated hardware functions, as well as for parsing  
and generation of the JPEG 2000 code stream. The processor  
system includes memory for both the program and data  
memory, the interrupt controller, the standard bus interfaces,  
and other hardware functions such as timers and counters.  
MEMORY SYSTEM  
The main function of the memory system is to manage wavelet  
coefficient data, interim code-block attribute data, and  
temporary workspace for creating, parsing, and storing the  
JPEG 2000 code stream. The memory system can also be used  
for the program and data memory for the embedded processor.  
In decode mode, wavelet coefficients are read from internal  
memory and recomposed into uncompressed samples.  
INTERNAL DMA ENGINE  
The internal DMA engine provides high bandwidth memory-  
to-memory transfers, as well as high performance transfers  
between memory and functional blocks. This function is critical  
for high speed generation and parsing of the code stream.  
Rev. 0 | Page 25 of 44  
 
ADV212  
ADV212 INTERFACE  
There are several possible modes to interface to the ADV212 using  
the VDATA bus and the HDATA bus or the HDATA bus alone.  
The control and data channel bus widths can be specified  
independently, which allows the ADV212 to support  
applications that require control and data buses of different  
widths.  
VIDEO INTERFACE (VDATA BUS)  
The video interface can be used in applications in which  
uncompressed pixel data is on a separate bus from compressed  
data. For example, it is possible to use the VDATA bus to input  
uncompressed video while using the HDATA bus to output the  
compressed data. This interface is ideal for applications  
requiring very high throughput, such as live video capture.  
The host interface is used for configuration, control, and status  
functions, as well as for transferring compressed data streams. It  
can be used for uncompressed data transfers in certain modes.  
The host interface can be shared by as many as three concurrent  
data streams in addition to control and status communications.  
The data streams are  
Optionally, the ADV212 interlaces ITU-R BT.656 resolution  
video on the fly prior to wavelet processing, which yields  
significantly better compression performance for temporally  
coherent frame-based video sources. Additionally, high  
definition digital video such as SMPTE 274M (1080i) is  
supported using two or more ADV212 devices.  
Uncompressed tile data (for example, still image data)  
Fully encoded JPEG 2000 code stream (or unpackaged  
code blocks)  
Code-block attributes  
The ADV212 uses big endian byte alignment for 16- and 32-bit  
transfers. All data is left-justified (MSB).  
The video interface can support video data or still image data  
input/output in 8-/10-/12-bit formats, in YCbCr format, or in  
single input mode. YCbCr data must be in 4:2:2 format.  
Pixel Input on the Host Interface  
Pixel input on the host interface supports 8-/10-/12-/14-/16-bit  
raw pixel data formats. It can be used for pixel (still image)  
input/output or compressed video output. Because there are no  
timing codes or sync signals associated with the input data on  
the host interface, dimension registers and internal counters are  
used and must be programmed to indicate the start and end of  
the frame. Refer to the ADV202 in HIPI Mode technical note for  
information about using the ADV212 in this mode.  
Video data can be input/output in several different modes on  
the VDATA bus, as described in Table 17. In all these modes,  
the pixel clock must be input on the VCLK pin.  
Table 17. Video Input/Output Modes  
Mode  
Description  
EAV/SAV  
Accepts video with embedded EAV/SAV codes, where  
the YCbCr data is interleaved onto a single bus.  
HVF  
Accepts video data accompanied with separate H,  
V, and F signals, where YCbCr data is interleaved  
onto a single bus.  
Host Bus Configuration  
For maximum flexibility, the host interface provides several  
configurations to meet particular system requirements. The  
default bus mode uses the same pins to transfer control, status,  
and data to and from the ADV212. In this mode, the ADV212  
can support 16- and 32-bit control transfers and 8-/16-/32-bit  
data transfers. The size of these buses can be selected  
independently, allowing, for example, a 16-bit microcontroller  
to configure and control the ADV212 while still providing  
32-bit data transfers to an ASIC or external memory system.  
Raw Video Used for still picture data and nonstandard video.  
VFRM, VSTRB, and VRDY are used to program the  
dimensions of the image.  
HOST INTERFACE (HDATA BUS)  
The ADV212 can connect directly to a wide variety of host  
processors and ASICs using an asynchronous SRAM-style  
interface, DMA accesses, or streaming mode (JDATA) interface.  
The ADV212 supports 16- and 32-bit buses for control and  
8-/16-/32-bit buses for data transfer.  
DIRECT AND INDIRECT REGISTERS  
To minimize pin count and cost, the number of address pins  
is limited to four, which yields a total direct address space of  
16 locations. These locations are most commonly used by the  
external controller and are, therefore, accessible directly. All  
other registers in the ADV212 can be accessed indirectly  
through the IADDR and IDATA registers.  
Rev. 0 | Page 26 of 44  
 
