ADV3002BSTZ [ADI]

4:1 HDMI/DVI Switch with Equalization, DDC/CEC Buffers and EDID Replication; 4 : 1 HDMI / DVI开关,具有均衡, DDC / CEC缓冲和EDID复制
ADV3002BSTZ
型号: ADV3002BSTZ
厂家: ADI    ADI
描述:

4:1 HDMI/DVI Switch with Equalization, DDC/CEC Buffers and EDID Replication
4 : 1 HDMI / DVI开关,具有均衡, DDC / CEC缓冲和EDID复制

开关
文件: 总28页 (文件大小:482K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4:1 HDMI/DVI Switch with Equalization,  
DDC/CEC Buffers and EDID Replication  
ADV3002  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
4 inputs, 1 output HDMI/DVI links  
8 kV ESD protection on input pins  
SEL[1:0] TX_EN  
RESETB  
SERIAL  
PARALLEL  
ADV3002  
AVCC  
AVEE  
I2C_SDA  
I2C_SCL  
I2C_ADDR[1:0]  
CONFIG  
INTERFACE  
CONTROL  
LOGIC  
HDMI 1.3a receive and transmit compliant  
Supports 250 Mbps to 2.25 Gbps data rates and beyond  
Supports 25 MHz to 225 MHz pixel clocks and beyond  
Fully buffered unidirectional inputs/outputs  
Switchable 50 Ω on-chip input terminations with manual  
or automatic control on channel switch  
Equalized inputs with low added jitter compensate for  
more than 20 meters of HDMI cable at 2.25 Gbps  
Loss of signal (LOS) detect circuit on TMDS clock  
Output disable feature for reduced power dissipation  
Bidirectional DDC buffers (SDA and SCL)  
2
AVCC  
AVCC  
LOS  
+
+
4
4
+
+
IN_x_CLK+  
IN_x_CLK–  
OUT_CLK+  
OUT_CLK–  
IN_x_DATA2+  
IN_x_DATA2–  
IN_x_DATA1+  
IN_x_DATA1–  
IN_x_DATA0+  
IN_x_DATA0–  
OUT_DATA2+  
OUT_DATA2–  
OUT_DATA1+  
OUT_DATA1–  
OUT_DATA0+  
OUT_DATA0–  
4
SWITCH  
CORE  
+
+
+
+
4
4
EQ  
4
4
TMDS  
AVCC  
AVCC  
DDC_xxx_A  
DDC_xxx_B  
DDC_xxx_C  
DDC_xxx_D  
2
2
2
2
2
SWITCH  
CORE  
DDC_SCL_COM,  
DDC_SDA_COM  
EDID replication reduces component count, while enabling  
simultaneous access to all HDMI sources  
3.3V  
3.3V  
5 V combiner provides power to EDID replicator and CEC  
buffer when local system power is off  
Bidirectional buffered CEC line with integrated pull-up  
resistors (26 kΩ)  
Hot plug detect pulse low on channel switch with  
programmable pulse width or direct manual control  
Standards compatible: HDMI, DVI, HDCP, I2C  
80-lead, 14 mm × 14 mm LQFP RoHS-compliant package  
CEC_IN  
CEC_OUT  
DDC/CEC  
BIDIRECTIONAL  
EDID_ENABLE  
REPLICATOR  
CONTROL  
2
EDID_SCL,  
EDID_SDA  
EDID  
P5V_A  
P5V_B  
P5V_C  
P5V_D  
5V  
AMUXVCC  
COMBINER  
EDID EEPROM INTERFACE  
HPD_A  
HPD_B  
HPD_C  
HPD_D  
APPLICATIONS  
Advanced television (HDTV) sets  
Projectors  
HPD  
CONTROL  
HOT PLUG DETECT  
A/V receivers  
Set-top boxes  
Figure 1.  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADV3002 is a complete HDMI™/DVI link switch featuring  
equalized transition minimized differential signaling (TMDS)  
inputs, ideal for systems with long cable runs. The ADV3002  
includes bidirectional buffering for the DDC bus and CEC line,  
with integrated pull-up resistors for the CEC line. Additionally,  
the ADV3002 includes an EDID replication function that enables  
one EDID EEPROM to be shared for all four HDMI ports.  
1. Input cable equalizer enables use of long cables at the  
input. For a 24 AWG cable, the ADV3002 compensates for  
more than 20 m at data rates up to 2.25 Gbps.  
2. Auxiliary multiplexer isolates and buffers the DDC bus and  
the CEC line, increasing total system capacitance limit.  
3. EDID replication eliminates the need for multiple EDID  
EEPROMs. EDID can be loaded from a single external  
EEPROM or from a system microcontroller.  
The ADV3002 is provided in a space-saving, 80-lead LQFP  
surface-mount Pb-free plastic package and is specified to  
operate over the 0°C to 85°C temperature range.  
4. 5 V power combiner powers the EDID replicator and CEC  
buffer when local system power is off.  
5. Integrated hot plug detect pulse low on channel switch  
with programmable pulse width or direct manual control.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADV3002  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DDC Buffers................................................................................ 13  
EDID Replication....................................................................... 13  
5 V Combiner ............................................................................. 15  
CEC Buffer .................................................................................. 15  
Hot Plug Detect Control ........................................................... 15  
Loss of Signal Detect.................................................................. 16  
Serial Control Interface ................................................................. 17  
Reset............................................................................................. 17  
Write Procedure.......................................................................... 17  
Read Procedure........................................................................... 18  
ADV3002 Register Map................................................................. 19  
Applications Information.............................................................. 21  
HDMI Multiplexer for Advanced TV ..................................... 21  
Cable Lengths and Equalization............................................... 24  
PCB Layout Guidelines.............................................................. 24  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
TMDS Performance Specifications............................................ 3  
Auxiliary Channel Performance Specifications........................ 3  
Power Supply and Control Logic Specifications ...................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 12  
TMDS Input Channels............................................................... 12  
TMDS Output Channels ........................................................... 12  
REVISION HISTORY  
12/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
ADV3002  
SPECIFICATIONS  
TA = 27°C, AVCC = 3.3 V, A M U XVC C = 5 V, AVEE = 0 V, data rate = 2.25 Gbps, differential input swing = 1000 mV, TMDS outputs  
terminated with external 50 Ω resistors to 3.3 V, unless otherwise noted.  
TMDS PERFORMANCE SPECIFICATIONS  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Maximum Data Rate (DR) per Channel  
Maximum Clock Rate  
Bit Error Rate (BER)  
Added Data Jitter  
Added Clock Jitter  
Differential Intrapair Skew  
Differential Interpair Skew  
EQUALIZATION PERFORMANCE  
High Frequency Gain  
INPUT CHARACTERISTICS  
Input Voltage Swing  
NRZ  
2.25  
225  
Gbps  
MHz  
PRBS 223 − 1  
DR ≤ 2.25 Gbps, PRBS 27 − 1  
10−9  
40  
1
1
ps p-p  
ps rms  
ps  
At output  
At output  
35  
ps  
Boost frequency = 1.125 GHz  
Differential  
18  
dB  
150  
AVCC − 800  
1200  
AVCC  
mV  
mV  
Input Common-Mode Voltage (VICM  
OUTPUT CHARACTERISTICS  
High Voltage Level  
)
Single-ended high speed channel  
Single-ended high speed channel  
DR = 2.25 Gbps  
AVCC − 200  
AVCC − 600  
75  
AVCC + 10  
mV  
Low Voltage Level  
Rise/fall time (20% to 80%)  
TERMINATION  
AVCC − 400 mV  
190  
ps  
Input Termination Resistance  
Output Termination Resistance  
LOSS OF SIGNAL (LOS) DETECT  
Frequency Cutoff  
Single-ended  
Single-ended  
50  
50  
LOS_FC (see Figure 27)  
Clock rate = 225 MHz, LOS_THR = 00  
(see Figure 27)  
5
MHz  
mV  
Amplitude Threshold  
35  
AUXILIARY CHANNEL PERFORMANCE SPECIFICATIONS  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
DDC CHANNELS  
Input Capacitance, CAUX  
Input Low Voltage, VIL  
Input High Voltage, VIH  
Output Low Voltage, VOL  
Rise Time  
DC bias = 2.5 V, ac voltage = 3.5 V p-p, f = 100 kHz  
5
15  
0.5  
pF  
V
V
0.7 × AMUXVCC  
IOL = 5 mA  
0.25  
1.45  
20  
0.4  
V
10% to 90%, CLOAD = 50 pF, RPULL-UP = 2 kΩ  
90% to 10%, CLOAD = 50 pF, RPULL-UP = 2 kΩ  
VIN = 5.0 V  
µs  
ns  
µA  
Fall Time  
Leakage  
250  
10  
CEC CHANNEL  
Input Capacitance, CAUX  
Input Low Voltage, VIL  
Input High Voltage, VIH  
Output Low Voltage, VOL  
Output High Voltage, VOH  
DC bias = 1.65 V, ac voltage = 2.5 V p-p, f = 100 kHz  
IOL = 3 mA  
5
15  
0.8  
pF  
V
V
V
V
2.0  
2.5  
0.1  
0.6  
Rev. 0 | Page 3 of 28  
 
 
 
