ADV7171KSZ-REEL [ADI]

Digital PAL/NTSC Video Encoder; 数字PAL / NTSC视频编码器
ADV7171KSZ-REEL
型号: ADV7171KSZ-REEL
厂家: ADI    ADI
描述:

Digital PAL/NTSC Video Encoder
数字PAL / NTSC视频编码器

转换器 色度信号转换器 消费电路 商用集成电路 编码器
文件: 总64页 (文件大小:865K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Digital PAL/NTSC Video Encoder with 10-Bit  
SSAF™ and Advanced Power Management  
ADV7170/ADV7171  
Programmable LUMA delay  
Individual on/off control of each DAC  
CCIR and square pixel operation  
FEATURES  
ITU-R1 BT601/656 YCrCb to PAL/NTSC video encoder  
High quality 10-bit video DACs  
Integrated subcarrier locking to external video source  
Color signal control/burst signal control  
Interlaced/noninterlaced operation  
Complete on-chip video timing generator  
Programmable multimode master/slave operation  
Macrovision® AntiTaping Rev. 7.1 (ADV7170 only)3  
Closed captioning support  
Teletext insertion port (PAL-WST)  
On-board color bar generation  
On-board voltage reference  
2-wire serial MPU interface (I2C®-compatible and Fast I2C)  
Single supply 5 V or 3.3 V operation  
SSAF (super sub-alias filter)  
Advanced power management features  
CGMS (copy generation management system)  
WSS (wide screen signalling)  
Simultaneous Y, U, V, C output format  
NTSC M, PAL M/N2, PAL B/D/G/H/I, PAL60  
Single 27 MHz clock required (×2 oversampling)  
80 dB video SNR  
32-bit direct digital synthesizer for color subcarrier  
Multistandard video output support  
Composite (CVBS)  
Components S-Video (Y/C), YUV, and RGB  
EuroSCART output (RGB + CVBS/LUMA)  
Component YUV + CHROMA  
Small 44-lead MQFP/TQFP packages  
Industrial temperature grade = −40°C to +85°C4  
APPLICATIONS  
Video input data port supports  
CCIR-656 4:2:2 8-bit parallel input format  
4:2:2 16-bit parallel input format  
Programmable simultaneous composite and S-Video or RGB  
(SCART)/YUV video outputs  
High performance DVD playback systems, portable video  
equipment including digital still cameras and laptop PCs,  
video games, PC video/multimedia and digital  
satellite/cable systems (set-top boxes/IRD)  
1 ITU-R and CCIR are used interchangeably in this document (ITU-R has replaced  
CCIR recommendations).  
Programmable luma filters (low-pass [PAL/NTSC]) notch,  
extended (SSAF, CIF, and QCIF)  
Programmable chroma filters (low-pass [0.65 MHz, 1.0 MHz,  
1.2 MHz and 2.0 MHz], CIF and QCIF)  
2 Throughout the document N is referenced to PAL- Combination -N.  
3 Protected by U.S. Patents 4,631,603;, 4,577,216, 4,819,098; and other intellectual  
property rights. The Macrovision anticopy process is licensed for noncommercial  
home use only, which is its sole intended use in the device. Please contact sales  
office for latest Macrovision version available.  
Programmable VBI (vertical blanking interval)  
4 Refer to Table 8 for complete operating details.  
Programmable subcarrier frequency and phase  
TTXREQ  
TTX  
M
POWER  
10  
10  
10  
10  
10  
10  
U
L
T
I
10-BIT  
DAC  
MANAGEMENT  
CONTROL  
CGMS AND WSS  
INSERTION  
BLOCK  
DAC D (PIN 27)  
DAC C (PIN 26)  
DAC B (PIN 31)  
TELETEXT  
INSERTION  
BLOCK  
YUV TO  
RGB  
V
AA  
(SLEEP MODE)  
P
L
E
X
E
R
10-BIT  
DAC  
MATRIX  
RESET  
10-BIT  
DAC  
8
Y 8  
9
9
COLOR  
DATA  
P7–P0  
PROGRAMMABLE  
LUMINANCE  
FILTER  
ADD  
SYNC  
INTER-  
POLATOR  
10  
4:2:2 TO  
YCrCb  
8
8
4:4:4  
INTER-  
TO  
YUV  
U
10  
U 8  
V 8  
8
8
8
8
10  
PROGRAMMABLE  
CHROMINANCE  
FILTER  
INTER-  
POLATOR  
ADD  
BURST  
POLATOR  
MATRIX  
P15–P8  
10-BIT  
DAC  
DAC A (PIN 32)  
10  
V
ADV7170/ADV7171  
HSYNC  
FIELD/VSYNC  
BLANK  
10  
SIN/COS  
10  
REAL-TIME  
CONTROL  
CIRCUIT  
VIDEO TIMING  
GENERATOR  
2
V
REF  
I C MPU PORT  
VOLTAGE  
REFERENCE  
CIRCUIT  
R
DDS BLOCK  
SET  
COMP  
CLOCK  
SCLOCK SDATA  
ALSB  
SCRESET/RTC  
GND  
Figure 1. Functional Block Diagram  
Protected by U.S. Patents 5,343,196; 5,442,355; and other intellectual property rights.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2009 Analog Devices, Inc. All rights reserved.  
ADV7170/ADV7171  
TABLE OF CONTENTS  
Specifications..................................................................................... 4  
Mode Register 1 MR1 (MR17 to MR10)................................. 30  
MR1 Bit Description.................................................................. 30  
Mode Register 2 MR2 (MR27 to MR20)................................. 30  
MR2 Bit Description.................................................................. 30  
Mode Register 3 MR3 (MR37 to MR30).................................... 32  
MR3 Bit Description.................................................................... 32  
Mode Register 4 MR4 (MR47 to MR40)................................. 33  
MR4 Bit Description.................................................................. 33  
Dynamic Specifications ............................................................... 6  
Timing Specifications .................................................................. 7  
Timing Diagrams.......................................................................... 9  
Absolute Maximum Ratings.......................................................... 10  
Package Thermal Performance................................................. 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
General Description....................................................................... 13  
Data Path Description................................................................ 13  
Internal Filter Response............................................................. 14  
Typical Performance Characteristics ........................................... 15  
Features ............................................................................................ 18  
Color Bar Generation ................................................................ 18  
Square Pixel Mode...................................................................... 18  
Color Signal Control.................................................................. 18  
Burst Signal Control................................................................... 18  
NTSC Pedestal Control ............................................................. 18  
Pixel Timing Description .......................................................... 18  
Subcarrier Reset.......................................................................... 18  
Real-Time Control ..................................................................... 18  
Video Timing Description ........................................................ 18  
Power-On Reset.......................................................................... 26  
SCH Phase Mode........................................................................ 26  
MPU Port Description............................................................... 26  
Register Accesses ........................................................................ 27  
Register Programming................................................................... 28  
Subaddress Register (SR7 to SR0) ............................................ 28  
Register Select (SR5 to SR0)...................................................... 28  
Mode Register 0 MR0 (MR07 to MR00)................................. 28  
MR0 Bit Description.................................................................. 28  
VSYNC  
_3H (MR43).................................................................. 33  
Timing Mode Register 0 (TR07 to TR00)............................... 33  
TR0 Bit Description ................................................................... 34  
Timing Mode Register 1 (TR17 to TR10)............................... 34  
TR1 Bit Description ................................................................... 34  
Subcarrier Frequency Registers 0 to 3 (FSC3 to FSC0)......... 35  
Subcarrier Phase Registers (FP7 to FP0)................................. 35  
Closed Captioning Even Field Data Register 1 to 0 (CED15 to  
CED0) .......................................................................................... 35  
Closed Captioning Odd Field Data Registers 1 to 0 (CCD15  
to CCD0) ..................................................................................... 35  
NTSC Pedestal/PAL Teletext Control Registers 3 to 0 (PCE15  
to PCE0, PCO15 to PCO0)/(TXE15 to TXE0, TXO15 to  
TXO0).......................................................................................... 36  
Teletext Request Control Register TC07 (TC07 to TC00).... 36  
CGMS_WSS Register 0 C/W0 (C/W07 to C/W00) .............. 36  
C/W0 Bit Description................................................................ 36  
CGMS_WSS Register 1 C/W1 (C/W17 to C/W10) .............. 37  
C/W1 Bit Description................................................................ 37  
CGMS Data Bits (C/W17 to C/W16)...................................... 37  
CGMS_WSS Register 2 C/W1 (C/W27 to C/W20) .............. 37  
C/W2 Bit Description................................................................ 37  
Appendices ...................................................................................... 38  
Appendix 1—Board Design and Layout Considerations...... 38  
Rev. C | Page 2 of 64  
ADV7170/ADV7171  
Appendix 2—Closed Captioning..............................................40  
Appendix 7—Optional Output Filter.......................................48  
Appendix 8—Optional DAC Buffering ...................................48  
Appendix 9—Recommended Register Values ........................49  
Appendix 10—Output Waveforms...........................................51  
Outline Dimensions........................................................................61  
Ordering Guide ...........................................................................62  
Appendix 3—Copy Generation Management System  
(CGMS) ........................................................................................41  
Appendix 4—Wide Screen Signaling .......................................42  
Appendix 5—Teletext Insertion................................................43  
Appendix 6—Waveforms...........................................................44  
REVISION HISTORY  
3/09—Rev. B to Rev. C  
Changes to Table 8 ..........................................................................10  
Updated Outline Dimensions........................................................61  
Added Figure 103, Renumbered Figures Sequentially...............61  
Changes to Ordering Guide...........................................................61  
6/05—Rev. A to Rev. B  
Updated Format.................................................................. Universal  
Changes to Features Section ............................................................1  
Changes to Table 8 ..........................................................................10  
Changes to Square Pixel Mode Section........................................18  
Changes to Figure 37 ......................................................................29  
Changes to Figure 42 ......................................................................33  
Changes to Subcarrier Frequency Registers 3 to 0 Section .......35  
Changes to Figure 45 ......................................................................35  
Changes to Figure 82 ......................................................................48  
Changes to Ordering Guide...........................................................62  
6/02—Starting Rev. A to Rev. B  
Changes to Specifications.................................................................3  
Changes to Package Thermal Performance section...9  
Rev. C | Page 3 of 64  
ADV7170/ADV7171  
SPECIFICATIONS  
VAA = 5 V 5ꢀ1, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 1.  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS  
10  
Bits  
RSET = 300 Ω  
Guaranteed monotonic  
0.6  
LSB  
LSB  
1
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
Input Capacitance, CIN  
DIGITAL OUTPUTS  
2
V
V
μA  
pF  
0.8  
1
VIN = 0.4 V or 2.4 V  
10  
10  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
ANALOG OUTPUTS  
Output Current3  
ISOURCE = 400 μA  
ISINK = 3.2 mA  
2.4  
V
V
μA  
pF  
0.4  
10  
RSET = 150 Ω, RL = 37.5 Ω  
RSET = 1041 Ω, RL = 262.5 Ω  
3
0
34.7  
5
1.5  
37  
mA  
mA  
%
V
kΩ  
pF  
Output Current4  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
VOLTAGE REFERENCE  
Reference Range, VREF  
POWER REQUIREMENTS5  
VAA  
+1.4  
30  
30  
IOUT = 0 mA  
IVREFOUT = 20 μA  
1.142  
4.75  
1.235  
5.0  
1.327  
5.25  
155  
95  
V
V
Normal Power Mode  
IDAC (max)6  
RSET = 150 Ω, RL = 37.5 Ω  
RSET = 1041 Ω, RL = 262.5 Ω  
150  
20  
75  
mA  
mA  
mA  
IDAC (min)6  
7
ICCT  
Low Power Mode  
IDAC (max)6  
80  
20  
75  
mA  
mA  
mA  
IDAC (min)6  
7
ICCT  
95  
Sleep Mode  
8
IDAC  
ICCT  
0.1  
0.001  
0.01  
μA  
μA  
%/%  
9
Power Supply Rejection Ratio  
COMP = 0.1 μF  
0.5  
1 The min/max specifications are guaranteed over this range. The min/max values are typical over 4.75 V to 5.25 V.  
2 Ambient temperature range TMIN to TMAX: −40°C to +85°C. The die temperature, TJ, must always be kept below 110°C.  
3 Full drive into 37.5 Ω doubly terminated load.  
4 Minimum drive current (used with buffered/scaled output load).  
5 Power measurements are taken with clock frequency = 27 MHz. Max TJ = 110°C.  
6 IDAC is the total current (min corresponds to 5 mA output per DAC; max corresponds to 37 mA output per DAC) to drive all four DACs. Turning off individual DACs  
reduces IDAC correspondingly.  
7 ICCT (circuit current) is the continuous current required to drive the device.  
8 Total DAC current in sleep mode.  
9 Total continuous current during sleep mode.  
Rev. C | Page 4 of 64  
 
 
 
ADV7170/ADV7171  
VAA = 3.0 V to 3.6 V1, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 2.  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE3  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS3  
10  
Bits  
RSET = 300 Ω  
Guaranteed monotonic  
0.6  
LSB  
LSB  
1
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
Input Capacitance, CIN  
DIGITAL OUTPUTS3  
2
V
V
μA  
pF  
0.8  
1
3, 4  
VIN = 0.4 V or 2.4 V  
10  
10  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
ANALOG OUTPUTS3  
Output Current4, 5  
ISOURCE = 400 μA  
ISINK = 3.2 mA  
2.4  
V
V
μA  
pF  
0.4  
10  
RSET = 150 Ω, RL = 37.5 Ω  
RSET = 1041 Ω, RL = 262.5 Ω  
33  
0
34.7  
5
2.0  
37  
mA  
mA  
%
V
kΩ  
pF  
Output Current6  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
POWER REQUIREMENTS3, 7  
VAA  
1.4  
30  
30  
IOUT = 0 mA  
3.0  
3.3  
3.6  
155  
V
Normal Power Mode  
IDAC (max)8  
RSET = 150 Ω, RL = 37.5 Ω  
RSET = 1041 Ω, RL = 262.5 Ω  
150  
20  
35  
mA  
mA  
mA  
IDAC (min)8  
9
ICCT  
Low Power Mode  
IDAC (max)8  
80  
20  
35  
mA  
mA  
mA  
IDAC (min)8  
9
ICCT  
Sleep Mode  
10  
IDAC  
ICCT  
0.1  
0.001  
0.01  
μA  
μA  
%/%  
11  
Power Supply Rejection Ratio  
COMP = 0.1 μF  
0.5  
1 The min/max specifications are guaranteed over this range. The min/max values are typical over 3.0 V to 3.6 V.  
2 Ambient temperature range TMIN to TMAX: −40°C to +85°C. The die temperature, TJ, must always be kept below 110°C.  
3 Guaranteed by characterization.  
4 Full drive into 37.5 Ω load.  
5 DACs can output 35 mA typically at 3.3 V (RSET = 150 Ω and RL = 37.5 Ω); optimum performance obtained at 18 mA DAC current (RSET = 300 Ω and RL = 75 Ω).  
6 Minimum drive current (used with buffered/scaled output load).  
7 Power measurements are taken with clock frequency = 27 MHz. Max TJ = 110°C.  
8 IDAC is the total current (min corresponds to 5 mA output per DAC, max corresponds to 38 mA output per DAC) to drive all four DACs. Turning off individual DACs  
reduces IDAC correspondingly.  
9 ICCT (circuit current) is the continuous current required to drive the device.  
10 Total DAC current in sleep mode.  
11 Total continuous current during sleep mode.  
Rev. C | Page 5 of 64  
 