ADV212  
has been provided to allow 16-bit hosts to access these registers  
and memory locations using the stage register (STAGE). STAGE  
is accessed as a 16-bit register using HDATA [15:0]. Prior to  
writing to the desired register, the stage register must be written  
with the upper (most significant) half-word.  
CONTROL ACCESS REGISTERS  
With the exception of the indirect address and data registers  
(IADDR and IDATA), all control/status registers in the  
ADV212 are 16 bits wide and are half-word (16-bit) addressable  
only. When 32-bit host mode is enabled, the upper 16 bits of the  
HDATA bus are ignored on writes and return all zeros on reads  
of 16-bit registers.  
When the host subsequently writes the lower half-word to the  
desired control register, HDATA is combined with the  
previously staged value to create the required 32-bit value that is  
written. When a register is read, the upper (most significant)  
half-word is returned immediately on HDATA and the lower  
half-word can be retrieved by reading the stage register on a  
subsequent access. For details on using the stage register, see the  
ADV212 User’s Guide.  
PIN CONFIGURATION AND BUS SIZES/MODES  
The ADV212 provides a wide variety of control and data  
configurations, which allows it to be used in many applications  
with little or no glue logic. The modes described in this section  
are configured using the BUSMODE register. In this section,  
host refers to normal addressed accesses (  
and data refers to external DMA accesses (  
CS RD WE  
/
/
/ADDR)  
Note that the stage register does not apply to the three data  
channels (PIXEL, CODE, ATTR). These channels are always  
accessed at the specified data width and do not require the use  
of the stage register.  
DREQ DACK  
/
).  
32-Bit Host/32-Bit Data  
In this mode, the HDATA<31:0> pins provide full 32-bit wide  
data access to PIXEL, CODE, ATTR FIFOs.  
JDATA MODE  
16-Bit Host/32-Bit Data  
JDATA mode is typically used only when the dedicated video  
interface (VDATA) is also enabled. This mode allows code  
stream data (compressed data compliant with JPEG 2000) to be  
input or output on a single dedicated 8-bit bus (JDATA<7:0>).  
The bus is always an output during compression operations,  
and is an input during decompression.  
This mode allows a 16-bit host to configure and communicate  
with the ADV212 while allowing 32-bit accesses to the PIXEL,  
CODE, ATTR FIFOs using the external DMA capability.  
All addressed host accesses are 16 bits and, therefore, use only  
the HDATA<15:0> pins. The HDATA<31:16> pins provide the  
additional 16 bits necessary to support the 32-bit external DMA  
transfers to and from the FIFOs only.  
A 2-pin handshake is used to transfer data over this  
synchronous interface. VALID is used to indicate that the  
ADV212 is ready to provide or accept data and is always an  
output. HOLD is always an input and is asserted by the host if it  
cannot accept/provide data. For example, JDATA mode allows  
real-time applications, in which pixel data is input over the  
VDATA bus while the compressed data stream is output over  
the JDATA bus.  
16-Bit Host/16-Bit Data  
This mode uses 16-bit transfers if used for host or external  
DMA data transfers.  
16-Bit Host/8-Bit Data (JDATA Bus Mode)  
This mode provides separate data input/output and host  
control interface pins. Host control accesses are 16 bits and use  
HDATA<15:0>, whereas the dedicated data bus uses JDATA<7:0>.  
EXTERNAL DMA ENGINE  
The external DMA interface is provided to enable high  
bandwidth data input/output between an external DMA  
controller and the ADV212 data FIFOs. Two independent DMA  
channels can each be assigned to any one of the three data  
stream FIFOs (PIXEL, CODE, ATTR).  
JDATA uses a valid/hold synchronous transfer protocol. The  
direction of the JDATA bus is determined by the mode of the  
ADV212. If the ADV212 is encoding (compression),  
JDATA<7:0> is an output. If the ADV212 is decoding  
(decompression), JDATA<7:0> is an input. Host control  
accesses remain asynchronous. See also JDATA section below.  
The controller supports asynchronous DMA using a  
DREQ DACK  
data-request/data-acknowledge (  
/
) protocol in  
STAGE REGISTER  
either single or burst access modes. Additional functionality is  
provided for single address compatibility (fly-by) and dedicated  
chip select (DCS) modes.  
Because the ADV212 contains both 16-bit and 32-bit registers  
and its internal memory is mapped as 32-bit data, a mechanism  
Rev. 0 | Page 27 of 44  
 