 
ADV3002  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
Rise Time  
10% to 90%, CLOAD = 1500 pF, RPULL-UP = 27 kΩ; or CLOAD = 7200 pF,  
RPULL-UP = 3 kΩ  
75  
250  
µs  
Fall Time  
90% to 10%, CLOAD = 1500 pF, RPULL-UP = 27 kΩ; or CLOAD = 7200 pF,  
0.2  
26  
50  
µs  
R
PULL-UP = 3 kΩ  
Pull-Up Resistance  
Leakage  
kΩ  
µA  
Off-leakage test conditions1  
1.8  
0.4  
HOT PLUG DETECT  
Output Low Voltage, VOL  
RPU = 800 Ω  
0.25  
V
1 Off leakage test conditions are described in the HDMI Compliance Test Specification 1.3c Section 8, Test ID 8-14. To measure CEC leakage, connect the CEC line to  
3.63 V via 26 kΩ 5 % resistor with an ammeter in series and with the power mains disabled.  
POWER SUPPLY AND CONTROL LOGIC SPECIFICATIONS  
Table 3.  
Parameter  
POWER SUPPLY  
AVCC  
Test Conditions/Comments  
Operating range (3.3 V 10%)  
Output voltage, total load1 = 50 mA  
Min  
Typ  
Max  
Unit  
3.0  
4.7  
4.0  
3.3  
5
5
3.6  
5.5  
5.5  
V
V
V
P5V_x  
AMUXVCC  
QUIESCENT CURRENT  
AVCC  
Outputs disabled  
Outputs enabled  
Main power on  
Main power off  
Main power on  
Main power off  
40  
60  
150  
10  
30  
30  
10  
mA  
mA  
mA  
mA  
mA  
mA  
170  
0.5  
20  
20  
0.5  
P5V_x  
AMUXVCC  
POWER DISSIPATION  
Outputs disabled  
Outputs enabled  
232  
661  
381  
885  
mW  
mW  
I2C® AND LOGIC INPUTS2  
Input High Voltage, VIH  
Input Low Voltage, VIL  
I2C AND LOGIC OUTPUTS2  
Output High Voltage, VOH  
Output Low Voltage, VOL  
2.4  
V
V
1.0  
0.4  
IOH = −2 mA  
IOL = +2 mA  
AVCC  
V
V
1 The total load current includes current drawn by the ADV3002 as well as external devices powered from the AMUXVCC supply.  
2 The ADV3002 I2C control and logic input pins are listed as control in the Type column in Table 6. I2C pins are 5 V tolerant and based on the 3.3 V I2C bus specification.  
Rev. 0 | Page 4 of 28  
 
 
ADV3002  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
AVCC to AVEE  
P5V_x  
Rating  
3.7 V  
5.8 V  
AMUXVCC  
AVCC − 0.3 V < AMUXVCC < 5.8 V  
Internal Power Dissipation 1.2 W  
TMDS Single-Ended Input  
Voltage  
AVCC − 1.4 V < VIN < AVCC + 0.3 V  
THERMAL RESISTANCE  
TMDS Differential Input  
Voltage  
2.0 V  
θJA is specified for the worst-case conditions: a device soldered  
in a 4-layer JEDEC circuit board for surface-mount packages.  
θJC is specified for the exposed pad soldered to the circuit board  
with no airflow.  
Voltage at TMDS Output  
DDC Input Voltage  
CEC Input Voltage  
I2C Logic Input Voltage  
(EDID_SCL, EDID_SDA,  
I2C_SCL, I2C_SDA)  
VOUT < 3.7 V  
AVEE − 0.3 V <VIN < AMUXVCC + 0.3 V  
AVEE − 0.3 V < VIN < 4.0 V  
AVEE − 0.3 V < VIN < 4.0 V  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
Parallel Input Voltage  
(I2C_ADDR[1:0],  
RESETB)  
Parallel Input Voltage  
(SEL[1:0], TX_EN)  
AVEE − 0.3 V < VIN < AMUXVCC + 0.3 V  
AVEE − 0.3V < VIN < AVCC + 0.3 V  
80-Lead LQFP (ST-80-2)  
51.3  
15.3  
°C/W  
ESD CAUTION  
Storage Temperature Range −65°C to +125°C  
Operating Temperature  
Range  
0°C to +85°C  
Junction Temperature  
150°C  
8 kV  
ESD Protection (HBM) on  
HDMI Input Pins  
ESD Protection (HBM) on  
All Other Pins  
2.5 kV  
Rev. 0 | Page 5 of 28  
 
 
 
ADV3002  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78  
76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
77  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
IN_B_CLK–  
IN_B_CLK+  
HPD_B  
IN_C_DATA2+  
IN_C_DATA2–  
HPD_C  
PIN 1  
2
3
4
IN_B_DATA0–  
IN_B_DATA0+  
HPD_A  
IN_C_DATA1+  
IN_C_DATA1–  
HPD_D  
5
6
7
IN_B_DATA1–  
IN_B_DATA1+  
AVCC  
IN_C_DATA0+  
IN_C_DATA0–  
AVCC  
ADV3002  
TOP VIEW  
(Not to Scale)  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
IN_B_DATA2–  
IN_B_DATA2+  
SEL0  
IN_C_CLK+  
IN_C_CLK–  
I2C_ADDR0  
IN_D_DATA2+  
IN_D_DATA2–  
AVEE  
IN_A_CLK–  
IN_A_CLK+  
SEL1  
IN_A_DATA0–  
IN_A_DATA0+  
AVCC  
IN_D_DATA1+  
IN_D_DATA1–  
AVCC  
IN_A_DATA1–  
IN_A_DATA1+  
IN_D_DATA0+  
IN_D_DATA0–  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Figure 2. Pin Configuration  
Rev. 0 | Page 6 of 28  
 
ADV3002  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
1
2
3
IN_B_CLK−  
IN_B_CLK+  
HPD_B  
TMDS  
TMDS  
HPD  
High Speed TMDS Input B Clock Complement.  
High Speed TMDS Input B Clock.  
Hot Plug Detect Output B.  
4
5
6
IN_B_DATA0−  
IN_B_DATA0+  
HPD_A  
TMDS  
TMDS  
HPD  
High Speed TMDS Input B Data Complement.  
High Speed TMDS Input B Data.  
Hot Plug Detect Output A.  
7
8
IN_B_DATA1−  
IN_B_DATA1+  
AVCC  
IN_B_DATA2−  
IN_B_DATA2+  
SEL0  
IN_A_CLK−  
IN_A_CLK+  
SEL1  
IN_A_DATA0−  
IN_A_DATA0+  
IN_A_DATA1−  
IN_A_DATA1+  
AVEE  
IN_A_DATA2−  
IN_A_DATA2+  
TX_EN  
OUT_DATA2+  
OUT_DATA2−  
I2C_SCL  
OUT_DATA1+  
OUT_DATA1−  
OUT_DATA0+  
OUT_DATA0−  
OUT_CLK+  
OUT_CLK−  
RESETB  
IN_D_CLK−  
IN_D_CLK+  
I2C_ADDR1  
I2C_SDA  
TMDS  
TMDS  
Power  
TMDS  
TMDS  
Control  
TMDS  
TMDS  
Control  
TMDS  
TMDS  
TMDS  
TMDS  
Power  
TMDS  
TMDS  
Control  
TMDS  
TMDS  
Control  
TMDS  
TMDS  
TMDS  
TMDS  
TMDS  
TMDS  
Control  
TMDS  
TMDS  
Control  
Control  
TMDS  
TMDS  
TMDS  
TMDS  
TMDS  
TMDS  
Control  
TMDS  
TMDS  
TMDS  
TMDS  
HPD  
High Speed TMDS Input B Data Complement.  
High Speed TMDS Input B Data.  
Positive Analog Supply 3.3 V.  
High Speed TMDS Input B Data Complement.  
High Speed TMDS Input B Data.  
Channel Select Parallel Control LSB.  
High Speed TMDS Input A Clock Complement.  
High Speed TMDS Input A Clock.  
Channel Select Parallel Control MSB.  
High Speed TMDS Input A Complement.  
High Speed TMDS Input A Data.  
High Speed TMDS Input A Data Complement.  
High Speed TMDS Input A Data.  
Negative Analog Supply 0.0 V.  
High Speed TMDS Input A Data Complement.  
High Speed TMDS Input A Data.  
TMDS Output Enable Parallel Control.  
High Speed TMDS Output.  
High Speed TMDS Output Complement.  
Serial Control Clock Input.  
High Speed TMDS Output.  
High Speed TMDS Output Complement.  
High Speed TMDS Output.  
High Speed TMDS Output Complement.  
High Speed TMDS Output Clock.  
High Speed TMDS Output Clock Complement.  
Configuration Registers Reset. Active low.  
High Speed TMDS Input D Clock Complement.  
High Speed TMDS Input D Clock.  
Serial Control External Address MSB.  
Serial Control Data Input/Output.  
High Speed TMDS Input D Data Complement.  
High Speed TMDS Input D Data.  
9, 18, 33, 43, 52  
10  
11  
12  
13  
14  
15  
16  
17  
19  
20  
21, 30, 46  
22  
23  
24  
25  
26  
27  
28  
29  
31  
32  
34  
35  
36  
37  
38  
39  
40  
41  
42  
44  
45  
47  
48  
49  
50  
51  
53  
54  
55  
56  
57  
58  
IN_D_D ATA0−  
IN_D_DATA0+  
IN_D_DATA1−  
IN_D_DATA1+  
IN_D_DATA2−  
IN_D_DATA2+  
I2C_ADDR0  
IN_C_CLK−  
IN_C_CLK+  
IN_C_DATA0−  
IN_C_DATA0+  
HPD_D  
High Speed TMDS Input D Data Complement.  
High Speed TMDS Input D Data.  
High Speed TMDS Input D Data Complement.  
High Speed TMDS Input D Data.  
Serial Control External Address LSB.  
High Speed TMDS Input C Clock Complement.  
High Speed TMDS Input C Clock.  
High Speed TMDS Input C Data Complement.  
High Speed TMDS Input C Data.  
Hot Plug Detect Output D.  
High Speed TMDS Input C Data Complement.  
High Speed TMDS Input C Data.  
IN_C_DATA1−  
IN_C_DATA1+  
HPD_C  
TMDS  
TMDS  
HPD  
Hot Plug Detect Output C.  
Rev. 0 | Page 7 of 28  
 