ADV7170/ADV7171  
DYNAMIC SPECIFICATIONS  
VAA = 5 V 5ꢀ1, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 3.  
Parameter  
Differential Gain3, 4  
Differential Phase3, 4  
Differential Gain3, 4  
Conditions1  
Min  
Typ  
0.3  
0.4  
1.0  
1.0  
80  
70  
60  
58  
0.7  
0.9  
0.6  
0.3  
0.2  
1.0  
0.5  
0.8  
85  
Max  
0.7  
0.7  
2.0  
2.0  
Unit  
%
Degrees  
%
Degrees  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degrees  
%
Normal power mode  
Normal power mode  
Lower power mode  
Lower power mode  
RMS  
Peak periodic  
RMS  
Peak periodic  
Differential Phase3, 4  
SNR3, 4(Pedestal)  
SNR3, 4(Pedestal)  
SNR3, 4(Ramp)  
SNR3, 4(Ramp)  
Hue Accuracy3, 4  
1.2  
1.4  
Color Saturation Accuracy3, 4  
Chroma Nonlinear Gain3, 4  
Chroma Nonlinear Phase3 4  
Chroma/Luma Intermod3, 4  
Chroma/Luma Gain Inequality3, 4  
Chroma/Luma Delay Inequality3, 4  
Luminance Nonlinearity3, 4  
Chroma AM Noise3, 4  
Chroma PM Noise3, 4  
Referenced to 40 IRE  
%
0.5  
0.4  
1.4  
2.0  
1.4  
Degrees  
%
%
ns  
%
82  
79  
dB  
dB  
81  
1 The min/max specifications are guaranteed over this range. The min/max values are typical over 4.75 V to 5.25 V.  
2 Ambient temperature range TMIN to TMAX: −40°C to +85°C. The die temperature, TJ, must always be kept below 110°C.  
3 Guaranteed by characterization.  
4 These specifications are for the low-pass filter only and are guaranteed by design.  
VAA = 3.0 V to 3.6 V1, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 4.  
Parameter  
Differential Gain3  
Differential Phase3  
Differential Gain3  
Differential Phase3  
SNR3 (Pedestal)  
Conditions1  
Min  
Typ  
1.0  
0.5  
0.6  
0.5  
78  
70  
60  
58  
1.0  
1.0  
1.4  
80  
Max  
Unit  
%
Degrees  
%
Degrees  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degrees  
%
Normal power mode  
Normal power mode  
Lower power mode  
Lower power mode  
RMS  
SNR3 (Pedestal)  
SNR3 (Ramp)  
Peak periodic  
RMS  
SNR3 (Ramp)  
Hue Accuracy3  
Peak periodic  
Color Saturation Accuracy3  
Luminance Nonlinearity3, 4  
Chroma AM Noise3, 4  
Chroma PM Noise3, 4  
Chroma Nonlinear Gain3, 4  
Chroma Nonlinear Phase3, 4  
Chroma/Luma Intermod3, 4  
%
dB  
79  
dB  
%
Degrees  
%
Referenced to 40 IRE  
0.6  
0.3  
0.2  
0.5  
0.4  
1 The min/max specifications are guaranteed over this range. The min/max values are typical over 4.75 V to 5.25 V.  
2 Ambient temperature range TMIN to TMAX: −40°C to +85°C. The die temperature, TJ, must always be kept below 110°C.  
3 Guaranteed by characterization.  
4 These specifications are for the low-pass filter only and are guaranteed by design. For other internal filters, see Table 10.  
Rev. C | Page 6 of 64  
 
 
 
ADV7170/ADV7171  
TIMING SPECIFICATIONS  
VAA = 4.75 V to 5.25 V1, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 5.  
Parameter  
MPU PORT3, 4  
Conditions  
Min  
Typ  
Max  
Unit  
SCLOCK Frequency  
0
400  
kHz  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
SCLOCK High Pulse Width, t1  
SCLOCK Low Pulse Width, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
ANALOG OUTPUTS3, 5  
Analog Output Delay  
DAC Analog Output Skew  
CLOCK CONTROLAND PIXEL PORT5, 6  
fCLOCK  
0.6  
1.3  
0.6  
0.6  
100  
After this period the first clock is generated  
Relevant for repeated start condition  
300  
300  
0.6  
7
0
ns  
ns  
27  
MHz  
Clock High Time, t9  
8
ns  
Clock Low Time, t10  
8
ns  
Data Setup Time, t11  
Data Hold Time, t12  
3.5  
4
ns  
ns  
Control Setup Time, t11  
Control Hold Time, t12  
Digital Output Access Time, t13  
4
3
ns  
ns  
ns  
ns  
11  
8
48  
16  
4
Digital Output Hold Time, t14  
4
Pipeline Delay, t15  
Clock cycles  
TELETEXT3, 4, 7  
Digital Output Access Time, t16  
Data Setup Time, t17  
Data Hold Time, t18  
RESET CONTROL3, 4  
20  
2
6
ns  
ns  
ns  
RESET  
6
ns  
Low Time  
1 The min/max specifications are guaranteed over this range. The min/max values are typical over 4.75 V to 5.25 V range.  
2 Ambient temperature range TMIN to TMAX: −40°C to +85°C. The die temperature, TJ, must always be kept below 110°C.  
3 TTL input values are 0 V to 3 V, with input rise/fall times ≤ 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs.  
Analog output load ≤ 10 pF.  
4 Guaranteed by characterization  
5 Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.  
6 Pixel port consists of the following:  
Pixel inputs:  
Pixel controls:  
Clock input:  
P15–P0  
HSYNC  
VSYNC BLANK  
, FIELD/  
,
CLOCK  
7 Teletext port consists of the following:  
Teletext output: TTXREQ  
Teletext input: TTX  
Rev. C | Page 7 of 64  
 
 
ADV7170/ADV7171  
VAA = 3.0 V to 3.6 V1, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 6.  
Parameter  
MPU PORT3, 4  
Conditions  
Min Typ Max Unit  
SCLOCK Frequency  
0
400  
kHz  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
SCLOCK High Pulse Width, t1  
SCLOCK Low Pulse Width, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
ANALOG OUTPUTS3, 5  
Analog Output Delay  
DAC Analog Output Skew  
CLOCK CONTROLAND PIXEL PORT4, 5, 6  
fCLOCK  
0.6  
1.3  
0.6  
0.6  
100  
After this period the first clock is generated  
Relevant for repeated start condition  
300  
300  
0.6  
7
0
ns  
ns  
27  
MHz  
Clock High Time, t9  
8
ns  
Clock Low Time, t10  
8
ns  
Data Setup Time, t11  
Data Hold Time, t12  
3.5  
4
ns  
ns  
Control Setup Time, t11  
Control Hold Time, t12  
Digital Output Access Time, t13  
Digital Output Hold Time, t14  
Pipeline Delay, t15  
4
3
ns  
ns  
ns  
ns  
12  
8
48  
Clock cycles  
TELETEXT3, 4, 7  
Digital Output Access Time, t16  
Data Setup Time, t17  
Data Hold Time, t18  
23  
2
6
ns  
ns  
ns  
RESET CONTROL3, 4  
Low Time  
6
ns  
RESET  
1 The max/min specifications are guaranteed over this range. The max/min values are typical over 3.0 V to 3.6 V range.  
2 Ambient temperature range TMIN to TMAX: −40°C to +85°C. The die temperature, TJ, must always be kept below 110°C.  
3 TTL input values are 0 V to 3 V, with input rise/fall times ≤3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs.  
Analog output load ≤10 pF.  
4 Guaranteed by characterization  
5 Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition  
6 Pixel Port consists of the following:  
Pixel inputs:  
Pixel controls:  
Clock input:  
P15–P0  
HSYNC  
VSYNC BLANK  
, FIELD/  
,
CLOCK  
7 Teletext port consists of the following:  
Teletext output: TTXREQ  
Teletext input: TTX  
Rev. C | Page 8 of 64  
 
ADV7170/ADV7171  
TIMING DIAGRAMS  
t3  
t5  
t3  
SDATA  
t1  
t6  
SCLOCK  
t4  
t2  
t7  
t8  
Figure 2. MPU Port Timing Diagram  
CLOCK  
HSYNC,  
t12  
t9  
t10  
CONTROL  
I/PS  
FIELD/VSYNC,  
BLANK  
PIXEL INPUT  
DATA  
Cb  
Y
Cr  
Y
Cb  
t13  
Y
t11  
HSYNC,  
FIELD/VSYNC,  
BLANK  
CONTROL  
O/PS  
t14  
Figure 3. Pixel and Control Data Timing Diagram  
TTXREQ  
CLOCK  
t16  
t17  
t18  
TTX  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
3 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
Figure 4. Teletext Timing Diagram  
Rev. C | Page 9 of 64  
 
ADV7170/ADV7171  
ABSOLUTE MAXIMUM RATINGS  
Table 7.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may  
affect device reliability. Only one absolute maximum rating may  
be applied at any one time.  
Parameter  
Rating  
VAA to GND  
7 V  
Voltage on Any Digital Input Pin  
Storage Temperature (TS)  
Junction Temperature (TJ)  
GND − 0.5 V to VAA + 0.5 V  
−65°C to +150°C  
150°C  
Lead Temperature (Soldering, 10 sec) 260°C  
Analog Outputs to GND1  
GND − 0.5 V to VAA  
1 Analog output short circuit to any power supply or GND can be of an  
indefinite duration.  
PACKAGE THERMAL PERFORMANCE  
Table 8. Allowable Operating Conditions for KS and KSU  
Package Options  
The 44-MQFP package used for this device takes advantage of  
an ADI patented thermal coastline lead frame construction.  
This maximizes heat transfer into the leads and reduces the  
package thermal resistance.  
KS, WBS  
3 V 5 V  
4 DAC ON Double 75R1 Yes +70°C max +70°C max No  
KSU  
Conditions  
3 V  
5 V  
4 DAC ON Low Power2  
4 DAC ON Buffering3  
3 DAC ON Double 75R  
3 DAC ON Low Power  
3 DAC ON Buffering  
Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
Yes  
Yes  
Yes  
For the MQFP package, the junction-to-ambient (θJA) thermal  
resistance in still air on a four-layer PCB is 35.5°C/W. The  
junction-to-case thermal resistance (θJC) is 13.75°C/W. For the  
TQFP package, θJA in still air on a four-layer PCB is 53.2°C/W.  
θJC is 11.1°C/W. Junction Temperature = TJ = [VAA (Σ DAC  
Output Current + ICCT) × θJA] + Ambient Temperature.  
Yes  
4 DAC ON Buffering  
1 DAC ON Double 75R refers to a condition where the DACs are terminated  
in a double 75R load and low power mode is disabled.  
2 DAC ON Low Power refers to a condition where the DACs are terminated  
in a double 75R load and low power mode is enabled.  
3 DAC ON Buffering refers to a condition where the DAC current is reduced  
to 5 mA and external buffers are used to drive the video load.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 10 of 64  
 
 
 
ADV7170/ADV7171  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
44 43 42 41 40 39 38 37 36 35 34  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
V
V
REF  
AA  
PIN 1  
2
3
P5  
DAC A  
DAC B  
P6  
P7  
P8  
P9  
4
ADV7170/ADV7171  
V
AA  
MQFP/TQFP  
5
GND  
6
V
TOP VIEW  
(Not to Scale)  
AA  
7
P10  
P11  
DAC D  
DAC C  
COMP  
8
9
P12  
10  
11  
GND  
SDATA  
SCLOCK  
V
AA  
12 13 14 15 16 17 18 19 20 21 22  
Figure 5. Pin Configuration  
Table 9. Pin Function Descriptions  
Input/  
Output Description  
Pin No.  
1, 11, 20, 28, 30  
2 to 9, 12 to 14,  
38 to 42  
Mnemonic  
VAA  
P15 to P0  
P
I
Power Supply (3 V to 5 V).  
8-Bit 4:2:2 Multiplexed YCrCb Pixel Port (P7 to P0) or 16-Bit YCrCb Pixel Port (P15 to P0).  
P0 represents the LSB.  
10, 19, 21, 29, 43  
15  
GND  
HSYNC  
G
I/O  
Ground Pin.  
HSYNC  
(Mode 1 and Mode 2) Control Signal. This pin may be configured to output (master  
mode) or accept (slave mode) sync signals.  
VSYNC  
16  
17  
VSYNC I/O  
I/O  
FIELD/  
Dual Function FIELD (Mode 1) and  
(Mode 2) Control Signal. This pin may be  
configured to output (master mode) or accept (slave mode) these control signals.  
Video Blanking Control Signal. The pixel inputs are ignored when this is Logic Level 0. This  
signal is optional.  
BLANK  
18  
22  
ALSB  
RESET  
I
I
TTLAddress Input. This signal sets up the LSB of the MPU address.  
The input resets the on-chip timing generator and sets the ADV7170/ADV7171 into default  
mode. This is NTSC operation, Timing Slave Mode 0, 8-bit operation, 2 × composite and  
S-Video out, and DAC B powered on and DAC D powered off.  
23  
24  
25  
SCLOCK  
SDATA  
COMP  
I
MPU Port Serial Interface Clock Input.  
MPU Port Serial Data Input/Output.  
Compensation Pin. Connect a 0.1 μF capacitor from COMP to VAA. For optimum dynamic  
performance in low power mode, the value of the COMP capacitor can be lowered to as low  
as 2.2 nF.  
I/O  
O
26  
27  
31  
32  
DAC C  
DAC D  
DAC B  
DAC A  
O
O
O
O
RED/S-Video C/V Analog Output.  
GREEN/S-Video Y/Y Analog Output.  
BLUE/Composite/U Analog Output.  
PAL/NTSC Composite Video Output. Full-scale output is 180 IRE (1286 mV) for NTSC and  
1300 mV for PAL.  
33  
34  
VREF  
RSET  
I/O  
I
Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).  
A 150 Ω resistor connected from this pin to GND is used to control full-scale amplitudes  
of the video signals.  
Rev. C | Page 11 of 64  
 
ADV7170/ADV7171  
Input/  
Output Description  
Pin No.  
Mnemonic  
35  
SCRESET/RTC  
I
This pin can be configured as an input by setting MR22 and MR21 of Mode Register 2.  
It can be configured as a subcarrier reset pin, in which case a low-to-high transition on this  
pin resets the subcarrier to Field 0. Alternatively, it may be configured as a real-time control  
(RTC) input.  
36  
37  
44  
TTXREQ  
TTX  
O
I
Teletext Data Request Signal. Defaults to GND when teletext not selected. Enables  
backward compatibility to ADV7175/ADV7176.  
Teletext Data. Defaults to VAA when teletext not selected. Enables backward compatibility  
to ADV7175/ADV7176.  
TTL Clock Input. Requires a stable 27 MHz reference clock for standard operation.  
Alternatively, a 24.5454 MHz (NTSC) or 29.5 MHz (PAL) can be used for square pixel  
operation.  
CLOCK  
I
Rev. C | Page 12 of 64  
ADV7170/ADV7171  
GENERAL DESCRIPTION  
DATA PATH DESCRIPTION  
The ADV7170/ADV7171 are integrated digital video encoders  
that convert digital CCIR-601 4:2:2 8- or 16-bit component  
video data into a standard analog baseband television signal  
compatible with worldwide standards.  
For PAL B/D/G/H/I/M/N, and NTSC M and N modes, YcrCb  
4:2:2 data is input via the CCIR-656 compatible pixel port at a  
27 MHz data rate. The pixel data is demultiplexed to form three  
data paths. Y typically has a range of 16 to 235; Cr and Cb  
typically have a range of 128 112. However, it is possible to  
input data from 1 to 254 on Y, Cb, and Cr. The ADV7170/  
ADV7171 support PAL (B, D, G, H, I, M, N) and NTSC (with  
and without pedestal) standards. The appropriate SYNC,  
The on-board SSAF (super sub-alias filter) with extended  
luminance frequency response and sharp stop band attenuation  
enables studio-quality video playback on modern TVs, giving  
optimal horizontal line resolution.  
BLANK  
, and burst levels are added to the YCrCb data.  
An advanced power management circuit enables optimal  
control of power consumption in both normal operating modes  
and power-down or sleep modes.  
Macrovision antitaping (ADV7170 only), closed-captioning,  
and teletext levels are also added to Y, and the resultant data  
is interpolated to a rate of 27 MHz. The interpolated data is  
filtered and scaled by three digital FIR filters.  
The ADV7170/ADV7171 support both PAL and NTSC square  
pixel operation. The parts also incorporate WSS and CGMS-A  
data control generation.  
The U and V signals are modulated by the appropriate sub-  
carrier sine/cosine phases and added together to make up the  
chrominance signal. The luma (Y) signal can be delayed 1 to  
3 luma cycles (each cycle is 74 ns) with respect to the chroma  
signal. The luma and chroma signals are then added together to  
make up the composite video signal. All edges are slew rate  
limited.  
The output video frames are synchronized with the incoming  
data timing reference codes. Optionally, the encoder accepts  
HSYNC VSYNC  
and can generate  
,
, and FIELD timing signals.  
These timing signals can be adjusted to change pulse width and  
position while the part is in the master mode. The encoder  
requires a single, two-times pixel rate (27 MHz) clock for  
standard operation. Alternatively, the encoder requires a  
24.5454 MHz clock for NTSC or 29.5 MHz clock for PAL  
square pixel mode operation. All internal timing is generated  
on-chip.  
The YCrCb data is also used to generate RGB data with  
appropriate SYNC and  
synchronization with the composite video output. Alternatively,  
analog YUV data can be generated instead of RGB.  
BLANK  
levels. The RGB data is in  
The four 10-bit DACs can be used to output the following:  
Composite video + RGB video.  
A separate teletext port enables the user to directly input teletext  
data during the vertical blanking interval.  
The ADV7170/ADV7171 modes are set up over a 2-wire, serial  
bidirectional port (I2C-compatible) with two slave addresses.  
Composite video + YUV video.  
Two composite video signals + LUMA  
and CHROMA (Y/C) signals.  
Functionally, the ADV7170 and ADV7171 are the same with the  
exception that the ADV7170 can output the Macrovision  
anticopy algorithm.  
Alternatively, each DAC can be individually powered off if not  
required.  
The ADV7170/ADV7171 are packaged in a 44-lead MQFP  
package and a 44-lead TQFP package.  
Video output levels are illustrated in Appendix 6—Waveforms.  
Rev. C | Page 13 of 64  
 