ADV212  
INTERNAL REGISTERS  
This section describes the internal registers of the ADV212.  
The host must first initialize the direct registers before any  
application-specific operation can be implemented.  
DIRECT REGISTERS  
For additional information on accessing and configuring these  
registers, see the ADV212 User’s Guide.  
The ADV212 has 16 direct registers, as listed in Table 18. The  
direct registers are accessed over the ADDR [3:0], HDATA [31:0],  
CS RD WE  
ACK  
,
,
, and  
pins.  
Table 18. Direct Registers  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Name  
Description  
PIXEL  
CODE  
ATTR  
Pixel FIFO access register  
Compressed code stream access register  
Attribute FIFO access register  
Reserved  
Reserved  
CMDSTA  
EIRQIE  
EIRQFLG  
SWFLAG  
BUSMODE  
MMODE  
STAGE  
IADDR  
IDATA  
BOOT  
PLL_HI  
PLL_LO  
Command stack  
External interrupt enabled  
External interrupt flags  
Software flag register  
Bus mode configuration register  
Miscellaneous mode register  
Staging register  
Indirect address register  
Indirect data register  
Boot mode register  
PLL control register—high byte  
PLL control register—low byte  
Rev. 0 | Page 28 of 44  
 
ADV212  
INDIRECT REGISTERS  
In certain modes, such as custom-specific input format or HIPI  
mode, indirect registers must be accessed by the user through  
the use of the IADDR and IDATA registers. The indirect  
register address space starts at Internal Address 0xFFFF0000.  
Both 32-bit and 16-bit hosts can access the indirect registers.  
32-bit hosts use the IADDR and IDATA registers, and the 16-bit  
hosts use the IADDR, the IDATA, and the stage register.  
For additional information on accessing and configuring these  
registers, see the ADV212 User’s Guide.  
Table 19. Indirect Registers  
Address  
Name  
Description  
0xFFFF0400  
0xFFFF0404  
0xFFFF0408  
0xFFFF040C  
0xFFFF0410  
0xFFFF0414  
0xFFFF0418  
0xFFFF041C  
0xFFFF0420  
0xFFFF0424  
0xFFFF0428  
0xFFFF042C  
0xFFFF0430  
0xFFFF0440  
0xFFFF0444  
0xFFFF0448  
0xFFFF044C  
0xFFFF1408  
0xFFFF140C  
0xFFFF1410  
0xFFFF1414  
0xFFFF1418  
0xFFFF141C  
0xFFFF1420  
0xFFFF1424 to 0xFFFF14FC  
PMODE1  
COMP_CNT_STATUS  
LINE_CNT_STATUS  
XTOT  
Pixel/video format  
Horizontal count  
Vertical count  
Total samples per line  
Total lines per frame  
Start line of Field 0 [F0]  
Start line of Field 1 [F1]  
Start of active video Field 0 [F0]  
Start of active video Field 1 [F1]  
End of active video Field 0 [F0]  
End of active video Field 1 [F1]  
Horizontal start of active video  
Horizontal end of active video  
Master/slave delay  
Reserved  
Pixel Mode 2  
Video mode  
External DMA Mode Register 0  
External DMA Mode Register 1  
FIFO threshold for pixel FIFO  
Reserved  
YTOT  
F0_START  
F1_START  
V0_START  
V1_START  
V0_END  
V1_END  
PIXEL_START  
PIXEL_END  
MS_CNT_DEL  
Reserved  
PMODE2  
VMODE  
EDMOD0  
EDMOD1  
FFTHRP  
Reserved  
Reserved  
FFTHRC  
FFTHRA  
Reserved  
Reserved  
FIFO threshold for code FIFO  
FIFO threshold for ATTR FIFO  
Reserved  
Rev. 0 | Page 29 of 44  
 