ADV3002  
Pin No.  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Mnemonic  
IN_C_DATA2−  
IN_C_DATA2+  
EDID_SCL  
EDID_SDA  
EDID_ENABLE  
AMUXVCC  
CEC_OUT  
Type  
Description  
TMDS  
TMDS  
Control  
Control  
Control  
Power  
CEC  
High Speed TMDS Input C Data Complement.  
High Speed TMDS Input C Data.  
External EDID EEPROM Serial Interface Clock.  
External EDID EEPROM Serial Interface Data.  
EDID Replication Enable.  
Positive Power Supply 5.0 V.  
Consumer Electronics Control Output.  
Consumer Electronics Control Input.  
Display Data Channel Serial Clock Common Input/Output.  
Display Data Channel Serial Data Common Input/Output.  
Display Data Channel Serial Clock Input/Output D.  
Display Data Channel Serial Data Input/Output D.  
Display Data Channel Serial Clock Input/Output C.  
Display Data Channel Serial Data Input/Output C.  
Display Data Channel Serial Clock Input/Output B.  
Display Data Channel Serial Data Input/Output B.  
Display Data Channel Serial Clock Input/Output B.  
Display Data Channel Serial Data Input/Output A.  
5 V HDMI Supply from Source D.  
CEC_IN  
DDC_SCL_COM DDC  
DDC_SDA_COM DDC  
CEC  
DDC_SCL_D  
DDC_SDA_D  
DDC_SCL_C  
DDC_SDA_C  
DDC_SCL_B  
DDC_SDA_B  
DDC_SCL_A  
DDC_SDA_A  
P5V_D  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
Power  
Power  
Power  
Power  
P5V_C  
P5V_B  
P5V_A  
5 V HDMI Supply from Source C.  
5 V HDMI Supply from Source B.  
5 V HDMI Supply from Source A.  
Rev. 0 | Page 8 of 28  
ADV3002  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 27°C, AVCC = 3.3 V, AMUXVCC = 5.0 V, AVEE = 0 V, differential input swing = 1000 mV, pattern = PRBS 27 − 1,  
data rate = 2.25 Gbps, TMDS outputs terminated with external 50 Ω resistors to 3.3 V, unless otherwise noted.  
HDMI CABLE  
ADV3002  
EVALUATION  
BOARD  
DIGITAL  
PATTERN  
GENERATOR  
SERIAL DATA  
ANALYZER  
SMA COAX CABLE  
REFERENCE EYE DIAGRAM AT TP1  
TP1  
TP2  
TP3  
Figure 3. Test Circuit for Eye Diagrams  
0.167UI/DIV AT 2.25Gbps  
0.167UI/DIV AT 2.25Gbps  
Figure 4. Eye Diagram at TP2 for 2 m Cable  
Figure 6. Eye Diagram at TP3 for 2 m Cable  
0.167UI/DIV AT 2.25Gbps  
0.167UI/DIV AT 2.25Gbps  
Figure 5. Eye Diagram at TP2 for 20 m 24 AWG Cable  
Figure 7. Eye Diagram at TP3 for 20 m 24 AWG Cable  
Rev. 0 | Page 9 of 28  
 
ADV3002  
1.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ALL CABLES = 24 AWG  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1080p, 12-BIT  
1080p, 10-BIT  
1080p, 8-BIT  
720p  
DETERMINISTIC JITTER  
RANDOM JITTER  
0
10  
20  
30  
3.5  
3.6  
0
10  
20  
30  
40  
50  
60  
70  
80  
INPUT CABLE LENGTH (m)  
TEMPERATURE (°C)  
Figure 8. Deterministic Jitter vs. Input Cable Length  
Figure 11. Jitter vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
800  
600  
400  
200  
DETERMINISTIC JITTER  
RANDOM JITTER  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
DATA RATE (Gbps)  
DATA RATE (Gbps)  
Figure 9. Jitter vs. Data Rate  
Figure 12. Eye Height vs. Data Rate  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
800  
600  
400  
200  
0
DETERMINISTIC JITTER  
RANDOM JITTER  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 10. Jitter vs. Supply Voltage  
Figure 13. Eye Height vs. Supply Voltage  
Rev. 0 | Page 10 of 28  
ADV3002  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
EQ = 18dB  
DETERMINISTIC JITTER  
RANDOM JITTER  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
DIFFERENTIAL INPUT SWING (V)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 14. Deterministic Jitter vs. Input Swing  
Figure 17. Jitter vs. Input Common-Mode Voltage  
250  
200  
0.6  
0.5  
0.4  
0.3  
150  
100  
50  
DDC  
CEC  
HPD  
0.2  
0.1  
0
DATA RISE TIME @ 2.25Gbps  
DATA FALL TIME @ 2.25Gbps  
CLOCK RISE TIME @ 225MHz  
CLOCK FALL TIME @ 225MHz  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
2
4
6
8
10  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 15. Rise and Fall Time vs. Temperature  
Figure 18. DDC, CEC, HPD Output Logic Low Voltage vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
TEMPERATURE (°C)  
Figure 16. Termination Resistance vs. Temperature  
Rev. 0 | Page 11 of 28  
ADV3002  
The input equalizer can be manually configured to provide two  
different levels of high frequency boost: 6 dB or 18 dB. The  
equalizer (EQ) level defaults to 18 dB after reset. No specific cable  
length is suggested for a particular equalization setting because  
cable performance varies widely between manufacturers; however,  
in general, the equalization of the ADV3002 can be set to 18 dB  
without degrading the signal integrity, even for short input cables.  
AVCC  
THEORY OF OPERATION  
The primary function of the ADV3002 is to switch up to four  
HDMI/DVI sources to one HDMI/DVI sink. Each HDMI/DVI  
link consists of four differential, high speed channels and four  
auxiliary single-ended, low speed signals. The high speed channels  
include a data-word clock and three transition minimized differential  
signaling (TMDS) data channels running at 10× the data-word  
clock frequency for data rates up to 2.25 Gbps. The four low speed  
control signals are the display data channel (DDC) bus (SDA and  
SCL), the consumer electronics control (CEC) line, and the hot  
plug detect (HPD) signal.  
50  
50Ω  
IN+  
IN–  
CABLE  
EQ  
The ADV3002 also includes an integrated EDID SRAM, eliminating  
the need for an external EDID EEPROM for each HDMI connector.  
A typical HDMI multiplexer is shown in Figure 19. The simplified  
implementation using the ADV3002 is shown in Figure 20.  
AVEE  
NOTES  
1. IN+ REFERS TO IN_x_CLK+/IN_x_DATAx+ PINS.  
2. IN– REFERS TO IN_x_CLK–/IN_x_DATAx– PINS.  
DDC  
2
Figure 21. High Speed Input Simplified Schematic  
5V  
TMDS OUTPUT CHANNELS  
EDID A  
EDID B  
EDID C  
EDID D  
DDC  
2
Each high speed output differential pair is terminated to the 3.3 V  
power supply through a pair of 50 Ω on-chip resistors, as shown  
in Figure 22. This termination is user-selectable; it can be turned  
on or off by programming the TX_OTO bit of the TMDS output  
control register, as shown in Table 10.  
4:1  
HDMI  
Rx  
2
5V  
HDMI  
MUX  
DDC  
DDC  
2
2
5V  
AVCC  
DDC  
5V  
50  
50Ω  
Figure 19. Typical HDMI Multiplexer Implementation  
ESD  
PROT.  
OUT+  
OUT–  
DDC  
2
5V  
DISABLE  
I
OUT  
DDC  
2
AVEE  
NOTES  
1. OUT+ REFERS TO OUT_CLK+ AND OUT_DATAx+ PINS.  
2. OUT– REFERS TO OUT_CLK– AND OUT_DATAx– PINS.  
2
HDMI  
Rx  
5V  
ADV3002  
DDC  
DDC  
Figure 22. High Speed Output Simplified Schematic  
2
2
The output termination resistors of the ADV3002 back terminate  
the output TMDS transmission lines. These back terminations, as  
recommended in the HDMI 1.3a specification, act to absorb  
reflections from impedance discontinuities on the output traces,  
improving the signal integrity of the output traces and adding  
flexibility to how the output traces can be routed. For example,  
interlayer vias can be used to route the ADV3002 TMDS outputs  
on multiple layers of the printed circuit board (PCB) without  
severely degrading the quality of the output signal.  
5V  
DDC  
2
5V  
AMUXVCC  
EDID DDC  
EXTERNAL  
EDID EEPROM  
OR SYSTEM  
MICROCONTROLLER  
Figure 20. Simplified Implementation Using the ADV3002  
The output has a disable feature that places the outputs in tristate  
mode. Bigger wire-ORe d arrays can be constructed using the  
ADV3002 in this mode.  
TMDS INPUT CHANNELS  
Each high speed input differential pair terminates to the 3.3 V  
power supply through a pair of 50 Ω on-chip resistors, as shown in  
Figure 21. The state of the input terminations can be configured  
automatically or programmed manually by setting the appropriate  
bits in the TMDS input termination control register, as shown in  
Table 10.  
The ADV3002 requires output termination resistors when the high  
speed outputs are enabled. Termination can be internal and/or  
external. The internal terminations of the ADV3002 are enabled  
by default after reset. External terminations can be provided either  
by on-board resistors or by the input termination resistors of an  
Rev. 0 | Page 12 of 28  
 
 
 
 
 
 
 