ADV7170/ADV7171  
INTERNAL FILTER RESPONSE  
The Y filter supports several different frequency responses, including two low-pass responses, two notch responses, an extended (SSAF)  
response, a CIF response, and a QCIF response. The UV filter supports several different frequency responses, including four low-pass  
responses, a CIF response, and a QCIF response that are shown in Table 10 and Table 11 and Figure 6 to Figure 18.  
Table 10. Luminance Internal Filter Specifications  
Filter Selection  
MR04 MR03 MR02  
Pass-Band Ripple  
(dB)  
3 dB Bandwidth  
(MHz)  
Stop-Band  
Cutoff (MHz)  
Stop-Band Attenuation  
(dB)  
Filter Type  
Low Pass (NTSC)  
Low Pass (PAL)  
Notch (NTSC)  
Notch (PAL)  
Extended (SSAF)  
CIF  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0.091  
0.15  
0.015  
0.095  
0.051  
0.018  
Monotonic  
4.157  
4.74  
6.54  
6.24  
6.217  
3.0  
7.37  
7.96  
8.3  
8.0  
8.0  
−56  
−64  
−68  
−66  
−61  
−61  
−50  
7.06  
7.15  
QCIF  
1.5  
Table 11. Chrominance Internal Filter Specifications  
Filter Selection  
MR07 MR06 MR05  
Pass-Band Ripple 3 dB Bandwidth  
(dB) (MHz)  
Stop-Band  
Cutoff (MHz)  
3.01  
3.64  
3.73  
5.0  
Stop-Band Attenuation  
(dB)  
−45  
−58.5  
−49  
−40  
Filter Type  
1.3 MHz Low Pass  
.65 MHz Low Pass  
1.0 MHz Low Pass  
2.0 MHz Low Pass  
Reserved  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0.084  
1.395  
0.65  
1.0  
Monotonic  
Monotonic  
0.0645  
2.2  
CIF  
QCIF  
0.084  
Monotonic  
0.7  
0.5  
3.01  
4.08  
−45  
−50  
Rev. C | Page 14 of 64  
 
 
 
 
ADV7170/ADV7171  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
0
0
2
4
6
8
10  
12  
12  
12  
0
0
0
2
4
6
8
10  
12  
12  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. PAL Notch Luma Filter  
Figure 6. NTSC Low-Pass Luma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Extended Mode (SSAF) Luma Filter  
Figure 7. PAL Low-Pass Luma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. CIF Luma Filter  
Figure 8. NTSC Notch Luma Filter  
Rev. C | Page 15 of 64  
 
 
ADV7170/ADV7171  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
0
0
2
4
6
8
10  
12  
12  
12  
0
0
0
2
4
6
8
10  
12  
12  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. QCIF Luma Filter  
Figure 15. 1.0 MHz Low-Pass Chroma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. 1.3 MHz Low-Pass Chroma Filter  
Figure 16. 2.0 MHz Low-Pass Chroma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. 0.65 MHz Low-Pass Chroma Filter  
Figure 17. CIF Chroma Filter  
Rev. C | Page 16 of 64  
ADV7170/ADV7171  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 18. QCIF Chroma Filter  
Rev. C | Page 17 of 64  
 
ADV7170/ADV7171  
FEATURES  
COLOR BAR GENERATION  
SUBCARRIER RESET  
Together with the SCRESET/RTC pin and Bit MR22 and  
Bit MR21 of Mode Register 2, the ADV7170/ADV7171  
can be used in subcarrier reset mode. The subcarrier resets  
to Field 0 at the start of the following field when a low-to-high  
transition occurs on this input pin.  
The ADV7170/ADV7171 can be configured to generate  
100/7.5/75/7.5 color bars for NTSC or 100/0/75/0 color bars  
for PAL. These are enabled by setting MR17 of Mode Register 1  
to Logic Level 1.  
SQUARE PIXEL MODE  
REAL-TIME CONTROL  
The ADV7170/ADV7171 can be used to operate in square pixel  
mode. For NTSC operation, an input clock of 24.5454 MHz is  
required. Alternatively, for PAL operation, an input clock of 29.5  
MHz is required. The internal timing logic adjusts accordingly  
for square pixel mode operation. When the ADV7171 is  
configured for PAL square pixel mode, it supports 768 active  
pixels per line. NTSC square pixel mode supports 640 active  
pixels per line.  
Together with the SCRESET/RTC pin and Bit MR22 and  
Bit MR21 of Mode Register 2, the ADV7170/ADV7171 can be  
used to lock to an external video source. The real-time control  
mode allows the ADV7170/ADV7171 to automatically alter the  
subcarrier frequency to compensate for line length variation.  
When the part is connected to a device that outputs a digital  
data stream in the RTC format (such as a ADV7185 video  
decoder, shown in Figure 19), the part automatically changes to  
the compensated subcarrier frequency on a line-by-line basis.  
This digital data stream is 67 bits wide, and the subcarrier is  
contained in Bit 0 to Bit 21. Each bit is 2 clock cycles long.  
00Hex should be written into all four subcarrier frequency  
registers when using this mode.  
COLOR SIGNAL CONTROL  
The color information can be switched on and off the video  
output using Bit MR24 of Mode Register 2.  
BURST SIGNAL CONTROL  
The burst information can be switched on and off the video  
output using Bit MR25 of Mode Register 2.  
VIDEO TIMING DESCRIPTION  
The ADV7170/ADV7171 are intended to interface to off-the-  
shelf MPEG1 and MPEG2 decoders. Consequently, the  
ADV7170/ADV7171 accept 4:2:2 YCrCb pixel data via a  
CCIR-656 pixel port, and they have several video timing modes  
of operation that allow them to be configured as either system  
master video timing generators or as slaves to the system video  
timing generator. The ADV7170/ADV7171 generate all of the  
required horizontal and vertical timing periods and levels for  
the analog video outputs.  
NTSC PEDESTAL CONTROL  
The pedestal on both odd and even fields can be controlled on a  
line-by-line basis using the NTSC pedestal control registers.  
This allows the pedestals to be controlled during the vertical  
blanking interval.  
PIXEL TIMING DESCRIPTION  
The ADV7170/ADV7171 operate in either 8-bit or 16-bit  
YCrCb mode.  
The ADV7170/ADV7171 calculate the width and placement of  
analog sync pulses, blanking levels, and color burst envelopes.  
Color bursts are disabled on appropriate lines, and serration  
and equalization pulses are inserted where required.  
8-Bit YCrCb Mode  
This default mode accepts multiplexed YCrCb inputs through  
the P7 to P0 pixel inputs. The inputs follow the sequence Cb0,  
Y0 Cr0, Y1 Cb1, Y2, and so on. The Y, Cb, and Cr data are input  
on a rising clock edge.  
In addition, the ADV7170/ADV7171 support a PAL or NTSC  
square pixel operation in slave mode. The part requires an input  
pixel clock of 24.5454 MHz for NTSC and an input pixel clock of  
29.5 MHz for PAL. The internal horizontal line counters place the  
various video waveform sections in the correct location for the new  
clock frequencies.  
16-Bit YCrCb Mode  
This mode accepts Y inputs through the P7 to P0 pixel inputs  
and multiplexed CrCb inputs through the P15 to P8 pixel  
inputs. The data is loaded on every second rising edge of  
CLOCK. The inputs follow the sequence Cb0, Y0 Cr0, Y1 Cb1,  
Y2, and so on.  
The ADV7170/ADV7171 have four distinct master and four  
distinct slave timing configurations. Timing Control is established  
SYNC BLANK  
VSYNC  
, and FIELD/ pins.  
with the bidirectional  
,
Timing Mode Register 1 can also be used to vary the timing pulse  
widths where they occur in relation to each other.  
Rev. C | Page 18 of 64  
 
ADV7170/ADV7171  
CLOCK  
SCRESET/RTC  
COMPOSITE VIDEO  
(FOR EXAMPLE,  
VCR OR CABLE)  
VIDEO  
DECODER  
(FOR EXAMPLE,  
ADV7185)  
GREEN/LUMA/Y  
RED/CHROMA/V  
P7–P0  
BLUE/COMPOSITE/U  
COMPOSITE  
HSYNC  
FIELD/VSYNC  
ADV7170/ADV7171  
SEQUENCE  
RESERVED  
2
BIT  
H/LTRANSITION  
COUNT START  
RESET  
5 BITS  
4 BITS  
RESERVED  
3
BIT  
RESERVED  
LOW  
14 BITS  
RESERVED  
128  
1
F
PLL INCREMENT  
SC  
0
0
13  
21  
RTC  
TIME SLOT: 01  
67 68  
14  
19  
NOT USED IN  
ADV7170/ADV7171  
VALID  
INVALID  
8/LLC  
SAMPLE SAMPLE  
NOTES:  
1
2
3
F
F
PLL INCREMENT IS 22 BITS LONG, VALUE LOADED INTO ADV7170/ADV7171 FSC DDS REGISTER IS  
PLL INCREMENTS BITS 21:0 PLUS BITS 0:9 OF SUBCARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD  
SC  
SC  
BE WRITTEN TO THE SUBCARRIER FREQUENCY REGISTERS OF THE ADV7170/ADV7171.  
SEQUENCE BIT  
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED  
NTSC: 0 = NO CHANGE  
RESET BIT  
RESET ADV7170/ADV7171 DDS  
Figure 19. RTC Timing and Connections  
Vertical Blanking Data Insertion  
Mode 0 (CCIR-656): Slave Option  
(Timing Register 0 TR0 = X X X X X 0 0 0)  
It is possible to allow encoding of incoming YCbCr data on  
those lines of VBI that do not bear line sync or pre-/post-  
equalization pulses (see Figure 21 to Figure 32). This mode of  
operation is called “partial blanking” and is selected by setting  
MR32 to 1. It allows the insertion of any VBI data (opened VBI)  
into the encoded output waveform. This data is present in the  
digitized incoming YcbCr data stream (for example, WSS data,  
CGMS, VPS, and so on). Alternatively, the entire VBI may be  
blanked (no VBI data inserted) on these lines by setting MR32  
to 0.  
The ADV7170/ADV7171 are controlled by the SAV (start active  
video) and EAV (end active video) time codes in the pixel data.  
All timing information is transmitted using a 4-byte synchroni-  
zation pattern. A synchronization pattern is sent immediately  
before and after each line during active picture and retrace.  
HSYNC  
VSYNC  
Mode 0 is shown in Figure 20. The  
, FIELD/  
,
BLANK  
and  
(if not used) pins should be tied high during this  
mode.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
C
b
8
0
0
0
F
F
F A A  
F B B  
A
B
8
0
0
0
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
1440 CLOCK  
1440 CLOCK  
268 CLOCK  
NTSC/PAL M SYSTEM  
(525 LINES/60Hz)  
280 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
START OF ACTIVE  
VIDEO LINE  
END OF ACTIVE  
VIDEO LINE  
Figure 20. Timing Mode 0 (Slave Mode)  
Rev. C | Page 19 of 64  
 
 
ADV7170/ADV7171  
Mode 0 (CCIR-656): Master Option  
(Timing Register 0 TR0 = X X X X X 0 0 1)  
The ADV7170/ADV7171 generate H, V, and F signals required for the SAV (start active video) and EAV (end active video) time codes  
HSYNC  
BLANK  
in the CCIR656 standard. The H bit is output on the  
pin, the V bit is output on the  
pin, and the F bit is output on the  
VSYNC  
FIELD/  
pin. Mode 0 is illustrated in Figure 21 (NTSC) and Figure 22 (PAL). The H, V, and F transitions relative to the video  
waveform are illustrated in Figure 23.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
6
7
10  
11  
20  
21  
22  
5
9
8
H
V
F
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
V
ODD FIELD  
EVEN FIELD  
F
Figure 21. Timing Mode 0 (NTSC Master Mode)  
Rev. C | Page 20 of 64  
 
ADV7170/ADV7171  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
22  
23  
5
21  
H
V
EVEN FIELD  
ODD FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 22. Timing Mode 0 (PAL Master Mode)  
ANALOG  
VIDEO  
H
F
V
Figure 23. Timing Mode 0 Data Transitions (Master Mode)  
Rev. C | Page 21 of 64  
 
 
ADV7170/ADV7171  
Mode 1: Slave Option HSYNC, BLANK, FIELD  
(Timing Register 0 TR0 = X X X X X 0 1 0)  
In this mode the ADV7170/ADV7171 accept horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input when  
HSYNC  
BLANK  
BLANK  
is low indicates a new frame, that is, vertical retrace. The  
signal is optional. When the input is disabled,  
the ADV7170/ADV7171 automatically blank all normally blank lines as per CCIR-624. Mode 1 is illustrated in Figure 24 (NTSC)  
and Figure 25 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 24. Timing Mode 1 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 25. Timing Mode 1 (PAL)  
Rev. C | Page 22 of 64  
 
 
ADV7170/ADV7171  
Mode 1: Master Option HSYNC, BLANK, FIELD  
(Timing Register 0 TR0 = X X X X X 0 1 1)  
In this mode the ADV7170/ADV7171 can generate horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input when  
HSYNC BLANK BLANK  
is low indicates a new frame, that is, vertical retrace. The  
signal is optional. When the  
input is disabled, the  
ADV7170/ADV7171 automatically blank all normally blank lines as per CCIR-624. Pixel data is latched on the rising clock edge following  
HSYNC BLANK  
, and  
the timing signal transitions. Mode 1 is shown in Figure 24 (NTSC) and Figure 25 (PAL). Figure 26 illustrates the  
FIELD for an odd or even field transition relative to the pixel data.  
,
HSYNC  
FIELD  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
Cr  
Y
Cb  
Y
DATA  
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 26. Timing Mode 1 Odd/Even Field Transitions Master/Slave  
Mode 2: Slave Option HSYNC, VSYNC, BLANK  
(Timing Register 0 TR0 = X X X X X 1 0 0)  
HSYNC  
In this mode the ADV7170/ADV7171 accept horizontal and vertical SYNC signals. A coincident low transition of both  
and  
is high indicates the start of an even field. The  
input is disabled, the ADV7170/ADV7171 automatically blank all normally blank lines as  
VSYNC  
BLANK  
VSYNC  
HSYNC  
low transition when  
inputs indicates the start of an odd field. A  
BLANK  
signal is optional. When the  
per CCIR-624. Mode 2 is illustrated in Figure 27 (NTSC) and Figure 28 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 27. Timing Mode 2 (NTSC)  
Rev. C | Page 23 of 64  
 
 
ADV7170/ADV7171  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
335  
336  
317  
334  
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
Figure 28. Timing Mode 2 (PAL)  
Mode 2: Master Option HSYNC, VSYNC, BLANK  
(Timing Register 0 TR0 = X X X X X 1 0 1)  
HSYNC  
In this mode the ADV7170/ADV7171 can generate horizontal and vertical SYNC signals. A coincident low transition of both  
and  
is high indicates the start of an even field. The  
input is disabled, the ADV7170/ADV7171 automatically blank all normally blank lines as  
HSYNC BLANK VSYNC  
VSYNC  
BLANK  
VSYNC  
HSYNC  
low transition when  
inputs indicates the start of an odd field. A  
BLANK  
signal is optional. When the  
per CCIR-624. Mode 2 is shown in Figure 27 (NTSC) and Figure 28 (PAL). Figure 29 shows the  
,
, and  
VSYNC  
for an odd-to-even field  
for an  
HSYNC BLANK  
, and  
even-to-odd field transition relative to the pixel data. Figure 30 shows the  
transition relative to the pixel data.  
,
HSYNC  
VSYNC  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 29. Timing Mode 2 Even-to-Odd Field Transition Master/Slave  
HSYNC  
VSYNC  
PAL = 864 × CLOCK/2  
NTSC = 858 × CLOCK/2  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 30. Timing Mode 2 Odd-to-Even Field Transition Master/Slave  
Rev. C | Page 24 of 64  
 
 
 
ADV7170/ADV7171  
Mode 3: Master/Slave Option HSYNC, BLANK, FIELD  
(Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1)  
In this mode the ADV7170/ADV7171 accept or generate horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input  
HSYNC BLANK BLANK  
when  
is high indicates a new frame, that is, vertical retrace. The  
signal is optional. When the  
input is disabled,  
the ADV7170/ADV7171 automatically blank all normally blank lines as per CCIR-624. Mode 3 is shown in Figure 31 (NTSC) and Figure  
32 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
6
7
10  
11  
20  
21  
22  
5
9
8
HSYNC  
BLANK  
FIELD  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 31. Timing Mode 3 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
22  
23  
5
21  
HSYNC  
BLANK  
FIELD  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 32. Timing Mode 3 (PAL)  
Rev. C | Page 25 of 64  
 