ADV212  
PLL  
The ADV212 uses the PLL_HI and PLL_LO direct registers to  
configure the PLL. Any time the PLL_LO register is modified,  
the host must wait at least 20 μs before reading from or writing  
to another register. If this delay is not implemented, erratic  
behavior might result.  
For MCLK frequencies greater than 50 MHz, the input clock  
divider must be enabled, that is, IPD must be set to 1.  
IPD cannot be enabled for MCLK frequencies below 20 MHz.  
Deinterlace modes require JCLK ≥ 4 × MCLK.  
It is not recommended to use an LLC output from a video  
decoder as a clock source for MCLK.  
MCLK is the input clock to the ADV212 PLL and is used to  
generate the internal JCLK (JPEG 2000 processor clock) and  
HCLK (embedded CPU clock).  
To achieve the lowest power consumption, an MCLK frequency  
of 27 MHz is recommended for a standard definition CCIR 656  
input. The PLL circuit is recommended to have a multiplier of 3.  
This sets JCLK and HCLK to 81 MHz.  
The PLL can be programmed to have any possible final  
multiplier value as long as  
JCLK > 50 MHz and < 150 MHz (144-pin version).  
JCLK > 50 MHz and < 115 MHz (121-pin version).  
HCLK < 81 MHz (121-pin version), or HCLK < 108 MHz  
(144-pin version).  
JCLK ≥ 2 × VCLK for single-component input.  
JCLK ≥ 2 × VCLK for YCbCr [4:2:2] input.  
In JDATA mode (JDATA), JCLK must be 4 × MCLK  
or higher.  
BYPASS  
IPD  
MCLK  
PHASE  
DETECT  
JCLK  
HCLK  
÷2  
÷2  
LPF  
VCO  
÷2  
÷2  
÷2  
÷PLLMULT  
HCLKD  
LFB  
Figure 32. PLL Architecture and Control Functions  
The maximum burst frequency for external DMA modes is  
≤ 0.36 JCLK.  
Table 20. Recommended PLL Register Settings  
IPD  
LFB  
PLLMULT  
HCLKD  
HCLK  
JCLK  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
N
N
N
N
N
N
N
N
0
1
0
1
0
1
0
1
N × MCLK  
N × MCLK/2  
2 × N × MCLK  
N × MCLK  
N × MCLK/2  
N × MCLK/4  
N × MCLK  
N × MCLK/2  
N × MCLK  
N × MCLK  
2 × N × MCLK  
2 × N × MCLK  
N × MCLK/2  
N × MCLK/2  
N × MCLK  
N × MCLK  
Table 21. Recommended Values for PLL_HI and PLL_LO Registers  
Video Standard  
CLKIN Frequency on MCLK  
PLL_HI  
0x0008  
0x0008  
0x0008  
0x0008  
PLL_LO  
0x0004  
0x0004  
0x0004  
0x0084  
SMPTE 125M or ITU-R BT.656 (NTSC or PAL)  
SMPTE 293M (525p)  
ITU-R BT.1358 (625p)  
27 MHz  
27 MHz  
27 MHz  
74.25 MHz  
SMPTE 274M (1080i)  
Rev. 0 | Page 30 of 44  
 
ADV212  
HARDWARE BOOT  
The boot mode can be configured via hardware using the CFG pins or via software. The first boot mode after power-up is set by the CFG pins.  
Table 22. Hardware Boot Modes  
Boot Mode  
Settings  
Description  
Hardware Boot Mode 2 CFG<1> tied high, CFG<2> tied low  
No boot host mode. ADV212 does not boot, but all internal registers and  
memory are accessible through normal host input/output operations.  
Hardware Boot Mode 4 CFG<1> tied low, CFG<2> tied high  
Hardware Boot Mode 6 CFG<1> and CFG<2> tied high  
Reserved.  
Reserved.  
Rev. 0 | Page 31 of 44  
 
ADV212  
VIDEO INPUT FORMATS  
The ADV212 supports a wide variety of formats for  
uncompressed video and still image data. The actual interface  
and bus modes selected for transferring uncompressed data  
dictates the allowed size of the input data and the number of  
samples transferred with each access.  
YCbCr formats or single component format. See the ADV212  
User’s Guide for details. All formats can support less precision  
than provided by specifying the actual data width/precision in  
the PMODE register.  
The maximum allowable data input rate is limited by using  
irreversible or reversible compression modes and the data width  
(or precision) of the input samples. Refer to Table 23 and  
Table 25 to determine the maximum data input rate.  
The host interface can support 8-/10-/12-/14-/16-bit data  
formats. The video interface can support video data or still  
image data input/output. Supported formats are 8-/10-/12-bit  
Table 23. Maximum Pixel Data Input Rates (144-Ball Package)  
Input Rate Limit  
Approx Min Output Rate,  
Compressed Data2  
(Mbps)  
Approx Max Output Rate,  
Compressed Data3  
(Mbps)  
Active Resolution  
Interface  
Compression Mode  
Irreversible  
Irreversible  
Irreversible  
Irreversible  
Reversible  
Input Format  
8-bit data  
10-bit data  
12-bit data  
16-bit data  
8-bit data  
(MSPS)1  
HDATA  
45  
45  
45  
45  
40  
32  
27  
23  
65  
65  
65  
40  
32  
27  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
Reversible  
Reversible  
Reversible  
10-bit data  
12-bit data  
14-bit data  
8-bit data  
10-bit data  
12-bit data  
8-bit data  
VDATA  
Irreversible  
Irreversible  
Irreversible  
Reversible  
Reversible  
Reversible  
10-bit data  
12-bit data  
1 Input rate limits for HDATA might be less for certain applications depending on input picture size and content, host interface settings, and DMA transfer settings.  
2 Minimum guaranteed sustained output rate or minimum sustainable compression rate [input rate/minimum peak output rate].  
3 Maximum peak output rate; an output rate above this value is not possible.  
Table 24. Maximum Pixel Data Input Rates (121-Ball Package)  
Input Rate Limit  
Active Resolution  
(MSPS)1  
Approx Min Output Rate,  
Compressed Data2  
(Mbps)  
Approx Max Output Rate,  
Compressed Data3  
(Mbps)  
Interface  
Compression Mode  
Irreversible  
Irreversible  
Irreversible  
Irreversible  
Reversible  
Reversible  
Reversible  
Reversible  
Input Format  
8-bit data  
10-bit data  
12-bit data  
16-bit data  
8-bit data  
10-bit data  
12-bit data  
14-bit data  
8-bit data  
10-bit data  
12-bit data  
8-bit data  
HDATA  
34  
34  
34  
34  
30  
24  
20  
17  
48  
48  
48  
30  
24  
20  
98  
98  
98  
98  
98  
98  
98  
98  
98  
98  
98  
98  
98  
98  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
VDATA  
Irreversible  
Irreversible  
Irreversible  
Reversible  
Reversible  
Reversible  
10-bit data  
12-bit data  
1 Input rate limits for HDATA might be less for certain applications depending on input picture size and content, host interface settings, and DMA transfer settings.  
2 Minimum guaranteed sustained output rate or minimum sustainable compression rate [input rate/minimum peak output rate].  
3 Maximum peak output rate; an output rate above this value is not possible.  
Rev. 0 | Page 32 of 44  
 
ADV212  
Table 25. Maximum Supported Tile Width for Data Input on HDATA and VDATA Buses  
Compression Mode  
Input Format  
Tile/Precinct Maximum Width  
9/7i  
9/7i  
9/7i  
5/3i  
5/3i  
5/3i  
5/3r  
5/3r  
5/3r  
Single-component  
Two-component  
Three-component  
Single-component  
Two-component  
Three-component  
Single-component  
Two-component  
Three-component  
2048  
1024 each  
1024 (Y)  
4096  
2048 (each)  
2048 (Y)  
4096  
2048  
1024  
Rev. 0 | Page 33 of 44  
ADV212  
APPLICATIONS  
In decode mode, a master/slave configuration (as shown in  
Figure 34) or a slave/slave configuration can be used to  
synchronize the outputs of the two ADV212s. See the AN-796  
Application Note for details on how to configure the ADV212s  
in a multichip application.  
This section describes typical video applications for the  
ADV212 JPEG 2000 video processor.  
ENCODE—MULTICHIP MODE  
Due to the data input rate limitation (see Table 23), an 1080i  
application requires at least two ADV212s to encode or decode  
full-resolution 1080i video. In encode mode, the ADV212  
accepts Y and CbCr data on separate buses. An encode example  
is shown in Figure 33.  
Applications that have two separate VDATA outputs sent to an  
FPGA or buffer before they are sent to an encoder do not  
require synchronization at the ADV212 outputs.  
32-BIT HOST CPU  
ADV212_1_SLAVE  
ADV7402  
74.25MHz  
OSC  
10-BIT SD/HD  
VIDEO  
DECODER  
DATA[31:0]  
ADDR[3:0]  
CS  
HDATA[31:0]  
ADDR[3:0]  
CS  
1080i  
VIDEO IN  
RD  
RD  
VCLK  
MCLK  
LLC  
ACK  
ACK  
WE  
WR  
Y
VDATA[11:2]  
Y[9:0]  
C[9:0]  
IRQ  
IRQ  
DREQ  
DACK  
DREQ  
DACK  
FIELD  
VSYNC  
HSYNC  
CbCr  
G I/O  
SCOMM[5]  
ADV212_2_SLAVE  
HDATA[31:0]  
ADDR[3:0]  
VCLK  
MCLK  
CS  
RD  
CS  
RD  
HSYNC  
VSYNC  
FIELD  
WR  
ACK  
IRQ  
WE  
ACK  
IRQ  
CbCr  
VDATA[11:2]  
DREQ  
DACK  
DREQ  
DACK  
SCOMM[5]  
Figure 33. Encode—Multichip Application  
Rev. 0 | Page 34 of 44  
 
ADV212  
In a slave/slave configuration, the common HVF for both  
ADV212s is generated by an external house sync and each  
SCOMM[5] is connected to the same GPIO output on the host.  
DECODE—MULTICHIP MASTER/SLAVE  
In a master/slave configuration, it is expected that the master  
HVF outputs are connected to the slave HVF inputs and that  
each SCOMM[5] pin is connected to the same GPIO on the host.  
SWIRQ1, Software Interrupt 1 in the EIRQIE register, must be  
unmasked on both devices to enable multichip mode.  
74.25MHz  
OSC  
32-BIT HOST CPU  
ADV212_1_MASTER  
ADV7321A  
10-BIT SD/HD  
VIDEO  
ENCODER  
DATA[31:0]  
ADDR[3:0]  
CS  
HDATA[31:0]  
ADDR[3:0]  
CS  
RD  
RD  
1080i  
VIDEO OUT  
VCLK  
MCLK  
CLKIN  
Y[9:0]  
WR  
WE  
ACK  
IRQ  
ACK  
Y
Y
VDATA[11:2]  
IRQ  
DREQ  
DACK  
DREQ  
DACK  
FIELD  
VSYNC  
HSYNC  
CbCr  
G I/O  
SCOMM[5]  
C[9:0]  
ADV212_2_SLAVE  
HDATA[31:0]  
ADDR[3:0]  
VCLK  
MCLK  
CS  
RD  
CS  
RD  
HSYNC  
VSYNC  
FIELD  
WR  
ACK  
IRQ  
WE  
ACK  
IRQ  
CbCr  
VDATA[11:2]  
DREQ  
DACK  
DREQ  
DACK  
SCOMM[5]  
Figure 34. Decode—Multichip Master/Slave Application  
Rev. 0 | Page 35 of 44  
 
ADV212  
DIGITAL STILL CAMERA/CAMCORDER  
Figure 35 is a typical configuration for a digital camera or camcorder.  
FPGA  
AD9843A  
D[9:0]  
ADV212  
MCLK  
10  
DATA INPUTS[9:0]  
VCLK  
16-BIT  
HOST CPU  
VFRM  
VRDY  
SDATA  
SCK  
SL  
SERIAL DATA  
SERIAL CLK  
SERIAL EN  
VSTRB  
HDATA[15:0]  
ADDR[3:0]  
CS  
DATA[15:0]  
ADDR[3:0]  
CS  
RD  
RD  
WE  
WE  
PIXEL OUT[9:0]  
VDATA[15:6]  
ACK  
IRQ  
ACK  
IRQ  
Figure 35. Digital Still Camera/Camcorder Encode Application for 10-Bit Pixel Data Using Raw Pixel Mode  
Rev. 0 | Page 36 of 44  
 
ADV212  
ENCODE/DECODE SDTV VIDEO APPLICATION  
Figure 36 shows two ADV212 chips using a 10-bit CCIR 656 in normal host mode.  
ENCODE MODE  
ADV7189  
10-BIT  
VIDEO  
DECODER  
ADV212  
VIDEO IN  
VDATA[11:2]  
P[19:10]  
32-BIT  
HOST CPU  
VCLK  
MCLK  
LLC1  
DATA[31:0]  
INTR  
HDATA[31:0]  
IRQ  
27MHz  
OSC  
ADDR[3:0]  
CS  
ADDR[3:0]  
CS  
RD  
RD  
WE  
WE  
ACK  
ACK  
ADV7301A  
10-BIT  
VIDEO  
ENCODER  
DECODE MODE  
ADV212  
VIDEO OUT  
VDATA[11:2]  
VCLK  
P[9:0]  
CLKIN  
32-BIT  
HOST CPU  
MCLK  
DATA[31:0]  
INTR  
HDATA[31:0]  
IRQ  
27MHz  
OSC  
ADDR[3:0]  
CS  
ADDR[3:0]  
CS  
RD  
RD  
WE  
WE  
ACK  
ACK  
Figure 36. Encode/Decode—SDTV Video Application  
Rev. 0 | Page 37 of 44  
 
ADV212  
32-BIT HOST APPLICATION  
Figure 37 shows two ADV212 chips using a 10-bit CCIR 656 in normal host mode.  
FPGA  
ADV7189  
ADV212  
10-BIT  
VIDEO  
VIDEO IN  
DECODER  
DREQ0  
DACK0  
DREQ0  
DACK0  
VDATA[11:2]  
P[19:10]  
DATA[31:0]  
HDATA[31:0]  
LLC1  
VCLK  
MCLK  
27MHz  
OSC  
32-BIT  
HOST CPU  
DATA[31:0]  
IRQ  
ADDR[3:0]  
CS  
IRQ  
ADDR[3:0]  
CS  
RD  
RD  
WE  
WE  
ACK  
ACK  
ENCODE MODE  
FPGA  
ADV730xA  
ADV212  
10-BIT  
VIDEO  
VIDEO OUT  
ENCODER  
DREQ0  
DACK0  
DREQ0  
DACK0  
VDATA[11:2]  
VCLK  
P[9:0]  
CLKIN  
DATA[31:0]  
HDATA[31:0]  
MCLK  
31-BIT  
HOST CPU  
27MHz  
OSC  
DATA[31:0]  
IRQ  
ADDR[3:0]  
CS  
IRQ  
ADDR[3:0]  
CS  
RD  
RD  
WE  
WE  
ACK  
ACK  
DECODE MODE  
Figure 37. Encode/Decode 32-Bit Host Application  
Rev. 0 | Page 38 of 44  
 
ADV212  
HIPI (HOST INTERFACE—PIXEL INTERFACE)  
Figure 38 is a typical configuration using HIPI mode.  
ADV212  
Y0/G0<MSB>  
Y0/G0<6>  
Y0/G0<5>  
Y0/G0<4>  
Y0/G0<3>  
Y0/G0<2>  
Y0/G0<1>  
Y0/G0<0>  
Cb0/G1<MSB>  
Cb0/G1<6>  
Cb0/G1<5>  
Cb0/G1<4>  
Cb0/G1<3>  
Cb0/G1<2>  
Cb0/G1<1>  
Cb0/G1<0>  
Y1/G2<MSB>  
Y1/G2<6>  
Y1/G2<5>  
Y1/G2<4>  
Y1/G2<3>  
Y1/G2<2>  
Y1/G2<1>  
Y1/G2<0>  
Cr0/G3<MSB>  
Cr0/G3<6>  
Cr0/G3<5>  
Cr0/G3<4>  
Cr0/G3<3>  
Cr0/G3<2>  
Cr0/G3<1>  
Cr0/G3<0>  
HDATA<31>  
HDATA<30>  
HDATA<29>  
HDATA<28>  
HDATA<27>  
HDATA<26>  
HDATA<25>  
HDATA<24>  
HDATA<23>  
HDATA<22>  
HDATA<21>  
HDATA<20>  
HDATA<19>  
HDATA<18>  
HDATA<17>  
HDATA<16>  
HDATA<15>  
HDATA<14>  
HDATA<13>  
HDATA<12>  
HDATA<11>  
HDATA<10>  
HDATA<9>  
HDATA<8>  
HDATA<7>  
HDATA<6>  
HDATA<5>  
HDATA<4>  
HDATA<3>  
HDATA<2>  
HDATA<1>  
HDATA<0>  
32-BIT HOST  
DATA<31:0>  
CS  
RD  
CS  
RD  
WR  
ACK  
IRQ  
WE  
ACK  
IRQ  
DREQ  
DACK  
DREQ0  
DACK0  
COMPRESSED  
DATA PATH  
DREQ  
DACK  
DREQ1  
DACK1  
RAW PIXEL  
DATA PATH  
74.25MHz  
MCLK  
Figure 38. Host Interface—Pixel Interface Mode  
Rev. 0 | Page 39 of 44  
 
ADV212  
JDATA INTERFACE  
Figure 39 shows a typical configuration using JDATA with a dedicated JDATA output, 16-bit host, and 10-bit CCIR 656.  
FPGA  
ADV212  
ADV7189  
P[19:10]  
YCrCb  
JDATA[7:0] VDATA[11:2]  
HOLD  
VIDEO IN  
FIELD  
VALID  
FIELD  
VS  
HS  
VSYNC  
HSYNC  
16-BIT  
HOST CPU  
VCLK  
LLC1  
DATA[15:0]  
HDATA[15:0]  
IRQ  
ADDR[3:0]  
CS  
IRQ  
ADDR[3:0]  
27MHz  
OSC  
MCLK  
CS  
RD  
RD  
WE  
WE  
ACK  
ACK  
Figure 39. JDATA Application  
Rev. 0 | Page 40 of 44  
 
ADV212  
OUTLINE DIMENSIONS  
A1 CORNER  
INDEX AREA  
12.20  
12.00 SQ  
11.80  
11 10  
9
7
8 6 5 3  
4 2 1  
A
B
C
D
E
F
BALL A1  
CORNER  
10.00  
BSC SQ  
G
H
J
1.00  
BSC  
K
L
BOTTOM VIEW  
DETAILA  
TOP VIEW  
DETAIL A  
*
1.85  
1.71  
1.40  
*
1.31  
1.21  
1.11  
0.50 NOM  
0.30 MIN  
0.20  
COPLANARITY  
0.70  
0.60  
0.50  
SEATING  
PLANE  
BALL DIAMETER  
*COMPLIANT WITH JEDEC STANDARDS MO-192-ABD-1 WITH  
EXCEPTION TO PACKAGE HEIGHT AND THICKNESS.  
Figure 40. 121-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-121-1)  
Dimensions shown in millimeters  
A1 CORNER  
INDEX AREA  
13 .00  
BSC SQ  
9
7
11  
5
4
3
1
2
12  
10  
8
6
A
B
C
D
E
F
G
H
J
BALL A1  
INDICATOR  
11.00  
BCS SQ  
TOP VIEW  
K
L
M
BOTTOM VIEW  
DETAILA  
1.00 BSC  
DETAIL A  
*
1.85  
MAX  
*
1.32  
1.21  
1.11  
0.53  
0.43  
COPLANARITY  
0.20 MAX  
0.70  
0.60  
0.50  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT WITH JEDEC STANDARDS MO-192-AAD-1 WITH  
EXCEPTION TO PACKAGE HEIGHT AND THICKNESS.  
Figure 41. 144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-144-3)  
Dimensions shown in millimeters  
Rev. 0 | Page 41 of 44  
 
ADV212  
ORDERING GUIDE  
Temperature  
Range  
Speed  
Grade  
Package  
Option  
Model  
ADV212BBCZ-1151  
Operating Voltage Package Description  
−40°C to +85°C 115 MHz 1.5 V Internal,  
2.5 V or 3.3 V I/O  
121-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
121-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
144-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
BC-121-1  
BC-121-1  
BC-144-3  
BC-144-3  
ADV212BBCZRL-1151 −40°C to +85°C 115 MHz 1.5 V Internal,  
2.5 V or 3.3 V I/O  
ADV212BBCZ-1501  
−40°C to +85°C 150 MHz 1.5 V Internal,  
2.5 V or 3.3 V I/O  
ADV212BBCZRL-1501 −40°C to +85°C 150 MHz 1.5 V Internal,  
2.5 V or 3.3 V I/O  
1 Z = Pb-free part.  
Rev. 0 | Page 42 of 44  
 
ADV212  
NOTES  
Rev. 0 | Page 43 of 44  
ADV212  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06389-0-10/06(0)  
Rev. 0 | Page 44 of 44  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

相关型号:

ADV212BBCZRL-115

JPEG 2000 Video Codec
ADI

ADV212BBCZRL-150

JPEG 2000 Video Codec
ADI

ADV3000

3:1 HDMI/DVI Switch with Equalization
ADI

ADV3000-EVALZ

3:1 HDMI/DVI Switch with Equalization
ADI

ADV3000ASTZ

3:1 HDMI/DVI Switch with Equalization
ADI

ADV3000ASTZ-RL

3:1 HDMI/DVI Switch with Equalization
ADI

ADV3002

4:1 HDMI/DVI Switch with Equalization, DDC/CEC Buffers and EDID Replication
ADI

ADV3002-EVALZ

4:1 HDMI/DVI Switch with Equalization, DDC/CEC Buffers and EDID Replication
ADI

ADV3002BSTZ

4:1 HDMI/DVI Switch with Equalization, DDC/CEC Buffers and EDID Replication
ADI

ADV3002BSTZ-RL

4:1 HDMI/DVI Switch with Equalization, DDC/CEC Buffers and EDID Replication
ADI

ADV3003

HDMI/DVI TMDS Equalizer
ADI

ADV3003-EVALZ

HDMI/DVI TMDS Equalizer
ADI