ADV3002  
HDMI/DVI receiver. If both the internal terminations are enabled  
and external terminations are present, set the output current level  
to 20 mA by programming the TX_OCL bit of the TMDS output  
control register, as shown in Table 10 (20 mA is the default upon  
reset). If only external terminations are provided (if the internal  
terminations are disabled), set the output current level to 10 mA  
by programming the TX_OCL bit of the TMDS output control  
register. The high speed outputs must be disabled if there are no  
output termination resistors present in the system.  
EDID REPLICATION  
The ADV3002 EDID replication feature reduces the total system  
cost by eliminating the need for an EDID EEPROM for each HDMI  
port. With the ADV3002, only a single external EDID is necessary.  
The ADV3002 stores the EDID information in an on-chip SRAM.  
This enables the EDID information to be simultaneously accessible  
to all four HDMI ports. The ADV3002 combines the 5 V power  
from the four HDMI sources such that the EDID information can  
be available even when the system power is off. A block diagram  
of the ADV3002 DDC buffering and EDID replication scheme is  
shown in Figure 23.  
DDC BUFFERS  
The DDC buffers are 5 V tolerant bidirectional lines that carry  
extended display identification data (EDID) and high bandwidth  
digital content protection (HDCP) encryption. The ADV3002  
provides switching and buffering for the DDC buses. The DDC  
buffers are bidirectional, and fully support arbitration, clock  
synchronization, and other relevant features of a standard mode  
I2C bus.  
SRAM  
EXTERNAL  
2
EDID_[SCL/SDA]  
I2C_[SCL/SDA]  
2
2
I C  
EDID  
EEPROM  
v1.3  
MASTER  
EDID  
CONTROL  
2
I C  
READ/  
WRITE  
SLAVE  
MCU  
2
I C  
READ/  
WRITE  
SLAVE  
HDMI  
PORT A  
2
2
2
2
2
2
I C  
READ  
SLAVE  
2
HDMI  
PORT B  
2
I C  
DDC  
MUX  
HDMI  
Rx  
2
2
READ  
SLAVE  
2
HDMI  
PORT C  
2
I C  
READ  
SLAVE  
2
HDMI  
PORT D  
Figure 23. EDID Replication Block Diagram  
Rev. 0 | Page 13 of 28  
 
 
 
ADV3002  
HDMI  
PORT A  
Source Physical Address Assignment  
SPA = W . X . Y . Z  
A
A
A
A
B
C
D
In HDTV applications where the CEC function is available, the  
EDID contains the source physical address (SPA); a unique value  
for each HDMI port. Because the memory in the ADV3002 is  
volatile, the SPA must be stored in the external EDID EEPROM.  
Rather than require a larger external EEPROM to store the SPA,  
because all 256 bytes of memory are needed for typical EDID  
information, the ADV3002 takes advantage of EDID information  
that is always a fixed value, such as the 24-bit IEEE registration  
identifier (0x000C03). The 24 bits of the IEEE registration identifier  
are replaced with the desired SPA values. When a source requests  
the IEEE registration identifier, the ADV3002 responds with the  
fixed value (0x000C03). The ADV3002 then automatically calcu-  
lates the correct checksum for each port based on the SPA stored  
for that port in the vendor specific data block (VSDB).  
HDMI  
PORT B  
SPA = W . X . Y . Z  
B
B
B
ADV3002  
HDMI  
PORT C  
SPA = W . X . Y . Z  
C
C
C
HDMI  
PORT D  
SPA = W . X . Y . Z  
D
D
D
Figure 24. SPA Assignments  
Table 7. Typical Vendor Specific Data Block (VSDB)  
CEC enabled devices have a source physical address (SPA) that  
allows the CEC controller to address the specific physical devices  
and control switches. The SPA is comprised of four fields or  
nibbles. Each field is a 4-bit number; therefore, each field can be  
any one of 16 possible values (0x0 through 0xF). Each HDMI  
input port is assigned a unique SPA as shown in Figure 24. In any  
CEC enabled device, only one of the four fields is unique per port.  
In HDMI sink applications, where the sink is the root device, only  
the W field is unique per port, whereas the X, Y, and Z fields are  
always set to zero.  
Byte No.  
7
6
5
4
3
2
1
0
0
Vendor specific tag code Length (= N)  
(= 3)  
1
24-bit IEEE registration identifier (0x000C03)  
(least significant byte first)  
2
3
4
SPA Field W  
SPA Field Y  
SPA Field X  
SPA Field Z  
5
6 to N  
Remainder or VSDB is stored in Byte 6 through Byte N  
SPA = W. X. Y. Z  
Table 8. Vendor Specific Data Block with ADV3002  
Byte No.  
7
6
5
4
3
2
1
0
A typical vendor specific data block (VSDB) is shown in Table 7.  
When using the ADV3002 EDID replicator, the VSDB should  
be replaced with the one shown in Table 8, whereby the port  
specific field can be assigned to any of the four fields (W, X, Y, or Z)  
depending on the value set in the override select bits as shown in  
Table 9.  
0
Vendor specific  
tag code (= 3)  
Length (= N)  
1
Port A SPA override field  
Port C SPA override field  
Not used  
Port B SPA override field  
Port D SPA override field  
Override select (see Table 9)  
Default X field  
2
3
4
Default W field  
When calculating the checksum for Block 1 of the EDID, the custom  
values entered in place of the IEEE registration identifier should  
not be used in the calculation; instead, the IEEE registration iden-  
tifier values should be used (0x000C03). The values in Byte 4 and  
Byte 5 of the VSDB should be included in the calculation.  
5
Default Y field  
Default Z field  
6 to N  
Remainder or VSDB is stored in Byte 6 through Byte N  
Table 9. Override Select Assignment  
Override Select  
Bit 3 Bit 2 Bit 1 Bit 0 Field Replaced by Port Specific SPA  
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
W
X
Y
Z
Rev. 0 | Page 14 of 28  
 
 
 
 
ADV3002  
Reset  
EDID Replication with External EEPROM  
Pullling the RESETB pin low initiates a restart of the EDID  
replication procedure shown in Figure 25 when the local system  
supply is on. If the local system supply is off, the RESETB pin has  
no effect.  
The ADV3002 has dedicated pins to interface to an external EDID  
EEPROM: EDID_SDA and EDID_SCL. In the default configuration,  
after the first hot plug event or system power-up, the internal I2C  
master in the ADV3002 copies the contents of the external EDID  
EEPROM into the on-chip SRAM. While the EDID is being copied,  
the HPD signals for all four ports are held low by the ADV3002. A  
flowchart of the start-up procedure is shown in Figure 25. The entire  
start-up procedure takes less than 10 ms. The EDID replication  
feature can be disabled using the EDID_ENABLE pin.  
5 V COMBINER  
The 5 V combiner circuit combines the four 5 V supplies from  
the four HDMI sources and provides the necessary power to the  
ADV3002 EDID replication circuit, the CEC buffer, as well as the  
external EDID EEPROM, if applicable. The combiner circuit is  
designed such that the current limits on each of the 5 V supplies  
are not exceeded when the local system power is either on or off.  
A simplified circuit diagram of the 5 V combiner is shown in  
Figure 26. The combiner detects the presence of the voltage on  
the 5 V pin (P5V_x) from the HDMI connectors and closes the  
respective internal switch to connect the 5 V to AMUXVCC.  
If the local system 3.3 V and 5 V supplies are available, then the  
combiner opens all the switches.  
POWER-UP, RESET,  
OR FIRST HOT PLUG  
WAIT  
<100µs  
FOR EDID POWER-UP  
COPY EDID INFORMATION  
HPD ALL PORTS = LOW  
TO ADV3002 SRAM  
<10ms  
DETECT  
DETERMINE SPA  
AND CHECKSUM  
P5V_A  
DETECT  
P5V_B  
WAIT FOR EDID  
REQUEST  
HPD ALL PORTS = HIGH  
AMUXVCC  
DETECT  
RESPOND TO EDID  
REQUEST  
P5V_C  
Figure 25. EDID Replication Start-Up Flowchart with External EEPROM  
Writing to the EDID EEPROM  
DETECT  
P5V_D  
The EDID data can be written to the external EEPROM by writing  
data via the I2C control interface or via the HDMI A DDC inputs.  
In both cases, the EDID write procedure is as follows:  
Figure 26. 5 V Combiner Simplified Circuit Diagram  
1. Write Value 0x96 to the EDID EEPROM write protect  
password register, 0x0F. The ADV3002 fixed part address is  
required to write to this register.  
2. Write the EDID data to the EEPROM fixed part address  
(0xA0). Data must be written one byte at a time.  
3. Write Value 0x00 to the EDID EEPROM write protect  
password register, 0x0F.  
CEC BUFFER  
The CEC buffer is bidirectional and includes integrated on-chip  
pull-up resistors. The CEC buffer isolates capacitance from the  
PCB and local system microcontroller, which is particularly  
advantageous in systems where the microcontroller is not placed  
near the HDMI connectors. The integrated on-chip pull-up resistors  
are connected to an internal 3.3 V supply that is generated from  
the AMUXVCC supply; thus, the CEC buffer is fully compliant  
with the CEC line degradation specifications, when the local system  
power supply is either on or off.  
EDID Replication with External Microcontroller  
The on-chip SRAM can be preloaded using an external microcontrol-  
ler. Prior to loading the SRAM, disable the I2C master by writing  
0x01 to the EDID replication mode register. The microcontroller  
can then write EDID information into the SRAM via the ADV3002  
I2C control interface. The writes to the SRAM should be to the fixed  
part address of 0xA0. When the EDID copy process is complete,  
enable the EDID replication function by writing 0x00 to the EDID  
replication mode register. The EDID_SDA and EDID_SCL pins  
are unused when an external microcontroller is used to program  
the SRAM. These pins can be tied either high or low through a  
resistor, but should not be left floating.  
HOT PLUG DETECT CONTROL  
The HPD lines going into the ADV3002 are normally high imped-  
ance but are pulled low for greater than 100 ms when a channel  
switch occurs. This pull-down pulse width can be changed by  
modifying the value in the hot plug detect pulse width control  
register (0x05), as shown in Table 10. Also, the HPD pulse can be  
manually controlled using the hot plug detect manual override  
control register (0x06), as shown in Table 10.  
Rev. 0 | Page 15 of 28  
 