 
ADV7170/ADV7171  
1
1
0
1
0
1
A1  
X
POWER-ON RESET  
After power-up, it is necessary to execute a reset operation.  
A reset occurs on the falling edge of a high-to-low transition  
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
RESET  
on the  
pin. This initializes the pixel port so that the pixel  
READ/WRITE  
CONTROL  
inputs, P7 to P0, are selected. After reset, the ADV7170/  
ADV7171 is automatically set up to operate in NTSC mode.  
Subcarrier frequency code 21F07C16HEX is loaded into the  
subcarrier frequency registers. All other registers, with the  
exception of Mode Register 0, are set to 00H. All bits in  
Mode Register 0 are set to Logic Level 0, except Bit MR44.  
Bit MR44 of Mode Register 4 is set to Logic Level 1. This  
enables the 7.5 IRE pedestal.  
0
1
WRITE  
READ  
Figure 33. ADV7170 Slave Address  
0
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
SCH PHASE MODE  
READ/WRITE  
CONTROL  
The SCH phase is configured in default mode to reset every  
four (NTSC) or eight (PAL) fields to avoid an accumulation of  
SCH phase error over time. In an ideal system, zero SCH phase  
error would be maintained forever, but in reality, this is  
impossible to achieve due to clock frequency variations. This  
effect is reduced by the use of a 32-bit DDS, which generates  
this SCH.  
0
1
WRITE  
READ  
Figure 34. ADV7171 Slave Address  
To control the various devices on the bus, the following  
protocol must be followed: first, the master initiates a data  
transfer by establishing a start condition, defined by a high-to-  
low transition on SDATA while SCLOCK remains high. This  
indicates that an address/data stream follows. All peripherals  
respond to the start condition and shift the next eight bits  
Resetting the SCH phase every four or eight fields avoids the  
accumulation of SCH phase error and results in very minor  
SCH phase jumps at the start of the four or eight field sequence.  
Resetting the SCH phase should not be done if the video source  
does not have stable timing or the ADV7170/ADV7171 are  
configured in RTC mode (MR21 = 1 and MR22 = 1). Under  
these conditions (unstable video), the subcarrier phase reset  
should be enabled (MR22 = 0 and MR21 = 1) but no reset  
applied. In this configuration the SCH phase is never reset,  
which means the output video tracks the unstable input video.  
The subcarrier phase reset, when applied, resets the SCH phase  
to Field 0 at the start of the next field (for example, subcarrier  
phase reset applied in Field 5 [PAL] on the start of the next field  
SCH phase resets to Field 0).  
RW  
(7-bit address + R/  
bit). The bits transfer from MSB down to  
LSB. The peripheral that recognizes the transmitted address  
responds by pulling the data line low during the ninth clock  
pulse. This is known as an acknowledge bit. All other devices  
withdraw from the bus at this point and maintain an idle  
condition. The idle condition is where the device monitors the  
SDATA and SCLOCK lines waiting for the start condition and  
RW  
the correct transmitted address. The R/  
bit determines the  
direction of the data. A Logic Level 0 on the LSB of the first byte  
means that the master writes information to the peripheral. A  
Logic Level 1 on the LSB of the first byte means the master  
reads information from the peripheral.  
MPU PORT DESCRIPTION  
The ADV7170/ADV7171 support a 2-wire, serial (I2C-  
compatible) microprocessor bus driving multiple peripherals.  
Two inputs, serial data (SDATA), and serial clock (SCLOCK),  
carry information between any devices connected to the bus.  
Each slave device is recognized by a unique address. The  
ADV7170/ADV7171 each have four possible slave addresses for  
both read and write operations. These are unique addresses for  
each device and are shown in Figure 33 and Figure 34.  
The LSB sets either a read or write operation. Logic Level 1  
corresponds to a read operation, while Logic Level 0 corre-  
sponds to a write operation. A 1 is set by setting the ALSB pin of  
the ADV7170/ADV7171 to Logic Level 0 or Logic Level 1.  
Rev. C | Page 26 of 64  
 
 
 
ADV7170/ADV7171  
REGISTER ACCESSES  
The ADV7170/ADV7171 act as standard slave devices on the  
bus. The data on the SDATA pin is eight bits long, supporting  
The MPU can write to or read from all of the ADV7170/  
ADV7171 registers except the subaddress register, which is a  
write-only register. The subaddress register determines which  
register the next read or write operation accesses. All commu-  
nications with the part through the bus start with an access to  
the subaddress register. A read/write operation is performed  
from/to the target address, which then increments to the next  
address until a stop command on the bus is performed.  
RW  
the 7-bit addresses plus the R/  
bit. The ADV7170 has 48  
subaddresses, and the ADV7171 has 26 subaddresses to enable  
access to the internal registers. It therefore interprets the first  
byte as the device address and the second byte as the starting  
subaddress. The subaddresses’ auto-increment allows data to be  
written to or read from the starting subaddress. A data transfer  
is always terminated by a stop condition. The user can also  
access any unique subaddress register on a one-by-one basis  
without having to update all the registers. There is one  
exception. The subcarrier frequency registers should be updated  
in sequence, starting with Subcarrier Frequency Register 0. The  
auto-increment function should then be used to increment and  
access Subcarrier Frequency Register 1, Subcarrier Frequency  
Register 2, and Subcarrier Frequency Register 3. The subcarrier  
frequency registers should not be accessed independently.  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of  
sequence with normal read and write operations, they cause an  
immediate jump to the idle condition. During a given SCLOCK  
high period, the user should issue only one start condition, one  
stop condition, or a single stop condition followed by a single  
start condition. If an invalid subaddress is issued by the user,  
the ADV7170/ADV7171 do not issue an acknowledge, and they  
return to the idle condition. If in auto-increment mode the user  
exceeds the highest subaddress, the following action is taken:  
In read mode, the highest subaddress register contents  
continue to be output until the master device issues a no-  
acknowledge. This indicates the end of a read. A no-  
acknowledge condition is where the SDATA line is not pulled  
low on the ninth pulse.  
In write mode, the data for the invalid byte is not loaded into  
any subaddress register, a no-acknowledge is issued by the  
ADV7170/ADV7171, and the part returns to the idle  
condition.  
Figure 35 illustrates an example of data transfer for a read  
sequence and the start and stop conditions.  
Figure 36 shows bus write and read sequences.  
SDATA  
SCLOCK  
S
P
9
1–7  
9
9
1–7  
8
8
1–7  
8
START ADDR R/W ACK SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 35. Bus Data Transfer  
Rev. C | Page 27 of 64  
 
 
ADV7170/ADV7171  
REGISTER PROGRAMMING  
This section describes each register, including subaddress  
register, mode registers, subcarrier frequency registers,  
subcarrier phase register, timing registers, closed captioning  
extended data registers, closed captioning data registers, and  
NTSC pedestal control registers, in terms of its configuration.  
MODE REGISTER 0 MR0 (MR07 TO MR00)  
(Address [SR4 to SR0] = 00H)  
Figure 38 shows the various operations under the control of  
Mode Register 0. This register can be read from as well as  
written to.  
SUBADDRESS REGISTER (SR7 TO SR0)  
MR0 BIT DESCRIPTION  
Output Video Standard Selection (MR01 to MR00)  
The communications register is an 8-bit, write-only register.  
After the part has been accessed over the bus and a read/write  
operation is selected, the subaddress is set up. The subaddress  
register determines to/from which register the operation takes  
place.  
These bits are used to set up the encode mode. The ADV7170/  
ADV7171 can be set up to output NTSC, PAL B/D/G/H/I, and  
PAL M/N standard video.  
Luminance Filter Control (MR02 to MR04)  
Figure 37 shows the various operations under the control of the  
subaddress register. Zero should always be written to SR7 to SR6.  
These bits specify which luma filter is to be selected. The filter  
selection is made independent of whether PAL or NTSC is  
selected.  
REGISTER SELECT (SR5 TO SR0)  
These bits are set up to point to the required starting address.  
Chrominance Filter Control (MR05 to MR07)  
These bits select the chrominance filter. A low-pass filter can be  
selected with a choice of cutoff frequencies, 0.65 MHz,  
1.0 MHz, 1.3 MHz, or 2 MHz, along with a choice of CIF  
or QCIF filters.  
WRITE  
S
S
SLAVE ADDR A(S)  
LSB = 0  
SUBADDR  
SUBADDR  
A(S)  
A(S)  
DATA  
A(S)  
DATA  
A(S) P  
SEQUENCE  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
S
SLAVE ADDR A(S)  
DATA  
A(M)  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A (S) = NO-ACKNOWLEDGE BY SLAVE  
A (M) = NO-ACKNOWLEDGE BY MASTER  
Figure 36. Write and Read Sequences  
Rev. C | Page 28 of 64  
 
 
 
ADV7170/ADV7171  
SR7  
SR6  
SR5  
SR4  
SR3  
SR2  
SR1  
SR0  
SR7–SR5 (000)  
ZERO SHOULD BE WRITTEN  
TO THESE BITS  
ADV7171 SUBADDRESS REGISTER  
ADV7170 SUBADDRESS REGISTER  
POWER-UP/  
RESET VALUE  
(HEX)  
POWER-UP/  
RESET VALUE  
(HEX)  
SR5  
SR4  
SR3  
SR2  
SR1  
SR0  
SR5  
SR4  
SR3  
SR2  
SR1  
SR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MODE REGISTER 0  
MODE REGISTER 1  
MODE REGISTER 2  
MODE REGISTER 3  
MODE REGISTER 4  
RESERVED  
00  
58  
00  
00  
10  
00  
00  
00  
00  
16*  
7C  
F0  
21  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MODE REGISTER 0  
00  
58  
00  
00  
10  
00  
00  
00  
00  
16*  
7C  
F0  
21  
00  
00  
00  
00  
00  
MODE REGISTER 1  
MODE REGISTER 2  
MODE REGISTER 3  
MODE REGISTER 4  
RESERVED  
RESERVED  
RESERVED  
TIMING MODE REGISTER 0  
TIMING MODE REGISTER 0  
TIMING MODE REGISTER 1  
TIMING MODE REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 0  
SUBCARRIER FREQUENCY REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 2  
SUBCARRIER FREQUENCY REGISTER 3  
SUBCARRIER PHASE REGISTER  
CLOSED CAPTIONING EXTENDED DATA BYTE 0  
CLOSED CAPTIONING EXTENDED DATA BYTE 1  
CLOSED CAPTIONING DATA BYTE 0  
CLOSED CAPTIONING DATA BYTE 1  
SUBCARRIER FREQUENCY REGISTER 0  
SUBCARRIER FREQUENCY REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 2  
SUBCARRIER FREQUENCY REGISTER 3  
SUBCARRIER PHASE REGISTER  
CLOSED CAPTIONING EXTENDED DATA BYTE 0  
CLOSED CAPTIONING EXTENDED DATA BYTE 1  
CLOSED CAPTIONING DATA BYTE 0  
CLOSED CAPTIONING DATA BYTE 1  
NTSC PEDESTAL CONTROL REG 0/  
PAL TTX CONTROL REG 0  
NTSC PEDESTAL CONTROL REG 0/  
PAL TTX CONTROL REG 0  
00  
00  
00  
00  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
00  
00  
00  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
NTSC PEDESTAL CONTROL REG 1/  
PAL TTX CONTROL REG 1  
NTSC PEDESTAL CONTROL REG 1/  
PAL TTX CONTROL REG 1  
NTSC PEDESTAL CONTROL REG 2/  
PAL TTX CONTROL REG 2  
NTSC PEDESTAL CONTROL REG 2/  
PAL TTX CONTROL REG 2  
NTSC PEDESTAL CONTROL REG 3/  
PAL TTX CONTROL REG 3  
NTSC PEDESTAL CONTROL REG 3/  
PAL TTX CONTROL REG 3  
00  
00  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CGMS_WSS_0  
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
0
0
0
1
0
1
CGMS_WSS_0  
00  
00  
00  
00  
CGMS_WSS_1  
CGMS_WSS_1  
00  
00  
00  
CGMS_WSS_2  
CGMS_WSS_2  
TELETEXT REQUEST CONTROL REGISTER  
RESERVED  
TELETEXT REQUEST CONTROL REGISTER  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
RESERVED  
RESERVED  
RESERVED  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
*SUBCARRIER FREQUENCY REGISTER 0 = 16 IS  
INCORRECT ON POWER-UP FOR NTSC. THIS REGISTER  
SHOULD BE PROGRAMMED TO 1F FOR ACCURATE FSC.  
Figure 37. Subaddress Register Map  
Rev. C | Page 29 of 64  
 
ADV7170/ADV7171  
MR07  
MR06  
MR05  
MR04  
MR03  
MR02  
MR01  
MR00  
CHROMA FILTER SELECT  
MR05  
OUTPUT VIDEO  
STANDARD SELECTION  
MR07  
MR06  
MR01  
MR00  
1.3MHz LOW PASS FILTER  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
1
NTSC  
0.65MHz LOW PASS FILTER  
1.0MHz LOW PASS FILTER  
2.0MHz LOW PASS FILTER  
RESERVED  
PAL (B, D, G, H, I)  
PAL (M)  
RESERVED  
CIF  
LUMA FILTER SELECT  
MR02  
Q CIF  
MR04  
MR03  
RESERVED  
0
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
0
1
0
1
0
1
0
1
LOW PASS FILTER (NTSC)  
LOW PASS FILTER (PAL)  
NOTCH FILTER (NTSC)  
NOTCH FILTER (PAL)  
EXTENDED MODE  
CIF  
Q CIF  
RESERVED  
Figure 38. Mode Register 0  
Color Bar Control (MR17)  
MODE REGISTER 1 MR1 (MR17 TO MR10)  
This bit can be used to generate and output an internal color bar  
test pattern. The color bar configuration is 100/7.5/75/7.5 for  
NTSC and 100/0/75/0 for PAL. It is important to note that when  
color bars are enabled, the ADV7170/ADV7171 are configured  
in a master timing mode.  
(Address (SR4 to SR0) = 01H)  
Figure 39 shows the various operations under the control of  
Mode Register 1. This register can be read from as well as  
written to.  
MR1 BIT DESCRIPTION  
Interlace Control (MR10)  
MODE REGISTER 2 MR2 (MR27 TO MR20)  
(Address [SR4 to SR0] = 02H)  
This bit is used to set up the output to interlaced or noninter-  
laced mode. This mode is only relevant when the part is in  
composite video mode.  
Mode Register 2 is an 8-bit-wide register.  
Figure 40 shows the various operations under the control of  
Mode Register 2. This register can be read from as well as  
written to.  
Closed Captioning Field Selection (MR12 to MR11)  
These bits control the fields on which closed captioning data is  
displayed. Closed captioning information can be displayed on  
an odd field, even field, or both odd and even fields.  
MR2 BIT DESCRIPTION  
Square Pixel Control (MR20)  
This bit is used to set up square pixel mode. This is available in  
slave mode only. For NTSC, a 24.5454 MHz clock must be  
supplied. For PAL, a 29.5 MHz clock must be supplied.  
DAC Control (MR16 to MR13)  
These bits can be used to power down the DACs. This can be  
used to reduce the power consumption of the ADV7170/  
ADV7171 if any of the DACs are not required in the  
application.  
Rev. C | Page 30 of 64  
 
 
ADV7170/ADV7171  
MR17  
MR16  
MR15  
MR14  
MR13  
MR12  
MR11  
MR10  
DAC A  
CONTROL  
DAC D  
CONTROL  
CLOSED CAPTIONING  
FIELD SELECTION  
MR16  
MR14  
MR12 MR11  
0
1
NORMAL  
POWER-DOWN  
0
1
NORMAL  
POWER-DOWN  
0
0
1
1
0
1
0
1
NO DATA OUT  
ODD FIELD ONLY  
EVEN FIELD ONLY  
DATA OUT  
(BOTH FIELDS)  
COLOR BAR  
CONTROL  
DAC B  
CONTROL  
DAC C  
CONTROL  
INTERLACE  
CONTROL  
MR17  
MR15  
MR13  
MR10  
0
1
NORMAL  
POWER-DOWN  
0
1
NORMAL  
POWER-DOWN  
0
1
INTERLACED  
NONINTERLACED  
0
1
DISABLE  
ENABLE  
Figure 39. Mode Register 1  
MR27  
MR26  
MR25  
MR24  
MR23  
MR22  
MR21  
MR20  
CHROMINANCE  
CONTROL  
GENLOCK CONTROL  
MR22 MR21  
LOW POWER MODE  
MR26  
MR24  
x
0
0
1
DISABLE GENLOCK  
ENABLE SUBCARRIER  
RESET PIN  
0
1
DISABLE  
ENABLE  
0
1
ENABLE COLOR  
DISABLE COLOR  
1
1
ENABLE RTC PIN  
MR27  
RESERVED  
BURST  
CONTROL  
ACTIVE VIDEO LINE  
DURATION  
SQUARE PIXEL  
CONTROL  
MR25  
MR23  
MR20  
0
1
ENABLE BURST  
DISABLE BURST  
0
1
DISABLE  
ENABLE  
0
1
720 PIXELS  
710 PIXELS/702 PIXELS  
Figure 40. Mode Register 2  
MR37  
MR36  
MR35  
MR34  
MR33  
MR32  
MR31  
MR30  
VBI_OPEN  
TTXRQ BIT  
CHROMA OUTPUT  
SELECT  
MR30  
MR31  
MODE CONTROL  
MR32  
MR36  
MR34  
0
1
DISABLE  
ENABLE  
RESERVED  
0
1
NORMAL  
BIT REQUEST  
0
1
DISABLE  
ENABLE  
INPUT DEFAULT  
COLOR  
TELETEXT  
ENABLE  
DAC OUTPUT  
DAC B  
MR37  
MR35  
MR33  
DAC A  
DAC C  
DAC D  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
0
1
COMPOSITE  
BLUE/COMP/U RED/CHROMA/V GREEN/LUMA/Y  
GREEN/LUMA/Y BLUE/COMP/U RED/CHROMA/V COMPOSITE  
Figure 41. Mode Register 3  
a 1 selects ITU-R.BT470 standard for active video duration  
(710 pixels NTSC; 702 pixels PAL).  
Genlock Control (MR22 to MR21)  
These bits control the genlock feature of the ADV7170/  
ADV7171. Setting MR21 to a Logic Level 1 configures the  
SCRESET/RTC pin as an input. Setting MR22 to Logic Level 0  
configures the SCRESET/RTC pin as a subcarrier reset input.  
Therefore, the subcarrier resets to Field 0 following a low-to-  
high transition on the SCRESET/RTC pin. Setting MR22 to  
Logic Level 1 configures the SCRESET/RTC pin as a real-time  
control input.  
Chrominance Control (MR24)  
This bit enables the color information to be switched on and off  
the video output.  
Burst Control (MR25)  
This bit enables the burst information to be switched on and off the  
video output.  
Low Power Mode (MR26)  
Active Video Line Duration (MR23)  
This bit enables the lower power mode of the ADV7170/  
ADV7171, reducing the DAC current by 45ꢀ.  
This bit switches between two active video line durations.  
A 0 selects CCIR REC601 (720 pixels PAL/NTSC), and  
Rev. C | Page 31 of 64  
 
 
 
ADV7170/ADV7171  
Reserved (MR27)  
DAC Output (MR33)  
This bit is used to switch the DAC outputs from SCART to a  
EUROSCART configuration. A complete table of all DAC output  
configurations is shown in Table 12.  
A Logic Level 0 must be written to this bit.  
MODE REGISTER 3 MR3 (MR37 TO MR30)  
(Address [SR4 to SR0] = 03H)  
Chroma Output Select (MR34)  
Mode Register 3 is an 8-bit-wide register. Figure 41 shows the  
various operations under the control of Mode Register 3.  
With this active high bit it is possible to output YUV data with a  
composite output on the fourth DAC or a chroma output on the  
fourth DAC (0 = CVBS; 1 = CHROMA).  
MR3 BIT DESCRIPTION  
Revision Code (MR30 to MR31)  
Teletext Enable (MR35)  
These bits are read-only and indicate the revision of the device.  
This bit must be set to 1 to enable teletext data insertion on the  
TTX pin.  
VBI Open (MR32)  
This bit determines whether or not data in the vertical blanking  
interval (VBI) is output to the analog outputs or blanked. VBI  
data insertion is not available in Slave Mode 0. Also, when both  
TTXREQ Bit Mode Control (MR36)  
This bit enables switching of the teletext request signal from a  
continuous high signal (MR36 = 0) to a bit wise request signal  
(MR36 = 1).  
BLANK  
BLANK  
input control and VBI-open are enabled,  
input  
control has priority; that is, VBI data insertion does not work.  
Input Default Color (MR37)  
This bit determines the default output color from the DACs for  
zero input pixel data (or disconnected). A Logic Level 0 means that  
the color corresponding to 00000000 is displayed. A Logic Level 1  
forces the output color to black for 00000000 pixel input video data.  
Table 12. DAC Output Configuration Matrix  
MR34  
MR40  
MR41  
MR33  
DAC A  
CVBS  
Y
CVBS  
Y
CVBS  
G
CVBS  
Y
C
Y
C
Y
C
G
C
DAC B  
CVBS  
CVBS  
CVBS  
CVBS  
B
B
U
U
CVBS  
CVBS  
CVBS  
CVBS  
B
B
U
U
DAC C  
DAC D  
Y
CVBS  
Y
CVBS  
G
CVBS  
Y
Simultaneous Output  
2 composite and Y/C  
2 composite and Y/C  
2 composite and Y/C  
2 composite and Y/C  
RGB and composite  
RGB and composite  
YUV and composite  
YUV and composite  
1 composite, Y and 2C  
1 composite, Y and 2C  
1 composite, Y and 2C  
1 composite, Y and 2C  
RGB and C  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
C
C
C
C
R
R
V
V
C
C
C
C
R
R
V
V
CVBS  
Y
C
Y
C
G
C
Y
C
RGB and C  
YUV and C  
YUV and C  
Y
CVBS: Composite video baseband signal  
Y:  
C:  
U:  
V:  
R:  
G:  
B:  
Luminance component signal (for YUV or Y/C mode)  
Chrominance signal (for Y/C mode)  
Chrominance component signal (for YUV mode)  
Chrominance component signal (for YUV mode)  
RED Component video (for RGB mode)  
GREEN Component video (for RGB mode)  
BLUE Component video (for RGB mode)  
Each DAC can be powered on or off individually with the following control bits (0 = ON; 1 = OFF):  
MR13-DAC C  
MR14-DAC D  
MR15-DAC B  
MR16-DAC A  
Rev. C | Page 32 of 64  
 
 
ADV7170/ADV7171  
MR47  
MR46  
MR45  
MR44  
MR43  
MR42  
MR41  
MR40  
RGB SYNC  
OUTPUT SELECT  
MR40  
SLEEP MODE  
CONTROL  
PEDESTAL  
CONTROL  
MR42  
MR46  
MR44  
0
1
DISABLE  
ENABLE  
0
1
YC OUTPUT  
RGB/YUV OUTPUT  
0
1
DISABLE  
ENABLE  
0
1
PEDESTAL OFF  
PEDESTAL ON  
MR47  
(0)  
VSYNC_3H  
ACTIVE VIDEO  
RGB/YUV  
CONTROL  
FILTER CONTROL  
MR43  
MR45  
MR41  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
0
1
RGB OUTPUT  
YUV OUTPUT  
Figure 42. Mode Register 4  
Active Video Filter Control (MR45)  
MODE REGISTER 4 MR4 (MR47 TO MR40)  
This bit controls the filter mode applied outside the active video  
portion of the line. This filter ensures that the sync rise and fall  
times are always on spec regardless of which luma filter is  
selected. This mode is enabled by a Logic Level 1.  
(Address (SR4 to SR0) = 04H)  
Mode Register 4 is an 8-bit-wide register. Figure 42 shows the  
various operations under the control of Mode Register 4.  
MR4 BIT DESCRIPTION  
Output Select (MR40)  
Sleep Mode Control (MR46)  
When this bit is set to 1, sleep mode is enabled. With this mode  
enabled, power consumption of the ADV7170/ADV7171 is  
reduced to typically 200 nA. The I2C registers can be written to  
and read from when the ADV7170/ADV7171 are in sleep  
mode. If MR46 is set to a 0 when the device is in sleep mode,  
the ADV7170/ADV7171 come out of sleep mode and resume  
This bit specifies if the part is in composite video mode or  
RGB/YUV mode. Note that in RGB/YUV mode the composite  
signal is still available.  
RGB/YUV Control (MR41)  
This bit enables the output from the RGB DACs to be set to  
YUV output video standard.  
RESET  
normal operation. Also, if the  
signal is applied during  
sleep mode, the ADV7170/ADV7171 come out of sleep mode  
and resume normal operation.  
RGB Sync (MR42)  
This bit is used to set up the RGB outputs with the sync  
information encoded on all RGB outputs.  
Reserved (MR47)  
A Logic Level 0 should be written to this bit.  
_3H (MR43)  
VSYNC  
TIMING MODE REGISTER 0 (TR07 TO TR00)  
(Address [SR4 to SR0] = 07H)  
When this bit is enabled (1) in slave mode, it is possible to  
VSYNC  
drive the  
active low input for 2.5 lines in PAL mode and  
3 lines in NTSC mode. When this bit is enabled in master  
Figure 43 shows the various operations under the control of  
Timing Register 0. This register can be read from as well as  
written to.  
VSYNC  
mode, the ADV7170/ADV7171 output an active low  
signal for 3 lines in NTSC mode and 2.5 lines in PAL mode.  
Pedestal Control (MR44)  
This bit specifies whether a pedestal is to be generated on the  
NTSC composite video signal. This bit is invalid if the  
ADV7170/ADV7171 are configured in PAL mode.  
Rev. C | Page 33 of 64  
 
 
ADV7170/ADV7171  
TR07  
TR06  
TR05  
TR04  
TR03  
TR02  
TR01  
TR00  
TIMING  
REGISTER RESET  
MASTER/SLAVE  
CONTROL  
BLANK INPUT  
CONTROL  
TR03  
TR00  
TR07  
0
1
ENABLE  
DISABLE  
0
1
SLAVE TIMING  
MASTER TIMING  
PIXEL PORT  
CONTROL  
TIMING MODE  
SELECTION  
LUMA DELAY  
TR05 TR04  
TR06  
TR02 TR01  
0
0
1
1
0
1
0
1
0ns DELAY  
0
1
8 BIT  
16 BIT  
0
0
1
1
0
1
0
1
MODE 0  
74ns DELAY  
148ns DELAY  
222ns DELAY  
MODE 1  
MODE 2  
MODE 3  
Figure 43. Timing Register 0  
TIMING MODE REGISTER 1 (TR17 TO TR10)  
(Address (SR4 to SR0) = 08H)  
TR0 BIT DESCRIPTION  
Master/Slave Control (TR00)  
Timing Register 1 is an 8-bit-wide register.  
This bit controls whether the ADV7170/ADV7171 is in  
Master or Slave Mode.  
Figure 44 shows the various operations under the control of  
Timing Register 1. This register can be read from as well written  
to. This register can be used to adjust the width and position of  
the master mode timing signals.  
Timing Mode Selection (TR02 to TR01)  
These bits control the timing mode of the ADV7170/ ADV7171.  
These modes are described in more detail in  
the Timing and Control section.  
TR1 BIT DESCRIPTION  
HSYNC Width (TR11 to TR10)  
BLANK Control (TR03)  
HSYNC  
These bits adjust the  
HSYNC to FIELD/VSYNC Delay (TR13 to TR12)  
HSYNC  
pulse width.  
BLANK  
This bit controls whether the  
part is in slave mode.  
input is used when the  
Luma Delay (TR05 to TR04)  
These bits adjust the position of the  
VSYNC  
output relative to  
These bits control the addition of a luminance delay. Each bit  
represents a delay of 74 ns.  
the FIELD/  
output.  
HSYNC to FIELD Rising Edge Delay (TR15 to TR14)  
Pixel Port Control (TR06)  
When the ADV7170/ADV7171 are in Timing Mode 1, these  
bits adjust the position of the  
FIELD output rising edge.  
This bit is used to set the pixel port to accept 8-bit or 16-bit  
data. If an 8-bit input is selected, the data will be set up on  
Pin P7 to Pin P0.  
HSYNC  
output relative to the  
VSYNC Width (TR15 to TR14)  
When the ADV7170/ADV7171 are configured in Timing  
VSYNC  
Timing Register Reset (TR07)  
Toggling TR07 from low to high and low again resets the  
internal timing counters. This bit should be toggled after  
power-up, reset or changing to a new timing mode.  
Mode 2, these bits adjust the  
pulse width.  
HSYNC  
to Pixel Data Adjust (TR17 to TR16)  
HSYNC  
This enables the  
to be adjusted with respect to the pixel  
data. This allows the Cr and Cb components to be swapped.  
This adjustment is available in both master timing mode and  
slave timing mode.  
Rev. C | Page 34 of 64  
 
 
ADV7170/ADV7171  
TR17  
TR16  
TR15  
TR14  
TR13  
TR12  
TR11  
TR10  
HSYNC WIDTH  
HSYNC TO PIXEL  
DATA ADJUST  
HSYNC TO  
FIELD/VSYNC DELAY  
HSYNC TO FIELD  
RISING EDGE DELAY  
(MODE 1 ONLY)  
T
TR11 TR10  
A
TR17 TR16  
T
TR13 TR12  
B
0
0
1
1
0
1
0
1
1 × T  
4 × T  
PCLK  
T
TR15 TR14  
C
0
0
1
1
0
1
0
1
0 × T  
1 × T  
2 × T  
3 × T  
0
0
1
1
0
1
0
1
0 × T  
4 × T  
8 × T  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
x
x
0
1
T
T
B
16 × T  
PCLK  
PCLK  
PCLK  
PCLK  
+ 32μs  
B
128 × T  
PCLK  
16 × T  
PCLK  
VSYNC WIDTH  
(MODE 2 ONLY)  
TR15 TR14  
0
0
1
1
0
1
0
1
1 × T  
4 × T  
PCLK  
PCLK  
16 × T  
PCLK  
128 × T  
PCLK  
TIMING MODE 1 (MASTER/PAL)  
LINE 1  
LINE 313  
LINE 314  
T
HSYNC  
A
T
C
T
B
FIELD/VSYNC  
Figure 44. Timing Register 1  
SUBCARRIER FREQUENCY REGISTERS 0 TO 3  
(FSC3 TO FSC0)  
SUBCARRIER PHASE REGISTERS (FP7 TO FP0)  
(Address [SR4 to SR0] = 0DH)  
(Address [SR4 to SR00] = 09H to 0CH)  
This 8-bit-wide register is used to set up the subcarrier phase.  
Each bit represents 1.41°. For normal operation this register is  
set to 00Hex.  
These 8-bit-wide registers are used to set up the subcarrier  
frequency. The value of these registers is calculated by using  
the following equation, rounded to the nearest integer:  
CLOSED CAPTIONING EVEN FIELD DATA  
REGISTER 1 TO 0 (CED15 TO CED0)  
(Address [SR4–SR0] = 0E to 0FH)  
No.of Subcarrier Frequency ValuesinOne Lineof Video Line  
No.of 27MHzClock Cyclesin OneVideoLine  
× 232  
These 8-bit-wide registers are used to set up the closed  
captioning extended data bytes on even fields. Figure 46  
shows how the high and low bytes are set up in the registers.  
For example, in NTSC mode,  
227.5  
Subcarrier FrequencyValue =  
× 232 = 569408542d = 21F07C1Fh  
1716  
CED15 CED14 CED13 CED12 CED11 CED10 CED9 CED8  
BYTE 1  
Note that on power-up, FSC Register 0 is set to 16h. A value of 1F  
as derived above is recommended.  
CED7 CED6 CED5 CED4 CED3 CED2 CED1 CED0  
BYTE 0  
Figure 46. Closed Captioning Extended Data Register  
Program as follows:  
FSC Register 0: 1FH  
FSC Register 2: 7CH  
FSC Register 3: F0H  
FSC Register 4: 21H  
CLOSED CAPTIONING ODD FIELD DATA  
REGISTERS 1 TO 0 (CCD15 TO CCD0)  
(Subaddress [SR4 to SR0] = 10H to 11H)  
These 8-bit-wide registers are used to set up the closed  
captioning data bytes on odd fields. Figure 47 shows how the  
high and low bytes are set up in the registers.  
Figure 45 shows how the frequency is set up by the four registers.  
SUBCARRIER  
FREQUENCY FSC7 FSC6 FSC5  
REG 0  
FSC4  
FSC3 FSC2 FSC1 FSC0  
CCD15 CCD14 CCD13 CCD12 CCD11 CCD10 CCD9 CCD8  
BYTE 1  
SUBCARRIER  
FREQUENCY  
REG 1  
FSC15 FSC14 FSC13 FSC12 FSC11 FSC10 FSC9 FSC8  
CCD7 CCD6 CCD5 CCD4 CCD3 CCD2 CCD1 CCD0  
BYTE 0  
SUBCARRIER  
FREQUENCY FSC23 FSC22 FSC21 FSC20 FSC19 FSC18 FSC17 FSC16  
REG 2  
Figure 47. Closed Captioning Data Register  
SUBCARRIER  
FREQUENCY FSC31 FSC30 FSC29 FSC28 FSC27 FSC26 FSC25 FSC24  
REG 3  
Figure 45. Subcarrier Frequency Register  
Rev. C | Page 35 of 64  
 
 
 
 
 