 
 
 
 
ADV3002  
FD  
LOSS OF SIGNAL DETECT  
1
0
The TMDS clock line of each HDMI input has a loss of signal (LOS)  
monitor attached to it. The purpose of the LOS monitor is to  
determine if there is activity in the HDMI link. A simplified  
circuit diagram of the LOS detector is shown in Figure 27. The  
LOS monitors are disabled by default. The LOS monitors can be  
enabled by programming the LOS_EN bit of the LOS detect control  
register. When enabled, the status of each HDMI input can be  
read in the LOS detect status register. A logic high LOS_STATUS  
bit of a given HDMI input indicates an inactive input; a logic low  
LOS_S TATUS bit indicates an active input. Three conditions need  
to be fulfilled for an HDMI input to be considered active:  
LOS_FC  
FREQUENCY  
DETECTOR  
TMDS CLOCK  
INPUT[x]  
LOS_STATUS[3:0]  
FREQUENCY  
DETECTOR  
AD  
1
0
LOS_THR  
Figure 27. Loss of Signal Detect Simplified Circuit Diagram  
LOS Autosquelch  
The TMDS input termination resistors must be enabled. By  
default, the ADV3002 TMDS input termination resistors are  
enabled only on the selected input.  
The TMDS clock frequency exceeds the frequency cutoff  
(LOS_FC). Refer to Table 1 for the value of the LOS fre-  
quency cutoff.  
TMDS clock differential amplitude exceeds the LOS threshold  
set in the LOS detect control register. Refer to Table 1 for the  
value of the LOS amplitude threshold.  
The LOS detect circuit can be used to automatically disable the  
TMDS signal path. Setting the LOS_RX_EN bit in the LOS  
control register causes the selected TMDS input to be disabled  
when an LOS event occurs on that input. In this case, the TMDS  
signal path is enabled when the active signal conditions listed  
previously are met.  
Rev. 0 | Page 16 of 28  
 
 
ADV3002  
SERIAL CONTROL INTERFACE  
6. Wait for the ADV3002 to acknowledge the request.  
RESET  
7. Send the data (eight bits) to be written to the register whose  
address was set in Step 5. This transfer should be MSB first.  
8. Wait for the ADV3002 to acknowledge the request.  
9. Do one of the following:  
On initial power-up, or at any point in operation, the ADV3002  
register set can be restored to the default values by pulling the  
RESETB pin low according to the specification in Table 3. During  
normal operation, however, the RESETB pin must be pulled up  
to 3.3 V.  
a. Send a stop condition (while holding the I2C_SCL line  
high, pull the I2C_SDA line high) and release control of  
the bus to end the transaction (shown in Figure 28).  
b. Send a repeated start condition (while holding the I2C_SCL  
line high, pull the I2C_SDA line low) and continue from  
Step 2 in this procedure to perform another write.  
c. Send a repeated start condition (while holding the  
I2C_SCL line high, pull the I2C_SDA line low) and  
continue from Step 2 of the read procedure (in the Read  
Procedure section) to perform a read from another  
address.  
d. Send a repeated start condition (while holding the  
I2C_SCL line high, pull the I2C_SDA line low) and  
continue from Step 8 of the read procedure (in the Read  
Procedure section) to perform a read from the same  
address set in Step 5 of the write procedure.  
WRITE PROCEDURE  
To write data to the ADV3002 register set, an I2C master (such as  
a microcontroller) needs to send the appropriate control signals to  
the ADV3002 slave device. The signals are controlled by the I2C  
master unless otherwise specified. For a diagram of the procedure,  
see Figure 28. The steps for a write procedure are as follows:  
1. Send a start condition (while holding the I2C_SCL line high,  
pull the I2C_SDA line low).  
2. Send the ADV3002 part address (seven bits). The upper five  
bits of the ADV3002 part address are the static value [10010]  
and the two LSBs are set by Input Pins I2C_ADDR[1:0]. This  
transfer should be MSB first.  
3. Send the write indicator bit (0).  
4. Wait for the ADV3002 to acknowledge the request.  
5. Send the register address (eight bits) to which data is to be  
written. This transfer should be MSB first.  
*
I2C_SCL  
R/W  
GENERAL CASE  
START  
FIXED ADDR PART  
REGISTER ADDR  
DATA  
STOP  
I2C_SDA  
ADDR  
ACK  
ACK  
ACK  
EXAMPLE  
I2C_SDA  
1
2
3
4
5
6
7
8
9
*THE SWITCHING/UPDATE DELAY BEGINS AT THE FALLING EDGE OF THE LAST DATA BIT;  
FOR EXAMPLE, THE FALLING EDGE JUST BEFORE STEP 8.  
Figure 28. I2C Write Procedure  
Rev. 0 | Page 17 of 28  
 
 
 
 
ADV3002  
I2C_SCL  
R/W  
R/W  
GENERAL CASE  
I2C_SDA  
FIXED PART  
ADDR  
FIXED PART  
ADDR  
START  
ADDR  
REGISTER ADDR  
SR  
ADDR  
DATA  
STOP  
ACK  
ACK  
6
ACK  
NACK  
12  
EXAMPLE  
I2C_SDA  
1
2
3
4
5
7
8
9
10 11  
13  
Figure 29. I2C Read Procedure  
12. Do one of the following:  
READ PROCEDURE  
a. Send a no acknowledge (NACK) followed by a stop  
condition (while holding the I2C_SCL line high, pull the  
SDA line high) and release control of the bus to end the  
transaction (shown in Figure 29).  
b. Send a no acknowledge (NACK) followed by a repeated  
start condition (while holding the I2C_SCL line high,  
pull the I2C_SDA line low) and continue from Step 2 of  
the write procedure (see the previous Write Procedure  
section) to perform a write.  
c. Send a no acknowledge (NACK) followed by a repeated  
start condition (while holding the I2C_SCL line high,  
pull the I2C_SDA line low) and continue from Step 2 of  
this procedure to perform a read from another address.  
d. Send a no acknowledge (NACK) followed by a repeated  
start condition (while holding the I2C_SCL line high,  
pull the I2C_SDA line low) and continue from Step 8 of  
this procedure to perform a read from the next byte.  
e. Send an acknowledge (ACK) and read the next byte of  
data. Continue from Step 11.  
To read data from the ADV3002 register set, an I2C master (such  
as a microcontroller) needs to send the appropriate control signals  
to the ADV3002 slave device. The signals are controlled by the I2C  
master unless otherwise specified. For a diagram of the procedure,  
see Figure 29. The steps for a read procedure are as follows:  
1. Send a start condition (while holding the I2C_SCL line high,  
pull the I2C_SDA line low).  
2. Send the ADV3002 part address (seven bits). The upper five  
bits of the ADV3002 part address are the static value [10010]  
and the two LSBs are set by Input Pins I2C_ADDR[1:0]. This  
transfer should be MSB first.  
3. Send the write indicator bit (0).  
4. Wait for the ADV3002 to acknowledge the request.  
5. Send the register address (eight bits) from which data is to be  
read. This transfer should be MSB first.  
6. Wait for the ADV3002 to acknowledge the request.  
7. Send a repeated start condition (Sr) by holding the I2C_SCL  
line high and pulling the I2C_SDA line low.  
8. Resend the ADV3002 part address (seven bits) from Step 2.  
The upper five bits of the ADV3002 part address compose  
the static value [10010]. The two LSBs are set by Input Pins I2C_  
ADDR[1:0]. This transfer should be MSB first.  
13. Send a stop condition (while holding the I2C_SCL line high,  
pull the I2C_SDA line high).  
9. Send the read indicator bit (1).  
10. Wait for the ADV3002 to acknowledge the request.  
11. Read the data from the ADV3002. The ADV3002 serially  
transfers the data (eight bits) held in the register indicated by  
the address set in Step 5. This data is sent MSB first.  
Rev. 0 | Page 18 of 28  
 
 
ADV3002  
REGISTER MAP  
Table 10. Register Map  
Register  
Address Default Name  
Bit  
Channel select 7:3  
Bit Name  
Unused  
Description  
0x00  
0x00  
Unused  
control  
2
CH_SRC  
0: input selected by SEL[1:0] parallel pins  
1: input selected by channel select control register, CH[1:0] channel select  
00: Input A selected if CH_SRC = 1  
01: Input B selected if CH_SRC = 1  
1:0  
CH[1:0] channel  
select  
10: Input C selected if CH_SRC = 1  
11: Input D selected if CH_SRC = 1  
0x01  
0x07  
TMDS output  
control  
7:4  
3
Unused  
TX_EN_SRC  
Unused  
0: TMDS output enable controlled by the TX_EN parallel pin  
1: TMDS output enable controlled by the TX_EN bit  
0: TMDS output disabled if TX_EN_SRC = 1  
1: TMDS output enabled if TX_EN_SRC = 1  
0: TMDS output current = 10 mA  
2
1
0
TX_EN  
TX_OCL  
TX_OTO  
1: TMDS output current = 20 mA  
0: TMDS output termination = off  
1: TMDS output termination = on  
0x02  
0x03  
0x02  
0x0F  
TMDS input  
control  
7:2  
1
Unused  
EQ_SEL  
Unused  
0: TMDS equalizer boost = 6 dB  
1: TMDS equalizer boost = 18 dB  
0: TMDS input polarity = standard  
0
ISIGN  
1: TMDS input polarity = inverse  
TMDS input  
termination  
control  
7:4  
3:0  
ITO_SRC[3:0]  
ITO_CTL[3:0]  
0000: input termination control is automatic  
1111: input termination control is manual  
0000: all input terminations off if input termination control is manual  
0001: Input A termination on if input termination control is manual  
0010: Input B termination on if input termination control is manual  
0100: Input C termination on if input termination control is manual  
1000: Input D termination on if input termination control is manual  
1111: all input terminations on if input termination control is manual  
Unused  
0x04  
0x07  
Auxiliary  
buffer enables  
7:3  
2
1
Unused  
Reserved  
DDC_EN  
Reserved; set to 1  
0: DDC buffer disabled  
1: DDC buffer enabled  
0
CEC_EN  
0: CEC buffer disabled  
1: CEC buffer enabled  
0x05  
0x06  
0x05  
0x00  
Hot plug  
detect pulse  
width control  
7:0  
HPD_PW[7:0]  
Pulse width = decimal (HPD_PW) × step size (24 ms typical)  
Hot plug  
detect manual  
override  
7:5  
4
Unused  
HPD_SRC  
Unused  
0: hot plug detect control is automatic; pulse width set by hot plug  
detect pulse width control register  
1: hot plug detect control is manual; hot plug detect state is set by  
HPD_CTL[3:0]  
control  
3:0  
HPD_CTL[3:0]  
0000: HPD outputs are high impedance (pulled up to 5 V via external  
resistor)  
0001: HPD_A = low if HPD_SRC = 1  
0010: HPD_B = low if HPD_SRC = 1  
0100: HPD_C = low if HPD_SRC = 1  
1000: HPD_D = low if HPD_SRC = 1  
1111: all HPD outputs = low if HPD_SRC = 1  
Rev. 0 | Page 19 of 28  
 
 
ADV3002  
Register  
Address Default Name  
Bit  
7:6  
5:4  
Bit Name  
Unused  
LOS_THR[1:0]  
Description  
0x07  
0x00  
Loss of signal  
detect control  
Unused  
00: LOS Threshold 0  
01: LOS Threshold 1  
10: LOS Threshold 2  
11: LOS Threshold 3  
Unused  
0: TMDS autosquelch disabled  
1: TMDS autosquelch enabled  
Reserved; set to 0  
3
2
Unused  
LOS_RX_EN  
1
0
Reserved  
LOS_EN  
0: LOS detect disabled  
1: LOS detect enabled  
Unused  
0x0E  
0x00  
EDID  
7:1  
0
Unused  
EDID_REPL_EN  
(write only)  
replication  
mode  
(write only)  
0: EDID replicator enabled; for use with an external EEPROM  
1: EDID replicator disabled; external microcontroller can write the  
SRAM; write only  
0x0F  
0x10  
0x00  
0x00  
EDID EEPROM  
write protect  
password  
7:0  
PASSWD[7:0]  
(write only)  
0x00: write protect enabled; EDID EEPROM writes not allowed  
0x96: write protect disabled; EDID EEPROM writes from Port A or I2C  
control are allowed; write only  
(write only)  
Loss of signal  
detect status  
7:4  
3:0  
Unused  
Unused  
LOS_STATUS[3:0] 0000: TMDS active on all inputs  
(read only)  
0001: loss of signal detected on Input A  
0010: loss of signal detected on Input B  
0100: loss of signal detected on Input C  
1000: loss of signal detected on Input D  
1111: loss of signal detected on all inputs  
0x03: read only  
0xFE  
0xFF  
0x03  
0xC2  
Revision  
7:0  
7:0  
REV[7:0]  
(read only)  
Device ID  
ID[7:0]  
0xC2: read only  
(read only)  
Rev. 0 | Page 20 of 28  
ADV3002  
APPLICATIONS INFORMATION  
HDMI MULTIPLEXER FOR ADVANCED TV  
available when the system power is off, a Thevenin equivalent  
2 kΩ pull-up resistor to 3.3 V is shown in Figure 31.  
The ADV3002 is a complete HDMI/DVI link switch featuring  
equalized TMDS inputs, ideal for systems with long cable runs.  
The ADV3002 includes bidirectional buffering for the DDC bus  
and CEC line, with integrated pull-up resistors for the CEC line.  
Additionally, the ADV3002 includes an EDID replication function  
that enables one EDID EEPROM to be shared for all four HDMI  
ports. Alternatively, a system standby microcontroller can be  
used instead of a dedicated EDID EEPROM to load the ADV3002  
SRAM. Simplified application schematics are shown in Figure 33  
and Figure 34 illustrating these two options.  
5V_COMBINED  
AMUXVCC  
3k  
ADV3002  
MCU  
CEC_IN  
CEC_OUT  
6kΩ  
Figure 31. CEC Circuit  
5 V Power  
HDTV SET  
The individual 5 V power from each HDMI source can be routed  
to the respective 5 V inputs of the ADV3002. The ADV3002  
combines these four 5 V supplies into one labeled AMUXVCC  
to support EDID replication and CEC functionality when the  
local system power is off. An internal 5 V supply must be provided  
so that power is not drawn from the HDMI sources when the  
local system power is on. When the local supply is off, this internal  
5 V should be high impedance. This can be assured by using a  
Schottky diode, as shown in Figure 32.  
ADV3002  
MAIN PCB  
HDMI  
Rx  
OR  
SoC  
P5V_A  
5V INTERNAL  
Figure 30. ADV3002 as an HDMI Multiplexer in an HDTV  
P5V_B  
TMDS Signals  
TMDS signals can be routed from an HDMI connector directly  
to the inputs of the ADV3002. Additional components are not  
required for the TMDS signals.  
AMUXVCC  
P5V_C  
DDC Signals  
47 kΩ pull-up resistors to 5 V are recommended for the DDC  
input signals.  
P5V_D  
CEC Signal  
The CEC buffer in the ADV3002 provides a fully compliant  
input in situations where a general-purpose microcontroller is  
used to interpret CEC commands. The rise time of the CEC  
buffer is set by the time constant of the pull-up resistance and  
the capacitance on the node. A 2 kΩ pull-up resistor to 3.3 V is  
recommended for optimal output rise times. If a 3.3 V is not  
Figure 32. 5 V Power Connections  
Rev. 0 | Page 21 of 28  
 
 
 
 
ADV3002  
5V  
3.3V  
OPTION 1  
AMUXVCC  
1µF  
0.01µF  
0.1µF  
0.01µF  
0.001µF  
AMUXVCC  
TMDS  
D2+  
D2–  
IN_A_DATA2+  
IN_A_DATA2–  
AVCC  
D1+  
D1–  
IN_A_DATA1+  
IN_A_DATA1–  
D0+  
D0–  
IN_A_DATA0+  
IN_A_DATA0–  
CLK+  
CLK–  
IN_A_CLK+  
IN_A_CLK–  
5V  
P5V_A  
1k  
1kΩ  
1kΩ  
1kΩ  
47kΩ  
47kΩ  
47kΩ  
47kΩ  
47kΩ  
TMDS  
OUT_DATA2+  
OUT_DATA2–  
D2+  
D2–  
HPD  
DDC_SCL  
DDC_SDA  
CEC  
HPD_A  
DDC_SCL_A  
DDC_SDA_A  
OUT_DATA1+  
OUT_DATA1–  
D1+  
D1–  
OUT_DATA0+  
OUT_DATA0–  
D0+  
D0–  
HDMI  
Rx  
TMDS  
OUT_CLK+  
OUT_CLK–  
CLK+  
CLK–  
D2+  
D2–  
IN_B_DATA2+  
IN_B_DATA2–  
AMUXVCC  
D1+  
D1–  
IN_B_DATA1+  
IN_B_DATA1–  
D0+  
D0–  
CLK+  
CLK–  
IN_B_DATA0+  
IN_B_DATA0–  
IN_B_CLK+  
IN_B_CLK–  
2kΩ  
2kΩ  
DDC_SCL_COM  
DDC_SDA_COM  
DDC_SCL  
DDC_SDA  
5V  
P5V_B  
AMUXVCC  
ADV3002  
47kΩ  
3.3V STANDBY  
10kΩ  
HPD  
DDC_SCL  
DDC_SDA  
CEC  
HPD_B  
DDC_SCL_B  
DDC_SDA_B  
CEC_IN  
2kΩ  
2kΩ  
2kΩ  
I2C_SCL  
I2C_SDA  
I2C_ADDR[1:0]  
CEC_OUT  
TMDS  
D2+  
D2–  
IN_C_DATA2+  
IN_C_DATA2–  
STANDBY  
MCU  
D1+  
D1–  
IN_C_DATA1+  
IN_C_DATA1–  
10kΩ  
OPTIONAL  
D0+  
D0–  
CLK+  
CLK–  
IN_C_DATA0+  
IN_C_DATA0–  
IN_C_CLK+  
IN_C_CLK–  
AVCC  
EDID_ENABLE  
5V  
P5V_C  
10kΩ  
10kΩ  
47kΩ  
EDID_SCL  
EDID_SDA  
HPD  
DDC_SCL  
DDC_SDA  
CEC  
HPD_C  
DDC_SCL_C  
DDC_SDA_C  
AMUXVCC  
10kΩ  
TMDS  
D2+  
D2–  
IN_D_DATA2+  
IN_D_DATA2–  
RESETB  
1µF  
D1+  
D1–  
IN_D_DATA1+  
IN_D_DATA1–  
TX_EN  
D0+  
D0–  
CLK+  
CLK–  
IN_D_DATA0+  
IN_D_DATA0–  
IN_D_CLK+  
IN_D_CLK–  
SEL[1:0]  
5V  
P5V_D  
47kΩ  
HPD  
DDC_SCL  
DDC_SDA  
CEC  
HPD_D  
DDC_SCL_D  
DDC_SDA_D  
AVEE  
Figure 33. Simplified Application Circuit Diagram (Option 1—No External EEPROM)  
Rev. 0 | Page 22 of 28  
 
ADV3002  
5V  
3.3V  
OPTION 2  
AMUXVCC  
1µF  
0.01µF  
0.1µF  
0.01µF  
0.001µF  
AMUXVCC  
TMDS  
D2+  
D2–  
IN_A_DATA2+  
IN_A_DATA2–  
AVCC  
D1+  
D1–  
IN_A_DATA1+  
IN_A_DATA1–  
D0+  
D0–  
IN_A_DATA0+  
IN_A_DATA0–  
CLK+  
CLK–  
IN_A_CLK+  
IN_A_CLK–  
5V  
P5V_A  
1kΩ  
1kΩ  
1kΩ  
1kΩ  
47kΩ  
47kΩ  
47kΩ  
47kΩ  
47kΩ  
TMDS  
OUT_DATA2+  
OUT_DATA2–  
D2+  
D2–  
HPD  
DDC_SCL  
DDC_SDA  
CEC  
HPD_A  
DDC_SCL_A  
DDC_SDA_A  
OUT_DATA1+  
OUT_DATA1–  
D1+  
D1–  
OUT_DATA0+  
OUT_DATA0–  
D0+  
D0–  
HDMI  
Rx  
TMDS  
OUT_CLK+  
OUT_CLK–  
CLK+  
CLK–  
D2+  
D2–  
IN_B_DATA2+  
IN_B_DATA2–  
AMUXVCC  
D1+  
D1–  
IN_B_DATA1+  
IN_B_DATA1–  
D0+  
D0–  
CLK+  
CLK–  
IN_B_DATA0+  
IN_B_DATA0–  
IN_B_CLK+  
IN_B_CLK–  
2kΩ  
2kΩ  
DDC_SCL_COM  
DDC_SDA_COM  
DDC_SCL  
DDC_SDA  
5V  
P5V_B  
ADV3002  
47kΩ  
3.3V STANDBY  
HPD  
DDC_SCL  
DDC_SDA  
CEC  
HPD_B  
DDC_SCL_B  
DDC_SDA_B  
CEC_IN  
2kΩ  
2kΩ  
2kΩ  
I2C_SCL  
I2C_SDA  
I2C_ADDR[1:0]  
CEC_OUT  
TMDS  
D2+  
D2–  
IN_C_DATA2+  
IN_C_DATA2–  
MCU  
D1+  
D1–  
IN_C_DATA1+  
IN_C_DATA1–  
10kΩ  
D0+  
D0–  
CLK+  
CLK–  
IN_C_DATA0+  
IN_C_DATA0–  
IN_C_CLK+  
IN_C_CLK–  
OPTIONAL  
AMUXVCC  
5V  
P5V_C  
3.3V STANDBY  
10kΩ  
47kΩ  
3.3V STANDBY  
EDID_ENABLE  
HPD  
DDC_SCL  
DDC_SDA  
CEC  
HPD_C  
DDC_SCL_C  
DDC_SDA_C  
2kΩ  
2kΩ  
EDID  
EEPROM  
EDID_SCL  
EDID_SDA  
TMDS  
D2+  
D2–  
IN_D_DATA2+  
IN_D_DATA2–  
D1+  
D1–  
IN_D_DATA1+  
IN_D_DATA1–  
AMUXVCC  
10kΩ  
D0+  
D0–  
CLK+  
CLK–  
IN_D_DATA0+  
IN_D_DATA0–  
IN_D_CLK+  
IN_D_CLK–  
RESETB  
TX_EN  
5V  
P5V_D  
SEL[1:0]  
1µF  
47kΩ  
HPD  
DDC_SCL  
DDC_SDA  
CEC  
HPD_D  
DDC_SCL_D  
DDC_SDA_D  
AVEE  
Figure 34. Simplified Application Diagram (Option 2—External EDID EEPROM)  
Rev. 0 | Page 23 of 28  
 
ADV3002  
transmission line that does not need to have controlled impedance.  
The primary concern with laying out the auxiliary lines is ensuring  
that they conform to the I2C bus standard and do not have  
excessive capacitive loading.  
CABLE LENGTHS AND EQUALIZATION  
The ADV3002 offers two levels of programmable equalization  
for the high speed inputs: 6 dB and 18 dB. The equalizer of the  
ADV3002 supports video data rates of up to 2.25 Gbps and  
can equalize more than 20 meters of 24 AWG HDMI cable at  
2.25 Gbps, which corresponds to the video format, 1080p with  
12-bit Deep Color. The length of cable that can be used in a  
typical HDMI/DVI application depends on a large number  
of factors including  
TMDS Signals  
In the HDMI/DVI standard, four differential pairs carry the  
TMDS signals. In DVI, three of these pairs are dedicated to  
carrying RGB video and sync data. For HDMI, audio data  
interleaves with the video data; the DVI standard does not incor-  
porate audio information. The fourth high speed differential pair  
is used for the A/V data-word clock, and runs at one-tenth the  
speed of the TMDS data channels.  
Cable quality: the quality of the cable in terms of conductor  
wire gauge and shielding. Thicker conductors have lower  
signal degradation per unit length.  
Data rate: the data rate being sent over the cable. The signal  
degradation of HDMI cables increases with data rate.  
Edge rates: the edge rates of the source input. Slower input  
edges result in more significant data eye closure at the end  
of a cable.  
The ADV3002 buffers the TMDS signals, and the input traces  
can be considered electrically independent of the output traces.  
In most applications, the quality of the signal on the input  
TMDS traces are more sensitive to the PCB layout. Regardless  
of the data being carried on a specific TMDS channel, or  
whether the TMDS line is at the input or the output of the  
ADV3002, all four high speed signals should be routed on a  
PCB in accordance with the same RF layout guidelines.  
Receiver sensitivity: the sensitivity of the terminating  
receiver.  
As such, no particular equalizer setting is recommended for  
specific cable types or lengths. In nearly all applications, the  
ADV3002 equalization level can be set to high, or 18 dB, for all  
input cable configurations at all data rates, without degrading the  
signal integrity.  
Layout for the TMDS Signals  
The TMDS differential pairs can be either microstrip traces  
(routed on the outer layer of a board) or stripline traces (routed  
on an internal layer of the board). If microstrip traces are used,  
there should be a continuous reference plane on the PCB layer  
directly below the traces. If stripline traces are used, they must  
be sandwiched between two continuous reference planes in the  
PCB stack-up. Additionally, the p and n of each differential pair  
must have a controlled differential impedance of 100 Ω. The  
characteristic impedance of a differential pair is a function of  
several variables including the trace width, the distance separating  
the two traces, the spacing between the traces and the reference  
plane, and the dielectric constant of the PCB binder material.  
Interlayer vias introduce impedance discontinuities that can  
cause reflections and jitter on the signal path; therefore, it is  
preferable to route the TMDS lines exclusively on one layer of the  
board, particularly for the input traces. Additionally, to prevent  
unwanted signal coupling and interference, route the TMDS  
signals away from other signals and noise sources on the PCB.  
PCB LAYOUT GUIDELINES  
The ADV3002 switches two distinctly different types of signals,  
both of which are required for HDMI and DVI video. These  
signal groups require different treatment when laying out a PCB.  
The first group of signals carries the A/V data. HDMI/DVI video  
signals are differential, unidirectional, and high speed (up to  
2.25 Gbps). The channels that carry the video data must be  
controlled impedance, terminated at the receiver, and capable of  
operating up to at least 2.25 Gbps. It is especially important to  
note that the differential traces that carry the TMDS signals  
should be designed with a controlled differential impedance of  
100 Ω. The ADV3002 provides single-ended 50 Ω terminations  
on-chip for both its inputs and outputs, and both the input and  
output terminations can be enabled or disabled through the  
serial interface. Output termination is recommended but not  
required by the HDMI standard but its inclusion improves the  
overall system signal integrity.  
Both traces of a given differential pair must be equal in length  
to minimize intrapair skew. Maintaining the physical symmetry  
of a differential pair is integral to ensuring its signal integrity;  
excessive intrapair skew can introduce jitter through duty cycle  
distortion (DCD). Always route the p and n of a given differen-  
tial pair together to establish the required 100 Ω differential  
impedance. Leave enough space between the differential pairs  
of a given group to prevent the n of one pair from coupling with  
the p of another pair. For example, one technique is to make the  
interpair distance four to 10 times wider than the intrapair spacing.  
The A/V data carried on these high speed channels is encoded  
by a technique called TMDS, and in the case of HDMI, is also  
encrypted according to the HDCP standard.  
The second group of signals consists of low speed auxiliary  
control signals used for communication between a source and a  
sink. Depending upon the application, these signals can include  
the DDC bus (this is an I2C bus used to send EDID information  
and HDCP encryption keys between the source and the sink),  
the CEC line, and the HPD line. These auxiliary signals are  
bidirectional, low speed, and transferred over a single-ended  
Any one group of four TMDS traces (Input A, Input B, Input C,  
Input D, or the output) should have closely matched trace  
lengths to minimize interpair skew. Severe interpair skew can  
Rev. 0 | Page 24 of 28  
 
 
ADV3002  
THROUGH-HOLE VIAS  
cause the data on the four different channels of a group to arrive  
out of alignment with one another. A good practice is to match  
the trace lengths for a given group of four channels to within  
0.05 inches on FR4 material.  
SILKSCREEN  
LAYER 1: SIGNAL (MICROSTRIP)  
PCB DIELECTRIC  
Minimizing intrapair and interpair skew becomes increasingly  
important as data rates increase. Any introduced skew consti-  
tutes a correspondingly larger fraction of a bit period at higher  
data rates.  
LAYER 2: GND (REFERENCE PLANE)  
PCB DIELECTRIC  
LAYER 3: PWR  
Though the ADV3002 features input equalization and output  
preemphasis, minimizing the length of the TMDS traces is needed  
to reduce overall system signal degradation. Commonly used  
PCB material, such as FR4, is lossy at high frequencies; therefore,  
long traces on the circuit board increase signal attenuation,  
resulting in decreased signal swing and increased jitter through  
intersymbol interference (ISI).  
(REFERENCE PLANE)  
PCB DIELECTRIC  
LAYER 4: SIGNAL (MICROSTRIP)  
SILKSCREEN  
KEEP REFERENCE PLANE  
ADJACENT TO SIGNAL ON ALL  
LAYERS TO PROVIDE CONTINUOUS  
GROUND CURRENT RETURN PATH.  
Controlling the Characteristic Impedance of a TMDS  
Differential Pair  
Figure 35. Example Routing of Reference Plane  
The characteristic impedance of a differential pair depends on  
a number of variables, including the trace width, the distance  
between the two traces, the height of the dielectric material  
between the trace and the reference plane below it, and the  
dielectric constant of the PCB binder material. To a lesser  
extent, the characteristic impedance also depends upon the  
trace thickness and the presence of solder mask. There are  
many combinations that can produce the correct characteristic  
impedance. Generally, working with the PCB fabricator is  
required to obtain a set of parameters to produce the desired  
results.  
TMDS Terminations  
The ADV3002 provides internal 50 Ω single-ended terminations  
for all of its high speed inputs and outputs. It is not necessary to  
include external termination resistors for the TMDS differential  
pairs on the PCB.  
The output termination resistors of the ADV3002 back terminate  
the output TMDS transmission lines. These back terminations  
act to absorb reflections from impedance discontinuities on the  
output traces, improving the signal integrity of the output traces  
and adding flexibility to how the output traces can be routed.  
For example, interlayer vias can be used to route the ADV3002  
TMDS outputs on multiple layers of the PCB without severely  
degrading the quality of the output signal.  
One consideration is how to guarantee a differential pair with  
a differential impedance of 100 Ω over the entire length of the  
trace. One technique to accomplish this is to change the width  
of the traces in a differential pair based on how closely one trace  
is coupled to the other. When the two traces of a differential pair  
are close and strongly coupled, they should have a width that  
produces a100 Ω differential impedance. When the traces split  
apart to go into a connector, for example, and are no longer so  
strongly coupled, the width of the traces need to be increased to  
yield a differential impedance of 100 Ω in the new configuration.  
Auxiliary Control Signals  
There are four single-ended control signals associated with each  
source or sink in an HDMI/DVI application. These are hot plug  
detect (HPD), consumer electronics control (CEC), and two  
display data channel (DDC) lines. The two signals on the DDC  
bus are SDA and SCL (serial data and serial clock, respectively).  
The DDC and CEC signals are buffered and switched through  
the ADV3002, and the HPD signal is pulsed low by the ADV3002.  
These signals do not need to be routed with the same strict  
considerations as the high speed TMDS signals.  
Ground Current Return  
In some applications, it can be necessary to invert the output  
pin order of the ADV3002. This requires a designer to route the  
TMDS traces on multiple layers of the PCB. When routing dif-  
ferential pairs on multiple layers, it is necessary to also reroute  
the corresponding reference plane to provide one continuous  
ground current return path for the differential signals. Standard  
plated through-hole vias are acceptable for both the TMDS  
traces and the reference plane. An example of this is illustrated  
in Figure 35.  
In general, it is sufficient to route each auxiliary signal as a  
single-ended trace. These signals are not sensitive to impedance  
discontinuities, do not require a reference plane, and can be  
routed on multiple layers of the PCB. However, it is best to  
follow strict layout practices whenever possible to prevent the  
PCB design from affecting the overall application. The specific  
routing of the HPD, CEC, and DDC lines depends upon the  
application in which the ADV3002 is being used.  
For example, the maximum speed of signals present on the aux-  
iliary lines are 100 kHz I2C data on the DDC lines, therefore,  
any layout that enables 100 kHz I2C to be passed over the DDC  
Rev. 0 | Page 25 of 28  
 
ADV3002  
bus should suffice. The HDMI 1.3a specification, however,  
places a strict 50 pF limit on the amount of capacitance that can  
be measured on either SDA or SCL at the HDMI input connector.  
This 50 pF limit includes the HDMI connector, the PCB, and  
whatever capacitance is seen at the input of the ADV3002, or an  
equivalent receiver. There is a similar limit of 150 pF of input  
capacitance for the CEC line. The benefit of the ADV3002 is  
that it buffers these lines, isolating the output capacitance so  
that only the capacitance at the input side contributes to the  
specified limit.  
HPD is a dc signal presented by a sink to a source to indicate  
that the source EDID is available for reading. The trace routing  
of this signal is not critical, but it should be routed as directly as  
possible.  
When the ADV3002 is powered up, the DDC/CEC inputs of the  
selected channel are actively buffered and routed to the outputs,  
and the unselected auxiliary inputs are high impedance. When  
the ADV3002 is powered off, all DDC/CEC inputs are placed in  
a high impedance state. This prevents contention on the DDC bus,  
enabling a design to include an EDID in front of the ADV3002.  
The parasitic capacitance of traces on a PCB increases with trace  
length. To help ensure that a design satisfies the HDMI specifica-  
tion, make the length of the CEC and DDC lines on the PCB  
as short as possible. Additionally, if there is a reference plane  
in the layer adjacent to the auxiliary traces in the PCB stackup,  
relieving or clearing out this reference plane immediately under  
the auxiliary traces significantly decreases the amount of parasitic  
trace capacitance. An example of the board stackup is shown in  
Figure 36.  
Power Supplies  
The ADV3002 has two separate power supplies. The supply/  
ground pairs are  
AVCC/AVEE  
AMUXVCC/AVEE  
The AVCC/AVEE (3.3 V) supply powers the core of the  
ADV3002. The AMUXVCC/AVEE supply (5 V) powers the  
auxiliary multiplexer and EDID replication core.  
3W  
W
3W  
Power Supply Bypassing  
The ADV3002 requires minimal supply bypassing. Generally,  
place bypass capacitors near the power pins and connect them  
directly to the relevant supplies (without long intervening  
traces). For example, to improve the parasitic inductance of the  
power supply decoupling capacitors, minimize the trace length  
between capacitor landing pads and the vias. The capacitors  
should via down directly to the supply planes and should be  
placed within a few centimeters of the ADV3002.  
SILKSCREEN  
LAYER 1: SIGNAL (MICROSTRIP)  
PCB DIELECTRIC  
LAYER 2: GND (REFERENCE PLANE)  
PCB DIELECTRIC  
LAYER 3: PWR (REFERENCE PLANE)  
PCB DIELECTRIC  
LAYER 4: SIGNAL (MICROSTRIP)  
SILKSCREEN  
REFERENCE LAYER  
RELIEVED UNDERNEATH  
MICROSTRIP  
Figure 36. Example Board Stackup for Auxiliary Control Signals  
Rev. 0 | Page 26 of 28  
 
ADV3002  
OUTLINE DIMENSIONS  
16.20  
16.00 SQ  
15.80  
0.75  
0.60  
0.45  
1.60  
MAX  
61  
80  
60  
1
PIN 1  
14.20  
14.00 SQ  
13.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.10  
COPLANARITY  
20  
41  
0.15  
0.05  
40  
21  
SEATING  
PLANE  
VIEW A  
0.65  
0.38  
0.32  
0.22  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BEC  
Figure 37. 80-Lead Low Profile Quad Flat Package [LQFP]  
(ST-80-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADV3002BSTZ1  
Temperature Range Package Description  
Package Option Ordering Quantity  
0°C to +85°C  
80-Lead Low Profile Quad Flat Package [LQFP]  
ST-80-2  
ADV3002BSTZ-RL1 0°C to +85°C  
ADV3002-EVALZ1  
80-Lead Low Profile Quad Flat Package [LQFP], Reel ST-80-2  
Evaluation Board  
1,000  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 27 of 28  
 
 
 
ADV3002  
NOTES  
Purchase of licensed I2C components of Analog Devices Inc. or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C  
Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07905-0-12/08(0)  
Rev. 0 | Page 28 of 28  

相关型号:

ADV3002BSTZ-RL

4:1 HDMI/DVI Switch with Equalization, DDC/CEC Buffers and EDID Replication
ADI

ADV3003

HDMI/DVI TMDS Equalizer
ADI

ADV3003-EVALZ

HDMI/DVI TMDS Equalizer
ADI

ADV3003ACPZ

HDMI/DVI TMDS Equalizer
ADI

ADV3003ACPZ-R7

HDMI/DVI TMDS Equalizer
ADI

ADV3200

300 MHz, 32 × 32 Buffered Analog Crosspoint Switch
ADI

ADV3200ASWZ

300 MHz, 32 × 32 Buffered Analog Crosspoint Switch
ADI

ADV3201

300 MHz, 32 × 32 Buffered Analog Crosspoint Switch
ADI

ADV3201ASWZ

300 MHz, 32 × 32 Buffered Analog Crosspoint Switch
ADI

ADV3202

300 MHz, 32 × 16 Buffered Analog Crosspoint Switch
ADI

ADV3202ASWZ

300 MHz, 32 × 16 Buffered Analog Crosspoint Switch
ADI

ADV3203

300 MHz, 32 × 16 Buffered Analog Crosspoint Switch
ADI