ADV7170/ADV7171  
TTXREQ Rising Edge Control (TC07 to TC04)  
NTSC PEDESTAL/PAL TELETEXT CONTROL  
REGISTERS 3 TO 0 (PCE15 TO PCE0, PCO15  
TO PCO0)/(TXE15 TO TXE0, TXO15 TO TXO0)  
These bits control the position of the rising edge of TTXREQ.  
It can be programmed from zero CLOCK cycles to a maximum  
of 15 CLOCK cycles. See Figure 59.  
(Subaddress [SR4–SR0] = 12H to 15H)  
TTXREQ Falling Edge Control (TC03 to TC00)  
These 8-bit-wide registers are used to enable the NTSC  
pedestal/PAL teletext on a line-by-line basis in the vertical  
blanking interval for both odd and even fields. Figure 48 and  
Figure 49 show the four control registers. A Logic Level 1 in any  
of the bits of these registers has the effect of turning the pedestal  
off on the equivalent line when used in NTSC. A Logic Level 1  
in any of the bits of these registers has the effect of turning on  
teletext on the equivalent line when used in PAL.  
These bits control the position of the falling edge of TTXREQ.  
It can be programmed from zero CLOCK cycles to a max of  
15 CLOCK cycles. This controls the active window for teletext  
data. Increasing this value reduces the amount of teletext bits  
below the default of 360. If Bit TC03 to Bit TC00 are 00Hex  
when bits TC07 to TC04 are changed, the falling edge of  
TTXREQ tracks that of the rising edge (that is, the time  
between the falling and rising edge remains constant).  
See Figure 59.  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
PCO7  
PCO6 PCO5  
PCO4 PCO3  
PCO2  
PCO1  
PCO0  
FIELD 1/3  
FIELD 1/3  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
PCO15 PCO14 PCO13 PCO12 PCO11 PCO10 PCO9 PCO8  
CGMS_WSS REGISTER 0 C/W0 (C/W07 TO C/W00)  
(Address [SR4 to SR0] = 16H)  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
FIELD 2/4 PCE7  
PCE6 PCE5 PCE4 PCE3 PCE2 PCE1 PCE0  
CGMS_WSS Register 0 is an 8-bit-wide register. Figure 51  
shows the operations under the control of this register.  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
C/W0 BIT DESCRIPTION  
FIELD 2/4 PCE15 PCE14 PCE13 PCE12 PCE11 PCE10 PCE9  
PCE8  
CGMS Data Bits (C/W03 to C/W00)  
Figure 48. Pedestal Control Registers  
These four data bits are the final four bits of the CGMS data  
output stream. Note it is CGMS data ONLY in these bit  
positions; that is, WSS data does not share this location.  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXO7 TXO6 TXO5 TXO4 TXO3 TXO2 TXO1 TXO0  
FIELD 1/3  
FIELD 1/3  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
TXO15 TXO14 TXO13 TXO12 TXO11 TXO10 TXO9 TXO8  
CGMS CRC Check Control (C/W04)  
When this bit is enabled (1), the last six bits of the CGMS data  
(that is, the CRC check sequence) are calculated internally by  
the ADV7170/ADV7171. If this bit is disabled (0), the CRC  
values in the register are output to the CGMS data stream.  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXE7 TXE6 TXE5 TXE4 TXE3 TXE2 TXE1 TXE0  
FIELD 2/4  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
FIELD 2/4 TXE15 TXE14 TXE13 TXE12 TXE11 TXE10 TXE9  
TXE8  
CGMS Odd Field Control (C/W05)  
Figure 49. Teletext Control Registers  
When this bit is set (1), CGMS is enabled for odd fields. Note  
this is valid only in NTSC mode.  
TELETEXT REQUEST CONTROL REGISTER TC07  
(TC07 TO TC00)  
CGMS Even Field Control (C/W06)  
(Address [SR4 to SR0] = 19H)  
When this bit is set (1), CGMS is enabled for even fields. Note  
this is valid only in NTSC mode.  
Teletext control register is an 8-bit-wide register. See Figure 50.  
WSS Control (C/W07)  
When this bit is set (1), wide screen signaling is enabled. Note  
this is valid only in PAL mode.  
Rev. C | Page 36 of 64  
 
 
 
ADV7170/ADV7171  
TC07  
TC06  
TC05  
TC04  
TC03  
TC02  
TC01  
TC00  
TTXREQ RISING EDGE CONTROL  
TC07 TC06 TC05 TC04  
TTXREQ FALLING EDGE CONTROL  
TC03 TC02 TC01 TC00  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
Figure 50. Teletext Control Register  
C/W07  
C/W06  
C/W05  
C/W04  
C/W03  
C/W02  
C/W01  
C/W00  
WIDE SCREEN  
SIGNAL CONTROL  
CGMS ODD FIELD  
CONTROL  
C/W03 – C/W00  
C/W07  
C/W05  
CGMS DATA BITS  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
CGMS EVEN FIELD  
CONTROL  
CGMS CRC CHECK  
CONTROL  
C/W06  
C/W04  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
Figure 51. CGMS_WSS Register 0  
CGMS_WSS REGISTER 2 C/W1 (C/W27 TO C/W20)  
(Address [SR4 to SR0] = 18H)  
CGMS_WSS REGISTER 1 C/W1 (C/W17 TO C/W10)  
(Address [SR4 to SR0] = 17H)  
CGMS_WSS Register 2 is an 8-bit-wide register. Figure 53  
shows the operations under the control of this register.  
CGMS_WSS Register 1 is an 8-bit-wide register. Figure 52  
shows the operations under the control of this register.  
C/W2 BIT DESCRIPTION  
CGMS/WSS Data Bits (C/W27 to C/W20)  
C/W1 BIT DESCRIPTION  
CGMS/WSS Data Bits (C/W15 to C/W10)  
These bit locations are shared by CGMS data and WSS data. In  
NTSC mode, these bits are CGMS data. In PAL mode, these bits  
are WSS data.  
These bit locations are shared by CGMS data and WSS data. In  
NTSC mode, these bits are CGMS data. In PAL mode, these bits  
are WSS data.  
CGMS DATA BITS (C/W17 TO C/W16)  
These bits are CGMS data bits only.  
C/W17  
C/W16  
C/W15  
C/W14  
C/W13  
C/W12  
C/W11  
C/W10  
C/W17 – C/W16  
CGMS DATA BITS  
C/W15 – C/W10  
CGMS/WSS DATA BITS  
Figure 52. CGMS_WSS Register 1  
C/W27  
C/W26  
C/W25  
C/W24  
C/W23  
C/W22  
C/W21  
C/W20  
C/W27 – C/W20  
CGMS/WSS DATA BITS  
Figure 53. CGMS_ WSS Register 2  
Rev. C | Page 37 of 64  
 
 
 
 
 
ADV7170/ADV7171  
APPENDICES  
Supply Decoupling  
APPENDIX 1—BOARD DESIGN  
AND LAYOUT CONSIDERATIONS  
For optimum performance, bypass capacitors should be  
installed using the shortest leads possible, consistent with  
reliable operation, to reduce the lead inductance. Best  
performance is obtained with 0.1 μF ceramic capacitor  
decoupling. Each group of VAA pins on the ADV7170/  
ADV7171 must have at least one 0.1 μF decoupling capacitor  
to GND. These capacitors should be placed as close as possible  
to the device.  
The ADV7170/ADV7171 are highly integrated circuits  
containing both precision analog and high speed digital  
circuitry. They have been designed to minimize interference  
effects of the high speed digital circuitry on the integrity of the  
analog circuitry. It is imperative that these same design and  
layout techniques be applied to the system level design so that  
high speed, accurate performance is achieved. Figure 54 shows  
the analog interface between the device and monitor.  
It is important to note that while the ADV7170/ADV7171  
contain circuitry to reject power supply noise, this rejection  
decreases with frequency. If a high frequency switching power  
supply is used, the designer should pay close attention to  
reducing power supply noise and consider using a three-  
terminal voltage regulator for supplying power to the analog  
power plane.  
The layout should be optimized for lowest noise on the  
ADV7170/ADV7171 power and ground lines by shielding the  
digital inputs and providing good decoupling. The lead length  
between groups of VAA and GND pins should be minimized to  
minimize inductive ringing.  
Ground Planes  
Digital Signal Interconnect  
The ground plane should encompass all ADV7170/ADV7171  
ground pins, voltage reference circuitry, power supply bypass  
circuitry for the ADV7170/ADV7171, the analog output traces,  
and all the digital signal traces leading up to the ADV7170/  
ADV7171. The ground plane is the boards common ground  
plane.  
The digital inputs to the ADV7170/ADV7171 should be isolated  
as much as possible from the analog outputs and other analog  
circuitry. Also, these input signals should not overlay the analog  
power plane.  
Due to the high clock rates involved, long clock lines to the  
ADV7170/ADV7171 should be avoided to reduce noise pickup.  
Power Planes  
The ADV7170, the ADV7171, and any associated analog  
circuitry should each have its own power plane, referred to  
as the analog power plane (VAA). This power plane should be  
connected to the regular PCB power plane (VCC) at a single  
point through a ferrite bead. This bead should be located within  
three inches of the ADV7170/ADV7171.  
Any active termination resistors for the digital inputs should be  
connected to the regular PCB power plane (VCC) and not to the  
analog power plane.  
Analog Signal Interconnect  
The ADV7170/ADV7171 should be located as close as possible  
to the output connectors to minimize noise pickup and  
reflections due to impedance mismatch.  
The metallization gap separating device power plane and board  
power plane should be as narrow as possible to minimize the  
obstruction to the flow of heat from the device into the general  
board.  
The video output signals should overlay the ground plane, not  
the analog power plane, to maximize the high frequency power  
supply rejection.  
The PCB power plane should provide power to all digital logic  
on the PC board, and the analog power plane should provide  
power to all ADV7170/ADV7171 power pins and voltage  
reference circuitry.  
Digital inputs, especially pixel data inputs and clocking signals,  
should never overlay any of the analog signal circuitry and  
should be kept as far away as possible.  
For best performance, the outputs should each have a 75 Ω load  
resistor connected to GND. These resistors should be placed as  
close as possible to the ADV7170/ADV7171 to minimize  
reflections.  
Plane-to-plane noise coupling can be reduced by ensuring that  
portions of the regular PCB power and ground planes do not  
overlay portions of the analog power plane unless they can be  
arranged so that the plane-to-plane noise is common-mode.  
The ADV7170/ADV7171 should have no inputs left floating.  
Any inputs that are not required should be tied to ground.  
Rev. C | Page 38 of 64  
 
ADV7170/ADV7171  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
0.1μF  
0.01μF  
L1  
(FERRITE BEAD)  
5V (V  
)
AA  
5V  
V
5V (V  
)
5V (V  
)
AA  
AA  
10μF  
33μF  
1, 11, 20, 28, 30  
CC  
GND  
0.1μF  
0.1μF  
V
AA  
25  
33  
COMP  
27  
DAC D  
DAC C  
V
REF  
75Ω  
75Ω  
75Ω  
75Ω  
ADV7170/  
ADV7171  
38–42,  
2–9, 12–14  
26  
31  
32  
5V (V  
)
P15–P0  
S-VIDEO  
AA  
4kΩ  
RESET  
DAC B  
DAC A  
35  
15  
SCRESET/RTC  
HSYNC  
100nF  
UNUSED  
INPUTS  
SHOULD BE  
GROUNDED  
16  
17  
22  
37  
FIELD/VSYNC  
BLANK  
5V (V  
)
CC  
5V (V  
)
5V (V  
)
CC  
CC  
RESET  
100kΩ  
5kΩ  
5kΩ  
TTX  
TTXREQ  
100Ω  
100Ω  
TTX  
23  
24  
34  
SCLOCK  
SDATA  
MPU BUS  
36  
44  
TTXREQ  
CLOCK  
100kΩ  
R
SET  
5V (V  
)
AA  
ALSB  
18  
GND  
150Ω  
TELETEXT PULL-UP AND  
PULL-DOWN RESISTORS  
SHOULD ONLY BE USED  
IF THESE PINS ARE NOT  
CONNECTED  
10kΩ  
10, 19, 21,  
29, 43  
27MHz CLOCK  
(SAME CLOCK AS USED BY  
MPEG2 DECODER)  
Figure 54. Recommended Analog Circuit Layout  
HSYNC  
The circuit in Figure 55 can be used to generate a 13.5 MHz waveform using the 27 MHz clock and the  
pulse. This waveform is  
guaranteed to produce the 13.5 MHz clock in synchronization with the 27 MHz clock. This 13.5 MHz clock can be used if a 13.5 MHz  
clock is required by the MPEG decoder. This guarantees that the Cr and Cb pixel information is input to the ADV7170/ADV7171 in the  
correct sequence.  
D
Q
13.5MHz  
D
Q
CLOCK  
HSYNC  
CK  
CK  
Figure 55. Circuit to Generate 13.5 MHz  
Rev. C | Page 39 of 64  
 
 
ADV7170/ADV7171  
FCC Code of Federal Regulations (CFR) 47 Section 15.119 and  
EIA608 describe the closed captioning information for Line 21  
and Line 284.  
APPENDIX 2—CLOSED CAPTIONING  
The ADV7170/ADV7171 support closed captioning, conform-  
ing to the standard television synchronizing waveform for color  
transmission. Closed captioning is transmitted during the  
blanked active line time of the odd fields Line 21 and the even  
fields Line 284.  
The ADV7170/ADV7171 use a single buffering method. This  
means that the closed captioning buffer is only one byte deep;  
therefore, there is no frame delay in outputting the closed  
captioning data, unlike other 2-byte deep buffering systems.  
The data must be loaded at least one line before (Line 20 or  
Line 283) it is outputted on Line 21 and Line 284. A typical  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency- and phase-locked to the caption data. After the clock  
run-in signal, the blanking level is held for two data bits and is  
followed by a Logic Level 1 start bit. 16 bits of data follow the  
start bit. These consist of two 8-bit bytes, seven data bits and  
one odd parity bit. The data for these bytes is stored in Closed  
Captioning Data Register 0 and Closed Captioning Data  
Register 1.  
VSYNC  
implementation of this method is to use  
to interrupt a  
microprocessor, which in turn loads the new data (two bytes) in  
every field. If no new data is required for transmission, you  
must insert zeros in both the data registers; this is called  
nulling. It is also important to load control codes, all of which  
are double bytes, on Line 21, or a TV does not recognize them.  
If you have a message like “Hello World,” which has an odd  
number of characters, it is important to pad it out to an even  
number to get end-of-caption, 2-byte control code to land in  
the same field.  
The ADV7170/ADV7171 also support the extended closed  
captioning operation, which is active during even fields and is  
encoded on scan Line 284. The data for this operation is stored  
in Closed Captioning Extended Data Register 0 and Closed  
Captioning Extended Data Register 1.  
All clock run-in signals and timing to support closed captioning  
on Line 21 and Line 284 are automatically generated by the  
ADV7170/ADV7171. All pixel inputs are ignored during  
Line 21 and Line 284.  
10.5 ± 0.25μs  
12.91μs  
7 CYCLES  
OF 0.5035MHz  
(CLOCK RUN-IN)  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
S
T
A
R
T
P
A
R
I
T
Y
D0–D6  
D0–D6  
50 IRE  
40 IRE  
BYTE 1  
BYTE 0  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003μs  
27.382μs  
33.764μs  
Figure 56. Closed Captioning Waveform (NTSC)  
Rev. C | Page 40 of 64  
 
ADV7170/ADV7171  
APPENDIX 3—COPY GENERATION MANAGEMENT SYSTEM (CGMS)  
The ADV7170/ADV7171 support copy generation management systems (CGMS) conforming to the standard. CGMS data is transmitted  
on Line 20 of the odd fields and Line 283 of even fields. Bit C/W05 and Bit C/W06 control whether or not CGMS data is output on odd  
and even fields. CGMS data can only be transmitted when the ADV7170/ADV7171 are configured in NTSC mode.  
The CGMS data is 20 bits long; the function of each of these bits is shown below. The CGMS data is preceded by a reference pulse of the  
same amplitude and duration as a CGMS bit (see Figure 57). The bits are output from the configuration registers in the following order:  
C/W00 = C16, C/W01 = C17, C/W02 = C18, C/W03 = C19, C/W10 = C8, C/W11 = C9, C/W12 = C10, C/W13 = C11, C/W14 = C12,  
C/W15 = C13, C/W16 = C14, C/W17 = C15, C/W20 = C0, C/W21 = C1, C/W22 = C2, C/W23 = C3, C/W24 = C4, C/W25 = C5,  
C/W26 = C6, C/W27 = C7.  
If the Bit C/W04 is set to a Logic Level 1, the last six bits, C19 to C14, which comprise the 6-bit CRC check sequence, are calculated  
automatically on the ADV7170/ADV7171 based on the lower 14 bits (C0 to C13) of the data in the data registers and output with the  
remaining 14 bits to form the complete 20 bits of the CGMS data. The calculation of the CRC sequence is based on the polynomial  
X6 + X + 1 with a preset value of 111111. If C/W04 is set to a Logic Level 0, all 20 bits (C0 to C19) are directly output from the CGMS  
registers (no CRC is calculated; it must be calculated by the user).  
Function of CGMS Bits  
Word 0  
Word 1  
Word 2  
CRC  
6 Bits  
4 Bits  
6 Bits  
6 Bits  
CRC Polynomial = X6 + X + 1 (Preset to 111111)  
0
Word 0  
B1  
1
Aspect Ratio  
Display Format  
Undefined  
16:94:3  
B2  
Letterbox  
Normal  
B3  
Word 0  
B4, B5, B6  
Word 1  
Identification information about video and other signals (for example, audio)  
Identification signal incidental to Word 0  
B7, B8, B9, B10  
Word 2  
B11, B12, B13, B14  
Identification signal and information incidental to Word 0  
+100 IRE  
+70 IRE  
CRC SEQUENCE  
REF  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0 IRE  
49.1μs ± 0.5μs  
–40 IRE  
11.2μs  
2.235μs ± 20ns  
Figure 57. CGMS Waveform Diagram  
Rev. C | Page 41 of 64  
 
 
ADV7170/ADV7171  
APPENDIX 4—WIDE SCREEN SIGNALING  
The ADV7170/ADV7171 support wide screen signaling (WSS) conforming to the standard. WSS data is transmitted on Line 23.  
WSS data can only be transmitted when the ADV7170/ADV7171 are configured in PAL mode. The WSS data is 14 bits long; the function  
of each of these bits is as shown below.  
The WSS data is preceded by a run-in sequence and a start code (see Figure 58). The bits are output from the configuration registers in  
the following order:  
C/W20 = W0, C/W21 = W1, C/W22 = W2, C/W23 = W3, C/W24 = W4, C/W25 = W5, C/W26 = W6, C/W27 = W7, C/W10 = W8,  
C/W11 = W9, C/W12 = W10, C/W13 = W11, C/W14 = W12, C/W15 = W13.  
If Bit C/W07 is set to a Logic Level 1, it enables the WSS data to be transmitted on Line 23. The latter portion of Line 23 (42.5 μs from the  
HSYNC  
falling edge of  
) is available for the insertion of video.  
Function of CGMS Bits  
Bit 0 to Bit 2  
Aspect Ratio/Format/Position  
Bit 3 is odd parity check of Bit 0 to Bit 2  
B0  
0
B1  
0
B2  
0
B3  
1
Aspect Ratio  
4:3  
Format  
Position  
Nonapplicable  
Center  
Full format  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Full format  
Nonapplicable  
1
0
0
0
14:9  
0
1
0
0
14:9  
Top  
1
1
0
1
16:9  
Center  
0
0
1
0
16:9  
Top  
1
0
1
1
>16:9  
14:9  
Center  
0
1
1
1
Center  
1
1
1
0
16:9  
Nonapplicable  
B4  
0
1
B5  
0
B9  
0
1
0
1
B10  
Camera Mode  
Film Mode  
0
0
1
1
No open subtitles  
Subtitles in active image area  
Subtitles out of active image area  
Reserved  
Standard Coding  
1
B6  
0
Motion Adaptive Color Plus  
B11  
0
1
No surround sound information  
Surround sound mode  
RESERVED  
No Helper  
1
B7  
Modulated Helper  
RESERVED  
B12  
B13  
RESERVED  
500mV  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13  
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
11.0μs  
38.4μs  
42.5μs  
Figure 58. WSS Waveform Diagram  
Rev. C | Page 42 of 64  
 
 
ADV7170/ADV7171  
Teletext Protocol  
APPENDIX 5—TELETEXT INSERTION  
The relationship between the TTX bit clock (6.9375 MHz) and  
the system CLOCK (27 MHz) for 50 Hz is as follows:  
The tPD is the time needed by the ADV7170/ADV7171 to  
interpolate input data on TTX and insert it onto the CVBS  
or Y outputs, such that it appears tSYNTTXOUT = 10.2 μs after the  
leading edge of the horizontal signal. Time TTXDEL is the  
pipeline delay time by the source that is gated by the TTXREQ  
signal in order to deliver TTX data.  
(27 MHz/4) = 6.75 MHz  
(6.9375 × 106/6.75 × 106) = 1.027777  
Thus, 37 TTX bits correspond to 144 clocks (27 MHz), and  
each bit has a width of nearly four clock cycles. The ADV7170/  
ADV7171 use an internal sequencer and variable phase  
interpolation filter to minimize the phase jitter and thus  
generate a bandlimited signal that can be output on the CVBS  
and Y outputs.  
With the programmability offered with the TTXREQ signal on  
the rising/falling edges, the TTX data is always inserted at the  
correct position of 10.2 μs after the leading edge of horizontal  
sync pulse, thus enabling a source interface with variable  
pipeline delays.  
The width of the TTXREQ signal must always be maintained to  
allow the insertion of 360 (to comply with the Teletext Standard  
of PAL-WST) teletext bits at a text data rate of 6.9375 Mbits/sec;  
this is achieved by setting TC03 to TC00 to 0. The insertion  
window is not open if the teletext enable bit (MR35) is set to 0.  
At the TTX input, the bit duration scheme repeats after every 37  
TTX bits or 144 clock cycles. The protocol requires that TTX  
Bit 10, Bit 19, Bit 28, and Bit 37 are carried by three clock cycles;  
all other bits are carried by four clock cycles. After 37 TTX bits,  
the next bits with three clock cycles are Bit 47, Bit 56, Bit 65,  
and Bit 74. This scheme holds for all following cycles of 37 TTX  
bits, until all 360 TTX bits are completed. All teletext lines are  
implemented in the same way. Individual control of teletext  
lines is controlled by teletext setup registers.  
45 BYTES (360 BITS) – PAL  
ADDRESS AND DATA  
TELETEXT VBI LINE  
RUN-IN CLOCK  
Figure 59. Teletext VBI Line  
tSYNTTXOUT  
CVBS/Y  
HSYNC  
tPD  
tPD  
10.2μs  
TTX  
DATA  
TTX  
DEL  
TTXREQ  
PROGRAMMABLE PULSE EDGES  
TTX  
ST  
tSYNTTXOUT = 10.2μs  
tPD = PIPELINE DELAY THROUGH ADV7170/ADV7171  
TTX  
= TTXREQ TO TTX (PROGRAMMABLE RANGE = 4 BITS [0–15 CLOCK CYCLES])  
DEL  
Figure 60. Teletext Functionality Diagram  
Rev. C | Page 43 of 64  
 
 
ADV7170/ADV7171  
APPENDIX 6—WAVEFORMS  
NTSC Waveforms (with Pedestal)  
+130.8 IRE  
+100 IRE  
1268.1mV  
1048.4mV  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
+7.5 IRE  
0 IRE  
387.6mV  
334.2mV  
BLACK LEVEL  
BLANK LEVEL  
48.3mV  
SYNC LEVEL  
–40 IRE  
Figure 61. NTSC Composite Video Levels  
+100 IRE  
1048.4mV  
REF WHITE  
714.2mV  
+7.5 IRE  
0 IRE  
387.6mV  
334.2mV  
BLACK LEVEL  
BLANK LEVEL  
48.3mV  
SYNC LEVEL  
–40 IRE  
Figure 62. NTSC Luma Video Levels  
PEAK CHROMA  
963.8mV  
629.7mV p-p  
286mV p-p  
BLANK/BLACK LEVEL  
PEAK CHROMA  
650mV  
335.2mV  
0mV  
Figure 63. NTSC Chroma Video Levels  
+100 IRE  
1052.2mV  
REF WHITE  
720.8mV  
+7.5 IRE  
0 IRE  
387.5mV  
331.4mV  
BLACK LEVEL  
BLANK LEVEL  
45.9mV  
SYNC LEVEL  
–40 IRE  
Figure 64. NTSC RGB Video Levels  
Rev. C | Page 44 of 64  
 
 
ADV7170/ADV7171  
NTSC Waveforms (without Pedestal)  
+130.8 IRE  
+100 IRE  
1289.8mV  
1052.2mV  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
338mV  
52.1mV  
0 IRE  
40 IRE  
Figure 65. NTSC Composite Video Levels  
+100 IRE  
REF WHITE  
1052.2mV  
714.2mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
338mV  
52.1mV  
–40 IRE  
Figure 66. NTSC Luma Video Levels  
978mV  
PEAK CHROMA  
694.9mV p-p  
286mV p-p  
650mV  
BLANK/BLACK LEVEL  
PEAK CHROMA  
299.3mV  
0mV  
Figure 67. NTSC Chroma Video Levels  
+100 IRE  
1052.2mV  
REF WHITE  
715.7mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
336.5mV  
51mV  
0 IRE  
–40 IRE  
Figure 68. NTSC RGB Video Levels  
Rev. C | Page 45 of 64  
ADV7170/ADV7171  
PAL Waveforms  
PEAK COMPOSITE  
REF WHITE  
1284.2mV  
1047.1mV  
696.4mV  
350.7mV  
50.8mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
Figure 69. PAL Composite Video Levels  
1047mV  
REF WHITE  
696.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
350.7mV  
50.8mV  
Figure 70. PAL Luma Video Levels  
989.7mV  
650mV  
PEAK CHROMA  
672mV p-p  
300mV p-p  
BLANK/BLACK LEVEL  
PEAK CHROMA  
317.7mV  
0mV  
Figure 71. PAL Chroma Video Levels  
1050.2mV  
REF WHITE  
698.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
351.8mV  
51mV  
Figure 72. PAL RGB Video Levels  
Rev. C | Page 46 of 64  
ADV7170/ADV7171  
UV Waveforms  
+505mV  
+505mV  
+423mV  
+334mV  
BETACAM LEVEL  
0mV  
+171mV  
+82mV  
BETACAM LEVEL  
0mV  
0mV  
–82mV  
0mV  
171mV  
334mV  
–423mV  
–505mV  
505mV  
Figure 76. NTSC 100% Color Bars, No Pedestal V Levels  
Figure 73. NTST 100% Color Bars, No Pedestal U Levels  
+467mV  
+467mV  
+391mV  
+309mV  
BETACAM LEVEL  
+158mV  
+76mV  
BETACAM LEVEL  
0mV  
0mV  
76mV  
0mV  
0mV  
–158mV  
391mV  
–309mV  
467mV  
–467mV  
Figure 74. NTSC 100% Color Bars with Pedestal U Levels  
Figure 77. NTSC 100% Color Bars with Pedestal V Levels  
+350mV  
+350mV  
+293mV  
+232mV  
SMPTE LEVEL  
+57mV  
+118mV  
0mV  
0mV  
SMPTE LEVEL  
–57mV  
0mV  
0mV  
118mV  
–293mV  
232mV  
–350mV  
350mV  
Figure 75. PAL 100% Color Bars, U Levels  
Figure 78. PAL 100% Color Bars, V Levels  
Rev. C | Page 47 of 64  
ADV7170/ADV7171  
APPENDIX 7—OPTIONAL OUTPUT FILTER  
APPENDIX 8—OPTIONAL DAC BUFFERING  
If an output filter is required for the CVBS, Y, UV, Chroma, and  
RGB outputs of the ADV7170/ADV7171, the filter shown in  
Figure 79 can be used. Plots of the filter characteristics are  
shown in Figure 80. An output filter is not required if the  
outputs of the ADV7170/ADV7171 are connected to most  
analog monitors or analog TVs. However, if the output signals  
are applied to a system where sampling is used (for example,  
digital TVs), then a filter is required to prevent aliasing.  
When external buffering of the ADV7170/ADV7171 DAC  
outputs is needed, the configuration in Figure 81 is recom-  
mended. This configuration shows the DAC outputs running  
at half (18 mA) their full current (36 mA) capability. This allows  
the ADV7170/ADV7171 to dissipate less power; the analog  
current is reduced by 50ꢀ with a RSET of 300 Ω and a RLOAD of  
75 Ω. This mode is recommended for 3.3 V operation, because  
optimum performance is obtained from the DAC outputs at  
18 mA with a VAA of 3.3 V. This buffer also adds extra isolation  
on the video outputs (see the buffer circuit in Figure 82).  
22pF  
When calculating absolute output full-scale current and voltage,  
use the following equations:  
1.8μH  
FILTER I/P  
FILTER O/P  
270pF  
330pF  
75R  
VOUT = IOUT × RLOAD  
(
VREF × K  
RSET  
)
IOUT  
=
Figure 79. Output Filter  
K = 4.2146 constant,VREF =1.235V  
0
10  
20  
30  
40  
50  
60  
70  
V
AA  
ADV7170/ADV7171  
OUTPUT  
BUFFER  
V
REF  
DAC A  
DAC B  
DAC C  
DAC D  
CVBS  
OUTPUT  
BUFFER  
CVBS  
PIXEL  
PORT  
DIGITAL  
CORE  
OUTPUT  
BUFFER  
LUMA  
R
SET  
OUTPUT  
BUFFER  
300Ω  
CHROMA  
80  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 80. Output Filter Plot  
Figure 81. Output DAC Buffering Configuration  
V
+
CC  
5
4
3
OUTPUT TO  
TV MONITOR  
1
AD8061  
INPUT/  
OPTIONAL  
FILTER O/P  
2
V
CC  
Figure 82. Recommended Output DAC Buffer  
Rev. C | Page 48 of 64  
 
 
 
 
 
ADV7170/ADV7171  
output and the internal color bar generator is switched off. In  
the examples shown, the timing mode is set to Mode 0 in slave  
format. TR02 to TR00 of the Timing Register 0 control the  
timing modes. For a detailed explanation of each bit in the  
command registers, please see the Register Programming  
section. TR07 should be toggled after setting up a new timing  
mode. Timing Register 1 provides additional control over the  
position and duration of the timing signals. In the examples,  
this register is programmed in default mode.  
APPENDIX 9—RECOMMENDED REGISTER VALUES  
The ADV7170/ADV7171 registers can be set depending on the  
user standard required.  
The following examples give the various register formats for  
several video standards.  
In each case, the output is set to composite o/p with all DACs  
BLANK  
powered up and with the  
input control disabled.  
Additionally, the burst and color information are enabled on the  
Table 13. PAL B/D/G/H/I (FSC = 4.43361875 MHz)  
Table 14. PAL M (FSC = 3.57561149 MHz)  
Address  
00Hex  
01Hex  
02Hex  
03Hex  
04Hex  
07Hex  
08Hex  
09Hex  
0AHex  
0BHex  
0CHex  
0DHex  
0EHex  
0FHex  
10Hex  
11Hex  
12Hex  
13Hex  
14Hex  
15Hex  
16Hex  
17Hex  
18Hex  
19Hex  
Data  
Address  
00Hex  
01Hex  
02Hex  
03Hex  
04Hex  
07Hex  
08Hex  
09Hex  
0AHex  
0BHex  
0CHex  
0DHex  
0EHex  
0FHex  
10Hex  
11Hex  
12Hex  
13Hex  
14Hex  
15Hex  
16Hex  
17Hex  
18Hex  
19Hex  
Data  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Mode Register 3  
Mode Register 4  
Timing Register 0  
Timing Register 1  
Subcarrier Frequency Register 0  
Subcarrier Frequency Register 1  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Closed Captioning Ext Register 0  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
05Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
CBHex  
8AHex  
09Hex  
2AHex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Mode Register 3  
Mode Register 4  
Timing Register 0  
Timing Register 1  
Subcarrier Frequency Register 0  
Subcarrier Frequency Register 1  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Closed Captioning Ext Register 0  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
02Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
A3Hex  
EFHex  
E6Hex  
21Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
Teletext Request Control Register  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
Teletext Request Control Register  
Rev. C | Page 49 of 64  
 
ADV7170/ADV7171  
Table 15. PAL N (FSC = 4.43361875 MHz)  
Table 17. Power-Up Reset Values NTSC (FSC = 3.5795454 MHz)  
Address  
Data  
Address  
00Hex  
01Hex  
02Hex  
03Hex  
04Hex  
07Hex  
08Hex  
09Hex  
0AHex  
0BHex  
0CHex  
0DHex  
0EHex  
0FHex  
10Hex  
11Hex  
12Hex  
13Hex  
14Hex  
15Hex  
16Hex  
17Hex  
18Hex  
19Hex  
Data  
00Hex  
01Hex  
02Hex  
03Hex  
04Hex  
07Hex  
08Hex  
09Hex  
0AHex  
0BHex  
0CHex  
0DHex  
0EHex  
0FHex  
10Hex  
11Hex  
12Hex  
13Hex  
14Hex  
15Hex  
16Hex  
17Hex  
18Hex  
19Hex  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Mode Register 3  
Mode Register 4  
Timing Register 0  
Timing Register 1  
Subcarrier Frequency Register 0  
Subcarrier Frequency Register 1  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Closed Captioning Ext Register 0  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
05Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
CBHex  
8AHex  
09Hex  
2AHex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Mode Register 3  
Mode Register 4  
Timing Register 0  
Timing Register 1  
Subcarrier Frequency Register 0  
Subcarrier Frequency Register 1  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Closed Captioning Ext Register 0  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
00Hex  
58Hex  
00Hex  
00Hex  
10Hex  
00Hex  
00Hex  
16Hex  
7CHex  
F0Hex  
21Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
Teletext Request Control Register  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
Teletext Request Control Register  
Table 16. PAL60 (FSC = 4.43361875 MHz)  
Address  
Data  
00Hex  
01Hex  
02Hex  
03Hex  
04Hex  
07Hex  
08Hex  
09Hex  
0AHex  
0BHex  
0CHex  
0DHex  
0EHex  
0FHex  
10Hex  
11Hex  
12Hex  
13Hex  
14Hex  
15Hex  
16Hex  
17Hex  
18Hex  
19Hex  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Mode Register 3  
Mode Register 4  
Timing Register 0  
Timing Register 1  
Subcarrier Frequency Register 0  
Subcarrier Frequency Register 1  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Closed Captioning Ext Register 0  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
04Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
CBHex  
8AHex  
09Hex  
2AHex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
Teletext Request Control Register  
Rev. C | Page 50 of 64  
ADV7170/ADV7171  
APPENDIX 10—OUTPUT WAVEFORMS  
0.6  
0.4  
0.2  
0.0  
0.2  
L608  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 0.00dB  
APL = 39.1%  
PRECISION MODE OFF  
SYNCHRONOUS  
SOUND-IN-SYNC OFF  
SYNC = SOURCE  
625 LINE PAL  
NO FILTERING  
SLOW CLAMP TO 0.00V AT 6.72  
μs  
FRAMES SELECTED: 1 2 3 4  
Figure 83. 100/0/75/0 PAL Color Bars  
0.5  
0.0  
L575  
0.0  
10.0  
20.0  
30.0  
MICROSECONDS  
PRECISION MODE OFF  
SYNCHRONOUS  
40.0  
50.0  
60.0  
70.0  
APL NEEDS SYNC = SOURCE!  
SOUND-IN-SYNC OFF  
SYNC = A  
625 LINE PAL  
NO FILTERING  
SLOW CLAMP TO 0.00V AT 6.72μs  
FRAMES SELECTED: 1  
Figure 84. 100/0/75/0 PAL Color Bars Luminance  
Rev. C | Page 51 of 64  
 
ADV7170/ADV7171  
0.5  
0.0  
–0.5  
L575  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NO BRUCH SIGNAL  
APL NEEDS SYNC = SOURCE!  
625 LINE PAL NO FILTERING  
PRECISION MODE OFF  
SYNCHRONOUS  
SOUND-IN-SYNC OFF  
SYNC = A  
SLOW CLAMP TO 0.00V AT 6.72μs  
FRAMES SELECTED: 1  
Figure 85. 100/0/75/0 Pal Color Bars Chrominance  
100.0  
0.5  
50.0  
0.0  
0.0  
F1  
L76  
–50.0  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
APL = 44.6%  
PRECISION MODE OFF  
SYNCHRONOUS  
525 LINE NTSC  
NO FILTERING  
SYNC = A  
SLOW CLAMP TO 0.00V AT 6.72  
μ
s
FRAMES SELECTED: 1 2  
Figure 86. 100/7.5/75/7.5 NTSC Color Bars  
Rev. C | Page 52 of 64  
ADV7170/ADV7171  
0.6  
0.4  
0.2  
50.0  
0.0  
0.0  
–0.2  
F2  
L238  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL = 44.7%  
PRECISION MODE OFF  
525 LINE NTSC  
NO FILTERING  
SYNCHRONOUS  
SYNC = SOURCE  
SLOW CLAMP TO 0.00V AT 6.72μs  
FRAMES SELECTED: 1 2  
Figure 87. 100/7.5/75/7.5 NTSC Color Bars Luminance  
0.4  
50.0  
0.2  
0.0  
–0.2  
–50.0  
–0.4  
F1  
L76  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC = SOURCE!  
PRECISION MODE OFF  
SYNCHRONOUS  
525 LINE NTSC  
NO FILTERING  
SYNC = B  
SLOW CLAMP TO 0.00V AT 6.72μs  
FRAMES SELECTED: 1 2  
Figure 88. 100/7.5/75/7.5 NTSC Color Bars Chrominance  
Rev. C | Page 53 of 64  
ADV7170/ADV7171  
V
APL = 39.6%  
SYSTEM LINE L608  
ANGLE (DEG) 0.0  
GAIN × 1.000 0.000dB  
625 LINE PAL  
BURST FROM SOURCE  
DISPLAY +V AND –V  
cy  
R
g
M
g
75%  
100%  
YI  
b
U
yl  
B
G
Cy  
m
g
r
SOUND IN SYNC OFF  
Figure 89. PAL Vector Plot  
R–Y  
APL = 45.1%  
SYSTEM LINE L76F1  
ANGLE (DEG) 0.0  
GAIN × 1.000 0.000dB  
525 LINE NTSC  
BURST FROM SOURCE  
cy  
I
R
M
g
Q
YI  
b
100%  
B–Y  
75%  
B
G
Cy  
–Q  
–I  
SETUP 7.5%  
Figure 90. NTSC Vector Plot  
Rev. C | Page 54 of 64  
ADV7170/ADV7171  
COLOR BAR (NTSC)  
FIELD = 2 LINE = 28  
LUMINANCE LEVEL (IRE)  
WFM  
FCC COLOR BAR  
0.4  
0.2  
0.2  
0.0  
0.2  
0.1  
0.2  
0.1  
30.0  
20.0  
10.0  
0.0  
–10.0  
CHROMINANCE LEVEL (IRE)  
0.0 –0.2  
1.0  
0.2  
0.3  
0.2  
0.3  
0.0  
0.0  
0.0  
–1.0  
CHROMINANCE PHASE (DEG)  
. . . . .  
0.1  
0.2  
0.2  
0.1  
0.3  
0.2  
- - - - -  
0.0  
1.0  
2.0  
GRAY  
YELLOW  
32  
CYAN  
GREEN  
MAGENTA  
RED  
BLUE  
BLACK  
AVERAGE: 32  
REFERENCE 75/7.5/75/7.5 COLOR BAR STANDARD  
Figure 91. NTSC Color Bar Measurement  
WFM →  
DGDP (NTSC)  
MOD 5 STEP  
BLOCK MODE START F2 L64, STEP = 32, END = 192  
DIFFERENTIAL GAIN (%)  
MIN = –0.00 MAX = 0.11 p-p/MAX = 0.11  
0.11 0.07  
0.00  
0.08  
0.07  
0.05  
0.3  
0.2  
0.1  
0.0  
–0.1  
DIFFERENTIAL PHASE (DEG)  
0.00 0.03  
MIN = 0.02 MAX = 0.14 p-p = 0.16  
0.14 0.10  
–0.02  
0.10  
0.20  
0.15  
0.10  
0.05  
–0.00  
–0.05  
–0.10  
1ST  
2ND  
3RD  
4TH  
5TH  
6TH  
Figure 92. NTSC Differential Gain and Phase Measurement  
Rev. C | Page 55 of 64  
ADV7170/ADV7171  
LUMINANCE NONLINEARITY (NTSC)  
WFM →  
5 STEP  
FIELD = 2 LINE = 21  
LUMINANCE NONLINEARITY (%)  
p-p = 0.2  
99.9  
99.9  
100.0  
99.9  
99.8  
100.4  
100.3  
100.2  
100.1  
100.0  
99.9  
99.8  
99.7  
99.6  
99.5  
99.4  
99.3  
99.2  
99.1  
99.0  
98.9  
98.8  
98.7  
98.6  
1ST  
2ND  
3RD  
4TH  
5TH  
Figure 93. NTSC Luminance Nonlinearity Measurement  
CHROMINANCE AM PM (NTSC)  
FULL FIELD (BOTH FIELDS)  
BANDWIDTH 100Hz TO 500kHz  
WFM →  
APPROPRIATE  
AM NOISE  
–68.4dB RMS  
–75.0  
–70.0  
–65.0  
–60.0  
–55.0  
–50.0  
–45.0  
–40.0  
dB RMS  
PM NOISE  
–64.4dB RMS  
–75.0  
–70.0  
–65.0  
–60.0  
–55.0  
–50.0  
–45.0  
–40.0  
dB RMS  
(0dB = 714mV p-p WITH AGC FOR 100% CHROMINANCE LEVEL)  
Figure 94. NTSC AMPM Noise Measurement  
Rev. C | Page 56 of 64  
ADV7170/ADV7171  
NOISE SPECTRUM (NTSC)  
FIELD = 2 LINE = 64  
AMPLITUDE (0dB = 714mV p-p)  
BANDWIDTH 100kHz TO FULL  
WFM →  
PEDESTAL  
NOISE LEVEL = –80.1dB RMS  
–5.0  
–10.0  
–15.0  
–20.0  
–25.0  
–30.0  
–35.0  
–40.0  
–45.0  
–50.0  
–55.0  
–60.0  
–65.0  
–70.0  
–75.0  
–80.0  
–85.0  
–90.0  
–95.0  
–100.0  
1.0  
2.0  
3.0  
(MHz)  
4.0  
5.0  
6.0  
Figure 95. NTSC SNR Pedestal Measurement  
NOISE SPECTRUM (NTSC)  
FIELD = 2 LINE = 64  
WFM →  
RAMP SIGNAL  
AMPLITUDE (0dB = 714mV p-p)  
NOISE LEVEL = –61.7dB RMS  
BANDWIDTH 10kHz TO FULL (TILT NULL)  
–5.0  
–10.0  
–15.0  
–20.0  
–25.0  
–30.0  
–35.0  
–40.0  
–45.0  
–50.0  
–55.0  
–60.0  
–65.0  
–70.0  
–75.0  
–80.0  
–85.0  
–90.0  
–95.0  
–100.0  
1.0  
2.0  
3.0  
(MHz)  
4.0  
5.0  
Figure 96. NTSC SNR Ramp Measurement  
Rev. C | Page 57 of 64  
ADV7170/ADV7171  
PARADE SMPTE/EBU PAL  
mV Y(A)  
mV  
250  
Pb(B)  
mV  
Pr(C)  
250  
700  
600  
500  
400  
300  
200  
100  
0
200  
150  
100  
50  
200  
150  
100  
50  
0
0
–50  
–50  
–100  
–150  
–200  
–250  
–100  
100  
200  
300  
–150  
–200  
–250  
Figure 97. PAL YUV Parade Plot  
LIGHTNING  
L183  
COLORBARS: 75% SMPTE/EBU (50Hz)  
Pk-WHITE (100%) 700.0mV SETUP 0.0% COLOR p-p 525.0mV  
AVERAGE 32 32  
YI  
–274.82  
0.93%  
G
R
CY  
88.31  
0.28%  
M
B
–173.24  
0.19%  
–88.36  
0.19%  
174.35  
–0.65%  
260.51  
–0.14%  
B–Y  
W
YI  
462.80  
–0.50%  
CY  
864.78  
–0.88%  
YI  
G
G
307.54  
–0.21%  
CY  
M
216.12  
–0.33%  
R
M
R
156.63  
–0.22%  
B
B
61.00  
1.92%  
B
R
G
M
CY  
YI  
W
R–Y  
CY  
–262.17  
–0.13%  
G
B
YI  
M
R
–218.70  
–0.51%  
–42.54  
0.69%  
41.32  
212.28  
–3.43%  
252.74  
–3.72%  
–0.76%  
COLOR Pk-Pk: B–Y 532.33mV  
1.40%  
R–Y 514.90mV  
–1.92%  
Pk-WHITE: 700.4mV (100%) SETUP –0.01%  
DELAY: B–Y –6ns R–Y –6ns  
Figure 98. PAL YUV Lighting Plot  
Rev. C | Page 58 of 64  
ADV7170/ADV7171  
COMPONENT NOISE  
LINE = 202  
AMPLITUDE (0dB = 700mV p-p)  
BANDWIDTH 10kHz TO 5.0MHz  
NOISE dB RMS  
0.0  
–5.0  
–10.0  
–15.0  
–20.0  
–25.0  
–30.0  
–35.0  
–40.0  
–45.0  
–50.0  
–55.0  
–60.0  
–65.0  
–70.0  
–75.0  
–80.0  
–85.0  
–90.0  
–95.0  
Y 82.1  
Pb 82.3  
Pr 83.3  
–100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
(MHz)  
Figure 99. PAL YUV SNR Plot  
COMPONENT MULTIBURST  
LINE = 202  
AMPLITUDE (0dB = 100% OF 688.1mV 683.4mV  
668.9mV)  
–0.68  
(dB)  
0.04  
–0.02  
–0.05  
–2.58  
–8.05  
5.79  
0.0  
–5.0  
Y
–10.0  
0.49  
0.99  
2.00  
3.99  
4.79  
–2.59  
0.21  
0.23  
–0.78  
–7.15  
0.0  
–5.0  
Pb  
–10.0  
0.49  
0.25  
0.99  
0.25  
1.99  
2.39  
2.89  
–0.77  
–2.59  
–7.13  
0.0  
–5.0  
Pr  
–10.0  
0.49  
0.99  
1.99  
2.39  
2.89  
(MHz)  
Figure 100. PAL YUV Multiburst Response  
Rev. C | Page 59 of 64  
ADV7170/ADV7171  
COMPONENT VECTOR SMPTE/EBU, 75%  
R
M
g
YI  
BK  
B
G
CY  
Figure 101. PAL YUV Vector Plot  
mV  
GREEN (A)  
mV  
BLUE (B)  
mV  
RED (C)  
700  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
–100  
–200  
–300  
–100  
–200  
–300  
–100  
–200  
–300  
Figure 102. PAL RGB Waveforms  
Rev. C | Page 60 of 64  
ADV7170/ADV7171  
OUTLINE DIMENSIONS  
14.15  
13.90 SQ  
13.65  
1.03  
0.88  
0.73  
2.45  
MAX  
34  
44  
1.95 REF  
1
33  
PIN 1  
SEATING  
PLANE  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
2.20  
2.00  
1.80  
0.23  
0.11  
23  
11  
7°  
0°  
22  
12  
0.25 MIN  
0.10  
0.45  
0.30  
LEAD WIDTH  
COPLANARITY  
VIEW A  
0.80 BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MO-112-AA-1  
Figure 103. 44-Lead Thin Plastic Quad Flat Package [MQFP]  
(S-44-2)  
Dimensions shown in millimeters  
1.20  
MAX  
12.00 BSC SQ  
PIN 1  
34  
44  
0.75  
0.60  
0.45  
1
33  
TOP VIEW  
(PINS DOWN)  
10.00  
BSC SQ  
0° MIN  
1.05  
1.00  
0.95  
0.20  
0.09  
7°  
11  
23  
3.5°  
0°  
0.08 MAX  
COPLANARITY  
0.15  
0.05  
12  
VIEW A  
22  
SEATING  
PLANE  
0.80  
BSC  
LEAD PITCH  
0.45  
0.37  
0.30  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026ACB  
Figure 104. 44-Lead Thin Plastic Quad Flat Package [TQFP]  
(SU-44)  
Dimensions shown in millimeters  
Rev. C | Page 61 of 64  
 
ADV7170/ADV7171  
13.45  
1.03  
0.88  
0.73  
13.20 SQ  
12.95  
2.45  
MAX  
34  
44  
1.60 REF  
1
33  
PIN 1  
SEATING  
PLANE  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
2.20  
0.23  
0.11  
2.00  
1.80  
23  
11  
0.25  
0.10  
7°  
0°  
22  
12  
0.10  
0.45  
0.29  
LEAD WIDTH  
COPLANARITY  
VIEW A  
0.80 BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-022-AB-1  
Figure 105. 44-Lead Metric Quad Flat Package [MQFP]  
(S-44-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Descriptions  
Package Options  
S-44-2  
S-44-2  
SU-44  
SU-44  
S-44-2  
S-44-2  
SU-44  
SU-44  
ADV7170KSZ1  
44-Lead Metric Quad Flat Package [MQFP]  
44-Lead Metric Quad Flat Package [MQFP]  
44-Lead Thin Plastic Quad Flat Package [TQFP]  
44-Lead Thin Plastic Quad Flat Package [TQFP]  
44-Lead Metric Quad Flat Package [MQFP]  
44-Lead Metric Quad Flat Package [MQFP]  
44-Lead Thin Plastic Quad Flat Package [TQFP]  
44-Lead Thin Plastic Quad Flat Package [TQFP]  
44-Lead Metric Quad Flat Package [MQFP]  
Evaluation Board  
ADV7170KSZ-REEL1  
ADV7170KSUZ1  
ADV7170KSUZ-REEL1  
ADV7171KSZ1  
ADV7171KSZ-REEL1  
ADV7171KSUZ1  
ADV7171KSUZ-REEL1  
ADV7171WBSZ-REEL1  
EVAL-ADV7170EBM  
EVAL-ADV7171EBM  
S-44-1  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. C | Page 62 of 64  
 
 
 
ADV7170/ADV7171  
NOTES  
Rev. C | Page 63 of 64  
ADV7170/ADV7171  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2002–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
Printed in the U.S.A.  
D00221-0-3/09(C)  
Rev. C | Page 64 of 64  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY