ADV7171SU [ADI]

Digital PAL/NTSC Video Encoder with 10-Bit SSAF⑩ and Advanced Power Management; 数字PAL / NTSC视频编码器与10位SSAF⑩和高级电源管理
ADV7171SU
型号: ADV7171SU
厂家: ADI    ADI
描述:

Digital PAL/NTSC Video Encoder with 10-Bit SSAF⑩ and Advanced Power Management
数字PAL / NTSC视频编码器与10位SSAF⑩和高级电源管理

编码器
文件: 总55页 (文件大小:755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Digital PAL/NTSC Video Encoder with 10-Bit  
SSAF™ and Advanced Power Management  
a
ADV7170/ADV7171*  
Programmable Chroma Filters (Low-Pass [0.65 MHz,  
FEATURES  
1.0 MHz, 1.2 MHz and 2.0 MHz], CIF and QCIF)  
Programmable VBI (Vertical Blanking Interval)  
Programmable Subcarrier Frequency and Phase  
Programmable LUMA Delay  
Individual ON/OFF Control of Each DAC  
CCIR and Square Pixel Operation  
ITU-R BT601/656 YCrCb to PAL/NTSC Video Encoder  
High Quality 10-Bit Video DACs  
SSAF (Super Sub-Alias Filter)  
Advanced Power Management Features  
CGMS (Copy Generation Management System)  
WSS (Wide Screen Signalling)  
Integrated Subcarrier Locking to External Video Source  
Color Signal Control/Burst Signal Control  
Interlaced/Noninterlaced Operation  
Complete On-Chip Video Timing Generator  
Programmable Multimode Master/Slave Operation  
Macrovision AntiTaping Rev 7.01 (ADV7170 Only)**  
Closed Captioning Support  
Simultaneous Y, U, V, C Output Format  
NTSC-M, PAL-M/N, PAL-B/D/G/H/I, PAL-60  
Single 27 MHz Clock Required (
؋
2 Oversampling)  
80 dB Video SNR  
32-Bit Direct Digital Synthesizer for Color Subcarrier  
Multistandard Video Output Support:  
Composite (CVBS)  
Component S-Video (Y/C)  
Component YUV and RGB  
EuroSCART Output (RGB + CVBS/LUMA)  
Component YUV + CHROMA  
Video Input Data Port Supports:  
Teletext Insertion Port (PAL-WST)  
On-Board Color Bar Generation  
On-Board Voltage Reference  
2-Wire Serial MPU Interface (I2C® Compatible and Fast I2C)  
Single Supply +5 V or +3.3 V Operation  
Small 44-Lead PQFP/TQFP Packages  
CCIR-656 4:2:2 8-Bit Parallel Input Format  
4:2:2 16-Bit Parallel Input Format  
APPLICATIONS  
SMPTE 170M NTSC-Compatible Composite Video  
ITU-R BT.470 PAL-Compatible Composite Video  
Programmable Simultaneous Composite  
and S-Video or RGB (SCART)/YUV Video Outputs  
Programmable Luma Filters (Low-Pass [PAL/NTSC])  
Notch, Extended (SSAF, CIF and QCIF)  
High Performance DVD Playback Systems, Portable  
Video Equipment Including Digital Still Cameras and  
Laptop PCs, Video Games, PC Video/Multimedia and  
Digital Satellite/Cable Systems (Set-Top Boxes/IRD)  
FUNCTIONAL BLOCK DIAGRAM  
TTXREQ  
TTX  
M
10  
U
POWER  
MANAGEMENT  
CONTROL  
10  
10-BIT  
L
CGMS & WSS  
INSERTION  
BLOCK  
TELETEXT  
INSERTION  
BLOCK  
DACD(PIN 27)  
DAC  
T
YUV TO  
RBG  
MATRIX  
V
AA  
10  
I
(SLEEP MODE)  
10  
10  
10-BIT  
DAC  
P
L
E
X
E
R
DACC(PIN 26)  
DACB(PIN 31)  
10  
RESET  
10-BIT  
DAC  
10  
8
PROGRAMMABLE  
LUMINANCE  
FILTER  
9
8
Y
9
COLOR  
DATA  
P7–P0  
INTER-  
ADD  
POLATOR  
SYNC  
4:2:2 TO  
YCrCb  
TO  
YUV  
4:4:4  
INTER-  
POLATOR  
8
8
10  
10  
U
V
U
V
8
8
8
8
PROGRAMMABLE  
CHROMINANCE  
FILTER  
P15–P8  
10  
INTER-  
POLATOR  
ADD  
MATRIX  
10-BIT  
DAC  
DACA(PIN 32)  
BURST  
8
8
ADV7170/ADV7171  
10  
10  
HSYNC  
FIELD/VSYNC  
BLANK  
VIDEO TIMING  
GENERATOR  
REAL-TIME  
CONTROL  
CIRCUIT  
V
REF  
SIN/COS  
DDS BLOCK  
VOLTAGE  
REFERENCE  
CIRCUIT  
2
I C MPU PORT  
R
SET  
COMP  
CLOCK  
SCLOCK SDATA  
ALSB  
SCRESET/RTC  
GND  
*Protected by U.S. Patent Numbers 5,343,196 and 5,442,355 and other intellectual property rights.  
**This device is protected by U.S. Patent Numbers 4,631,603, 4,577,216, 4,819,098 and other intellectual property rights. The Macrovision anticopy process is  
licensed for noncommercial home use only, which is its sole intended use in the device. Please contact sales office for latest Macrovision version available.  
NOTE: ITU-R and CCIR are used interchangeably in this document (ITU-R has replaced CCIR recommendations).  
SSAF is a trademark of Analog Devices, Inc.  
I2C is a registered trademark of Philips Corporation.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
ADV7170/ADV7171–SPECIFICATIONS  
(VAA = +5 V ؎ 5%1, VREF = 1.235 V, RSET = 150 . All specifications TMIN to TMAX2 unless otherwise noted.)  
5 V SPECIFICATIONS  
Parameter  
Conditions1  
Min  
Typ  
Max  
Units  
STATIC PERFORMANCE  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
10  
Bits  
RSET = 300  
Guaranteed Monotonic  
±0.6  
LSB  
LSB  
Differential Nonlinearity  
±1  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
2
V
V
µA  
pF  
0.8  
±1  
VIN = 0.4 V or 2.4 V  
Input Capacitance, CIN  
10  
10  
DIGITAL OUTPUTS  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
2.4  
V
V
µA  
pF  
0.4  
10  
ANALOG OUTPUTS  
Output Current3  
RSET = 150 , RL = 37.5 Ω  
RSET = 1041 , RL = 262.5 Ω  
33  
0
34.7  
5
1.5  
37  
mA  
mA  
%
V
kΩ  
pF  
Output Current4  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
+1.4  
30  
30  
IOUT = 0 mA  
VOLTAGE REFERENCE  
Reference Range, VREF  
IVREFOUT = 20 µA  
1.142  
4.75  
1.235  
5.0  
1.327  
V
V
POWER REQUIREMENTS5  
VAA  
5.25  
155  
90  
Normal Power Mode  
IDAC (max)6  
RSET = 150 , RL = 37.5 Ω  
RSET = 1041 , RL = 262.5 Ω  
150  
20  
75  
mA  
mA  
mA  
IDAC (min)6  
7
ICCT  
Low Power Mode  
IDAC (max)6  
80  
20  
75  
mA  
mA  
mA  
IDAC (min)6  
7
ICCT  
90  
Sleep Mode  
8
IDAC  
ICCT  
0.1  
0.001  
0.01  
µA  
µA  
%/%  
9
Power Supply Rejection Ratio  
COMP = 0.1 µF  
0.5  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over 4.75 V to 5.25 V.  
2Temperature range TMIN to TMAX: 0°C to +70°C.  
3Full drive into 37.5 doubly terminated load.  
4Minimum drive current (used with buffered/scaled output load).  
5Power measurements are taken with Clock Frequency = 27 MHz. Max TJ = 110°C.  
6IDAC is the total current (min corresponds to 5 mA output per DAC, max corresponds to 37 mA output per DAC) to drive all four DACs. Turning off individual  
DACs reduces IDAC correspondingly.  
7ICCT (Circuit Current) is the continuous current required to drive the device.  
8Total DAC current in Sleep Mode.  
9Total continuous current during Sleep Mode.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADV7170/ADV7171  
(V = +3.0 V – 3.6 V1, VREF = 1.235 V, RSET = 150 . All specifications TMIN to TMAX2 unless otherwise noted.)  
3.3 V SPECIFICATIONS  
AA  
Parameter  
Conditions1  
Min  
Typ  
Max  
Units  
STATIC PERFORMANCE3  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
10  
Bits  
RSET = 300 Ω  
Guaranteed Monotonic  
±0.6  
LSB  
LSB  
Differential Nonlinearity  
±1  
DIGITAL INPUTS3  
Input High Voltage, VINH  
Input Low Voltage, VINL  
2
V
V
µA  
pF  
0.8  
±1  
3, 4  
Input Current, IIN  
VIN = 0.4 V or 2.4 V  
Input Capacitance, CIN  
10  
10  
DIGITAL OUTPUTS3  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
2.4  
V
V
µA  
pF  
0.4  
10  
ANALOG OUTPUTS3  
Output Current4, 5  
RSET = 150 , RL = 37.5 Ω  
RSET = 1041 , RL = 262.5 Ω  
33  
0
34.7  
5
2.0  
37  
mA  
mA  
%
V
kΩ  
pF  
Output Current6  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
+1.4  
30  
30  
IOUT = 0 mA  
POWER REQUIREMENTS3, 7  
VAA  
3.0  
3.3  
3.6  
V
Normal Power Mode  
IDAC (max)8  
RSET = 150 , RL = 37.5 Ω  
RSET = 1041 , RL = 262.5 Ω  
150  
20  
35  
155  
mA  
mA  
mA  
IDAC (min)8  
9
ICCT  
Low Power Mode  
IDAC (max)8  
80  
20  
35  
mA  
mA  
mA  
IDAC (min)8  
9
ICCT  
Sleep Mode  
10  
IDAC  
ICCT  
0.1  
0.001  
0.01  
µA  
µA  
%/%  
11  
Power Supply Rejection Ratio  
COMP = 0.1 µF  
0.5  
NOTES  
11The max/min specifications are guaranteed over this range. The max/min values are typical over 3.0 V to 3.6 V.  
12Temperature range TMIN to TMAX: 0°C to +70°C.  
13Guaranteed by characterization.  
14Full drive into 37.5 load.  
15DACs can output 35 mA typically at 3.3 V (RSET = 150 and RL = 37.5 ), optimum performance obtained at 18 mA DAC current (RSET = 300 and RL = 75 ).  
16Minimum drive current (used with buffered/scaled output load).  
17Power measurements are taken with Clock Frequency = 27 MHz. Max TJ = 110°C.  
18  
I
is the total current (min corresponds to 5 mA output per DAC, max corresponds to 38 mA output per DAC) to drive all four DACs. Turning off individual  
DAC  
DACs reduces IDAC correspondingly.  
19  
I
(Circuit Current) is the continuous current required to drive the device.  
CCT  
10Total DAC current in Sleep Mode.  
11Total continuous current during Sleep Mode.  
Specifications subject to change without notice.  
REV. 0  
–3–  
ADV7170/ADV7171–SPECIFICATIONS  
(VAA = +5 V ؎ 5%1, VREF = 1.235 V, RSET = 150 . All specifications TMIN to TMAX2 unless  
otherwise noted.)  
5 V DYNAMIC SPECIFICATIONS  
Parameter  
Conditions1  
Min  
Typ  
Max  
Units  
Differential Gain3, 4  
Normal Power Mode  
Normal Power Mode  
Lower Power Mode  
Lower Power Mode  
RMS  
Peak Periodic  
RMS  
0.3  
0.4  
1.0  
1.0  
80  
70  
60  
0.7  
0.7  
2.0  
2.0  
%
Degrees  
%
Degrees  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degrees  
%
±%  
±Degrees  
±%  
±%  
ns  
Differential Phase3, 4  
Differential Gain3, 4  
Differential Phase3, 4  
SNR3, 4 (Pedestal)  
SNR3, 4 (Pedestal)  
SNR3, 4 (Ramp)  
SNR3, 4 (Ramp)  
Peak Periodic  
58  
Hue Accuracy3, 4  
0.7  
0.9  
0.6  
0.3  
0.2  
1.0  
0.5  
0.8  
85  
1.2  
1.4  
Color Saturation Accuracy3, 4  
Chroma Nonlinear Gain3, 4  
Chroma Nonlinear Phase3, 4  
Chroma/Luma Intermod3, 4  
Chroma/Luma Gain Inequality3, 4  
Chroma/Luma Delay Inequality3, 4  
Luminance Nonlinearity3, 4  
Chroma AM Noise3, 4  
Chroma PM Noise3, 4  
Referenced to 40 IRE  
0.5  
0.4  
1.4  
2.0  
1.4  
±%  
dB  
dB  
82  
79  
81  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over 4.75 V to 5.25 V.  
2Temperature range TMIN to TMAX: 0°C to +70°C.  
3Guaranteed by characterization.  
4The low pass filter only and guaranteed by design.  
Specifications subject to change without notice.  
(VAA = +3.0 V – 3.6 V1, VREF = 1.235 V, RSET = 150 . All specifications TMIN to TMAX2 unless  
otherwise noted.)  
3.3 V DYNAMIC SPECIFICATIONS  
Parameter  
Conditions1  
Min  
Typ  
Max  
Units  
Differential Gain3  
Normal Power Mode  
Normal Power Mode  
Lower Power Mode  
Lower Power Mode  
RMS  
Peak Periodic  
RMS  
1.0  
0.5  
0.6  
0.5  
78  
70  
60  
%
Degrees  
%
Degrees  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degrees  
%
±%  
dB  
dB  
±%  
Differential Phase3  
Differential Gain3  
Differential Phase3  
SNR3 (Pedestal)  
SNR3 (Pedestal)  
SNR3 (Ramp)  
SNR3 (Ramp)  
Peak Periodic  
58  
Hue Accuracy3  
1.0  
1.0  
1.4  
80  
Color Saturation Accuracy3  
Luminance Nonlinearity3, 4  
Chroma AM Noise3, 4  
Chroma PM Noise3, 4  
Chroma Nonlinear Gain3, 4  
Chroma Nonlinear Phase3, 4  
Chroma/Luma Intermod3, 4  
79  
Referenced to 40 IRE  
0.6  
0.3  
0.2  
0.5  
0.4  
±Degrees  
±%  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over 4.75 V to 5.25 V.  
2Temperature range TMIN to TMAX: 0°C to +70°C.  
3Guaranteed by characterization.  
4These specifications are for the low-pass filter only and guaranteed by design. For other internal filters, see Figure 4.  
Specifications subject to change without notice.  
–4–  
REV. 0  
ADV7170/ADV7171  
(VAA = 4.75 V – 5.25 V1, VREF = 1.235 V, RSET = 150 . All specifications TMIN to TMAX2 unless  
5 V TIMING SPECIFICATIONS otherwise noted.)  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
MPU PORT3, 4  
SCLOCK Frequency  
0
400  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
SCLOCK High Pulsewidth, t1  
SCLOCK Low Pulsewidth, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
0.6  
1.3  
0.6  
0.6  
100  
After This Period the First Clock Is Generated  
Relevant for Repeated Start Condition  
300  
300  
0.6  
ANALOG OUTPUTS3, 5  
Analog Output Delay  
DAC Analog Output Skew  
7
0
ns  
ns  
CLOCK CONTROL AND  
PIXEL PORT5, 6  
fCLOCK  
27  
MHz  
Clock High Time, t9  
Clock Low Time, t10  
Data Setup Time, t11  
Data Hold Time, t12  
Control Setup Time, t11  
Control Hold Time, t12  
Digital Output Access Time, t13  
8
8
3.5  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
11  
8
48  
16  
4
Digital Output Hold Time, t14  
4
Pipeline Delay, t15  
Clock Cycles  
TELETEXT3, 4, 7  
Digital Output Access Time, t16  
Data Setup Time, t17  
Data Hold Time, t18  
20  
2
6
ns  
ns  
ns  
RESET CONTROL3, 4  
RESET Low Time  
6
ns  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over 4.75 V to 5.25 V range.  
2Temperature range TMIN to TMAX: 0oC to +70oC.  
3TTL input values are 0 to 3 volts, with input rise/fall times 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and  
outputs. Analog output load 10 pF.  
4Guaranteed by characterization.  
5Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.  
6Pixel Port consists of the following:  
Pixel Inputs:  
Pixel Controls:  
Clock Input:  
P15–P0  
HSYNC, FIELD/VSYNC, BLANK  
CLOCK  
7Teletext Port consists of the following:  
Teletext Output:  
Teletext Input:  
TTXREQ  
TTX  
Specifications subject to change without notice.  
REV. 0  
–5–  
ADV7170/ADV7171–SPECIFICATIONS  
(VAA = 3.0 V – 3.6 V1, VREF = 1.235 V, RSET = 150 . All specifications TMIN to TMAX2 unless  
otherwise noted.)  
3.3 V TIMING SPECIFICATIONS  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
MPU PORT3, 4  
SCLOCK Frequency  
0
400  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
SCLOCK High Pulsewidth, t1  
SCLOCK Low Pulsewidth, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
0.6  
1.3  
0.6  
0.6  
100  
After This Period the First Clock Is Generated  
Relevant for Repeated Start Condition  
300  
300  
0.6  
ANALOG OUTPUTS3, 5  
Analog Output Delay  
DAC Analog Output Skew  
7
0
ns  
ns  
CLOCK CONTROL AND  
PIXEL PORT4, 5, 6  
fCLOCK  
27  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock High Time, t9  
Clock Low Time, t10  
Data Setup Time, t11  
Data Hold Time, t12  
Control Setup Time, t11  
Control Hold Time, t12  
Digital Output Access Time, t13  
Digital Output Hold Time, t14  
Pipeline Delay, t15  
8
8
3.5  
4
4
3
12  
8
48  
ns  
Clock Cycles  
TELETEXT3, 4, 7  
Digital Output Access Time, t16  
Data Setup Time, t17  
Data Hold Time, t18  
23  
2
6
ns  
ns  
ns  
RESET CONTROL3, 4  
RESET Low Time  
6
ns  
NOTES  
1The max/min specifications are guaranteed over this range. The max/min values are typical over 3.0 V to 3.6 V range.  
2Temperature range TMIN to TMAX: 0oC to +70oC.  
3TTL input values are 0 to 3 volts, with input rise/fall times 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and  
outputs. Analog output load 10 pF.  
4Guaranteed by characterization.  
5Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.  
6Pixel Port consists of the following:  
Pixel Inputs:  
Pixel Controls:  
Clock Input:  
P15–P0  
HSYNC, FIELD/VSYNC, BLANK  
CLOCK  
7Teletext Port consists of the following:  
Teletext Output:  
Teletext Input:  
TTXREQ  
TTX  
Specifications subject to change without notice.  
–6–  
REV. 0  
ADV7170/ADV7171  
t5  
t3  
t3  
SDATA  
t6  
t1  
SCLOCK  
t2  
t7  
t4  
t8  
Figure 1. MPU Port Timing Diagram  
CLOCK  
t12  
t9  
t10  
HSYNC,  
FIELD/VSYNC,  
CONTROL  
I/PS  
BLANK  
PIXEL INPUT  
DATA  
Cb  
Y
Cr  
Y
Cb  
Y
t11  
t13  
HSYNC,  
FIELD/VSYNC,  
BLANK  
CONTROL  
O/PS  
t14  
Figure 2. Pixel and Control Data Timing Diagram  
TXTREQ  
CLOCK  
t16  
t17  
t18  
TXT  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
3 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
Figure 3. Teletext Timing Diagram  
REV. 0  
–7–  
ADV7170/ADV7171  
ABSOLUTE MAXIMUM RATINGS1  
Table I. Allowable Operating Conditions for KS and SU  
Package Options  
VAA to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Voltage on Any Digital Input Pin . GND – 0.5 V to VAA + 0.5 V  
Storage Temperature (TS) . . . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . +260°C  
Analog Outputs to GND2 . . . . . . . . . . . GND – 0.5 V to VAA  
KS  
SU  
Conditions  
3 V  
5 V  
3 V  
5 V  
4 DAC ON Double 75R1  
4 DAC ON Low Power2  
4 DAC ON Buffering3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
3 DAC ON Double 75R  
3 DAC ON Low Power  
3 DAC ON Buffering  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
2Analog output short circuit to any power supply or common can be of an indefinite  
duration.  
2 DAC ON Double 75R  
2 DAC ON Low Power  
4 DAC ON Buffering  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PACKAGE THERMAL PERFORMANCE  
NOTES  
The 44-PQFP package used for this device takes advantage of  
an ADI patented thermal coastline lead frame construction. This  
maximizes heat transfer into the leads and reduces the package  
thermal resistance.  
1DAC ON Double 75R refers to a condition where the DACs are terminated in  
a double 75R load and low power mode is disabled.  
2DAC ON Low Power refers to a condition where the DACs are terminated in a  
double 75R load and low power mode is enabled.  
3DAC ON Buffering refers to a condition where the DAC current is reduced to  
5 mA and external buffers are used to drive the video load.  
The junction-to-ambient (θJA) thermal resistance in still air on a  
four-layer PCB is 35.5°C/W. The junction-to-case thermal resis-  
tance (θJC) is 13.75°C/W.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Descriptions  
Package  
Options  
Model  
ADV7170KS  
ADV7170SU  
ADV7171KS  
ADV7171SU  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
Plastic Quad Flatpack  
Thin Plastic Quad Flatpack  
Plastic Quad Flatpack  
Thin Plastic Quad Flatpack  
S-44  
SU-44  
S-44  
SU-44  
PIN CONFIGURATIONS  
42  
44 43  
PIN 1  
41 40 39 38 37 36 35 34  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
27  
V
V
REF  
AA  
IDENTIFIER  
P5  
P6  
DAC A  
DAC B  
P7  
V
AA  
P8  
GND  
ADV7170/ADV7171  
PQFP/TQFP  
P9  
V
AA  
TOP VIEW  
(Not to Scale)  
P10  
P11  
P12  
DAC D  
26 DAC C  
25 COMP  
24 SDATA  
GND 10  
11  
23  
V
SCLOCK  
AA  
13  
20  
21 22  
12  
14 15 16 17 18 19  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADV7170/ADV7171 feature proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–8–  
REV. 0  
ADV7170/ADV7171  
PIN FUNCTION DESCRIPTIONS  
Input/  
Output  
Mnemonic  
Function  
P15–P0  
I
8-Bit 4:2:2 Multiplexed YCrCb Pixel Port (P7–P0) or 16-Bit YCrCb Pixel Port (P15–P0).  
P0 represents the LSB.  
CLOCK  
I
TTL Clock Input. Requires a stable 27 MHz reference Clock for standard operation. Alter-  
natively, a 24.52 MHz (NTSC) or 29.5 MHz (PAL) can be used for square pixel operation.  
HSYNC  
I/O  
I/O  
I/O  
I
HSYNC (Modes 1 and 2) Control Signal. This pin may be configured to output (Master  
Mode) or accept (Slave Mode) Sync signals.  
Dual Function FIELD (Mode 1) and VSYNC (Mode 2) Control Signal. This pin may be  
configured to output (Master Mode) or accept (Slave Mode) these control signals.  
Video Blanking Control Signal. The pixel inputs are ignored when this is Logic Level “0.”  
This signal is optional.  
This pin can be configured as an input by setting MR22 and MR21 of Mode Register 2. It  
can be configured as a subcarrier reset pin, in which case a high-to-low transition on this pin  
will reset the subcarrier to Field 0. Alternatively, it may be configured as a Real-Time  
Control (RTC) input.  
FIELD/VSYNC  
BLANK  
SCRESET/RTC  
VREF  
RSET  
I/O  
I
Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).  
A 150 resistor connected from this pin to GND is used to control full-scale amplitudes of  
the video signals.  
COMP  
DAC A  
O
O
Compensation Pin. Connect a 0.1 µF Capacitor from COMP to VAA. For Optimum Dynamic  
Performance in low power mode, the value of the COMP capacitor can be lowered to as low  
as 2.2 nF.  
PAL/NTSC Composite Video Output. Full-Scale Output is 180 IRE (1286 mV) for NTSC  
and 1300 mV for PAL.  
DAC C  
DAC D  
DAC B  
SCLOCK  
SDATA  
ALSB  
O
O
O
I
I/O  
I
RED/S-Video C/V Analog Output.  
GREEN/S-Video Y/Y Analog Output  
BLUE/Composite/U Analog Output.  
MPU Port Serial Interface Clock Input.  
MPU Port Serial Data Input/Output.  
TTL Address Input. This signal set up the LSB of the MPU address.  
RESET  
I
The input resets the on chip timing generator and sets the ADV7170/ADV7171 into default  
mode. This is NTSC operation, Timing Slave Mode 0, 8 Bit Operation, 2 × Composite and  
S Video out and DAC B powered ON and DAC D powered OFF.  
TTX/VAA  
I
Teletext Data/Defaults to VAA when Teletext not Selected (enables backward compatibility to  
ADV7175/ADV7176).  
TTXREQ/GND  
O
Teletext Data Request Signal/ Defaults to GND when Teletext not Selected (enables back-  
ward compatibility to ADV7175/ADV7176).  
VAA  
GND  
P
G
Power Supply (+3 V to +5 V).  
Ground Pin.  
REV. 0  
–9–  
ADV7170/ADV7171  
three data paths. Y typically has a range of 16 to 235, Cr and  
Cb typically have a range of 128 ± 112; however, it is possible  
to input data from 1 to 254 on both Y, Cb and Cr. The ADV7170/  
ADV7171 supports PAL (B, D, G, H, I, M, N) and NTSC  
(with and without pedestal) standards. The appropriate  
SYNC, BLANK and Burst levels are added to the YCrCb  
data. Macrovision antitaping (ADV7170 only), closed-captioning  
and Teletext levels are also added to Y and the resultant data is  
interpolated to a rate of 27 MHz. The interpolated data is  
filtered and scaled by three digital FIR filters.  
GENERAL DESCRIPTION  
The ADV7170/ADV7171 is an integrated digital video encoder  
that converts Digital CCIR-601 4:2:2 8 or 16-bit component  
video data into a standard analog baseband television signal  
compatible with worldwide standards.  
The on-board SSAF (Super Sub-Alias Filter) with extended  
luminance frequency response and sharp stopband attenuation,  
enables studio quality video playback on modern TVs, giving  
optimal horizontal line resolution.  
An advanced power management circuit enables optimal control  
of power consumption in both normal operating modes and  
power-down or sleep modes.  
The U and V signals are modulated by the appropriate sub-  
carrier sine/cosine phases and added together to make up the  
chrominance signal. The luma (Y) signal can be delayed 1–3  
luma cycles (each cycle is 74 ns) with respect to the chroma  
signal. The luma and chroma signals are then added together to  
make up the composite video signal. All edges are slew rate  
limited.  
The ADV7170/ADV7171 also supports both PAL and NTSC  
square pixel operation. The parts also incorporate WSS and  
CGMS-A data control generation.  
The output video frames are synchronized with the incoming  
data timing reference codes. Optionally, the encoder accepts  
(and can generate) HSYNC, VSYNC and FIELD timing sig-  
nals. These timing signals can be adjusted to change pulsewidth  
and position while the part is in the master mode. The encoder  
requires a single two times pixel rate (27 MHz) clock for stan-  
dard operation. Alternatively, the encoder requires a 24.54 MHz  
clock for NTSC or 29.5 MHz clock for PAL square pixel mode  
operation. All internal timing is generated on-chip.  
The YCrCb data is also used to generate RGB data with ap-  
propriate SYNC and BLANK levels. The RGB data is in  
synchronization with the composite video output. Alternatively,  
analog YUV data can be generated instead of RGB.  
The four l0-bit DACs can be used to output:  
1. Composite Video + RGB Video.  
2. Composite Video + YUV Video.  
3. Two Composite Video Signals + LUMA and CHROMA  
(Y/C) Signals.  
A separate teletext port enables the user to directly input tele-  
text data during the vertical blanking interval.  
Alternatively, each DAC can be individually powered off if not  
required.  
The ADV7170/ADV7171 modes are set up over a two-wire  
serial bidirectional port (I2C Compatible) with two slave addresses.  
Video output levels are illustrated in Appendix 6.  
Functionally, the ADV7171 and ADV7170 are the same with  
the exception that the ADV7170 can output the Macrovision  
anticopy algorithm.  
INTERNAL FILTER RESPONSE  
The Y filter supports several different frequency responses,  
including two low-pass responses, two notch responses, an  
extended (SSAF) response, a CIF response and a QCIF re-  
sponse. The UV filter supports several different frequency re-  
sponses, including four low-pass responses, a CIF response and  
a QCIF response, these can be seen in the following Figures 4  
to 18.  
The ADV7170/ADV7171 is packaged in a 44-lead PQFP pack-  
age and a 44-lead TQFP package.  
DATA PATH DESCRIPTION  
For PAL B, D, G, H, I, M, N and NTSC M, N modes, YCrCb  
4:2:2 data is input via the CCIR-656 Compatible Pixel Port at a  
27 MHz data rate. The pixel data is demultiplexed to form  
STOPBAND  
CUTOFF (MHz) ATTENUATION (dB)  
STOPBAND  
PASSBAND RIPPLE 3 dB BANDWIDTH  
FILTER TYPE  
FILTER SELECTION  
MR04 MR03 MR02  
(dB)  
(MHz)  
4.157  
4.74  
6.54  
6.24  
6.217  
3.0  
LOW PASS (NTSC)  
LOW PASS (PAL)  
NOTCH (NTSC)  
NOTCH (PAL)  
EXTENDED (SSAF)  
CIF  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0.091  
0.15  
0.015  
0.095  
0.051  
0.018  
MONOTONIC  
7.37  
7.96  
8.3  
8.0  
8.0  
7.06  
7.15  
–56  
–64  
–68  
–66  
–61  
–61  
–50  
1.5  
QCIF  
Figure 4. Luminance Internal Filter Specifications  
STOPBAND  
CUTOFF (MHz) ATTENUATION (dB)  
STOPBAND  
PASSBAND RIPPLE 3 dB BANDWIDTH  
FILTER TYPE  
FILTER SELECTION  
MR07 MR06 MR05  
(dB)  
(MHz)  
1.395  
0.65  
1.0  
1.3 MHz LOW PASS  
0.65 MHz LOW PASS  
1.0 MHZ LOW PASS  
2.0 MHz LOW PASS  
RESERVED  
CIF  
QCIF  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0.084  
3.01  
3.64  
3.73  
5.0  
–45  
–58.5  
–49  
MONOTONIC  
MONOTONIC  
0.0645  
2.2  
–40  
0.7  
0.5  
0.084  
MONOTONIC  
3.01  
4.08  
–45  
–50  
Figure 5. Chrominance Internal Filter Specifications  
–10–  
REV. 0  
ADV7170/ADV7171  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 6. NTSC Low-Pass Luma Filter  
Figure 9. PAL Notch Luma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 7. PAL Low-Pass Luma Filter  
Figure 10. Extended Mode (SSAF) Luma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 8. NTSC Notch Luma Filter  
Figure 11. CIF Luma Filter  
REV. 0  
–11–  
ADV7170/ADV7171  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 12. QCIF Luma Filter  
Figure 15. 1.0 MHz Low-Pass Chroma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 13. 1.3 MHz Low-Pass Chroma Filter  
Figure 16. 2.0 MHz Low-Pass Chroma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 14. 0.65 MHz Low-Pass Chroma Filter  
Figure 17. CIF Chroma Filter  
–12–  
REV. 0  
ADV7170/ADV7171  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
SUBCARRIER RESET  
Together with the SCRESET/RTC pin, and bits MR22 and  
MR21 of Mode Register 2, the ADV7170/ADV7171 can be  
used in subcarrier reset mode. The subcarrier will reset to Field  
0 at the start of the following field when a low-to-high transition  
occurs on this input pin.  
REAL-TIME CONTROL  
Together with the SCRESET/RTC pin, and Bits MR22 and  
MR21 of Mode Register 2, the ADV7170/ADV7171 can be  
used to lock to an external video source. The real-time control  
mode allows the ADV7170/ADV7171 to automatically alter the  
subcarrier frequency to compensate for line length variation.  
When the part is connected to a device that outputs a digital  
datastream in the RTC format (such as a ADV7185 video de-  
coder, see Figure 19), the part will automatically change to the  
compensated subcarrier frequency on a line-by-line basis. This  
digital datastream is 67 bits wide and the subcarrier is contained  
in Bits 0 to 21. Each bit is 2 clock cycles long. 00Hex should be  
written into all four subcarrier frequency registers when using  
this mode.  
0
2
4
6
8
10  
12  
FREQUENCY – MHz  
Figure 18. QCIF Chroma Filter  
COLOR BAR GENERATION  
The ADV7170/ADV7171 can be configured to generate 75%  
amplitude, 75% saturation (75/7.5/75/7.5) for NTSC or 75%  
amplitude, 100% saturation (100/0/75/0) for PAL color bars.  
These are enabled by setting MR17 of Mode Register 1 to  
Logic “1.”  
VIDEO TIMING DESCRIPTION  
The ADV7170/ADV7171 is intended to interface to off-  
the-shelf MPEG1 and MPEG2 Decoders. Consequently, the  
ADV7170/ADV7171 accepts 4:2:2 YCrCb Pixel Data via a  
CCIR-656 pixel port and has several video timing modes of  
operation that allow it to be configured as either system master  
video timing generator or a slave to the system video timing  
generator. The ADV7170/ADV7171 generates all of the re-  
quired horizontal and vertical timing periods and levels for the  
analog video outputs.  
SQUARE PIXEL MODE  
The ADV7170/ADV7171 can be used to operate in square pixel  
mode. For NTSC operation, an input clock of 24.5454 MHz is  
required. Alternatively, for PAL operation, an input clock of  
29.5 MHz is required. The internal timing logic adjusts accord-  
ingly for square pixel mode operation.  
COLOR SIGNAL CONTROL  
The color information can be switched on and off the video  
output using Bit MR24 of Mode Register 2.  
The ADV7170/ADV7171 calculates the width and placement of  
analog sync pulses, blanking levels and color burst envelopes.  
Color bursts are disabled on appropriate lines, and serration and  
equalization pulses are inserted where required.  
BURST SIGNAL CONTROL  
The burst information can be switched on and off the video  
output using Bit MR25 of Mode Register 2.  
In addition, the ADV7170/ADV7171 supports a PAL or NTSC  
square pixel operation in slave mode. The part requires an input  
pixel clock of 24.5454 MHz for NTSC and an input pixel clock  
of 29.5 MHz for PAL. The internal horizontal line counters  
place the various video waveform sections in the correct location  
for the new clock frequencies.  
NTSC PEDESTAL CONTROL  
The pedestal on both odd and even fields can be controlled on a  
line-by-line basis using the NTSC Pedestal Control Registers.  
This allows the pedestals to be controlled during the vertical  
blanking interval (Lines 10 to 25 and Lines 273 to 288).  
The ADV7170/ADV7171 has four distinct master and four  
distinct slave timing configurations. Timing Control is estab-  
lished with the bidirectional SYNC, BLANK and FIELD/  
VSYNC pins. Timing Mode Register 1 can also be used to vary  
the timing pulsewidths and where they occur in relation to each  
other.  
PIXEL TIMING DESCRIPTION  
The ADV7170/ADV7171 can operate in either 8-bit or  
16-bit YCrCb Mode.  
8-Bit YCrCb Mode  
This default mode accepts multiplexed YCrCb inputs through  
the P7-P0 pixel inputs. The inputs follow the sequence Cb0, Y0  
Cr0, Y1 Cb1, Y2, etc. The Y, Cb and Cr data are input on a  
rising clock edge.  
16-Bit YCrCb Mode  
This mode accepts Y inputs through the P7–P0 pixel inputs and  
multiplexed CrCb inputs through the P15–P8 pixel inputs. The  
data is loaded on every second rising edge of CLOCK. The inputs  
follow the sequence Cb0, Y0 Cr0, Y1 Cb1, Y2, etc.  
REV. 0  
–13–  
ADV7170/ADV7171  
CLOCK  
COMPOSITE  
VIDEO  
e.g., VCR  
OR CABLE  
SCRESET/RTC  
VIDEO  
DECODER  
(e.g., ADV7185)  
GREEN/LUMA/Y  
RED/CHROMA/V  
M
U
X
P7–P0  
BLUE/COMPOSITE/U  
COMPOSITE  
MPEG  
DECODER  
HSYNC  
FIELD/VSYNC  
ADV7170/ADV7171  
SEQUENCE  
RESERVED  
2
BIT  
H/LTRANSITION  
COUNT START  
RESET  
4 BITS  
RESERVED  
5 BITS  
RESERVED  
3
BIT  
LOW  
14 BITS  
128  
1
RESERVED  
FSCPLL INCREMENT  
0
0
13  
21  
RTC  
TIME SLOT: 01  
6768  
14  
19  
NOT USED IN  
ADV7175A/ADV7176A  
VALID  
SAMPLE SAMPLE  
INVALID  
8/LLC  
NOTES:  
1
F
PLL INCREMENT IS 22 BITS LONG, VALUE LOADED INTO ADV7175A/ADV7176A FSC DDS REGISTER IS  
PLL INCREMENTS BITS 21:0 PLUS BITS 0:9 OF SUBCARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD  
SC  
F
SC  
BE WRITTEN TO THE SUBCARRIER FREQUENCY REGISTERS OF THE ADV7170/ADV7171.  
2
SEQUENCE BIT  
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED  
NTSC: 0 = NO CHANGE  
3
RESET BIT  
RESET ADV7175A/ADV7176A’s DDS  
Figure 19. RTC Timing and Connections  
Vertical Blanking Data Insertion  
It is possible to allow encoding of incoming YCbCr data on those lines of VBI that do not bear line sync or pre-/post-equalization  
pulses (see Figures 21 to 32). This mode of operation is called “Partial Blanking” and is selected by setting MR31 to 1. It allows the  
insertion of any VBI data (Opened VBI) into the encoded output waveform. This data is present in digitized incoming YCbCr data  
stream (e.g., WSS data, CGMS, VPS, etc.). Alternatively, the entire VBI may be blanked (no VBI data inserted) on these lines by  
setting MR31 to 0.  
The complete VBI is comprised of the following lines:  
525/60 Systems, Lines 525 to 21 for Field 1 and Lines 262 to Line 284 for Field 2.  
625/50 Systems, Lines 624 to Line 22 and Lines 311 to 335.  
The “Opened VBI” consists of:  
525/60 Systems, Lines 10 to 21 for Field 1 and second half of Line 273 to Line 284 for Field 2.  
625/50 Systems, Line 7 to Line 22 and Lines 319 to 335.  
Mode 0 (CCIR-656): Slave Option  
(Timing Register 0 TR0 = X X X X X 0 0 0)  
The ADV7170/ADV7171 is controlled by the SAV (Start Active Video) and EAV (End Active Video) time codes in the pixel data.  
All timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately before  
and after each line during active picture and retrace. Mode 0 is illustrated in Figure 20. The HSYNC, FIELD/VSYNC and BLANK  
(if not used) pins should be tied high during this mode.  
–14–  
REV. 0  
ADV7170/ADV7171  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
C
b
8
0
0
0
F
F
F A  
F B  
A
B
A
B
8
0
0
0
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
INPUT PIXELS  
Y
Y
Y
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LlNES/60Hz)  
268 CLOCK  
1440 CLOCK  
1440 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
280 CLOCK  
END OF ACTIVE  
VIDEO LINE  
START OF ACTIVE  
VIDEO LINE  
Figure 20. Timing Mode 0 (Slave Mode)  
Mode 0 (CCIR-656): Master Option  
(Timing Register 0 TR0 = X X X X X 0 0 1)  
The ADV7170/ADV7171 generates H, V and F signals required for the SAV (Start Active Video) and EAV (End Active Video) Time  
Codes in the CCIR656 standard. The H bit is output on the HSYNC pin, the V bit is output on the BLANK pin and the F bit is  
output on the FIELD/VSYNC pin. Mode 0 is illustrated in Figure 21 (NTSC) and Figure 22 (PAL). The H, V and F transitions  
relative to the video waveform are illustrated in Figure 23.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
6
7
10  
11  
20  
21  
22  
5
9
8
H
V
EVEN FIELD  
ODD FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 21. Timing Mode 0 (NTSC Master Mode)  
REV. 0  
–15–  
ADV7170/ADV7171  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
22  
23  
5
21  
H
V
EVEN FIELD  
ODD FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
335  
336  
318  
334  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
V
F
ODD FIELD EVEN FIELD  
Figure 22. Timing Mode 0 (PAL Master Mode)  
ANALOG  
VIDEO  
H
F
V
Figure 23. Timing Mode 0 Data Transitions (Master Mode)  
–16–  
REV. 0  
ADV7170/ADV7171  
Mode 1: Slave Option HSYNC, BLANK, FIELD  
(Timing Register 0 TR0 = X X X X X 0 1 0)  
In this mode the ADV7170/ADV7171 accepts horizontal SYNC and Odd/Even FIELD signals. A transition of the FIELD input  
when HSYNC is low indicates a new frame, i.e., vertical retrace. The BLANK signal is optional. When the BLANK input is dis-  
abled, the ADV7170/ADV7171 automatically blanks all normally blank lines as per CCIR-624. Mode 1 is illustrated in Figure  
24 (NTSC) and Figure 25 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 24. Timing Mode 1 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 25. Timing Mode 1 (PAL)  
REV. 0  
–17–  
ADV7170/ADV7171  
Mode 1: Master Option HSYNC, BLANK, FIELD  
(Timing Register 0 TR0 = X X X X X 0 1 1)  
In this mode the ADV7170/ADV7171 can generate horizontal SYNC and Odd/Even FIELD signals. A transition of the FIELD  
input when HSYNC is low indicates a new frame, i.e., vertical retrace. The BLANK signal is optional. When the BLANK input is  
disabled, the ADV7170/ADV7171 automatically blanks all normally blank lines as per CCIR-624. Pixel data is latched on the rising  
clock edge following the timing signal transitions. Mode 1 is illustrated in Figure 24 (NTSC) and Figure 25 (PAL). Figure 26 illus-  
trates the HSYNC, BLANK and FIELD for an odd or even field transition relative to the pixel data.  
HSYNC  
FIELD  
PAL = 12 * CLOCK/2  
NTSC = 16 * CLOCK/2  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132 * CLOCK/2  
NTSC = 122 * CLOCK/2  
Figure 26. Timing Mode 1 Odd/Even Field Transitions Master/Slave  
Mode 2: Slave Option HSYNC, VSYNC, BLANK  
(Timing Register 0 TR0 = X X X X X 1 0 0)  
In this mode the ADV7170/ADV7171 accepts horizontal and vertical SYNC signals. A coincident low transition of both HSYNC and  
VSYNC inputs indicates the start of an odd field. A VSYNC low transition when HSYNC is high indicates the start of an even field.  
The BLANK signal is optional. When the BLANK input is disabled, the ADV7170/ADV7171 automatically blanks all normally  
blank lines as per CCIR-624. Mode 2 is illustrated in Figure 27 (NTSC) and Figure 28 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
Figure 27. Timing Mode 2 (NTSC)  
–18–  
REV. 0  
ADV7170/ADV7171  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
Figure 28. Timing Mode 2 (PAL)  
Mode 2: Master Option HSYNC, VSYNC, BLANK  
(Timing Register 0 TR0 = X X X X X 1 0 1)  
In this mode the ADV7170/ADV7171 can generate horizontal and vertical SYNC signals. A coincident low transition of both  
HSYNC and VSYNC inputs indicates the start of an Odd Field. A VSYNC low transition when HSYNC is high indicates the start  
of an even field. The BLANK signal is optional. When the BLANK input is disabled, the ADV7170/ADV7171 automatically blanks  
all normally blank lines as per CCIR-624. Mode 2 is illustrated in Figure 27 (NTSC) and Figure 28 (PAL). Figure 29 illus-  
trates the HSYNC, BLANK and VSYNC for an even-to-odd field transition relative to the pixel data. Figure 30 illustrates the  
HSYNC, BLANK and VSYNC for an odd-to-even field transition relative to the pixel data.  
HSYNC  
VSYNC  
PAL = 12 * CLOCK/2  
BLANK  
NTSC = 16 * CLOCK/2  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
PAL = 132 * CLOCK/2  
NTSC = 122 * CLOCK/2  
Figure 29. Timing Mode 2 Even-to-Odd Field Transition Master/Slave  
HSYNC  
VSYNC  
PAL = 864 * CLOCK/2  
NTSC = 858 * CLOCK/2  
PAL = 12 * CLOCK/2  
NTSC = 16 * CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 * CLOCK/2  
NTSC = 122 * CLOCK/2  
Figure 30. Timing Mode 2 Odd-to-Even Field Transition Master/Slave  
–19–  
REV. 0  
ADV7170/ADV7171  
Mode 3: Master/Slave Option HSYNC, BLANK, FIELD  
(Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1)  
In this mode the ADV7170/ADV7171 accepts or generates Horizontal SYNC and Odd/Even FIELD signals. A transition of the  
FIELD input when HSYNC is high indicates a new frame, i.e., vertical retrace. The BLANK signal is optional. When the BLANK  
input is disabled, the ADV7170/ADV7171 automatically blanks all normally blank lines as per CCIR-624. Mode 3 is illustrated in  
Figure 31 (NTSC) and Figure 32 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 31. Timing Mode 3 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 32. Timing Mode 3 (PAL)  
–20–  
REV. 0  
ADV7170/ADV7171  
OUTPUT VIDEO TIMING  
this configuration the SCH phase will never be reset, which  
means that the output video will now track the unstable input  
video. The subcarrier phase reset, when applied, will reset the  
SCH phase to Field 0 at the start of the next field (e.g., subcarrier  
phase reset applied in Field 5 [PAL] on the start of the next  
field SCH phase will be reset to Field 0).  
The video timing generator generates the appropriate SYNC,  
BLANK and BURST sequence that controls the output analog  
waveforms. These sequences are summarized below. In slave  
modes, the following sequences are synchronized with the input  
timing control signals. In master modes, the timing generator  
free runs and generates the following sequences in addition to  
the output timing control signals.  
MPU PORT DESCRIPTION  
The ADV7170 and ADV7171 support a two-wire serial (I2C  
Compatible) microprocessor bus driving multiple peripherals.  
Two inputs, serial data (SDATA) and serial clock (SCLOCK),  
carry information between any device connected to the bus.  
Each slave device is recognized by a unique address. The  
ADV7170 and ADV7171 each have four possible slave ad-  
dresses for both read and write operations. These are unique  
addresses for each device and are illustrated in Figure 33 and  
Figure 34. The LSB sets either a read or write operation. Logic  
Level “1” corresponds to a read operation, while Logic Level  
“0” corresponds to a write operation. A “1” is set by setting the  
ALSB pin of the ADV7170/ADV7171 to Logic Level “0” or  
Logic Level “1.”  
NTSC–Interlaced: Scan Lines 1–9 and 264–272 are always  
blanked and vertical sync pulses are included. Scan Lines 10–  
21, 525, and 262, 263, 273–284 are also blanked and can be  
used for closed captioning data. Burst is disabled on lines 1–6,  
261–269 and 523–525.  
NTSC–Noninterlaced: Scan Lines 1–9 are always blanked,  
and vertical sync pulses are included. Scan Lines 10–21 are also  
blanked and can be used for closed captioning data. Burst is  
disabled on Lines 1–6, 261–262.  
PAL–Interlaced: Scan Lines 1–6, 311–318 and 624–625 are  
always blanked, and vertical sync pulses are included in Fields  
1, 2, 5 and 6. Scan Lines 1–5, 311–319 and 624–625 are al-  
ways blanked, and vertical sync pulses are included in Fields 3,  
4, 7 and 8. The remaining scan lines in the vertical blanking  
interval are also blanked and can be used for teletext data.  
Burst is disabled on Lines 1–6, 311–318 and 623–625 in Fields  
1, 2, 5 and 6. Burst is disabled on Lines 1–5, 311–319 and  
623–625 in Fields 3, 4, 7 and 8.  
1
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
PAL–Noninterlaced: Scan Lines 1–6 and 311–312 are always  
blanked, and vertical sync pulses are included. The remaining  
scan lines in the vertical blanking interval are also blanked and  
can be used for teletext data. Burst is disabled on Lines 1–5,  
310–312.  
0
1
WRITE  
READ  
Figure 33. ADV7170 Slave Address  
1
1
0
0
1
A1  
X
0
POWER-ON RESET  
After power-up, it is necessary to execute a reset operation. A  
reset occurs on the falling edge of a high-to-low transition on  
the RESET pin. This initializes the pixel port so that the  
pixel inputs, P7–P0 are selected. After reset, the ADV7170/  
ADV7171 is automatically set up to operate in NTSC mode.  
Subcarrier frequency code 21F07C16HEX is loaded into the  
subcarrier frequency registers. All other registers, with the  
exception of Mode Register 0, are set to 00H. All bits in Mode  
Register 0 are set to Logic Level “0” except Bit MR44. Bit  
MR44 of Mode Register 4 is set to Logic “1.” This enables the  
7.5 IRE pedestal.  
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 34. ADV7171 Slave Address  
To control the various devices on the bus, the following proto-  
col must be followed: first, the master initiates a data transfer by  
establishing a start condition, defined by a high-to-low transition  
on SDATA while SCLOCK remains high. This indicates that  
an address/data stream will follow. All peripherals respond to  
the start condition and shift the next eight bits (7-bit address +  
R/W bit). The bits transfer from MSB down to LSB. The pe-  
ripheral that recognizes the transmitted address responds by  
pulling the data line low during the ninth clock pulse. This is  
known as an acknowledge bit. All other devices withdraw from  
the bus at this point and maintain an idle condition. The idle  
condition is where the device monitors the SDATA and SCLOCK  
lines waiting for the start condition and the correct transmitted  
address. The R/W bit determines the direction of the data. A  
Logic “0” on the LSB of the first byte means that the master  
will write information to the peripheral. A Logic “1” on the  
LSB of the first byte means that the master will read informa-  
tion from the peripheral.  
SCH Phase Mode  
The SCH phase is configured in default mode to reset every  
four (NTSC) or eight (PAL) fields to avoid an accumulation of  
SCH phase error over time. In an ideal system, zero SCH phase  
error would be maintained forever, but in reality, this is impos-  
sible to achieve due to clock frequency variations. This effect is  
reduced by the use of a 32-bit DDS, which generates this SCH.  
Resetting the SCH phase every four or eight fields avoids the  
accumulation of SCH phase error, and results in very minor  
SCH phase jumps at the start of the four or eight field sequence.  
Resetting the SCH phase should not be done if the video source  
does not have stable timing or the ADV7170/ADV7171 is con-  
figured in RTC mode (MR21 = 1 and MR22 = 1). Under these  
conditions (unstable video) the subcarrier phase reset should be  
enabled (MR22 = 0 and MR21 = 1) but no reset applied. In  
REV. 0  
–21–  
ADV7170/ADV7171  
REGISTER ACCESSES  
The ADV7170/ADV7171 acts as a standard slave device on the  
bus. The data on the SDATA pin is 8 bits long, supporting  
the 7-bit addresses, plus the R/W bit. The ADV7170 has 48  
subaddresses and the ADV7171 has 26 subaddresses to enable  
access to the internal registers. It therefore interprets the first  
byte as the device address and the second byte as the starting  
subaddress. The subaddresses auto increment allows data to  
be written to or read from the starting subaddress. A data  
transfer is always terminated by a stop condition. The user can  
also access any unique subaddress register on a one-by-one basis  
without having to update all the registers. There is one excep-  
tion. The subcarrier frequency registers should be updated in  
sequence, starting with Subcarrier Frequency Register 0. The  
auto increment function should then be used to increment and  
access Subcarrier Frequency Registers 1, 2 and 3. The subcarrier  
frequency registers should not be accessed independently.  
The MPU can write to or read from all of the ADV7170/  
ADV7171 registers except the subaddress register, which is a  
write-only register. The subaddress register determines which  
register the next read or write operation accesses. All communi-  
cations with the part through the bus start with an access to the  
subaddress register. A read/write operation is performed from/to  
the target address, which then increments to the next address  
until a stop command on the bus is performed.  
REGISTER PROGRAMMING  
The following section describes each register, including subaddress  
register, mode registers, subcarrier frequency registers, subcarrier  
phase register, timing registers, closed captioning extended data  
registers, closed captioning data registers and NTSC pedestal  
control registers, in terms of its configuration.  
Subaddress Register (SR7–SR0)  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of sequence  
with normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCLOCK high pe-  
riod, the user should issue only one start condition, one stop  
condition or a single stop condition followed by a single start  
condition. If an invalid subaddress is issued by the user, the  
ADV7170/ADV7171 will not issue an acknowledge and will  
return to the idle condition. If, in auto-increment mode the user  
exceeds the highest subaddress, the following action will be  
taken:  
The communications register is an 8-bit write-only register.  
After the part has been accessed over the bus, and a read/write  
operation is selected, the subaddress is set up. The subaddress  
register determines to/from which register the operation takes  
place.  
Figure 37 shows the various operations under the control of  
the subaddress register. Zero should always be written to  
SR7–SR6.  
Register Select (SR5–SR0)  
These bits are set up to point to the required starting address.  
1. In Read Mode, the highest subaddress register contents will  
continue to be output until the master device issues a no-  
acknowledge. This indicates the end of a read. A no-  
acknowledge condition is where the SDATA line is not  
pulled low on the ninth pulse.  
MODE REGISTER 0 MR0 (MR07–MR00)  
(Address [SR4–SR0] = 00H)  
Figure 38 shows the various operations under the control of Mode  
Register 0. This register can be read from as well as written to.  
2. In Write Mode, the data for the invalid byte will not be  
loaded into any subaddress register, a no-acknowledge will  
be issued by the ADV7170/ADV7171 and the part will re-  
turn to the idle condition.  
MR0 BIT DESCRIPTION  
Encode Mode Control (MR01–MR00)  
These bits are used to set up the encode mode. The ADV7170/  
ADV7171 can be set up to output NTSC, PAL (B, D, G, H, I)  
and PAL (M, N) standard video.  
SDATA  
Luminance Filter Control (MR02–MR04)  
These bits specify which luma filter is to be selected. The filter  
selection is made independent of whether PAL or NTSC is  
selected.  
SCLOCK  
S
1-7  
8
9
1-7  
8
9
1-7  
DATA  
8
9
P
START ADDR  
ACK SUBADDRESS ACK  
ACK  
STOP  
R/W  
Figure 35. Bus Data Transfer  
Chrominance Filter Control (MR05–MR07)  
These bits select the chrominance filter. A low-pass filter can be  
selected with a choice of cutoff frequencies, 0.65 MHz, 1.0 MHz,  
1.3 MHz or 2 MHz, along with a choice of CIF or QCIF filters.  
Figure 35 illustrates an example of data transfer for a read se-  
quence and the start and stop conditions.  
Figure 36 shows bus write and read sequences.  
WRITE  
SEQUENCE  
S
S
SLAVE ADDR A(S) SUB ADDR A(S)  
LSB = 0  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S)  
SUB ADDR A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
P
A(M)  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
S = START BIT  
P = STOP BIT  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 36. Write and Read Sequences  
–22–  
REV. 0  
ADV7170/ADV7171  
SR1  
SR7  
SR6  
SR5  
SR4  
SR3  
SR2  
SR0  
SR7–SR5 (000)  
ZERO SHOULD BE WRITTEN  
TO THESE BITS  
ADV7170 SUBADDRESS REGISTER  
SR5 SR4 SR3 SR2 SR1 SR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MODE REGISTER 0  
ADV7171 SUBADDRESS REGISTER  
SR5 SR4 SR3 SR2 SR1 SR0  
MODE REGISTER 1  
MODE REGISTER 2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MODE REGISTER 0  
MODE REGISTER 1  
MODE REGISTER 2  
MODE REGISTER 3  
MODE REGISTER 4  
RESERVED  
MODE REGISTER 3  
MODE REGISTER 4  
RESERVED  
RESERVED  
TIMING MODE REGISTER 0  
TIMING MODE REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 0  
SUBCARRIER FREQUENCY REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 2  
SUBCARRIER FREQUENCY REGISTER 3  
SUBCARRIER PHASE REGISTER  
CLOSED CAPTIONING EXTENDED DATA-BYTE 0  
CLOSED CAPTIONING EXTENDED DATA-BYTE 1  
CLOSED CAPTIONING DATA-BYTE 0  
CLOSED CAPTIONING DATA-BYTE 1  
NTSC PEDESTAL CONTROL REG 0  
NTSC PEDESTAL CONTROL REG 1  
NTSC PEDESTAL CONTROL REG 2  
NTSC PEDESTAL CONTROL REG 3  
CGMS_WSS_0  
RESERVED  
TIMING MODE REGISTER 0  
TIMING MODE REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 0  
SUBCARRIER FREQUENCY REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 2  
SUBCARRIER FREQUENCY REGISTER 3  
SUBCARRIER PHASE REGISTER  
CLOSED CAPTIONING EXTENDED DATA-BYTE 0  
CLOSED CAPTIONING EXTENDED DATA-BYTE 1  
CLOSED CAPTIONING DATA-BYTE 0  
CLOSED CAPTIONING DATA-BYTE 1  
NTSC PEDESTAL CONTROL REG 0  
NTSC PEDESTAL CONTROL REG 1  
NTSC PEDESTAL CONTROL REG 2  
NTSC PEDESTAL CONTROL REG 3  
CGMS_WSS_0  
CGMS_WSS_1  
CGMS_WSS_2  
TELETEXT REQUEST POSITION  
RESERVED  
CGMS_WSS_1  
CGMS_WSS_2  
RESERVED  
TELETEXT REQUEST POSITION  
RESERVED  
RESERVED  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
Figure 37. Subaddress Register Map  
MR07  
MR06  
MR05  
MR04  
MR03  
MR02  
MR01  
MR00  
OUTPUT VIDEO  
STANDARD SELECTION  
CHROMA FILTER SELECT  
MR06 MR05  
MR07  
MR01 MR00  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.3 MHz LOW PASS FILTER  
0
0
NTSC  
PAL (B, D, G, H, I)  
PAL (M)  
0.65 MHz LOW PASS FILTER  
1.0 MHz LOW PASS FILTER  
2.0 MHz LOW PASS FILTER  
RESERVED  
CIF  
Q CIF  
0
1
1
1
0
1
RESERVED  
LUMA FILTER SELECT  
MR03 MR02  
RESERVED  
MR04  
0
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
0
LOW PASS FILTER (NTSC)  
LOW PASS FILTER (PAL)  
NOTCH FILTER (NTSC)  
NOTCH FILTER (PAL)  
EXTENDED MODE  
CIF  
1
0
1
0
1
0
1
Q CIF  
RESERVED  
Figure 38. Mode Register 0  
–23–  
REV. 0  
ADV7170/ADV7171  
MODE REGISTER 1 MR1 (MR17–MR10)  
Color Bar Control (MR17)  
(Address (SR4–SR0) = 01H)  
Figure 39 shows the various operations under the control of Mode  
Register 1. This register can be read from as well as written to.  
This bit can be used to generate and output an internal color  
bar test pattern. The color bar configuration is 75/7.5/75/7.5  
for NTSC and 100/0/75/0 for PAL. It is important to note that  
when color bars are enabled the ADV7170/ADV7171 is config-  
ured in a master timing mode.  
MR1 BIT DESCRIPTION  
Interlaced Mode Control (MR10)  
This bit is used to set up the output to interlaced or noninter-  
laced mode. This mode is only relevant when the part is in  
composite video mode.  
MODE REGISTER 2 MR2 (MR27–MR20)  
(Address [SR4-SR0] = 02H)  
Mode Register 2 is an 8-bit-wide register.  
Closed Captioning Field Control (MR12–MR11)  
These bits control the fields on which closed captioning data is  
displayed; closed captioning information can be displayed on an  
odd field, even field or both fields.  
Figure 40 shows the various operations under the control of Mode  
Register 2. This register can be read from as well as written to.  
MR2 BIT DESCRIPTION  
Square Pixel Mode Control (MR20)  
This bit is used to set up square pixel mode. This is available in  
slave mode only. For NTSC, a 24.54 MHz clock must be sup-  
plied. For PAL, a 29.5 MHz clock must be supplied.  
DAC Control (MR16–MR13)  
These bits can be used to power down the DACs. This can  
be used to reduce the power consumption of the ADV7170/  
ADV7171 if any of the DACs are not required in the application.  
MR17  
MR16  
MR15  
MR14  
MR13  
MR12  
MR11  
MR10  
DAC A  
CONTROL  
DAC D  
CONTROL  
CLOSED CAPTIONING  
FIELD SELECTION  
MR16  
MR14  
MR12  
MR11  
0
1
NORMAL  
POWER-DOWN  
0
1
NORMAL  
POWER-DOWN  
0
0
1
1
0
1
0
1
NO DATA OUT  
ODD FIELD ONLY  
EVEN FIELD ONLY  
DATA OUT  
(BOTH FIELDS)  
COLOR BAR  
CONTROL  
DAC B  
CONTROL  
DAC C  
CONTROL  
INTERLACE  
CONTROL  
MR15  
MR13  
MR10  
MR17  
0
1
INTERLACED  
NONINTERLACED  
0
1
NORMAL  
POWER-DOWN  
0
1
NORMAL  
POWER-DOWN  
0
1
DISABLE  
ENABLE  
Figure 39. Mode Register 1  
MR21  
MR27  
MR26  
MR25  
MR24  
MR23  
MR22  
MR20  
CHROMINANCE  
CONTROL  
LOW POWER MODE  
SELECT  
GENLOCK SELECTION  
MR22 MR21  
MR24  
MR26  
x
0
0
1
DISABLE GENLOCK  
ENABLE SUBCARRIER  
RESET PIN  
0
1
ENABLE COLOR  
DISABLE COLOR  
0
1
DISABLE  
ENABLE  
1
1
ENABLE RTC PIN  
MR27  
RESERVED  
BURST  
CONTROL  
ACTIVE VIDEO LINE WIDTH  
CONTROL  
SQUARE PIXEL  
CONTROL  
MR25  
MR23  
MR20  
0
1
ENABLE BURST  
DISABLE BURST  
0
1
DISABLE  
ENABLE  
0
1
CCI R624 OUTPUT  
CCI R601 OUTPUT  
Figure 40. Mode Register 2  
MR31  
MR36  
MR35  
MR34  
MR33  
MR32  
MR30  
MR37  
VBI_OPEN  
TTX BIT REQUEST  
MODE CONTROL  
CHROMA OUTPUT  
SELECT  
MR30  
MR31  
MR32  
MR36  
MR34  
0
1
DISABLE  
ENABLE  
RESERVED  
0
1
NORMAL  
BIT REQUEST  
0
1
DISABLE  
ENABLE  
DAC OUTPUT  
SWITCHING  
ALL ZEROS INVALID  
CONTROL  
TELETEXT  
CONTROL  
MR37  
MR35  
MR33  
DAC A  
DAC B  
DAC C  
DAC D  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
0
1
COMPOSITE  
GREEN/LUMA/Y  
BLUE/COMP/U RED/CHROMA/V GREEN/LUMA/Y  
BLUE/COMP/U RED/CHROMA/V COMPOSITE  
Figure 41. Mode Register 3  
–24–  
REV. 0  
ADV7170/ADV7171  
Genlock Control (MR22–MR21)  
MR3 BIT DESCRIPTION  
These bits control the genlock feature of the ADV7170/ADV7171.  
Setting MR21 to a Logic “1” configures the SCRESET/RTC  
pin as an input. Setting MR22 to Logic Level “0” configures  
the SCRESET/RTC pin as a subcarrier reset input. Therefore,  
the subcarrier will reset to Field 0 following a high-to-low tran-  
sition on the SCRESET/RTC pin. Setting MR22 to Logic Level  
“1” configures the SCRESET/RTC pin as a real-time control  
input.  
Revision Code (MR30–MR31)  
This bit is read only and indicates the revision of the device.  
VBI Pass-Through Control (MR32)  
This bit determines whether or not data in the vertical blanking  
interval (VBI) is output to the analog outputs or BLANKed.  
DAC Switching Control (MR33)  
This bit is used to switch the DAC outputs from SCART to a  
EUROSCART configuration. A complete table of all DAC  
output configurations is shown below.  
Active Video Line Control (MR23)  
This bit switches between two active video line durations. A  
zero selects ITU-R BT.470 (720 pixels PAL/NTSC) and a one  
selects ITU-R/SMPTE “analog” standard for active video dura-  
tion (710 pixels NTSC 702 pixels PAL).  
Chroma Output Select (MR34)  
With this active high bit it is possible to output YUV data with a  
composite output on the fourth DAC or a chroma output on the  
fourth DAC (0 = CVBS; 1 = CHROMA)  
Chrominance Control (MR24)  
This bit enables the color information to be switched on and off  
the video output.  
Teletext Enable (MR35)  
This bit must be set to “1” to enable teletext data insertion on  
the TTX pin.  
Burst Control (MR25)  
This bit enables the burst information to be switched on and off  
the video output.  
Teletext Mode Control (MR36)  
This bit enables switching of the teletext request signal from a  
continuous high signal (“MR36 = 0”) to a bit wise request sig-  
nal (“MR36 = 1”).  
Low Power Control (MR26)  
This bit enables the lower power mode of the ADV7170/ADV7171.  
This will reduce the DAC current by 45%.  
Input Default Color (MR37)  
This bit determines the default output color from the DACs for  
zero input pixel data (or disconnected). A Logical “0” means  
that the color corresponding to 00000000 will be displayed. A  
Logical “1” forces the output color to black for 00000000 pixel  
input video data.  
Reserved (MR27)  
A Logical 0 must be written to this bit.  
MODE REGISTER 3 MR3 (MR37–MR30)  
(Address [SR4–SR0] = 03H)  
Mode Register 3 is an 8-bit-wide register.  
Figure 41 shows the various operations under the control of  
Mode Register 3.  
Table II. DAC Output Configuration Matrix  
MR34  
MR40  
MR41  
MR33  
DAC A  
DAC B  
DAC C  
DAC D  
Simultaneous Output  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CVBS  
Y
CVBS  
Y
CVBS  
G
CVBS  
Y
C
Y
C
Y
C
G
C
Y
CVBS  
CVBS  
CVBS  
CVBS  
B
B
U
U
CVBS  
CVBS  
CVBS  
CVBS  
B
B
U
U
C
C
C
C
R
R
V
V
C
C
C
C
R
R
V
V
Y
CVBS  
Y
CVBS  
G
CVBS  
Y
CVBS  
Y
C
Y
C
G
C
Y
C
2 Composite and Y/C  
2 Composite and Y/C  
2 Composite and Y/C  
2 Composite and Y/C  
RGB and Composite  
RGB and Composite  
YUV and Composite  
YUV and Composite  
1 Composite, Y and 2C  
1 Composite, Y and 2C  
1 Composite, Y and 2C  
1 Composite, Y and 2C  
RGB and C  
RGB and C  
YUV and C  
YUV and C  
CVBS: Composite Video Baseband Signal  
NOTE  
Y:  
C:  
U:  
V:  
R:  
G:  
B:  
Luminance Component Signal (For YUV or Y/C Mode)  
Chrominance Signal (For Y/C Mode)  
Chrominance Component Signal (For YUV Mode)  
Chrominance Component Signal (For YUV Mode)  
RED Component Video (For RGB Mode)  
Each DAC can be powered ON or OFF individually with the following control  
bits (“0” = ON, “1” = OFF).  
MR13-DAC C  
MR14-DAC D  
MR15-DAC B  
GREEN Component Video (For RGB Mode)  
BLUE Component Video (For RGB Mode)  
MR16-DAC A  
REV. 0  
–25–  
ADV7170/ADV7171  
MR41  
MR46  
MR45  
MR44  
MR43  
MR42  
MR40  
MR47  
SLEEP MODE  
CONTROL  
PEDESTAL  
CONTROL  
RGB SYNC  
OUTPUT SELECT  
MR42  
MR40  
MR44  
MR46  
0
1
DISABLE  
ENABLE  
0
1
YC OUTPUT  
RGB/YUV OUTPUT  
0
1
DISABLE  
ENABLE  
0
1
PEDESTAL OFF  
PEDESTAL ON  
MR47  
(0)  
ACTIVE VIDEO  
FILTER CONTROL  
RGB/YUV  
CONTROL  
VSYNC_3H  
MR43  
MR45  
MR41  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
0
1
DISABLE  
ENABLE  
0
1
ENABLE  
DISABLE  
0
1
RGB OUTPUT  
YUV OUTPUT  
Figure 42. Mode Register 4  
Pedestal Control (MR44)  
MODE REGISTER 4 MR4 (MR47–MR40)  
(Address (SR4–SR0) = 04H)  
This bit specifies whether a pedestal is to be generated on  
the NTSC composite video signal. This bit is invalid if the  
ADV7170/ADV7171 is configured in PAL mode.  
Mode Register 4 is a 8-bit-wide register.  
Figure 42 shows the various operations under the control of  
Mode Register 4.  
Active Video Filter Switching (MR45)  
This bit controls the filter mode applied outside the active video  
portion of the line. This filter ensures that the Sync rise and fall  
times are always on spec regardless of which Luma filter is se-  
lected. A Logic “1” enables this mode.  
MR4 BIT DESCRIPTION  
Output Select (MR40)  
This bit specifies if the part is in composite video or RGB/YUV  
mode. Note that in RGB/YUV mode the composite signal is  
still available.  
Sleep Mode Control (MR46)  
When this bit is set (“1”) Sleep Mode is enabled. With this  
mode enabled, the ADV7170/ADV7171 power consumption is  
reduced to typically 200 nA. The I2C registers can be written to  
and read from when the ADV7170/ADV7171 is in Sleep  
Mode. If MR46 is set to a (“0”) when the device is in Sleep  
Mode, the ADV7170/ADV7171 will come out of Sleep Mode  
and resume normal operation. Also, if the RESET signal is  
applied during Sleep Mode the ADV7170/ADV7171 will come  
out of Sleep Mode and resume normal operation.  
RGB/YUV Control (MR41)  
This bit enables the output from the RGB DACs to be set to  
YUV output video standard.  
RGB Sync (MR42)  
This bit is used to set up the RGB outputs with the sync infor-  
mation encoded on all RGB outputs.  
VSYNC_3H Control (MR43)  
When this bit is enabled (“1”) in slave mode, it is possible to  
drive the VSYNC active low input for 2.5 lines in PAL mode  
and 3 lines in NTSC mode. When this bit is enabled in mas-  
ter mode, the ADV7170/ADV7171 outputs an active low  
VSYNC signal for 3 lines in NTSC mode and 2.5 lines in PAL  
mode.  
Reserved (MR47)  
A Logical 0 should be written to this bit.  
TIMING REGISTER 0 (TR07–TR00)  
(Address [SR4–SR0] = 07H)  
Figure 43 shows the various operations under the control of  
Timing Register 0. This register can be read from as well as  
written to.  
TR01  
TR07  
TR06  
TR05  
TR04  
TR03  
TR02  
TR00  
BLACK INPUT  
CONTROL  
TIMING  
REGISTER RESET  
MASTER/SLAVE  
CONTROL  
TR03  
TR00  
TR07  
0
1
ENABLE  
DISABLE  
0
1
SLAVE TIMING  
MASTER TIMING  
PIXEL PORT  
CONTROL  
TIMING MODE  
SELECTION  
LUMA DELAY  
TR05 TR04  
TR06  
TR02 TR01  
0
0
1
1
0
1
0
1
0ns DELAY  
0
8 BIT  
0
0
1
1
0
1
0
1
MODE 0  
74ns DELAY  
148ns DELAY  
222ns DELAY  
1
16 BIT  
MODE 1  
MODE 2  
MODE 3  
Figure 43. Timing Register 0  
–26–  
REV. 0  
ADV7170/ADV7171  
TR0 BIT DESCRIPTION  
TIMING REGISTER 1 (TR17–TR10)  
Master/Slave Control (TR00)  
(Address (SR4–SR0) = 08H)  
This bit controls whether the ADV7170/ADV7171 is in master  
or slave mode.  
Timing Register 1 is a 8-bit-wide register.  
Figure 44 shows the various operations under the control of  
Timing Register 1. This register can be read from as well writ-  
ten to. This register can be used to adjust the width and position  
of the master mode timing signals.  
Timing Mode Control (TR02–TR01)  
These bits control the timing mode of the ADV7170/ADV7171.  
These modes are described in more detail in the Timing and  
Control section of the data sheet.  
TR1 BIT DESCRIPTION  
HSYNC Width (TR11–TR10)  
These bits adjust the HSYNC pulsewidth.  
BLANK Control (TR03)  
This bit controls whether the BLANK input is used when the  
part is in slave mode.  
HSYNC to VSYNC/FIELD Delay Control (TR13–TR12)  
These bits adjust the position of the HSYNC output relative to  
the FIELD/VSYNC output.  
Luma Delay Control (TR05–TR04)  
These bits control the addition of a luminance delay. Each bit  
represents a delay of 74 ns.  
HSYNC to FIELD Delay Control (TR15–TR14)  
When the ADV7170/ADV7171 is in timing mode 1, these bits  
adjust the position of the HSYNC output relative to the FIELD  
output rising edge.  
Pixel Port Select (TR06)  
This bit is used to set the pixel port to accept 8-bit or 16-bit  
data. If an 8-bit input is selected the data will be set up on Pins  
P7–P0.  
VSYNC Width (TR15–TR14)  
When the ADV7170/ADV7171 is configured in Timing Mode  
2, these bits adjust the VSYNC pulsewidth.  
Timing Register Reset (TR07)  
Toggling TR07 from low to high and low again resets the inter-  
nal timing counters. This bit should be toggled after power-up,  
reset or changing to a new timing mode.  
HSYNC to Pixel Data Adjust (TR17–TR16)  
This enables the HSYNC to be adjusted with respect to the  
pixel data. This allows the Cr and Cb components to be  
swapped. This adjustment is available in both master and slave  
timing modes.  
TR17  
TR16  
TR15  
TR14  
TR13  
TR12  
TR11  
TR10  
HSYNC TO PIXEL  
DATA ADJUSTMENT  
HSYNC TO FIELD  
RISING EDGE DELAY  
(MODE 1 ONLY)  
HSYNC WIDTH  
HSYNC TO  
FIELD/VSYNC DELAY  
T
TR11 TR10  
A
TR17 TR16  
T
TR13 TR12  
0
0
1
1
0
1
0
1
1 
؋
 T  
4 
؋
 T  
B
PCLK  
T
TR15 TR14  
C
0
0
1
1
0
1
0
1
0 
؋
 T  
1 
؋
 T  
2 
؋
 T  
3 
؋
 T  
0
0
1
1
0
1
0
1
0 
؋
 T  
4 
؋
 T  
8 
؋
 T  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
x
x
0
1
T
T
B
16 
؋
 T  
PCLK  
+ 32s  
B
128 
؋
 T  
PCLK  
16 
؋
 T  
PCLK  
VSYNC WIDTH  
(MODE 2 ONLY)  
TR15 TR14  
0
0
1
1
0
1
0
1
1 
؋
 T  
4 
؋
 T  
PCLK  
PCLK  
16 
؋
 T  
PCLK  
128 
؋
 T  
PCLK  
TIMING MODE 1 (MASTER/PAL)  
LINE 1  
LINE 313  
LINE 314  
TA  
TB  
HSYNC  
TC  
FIELD/VSYNC  
Figure 44. Timing Register 1  
REV. 0  
–27–  
ADV7170/ADV7171  
SUBCARRIER FREQUENCY REGISTER 3–0  
(FSC3–FSC0)  
(Address [SR4–SR0] = 09H–02H)  
NTSC PEDESTAL/PAL TELETEXT CONTROL  
REGISTERS 3–0 (PCE15–0, PCO15–0)/(TXE15–0, TXO15–0)  
(Subaddress [SR4–SR0] = 12–15H)  
These 8-bit-wide registers are used to set up the subcarrier  
frequency. The value of these registers is calculated by using the  
following equation:  
These 8-bit-wide registers are used to enable the NTSC pedes-  
tal/PAL Teletext on a line-by-line basis in the vertical blanking  
interval for both odd and even fields. Figures 48 and 49 show  
the four control registers. A Logic “1” in any of the bits of these  
registers has the effect of turning the Pedestal OFF on the  
equivalent line when used in NTSC. A Logic “1” in any of the  
bits of these registers has the effect of turning Teletext ON on  
the equivalent line when used in PAL.  
232 –1  
FCLK  
× FSCF  
Subcarrier Frequency Register =  
i.e.: NTSC Mode,  
FCLK = 27 MHz,  
FSCF = 3.5795454 MHz  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
232 –1  
27 ×106  
PCO7  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
PCO15 PCO14 PCO13 PCO12 PCO11 PCO10 PCO9 PCO8  
PCO6  
PCO5  
PCO4  
PCO3  
PCO2  
PCO1  
PCO0  
FIELD 1/3  
FIELD 1/3  
× 3.5795454 ×106  
Subcarrier Frequency Value =  
= 21F07C16HEX  
Figure 45 shows how the frequency is set up by the four registers.  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
PCE7 PCE6 PCE5 PCE4 PCE3 PCE2 PCE1 PCE0  
FIELD 2/4  
FIELD 2/4  
SUBCARRIER PHASE REGISTER (FP7–FP0)  
(Address [SR4–SR0] = 0DH)  
This 8-bit-wide register is used to set up the subcarrier phase.  
Each bit represents 1.41°. For normal operation this register is  
set to 00Hex.  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
PCE15 PCE14 PCE13 PCE12 PCE11 PCE10 PCE9 PCE8  
Figure 48. Pedestal Control Registers  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXO7 TXO6 TXO5 TXO4 TXO3 TXO2 TXO1 TXO0  
SUBCARRIER  
FREQUENCY  
REG 3  
FSC30  
FSC31  
FSC29 FSC28 FSC27 FSC26 FSC25 FSC24  
FIELD 1/3  
FIELD 1/3  
SUBCARRIER  
FREQUENCY  
REG 2  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
TXO15 TXO14 TXO13 TXO12 TXO11 TXO10 TXO9 TXO8  
FSC23 FSC22 FSC21 FSC20 FSC19 FSC18 FSC17 FSC16  
SUBCARRIER  
FREQUENCY  
REG 1  
FSC14  
FSC6  
FSC15  
FSC7  
FSC13 FSC12 FSC11 FSC10 FSC9  
FSC8  
FSC0  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXE7 TXE6 TXE5 TXE4 TXE3 TXE2 TXE1 TXE0  
SUBCARRIER  
FREQUENCY  
REG 0  
FIELD 2/4  
FIELD 2/4  
FSC5  
FSC4  
FSC3 FSC2 FSC1  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
TXE15 TXE14 TXE13 TXE12 TXE11 TXE10 TXE9 TXE8  
Figure 45. Subcarrier Frequency Register  
CLOSED CAPTIONING EVEN FIELD  
DATA REGISTER 1–0 (CED15–CED00)  
(Address [SR4–SR0] = 0E–0FH)  
These 8-bit-wide registers are used to set up the closed captioning  
extended data bytes on even fields. Figure 46 shows how the  
high and low bytes are set up in the registers.  
Figure 49. Teletext Control Registers  
TELETEXT CONTROL REGISTER TC07 (TC07–TC00)  
(Address [SR4–SR0] = 19H)  
Teletext Control Register is an 8-bit-wide register. See Figure 50.  
TTXREQ Rising Edge Control (TC07–TC04)  
These bits control the position of the rising edge of TTXREQ.  
It can be programmed from zero CLOCK cycles to a max of 15  
CLOCK cycles. See Figure 59.  
CED15 CED14 CED13 CED12 CED11 CED10  
CED9  
CED8  
BYTE 1  
CED7  
CED6  
CED5  
CED4  
CED3  
CED2  
CED1  
CED0  
BYTE 0  
TTXREQ Falling Edge Control (TC03–TC00)  
These bits control the position of the falling edge of TTXREQ.  
It can be programmed from zero CLOCK cycles to a max of 15  
CLOCK cycles. This controls the active window for Teletext  
data. Increasing this value reduces the amount of Teletext bits  
below the default of 360. If Bits TC03-TC00 are 00Hex when  
bits TC07–TC04 are changed, the falling edge of TTREQ will  
track that of the rising edge (i.e., the time between the falling  
and rising edge remains constant). See Figure 59.  
Figure 46. Closed Captioning Extended Data Register  
CLOSED CAPTIONING ODD FIELD  
DATA REGISTER 1–0 (CCD15–CCD00)  
(Subaddress [SR4–SR0] = 10–11H)  
These 8-bit-wide registers are used to set up the closed  
captioning data bytes on odd fields. Figure 47 shows how the  
high and low bytes are set up in the registers.  
CGMS_WSS REGISTER 0 C/W0 (C/W07–C/W00)  
(Address [SR4–SR0] = 16H)  
CCD15  
CCD14 CCD13 CCD12 CCD11 CCD10  
CCD9  
CCD8  
BYTE 1  
CGMS_WSS Register 0 is an 8-bit-wide register. Figure 51  
shows the operations under the control of this register.  
CCD7  
CCD6  
CCD5  
CCD4  
CCD3  
CCD2  
CCD1  
CCD0  
BYTE 0  
Figure 47. Closed Captioning Data Register  
–28–  
REV. 0  
ADV7170/ADV7171  
TC06  
TC05  
TC04  
TC03  
TC02  
TC01  
TC00  
TC07  
TTXREQ RISING EDGE CONTROL  
TC07 TC06 TC05 TC04  
TTXREQ FALLING EDGE CONTROL  
TC03 TC02 TC01 TC00  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
Figure 50. Teletext Control Register  
C/W07  
C/W06  
C/W05  
C/W04  
C/W03  
C/W02  
C/W01  
C/W00  
C/W03–C/W00  
WIDE SCREEN SIGNAL  
CONTROL  
CGMS ODD FIELD  
CONTROL  
CGMS DATA BITS  
C/W07  
C/W05  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
CGMS EVEN FIELD  
CONTROL  
CGMS CRC CHECK  
CONTROL  
C/W06  
C/W04  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
Figure 51. CGMS_WSS Register 0  
CGMS_WSS REGISTER 1 C/W1 (C/W17–C/W10)  
C/W0 BIT DESCRIPTION  
CGMS Data Bits (C/W03–C/W00)  
(Address [SR4–SR0] = 17H)  
CGMS_WSS register 1 is an 8-bit-wide register. Figure 52  
shows the operations under the control of this register.  
These four data bits are the final four bits of CGMS data output  
stream. Note it is CGMS data ONLY in these bit positions, i.e.,  
WSS data does not share this location.  
C/W1 BIT DESCRIPTION  
CGMS/WSS Data Bits (C/W15–C/W10)  
These bit locations are shared by CGMS data and WSS data. In  
NTSC mode these bits are CGMS data. In PAL mode these  
bits are WSS data.  
CGMS CRC Check Control (C/W04)  
When this bit is enabled (“1”), the last six bits of the CGMS  
data, i.e., the CRC check sequence, is calculated internally by  
the ADV7170/ADV7171. If this bit is disabled (“0”) the CRC  
values in the register are output to the CGMS data stream.  
CGMS Data Bits (C/W17–C/W16)  
These bits are CGMS data bits only.  
CGMS Odd Field Control (C/W05)  
When this bit is set (“1”), CGMS is enabled for odd fields.  
Note this is only valid in NTSC mode.  
CGMS_WSS REGISTER 2 C/W1 (C/W27–C/W20)  
(Address [SR4–SR0] = 18H)  
CGMS_WSS register 2 is an 8-bit-wide register. Figure 53  
shows the operations under the control of this register.  
CGMS Even Field Control (C/W06)  
When this bit is set (“1”), CGMS is enabled for even fields.  
Note this is only valid in NTSC mode.  
C/W2 BIT DESCRIPTION  
WSS Control (C/W07)  
When this bit is set (“1”), wide screen signaling is enabled. Note  
this is only valid in PAL mode.  
CGMS/WSS Data Bits (C/W27–C/W20)  
These bit locations are shared by CGMS data and WSS data. In  
NTSC mode these bits are CGMS data. In PAL mode these  
bits are WSS data.  
C/W17  
C/W16  
C/W15  
C/W14  
C/W13  
C/W12  
C/W11  
C/W10  
C/W17 C/W16  
CGMS DATA ONLY  
C/W15–C/W10  
CGMS/WSS DATA  
Figure 52. CGMS_WSS Register 1  
C/W27  
C/W26  
C/W25  
C/W24  
C/W23  
C/W22  
C/W21  
C/W20  
C/W27–C/W20  
CGMS/WSS DATA  
Figure 53. CGMS_WSS Register 2  
–29–  
REV. 0  
ADV7170/ADV7171  
APPENDIX 1  
BOARD DESIGN AND LAYOUT CONSIDERATIONS  
Supply Decoupling  
The ADV7170/ADV7171 is a highly integrated circuit containing  
both precision analog and high speed digital circuitry. It has  
been designed to minimize interference effects on the integrity  
of the analog circuitry by the high speed digital circuitry. It is  
imperative that these same design and layout techniques be  
applied to the system level design so that high speed, accurate  
performance is achieved. Figure 54, Recommended Analog  
Circuit Layout, shows the analog interface between the device  
and monitor.  
For optimum performance, bypass capacitors should be in-  
stalled using the shortest leads possible, consistent with reliable  
operation, to reduce the lead inductance. Best performance is  
obtained with 0.1 µF ceramic capacitor decoupling. Each group  
of VAA pins on the ADV7170/ADV7171 must have at least one  
0.1 µF decoupling capacitor to GND. These capacitors should  
be placed as close to the device as possible.  
It is important to note that while the ADV7170/ADV7171 con-  
tains circuitry to reject power supply noise, this rejection de-  
creases with frequency. If a high frequency switching power  
supply is used, the designer should pay close attention to reduc-  
ing power supply noise and consider using a three-terminal voltage  
regulator for supplying power to the analog power plane.  
The layout should be optimized for lowest noise on the ADV7170/  
ADV7171 power and ground lines by shielding the digital inputs  
and providing good decoupling. The lead length between groups  
of VAA and GND pins should by minimized to minimize induc-  
tive ringing.  
Digital Signal Interconnect  
Ground Planes  
The digital inputs to the ADV7170/ADV7171 should be iso-  
lated as much as possible from the analog outputs and other  
analog circuitry. Also, these input signals should not overlay the  
analog power plane.  
The ground plane should encompass all ADV7170/ADV7171  
ground pins, voltage reference circuitry, power supply bypass  
circuitry for the ADV7170/ADV7171, the analog output traces,  
and all the digital signal traces leading up to the ADV7170/  
ADV7171. The ground plane is the board’s common ground  
plane.  
Due to the high clock rates involved, long clock lines to the  
ADV7170/ADV7171 should be avoided to reduce noise pickup.  
This should be as substantial as possible to maximize heat  
spreading and power dissipation on the board.  
Any active termination resistors for the digital inputs should be  
connected to the regular PCB power plane (VCC) and not the  
analog power plane.  
Power Planes  
The ADV7170/ADV7171 and any associated analog circuitry  
should have its own power plane, referred to as the analog  
power plane (VAA). This power plane should be connected to  
the regular PCB power plane (VCC) at a single point through a  
ferrite bead. This bead should be located within three inches of  
the ADV7170/ADV7171.  
Analog Signal Interconnect  
The ADV7170/ADV7171 should be located as close to the  
output connectors as possible to minimize noise pickup and  
reflections due to impedance mismatch.  
The video output signals should overlay the ground plane, not  
the analog power plane, to maximize the high frequency power  
supply rejection.  
The metallization gap separating device power plane and board  
power plane should be as narrow as possible to minimize the  
obstruction to the flow of heat from the device into the general  
board.  
Digital inputs, especially pixel data inputs and clocking signals,  
should never overlay any of the analog signal circuitry and  
should be kept as far away as possible.  
The PCB power plane should provide power to all digital logic  
on the PC board, and the analog power plane should provide  
power to all ADV7170/ADV7171 power pins and voltage refer-  
ence circuitry.  
For best performance, the outputs should each have a 75 load  
resistor connected to GND. These resistors should be placed  
as close as possible to the ADV7170/ADV7171 to minimize  
reflections.  
Plane-to-plane noise coupling can be reduced by ensuring that  
portions of the regular PCB power and ground planes do not  
overlay portions of the analog power plane unless they can be  
arranged so that the plane-to-plane noise is common-mode.  
The ADV7170/ADV7171 should have no inputs left floating.  
Any inputs that are not required should be tied to ground.  
–30–  
REV. 0  
ADV7170/ADV7171  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
0.1F  
0.01F  
L1  
(FERRITE BEAD)  
+5V (V  
)
AA  
+5V (V  
)
+5V (V  
)
+5V  
AA  
AA  
(V  
)
1, 11, 20, 28, 30  
33F  
10F  
CC  
0.1F  
GND  
0.1F  
V
AA  
COMP  
25  
33  
27  
DAC D  
DAC C  
V
REF  
75⍀  
75⍀  
75⍀  
75⍀  
ADV7170/  
ADV7171  
38–42,  
2–9, 12–14  
26  
+5V (V  
)
P15–P0  
AA  
S VIDEO  
4k⍀  
35  
DAC B 31  
SCRESET/RTC  
RESET  
100nF  
15 HSYNC  
“UNUSED  
INPUTS  
SHOULD BE  
GROUNDED”  
FIELD/VSYNC  
16  
17  
22  
+5V (V  
)
32  
DAC A  
AA  
+5V (V  
)
+5V (V  
)
CC  
CC  
BLANK  
RESET  
TTX  
100k⍀  
5k⍀  
5k⍀  
TTX  
TTXREQ  
100⍀  
100⍀  
37  
36  
44  
SCLOCK 23  
SDATA 24  
MPU BUS  
TTXREQ  
CLOCK  
100k⍀  
34  
R
SET  
+5V (V  
)
AA  
ALSB  
18  
GND  
150⍀  
TELETEXT PULL-UP AND  
PULL-DOWN RESISTORS  
SHOULD ONLY BE USED  
IF THESE PINS ARE NOT  
CONNECTED  
10k⍀  
10, 19, 21  
29, 43  
27MHz CLOCK  
(SAME CLOCK AS USED BY  
MPEG2 DECODER)  
Figure 54. Recommended Analog Circuit Layout  
The circuit below can be used to generate a 13.5 MHz waveform using the 27 MHz clock and the HSYNC pulse. This waveform  
is guaranteed to produce the 13.5 MHz clock in synchronization with the 27 MHz clock. This 13.5 MHz clock can be used if  
13.5 MHz clock is required by the MPEG decoder. This will guarantee that the Cr and Cb pixel information is input to the  
ADV7170/ADV7171 in the correct sequence.  
D
Q
13.5MHz  
D
Q
CLOCK  
CK  
CK  
HSYNC  
Figure 55. Circuit to Generate 13.5 MHz  
REV. 0  
–31–  
ADV7170/ADV7171  
APPENDIX 2  
CLOSED CAPTIONING  
The ADV7170/ADV7171 supports closed captioning, conform-  
ing to the standard television synchronizing waveform for color  
transmission. Closed captioning is transmitted during the  
blanked active line time of Line 21 of the odd fields and Line  
284 of even fields.  
FCC Code of Federal Regulations (CFR) 47 Section 15.119  
and EIA608 describe the closed captioning information for  
Lines 21 and 284.  
The ADV7170/ADV7171 uses a single buffering method. This  
means that the closed captioning buffer is only one byte deep,  
therefore there will be no frame delay in outputting the closed  
captioning data unlike other 2-byte deep buffering systems. The  
data must be loaded at least one line before (Line 20 or Line  
283) it is outputted on Line 21 and Line 284. A typical imple-  
mentation of this method is to use VSYNC to interrupt a micro-  
processor, which will in turn load the new data (two bytes) every  
field. If no new data is required for transmission, you must  
insert zeros in both the data registers; this is called NULLING.  
It is also important to load “control codes,” all of which are  
double bytes, on Line 21, or a TV will not recognize them. If  
you have a message like “Hello World,” which has an odd num-  
ber of characters, it is important to pad it out to an even number  
to get “end of caption” 2-byte control code to land in the same  
field.  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency and phase locked to the caption data. After the clock  
run-in signal, the blanking level is held for two data bits and is  
followed by a Logic Level “1” start bit. 16 bits of data follow  
the start bit. These consist of two 8-bit bytes, seven data bits  
and one odd parity bit. The data for these bytes is stored in  
closed captioning Data Registers 0 and 1.  
The ADV7170/ADV7171 also supports the extended closed  
captioning operation, which is active during even fields, and is  
encoded on scan Line 284. The data for this operation is stored  
in closed captioning extended Data Registers 0 and 1.  
All clock run-in signals and timing to support closed caption-  
ing on Lines 21 and 284 are automatically generated by the  
ADV7170/ADV7171. All pixels inputs are ignored during  
Lines 21 and 284.  
10.5 ؎ 0.25s  
12.91s  
7 CYCLES  
OF 0.5035 MHz  
(CLOCK RUN-IN)  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
S
T
A
R
T
P
A
R
I
T
Y
D0–D6  
D0–D6  
50 IRE  
40 IRE  
BYTE 1  
BYTE 0  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003s  
33.764s  
27.382s  
Figure 56. Closed Captioning Waveform (NTSC)  
–32–  
REV. 0  
ADV7170/ADV7171  
APPENDIX 3  
COPY GENERATION MANAGEMENT SYSTEM (CGMS)  
The ADV7170/ADV7171 supports Copy Generation Management System (CGMS) conforming to the standard. CGMS data is  
transmitted on Line 20 of the odd fields and Line 283 of even fields. Bits C/W05 and C/W06 control whether or not CGMS data  
is output on ODD and EVEN fields. CGMS data can only be transmitted when the ADV7170/ADV7171 is configured in NTSC  
mode. The CGMS data is 20 bits long, the function of each of these bits is as shown below. The CGMS data is preceded by a refer-  
ence pulse of the same amplitude and duration as a CGMS bit (see Figure 57). The bits are output from the configuration registers  
in the following order; C/W00 = C16, C/W01 = C17, C/W02 = C18, C/W03 = C19, C/W10 = C8, C/W11 = C9, C/W12 = C10,  
C/W13 = C11, C/W14 = C12, C/W15 = C13, C/W16 = C14, C/W17 = C15, C/W20 = C0, C/W21 = C1, C/W22 = C2, C/W23 = C3,  
C/W24 = C4, C/W25 = C5, C/W26 = C6, C/W27 = C7. If the Bit C/W04 is set to a Logic “1,” the last six bits, C19–C14, which  
comprise the 6-bit CRC check sequence, are calculated automatically on the ADV7170/ADV7171 based on the lower 14 bits  
(C0–C13) of the data in the data registers and output with the remaining 14 bits to form the complete 20 bits of the CGMS data.  
The calculation of the CRC sequence is based on the polynomial X6 + X + 1 with a preset value of 111111. If C/W04 is set to a  
Logic “0,” all 20 bits (C0–C19) are directly output from the CGMS registers (no CRC calculated, must be calculated by the user).  
Function of CGMS Bits  
Word 0 – 6 Bits  
Word 1 – 4 Bits  
Word 2 – 6 Bits  
CRC  
– 6 Bits  
CRC Polynomial = X6 + X + 1 (Preset to 111111)  
0
Word 0  
B1  
B2  
1
Aspect Ratio  
Display Format  
Undefined  
16:94:3  
Letterbox  
Normal  
B3  
Word 0  
B4, B5, B6  
Identification information about video and other signals (e.g., audio)  
Identification signal incidental to Word 0  
Word 1  
B7, B8, B9, B10  
Word 2  
B11, B12, B13, B14 Identification signal and information incidental to Word 0  
100 IRE  
CRC SEQUENCE  
REF  
70 IRE  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19  
0 IRE  
49.1s ؎0.5s  
–40 IRE  
11.2s  
2.235s ؎20s  
Figure 57. CGMS Waveform Diagram  
REV. 0  
–33–  
ADV7170/ADV7171  
APPENDIX 4  
WIDE SCREEN SIGNALING  
The ADV7170/ADV7171 supports Wide Screen Signalling (WSS) conforming to the standard. WSS data is transmitted on Line 23.  
WSS data can only be transmitted when the ADV7170/ADV7171 is configured in PAL mode. The WSS data is 14 bits long, the  
function of each of these bits is as shown below. The WSS data is preceded by a run-in sequence and a Start Code (see Figure 58).  
The bits are output from the configuration registers in the following order; C/W20 = W0, C/W21 = W1, C/W22 = W2, C/W23 = W3,  
C/W24 = W4, C/W25 = W5, C/W26 = W6, C/W27 = W7, C/W10 = W8, C/W11 = W9, C/W12 = W10, C/W13 = W11, C/W14 = W12,  
C/W15 = W13. If the bit C/W07 is set to a Logic “1” it enables the WSS data to transmitted on Line 23. The latter portion of Line  
23 (42.5 µs from the falling edge of HSYNC) is available for the insertion of video.  
Function of CGMS Bits  
Bit 0–Bit 2  
Aspect Ratio/Format/Position  
Bit 3 is odd parity check of Bit 0–Bit 2  
B0 B1 B2 B3 Aspect Ratio Format  
Position  
Nonapplicable  
Center  
Top  
Center  
Top  
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
1
0
0
1
0
1
1
0
4:3  
Full Format  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Full Format  
14:9  
14:9  
16:9  
16:9  
>16:9  
14:9  
16:9  
Center  
Center  
Nonapplicable Nonapplicable  
B4  
0
1
B9 B10  
Camera Mode  
Film Mode  
0
1
0
1
0
0
1
1
No Open Subtitles  
Subtitles In Active Image Area  
Subtitles Out of Active Image Area  
Reserved  
B5  
0
Standard Coding  
1
Motion Adaptive Color Plus  
B11  
0
1
No Surround Sound Information  
Surround Sound Mode  
B6  
0
No Helper  
1
Modulated Helper  
B12  
B13  
RESERVED  
RESERVED  
B7  
RESERVED  
500mV  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13  
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
11.0s  
38.4s  
42.5s  
Figure 58. WSS Waveform Diagram  
–34–  
REV. 0  
ADV7170/ADV7171  
APPENDIX 5  
TELETEXT INSERTION  
tPD is the time needed by the ADV7170/ADV7171 to interpolate input data on TTX and insert it onto the CVBS or Y outputs, such  
that it appears tSYNTXTOUT = 10.2 µs after the leading edge of the horizontal signal. Time TXTDEL is the pipeline delay time by the  
source that is gated by the TTREQ signal in order to deliver TTX data.  
With the programmability offered with TTXREQ signal on the Rising/Falling edges, the TTX data is always inserted at the correct  
position of 10.2 µs after the leading edge of Horizontal Sync pulse, thus enabling a source interface with variable pipeline delays.  
The width of the TTXREQ signal must always be maintained to allow the insertion of 360 (to comply with the Teletext Standard  
“PAL-WST”) teletext bits at a text data rate of 6.9375 Mbits/s, this is achieved by setting TC03–TC00 to zero. The insertion win-  
dow is not open if the Teletex Enable bit (MR34) is set to zero.  
Teletext Protocol  
The relationship between the TTX bit clock (6.9375 MHz) and the system CLOCK (27 MHz) for 50 Hz is given as follows:  
(27 MHz/4) = 6.75 MHz  
(6.9375 × 106/6.75 × 106) = 1.027777  
Thus 37 TTX bits correspond to 144 clocks (27 MHz) and each bit has a width of almost four clock cycles. The ADV7170/ADV7171  
uses an internal sequencer and variable phase interpolation filter to minimize the phase jitter and thus generate a bandlimited signal  
that can be outputted on the CVBS and Y outputs.  
At the TTX input the bit duration scheme repeats after every 37 TTX bits or 144 clock cycles. The protocol requires that TTX Bits  
10, 19, 28, 37 are carried by three clock cycles, all other bits by four clock cycles. After 37 TTX bits, the next bits with three clock  
cycles are 47, 56, 65 and 74. This scheme holds for all following cycles of 37 TTX bits, until all 360 TTX bits are completed. All  
teletext lines are implemented in the say way. Individual control of teletext lines is controlled by Teletext Setup Registers.  
45 BYTES (360 BITS) – PAL  
ADDRESS & DATA  
TELETEXT VBI LINE  
RUN-IN CLOCK  
Figure 59. Teletext VBI Line  
tSYNTXTOUT  
CVBS/Y  
tPD  
tPD  
HSYNC  
10.2s  
TXT  
DATA  
TXT  
DEL  
TXTREQ  
TXT  
ST  
PROGRAMMABLE PULSE EDGES  
tSYNTXTOUT = 10.2s  
tPD = PIPELINE DELAY THROUGH ADV7170/ADV7171  
TXT = TTXREQ TO TTX (PROGRAMMABLE RANGE = 4 BITS [0–15 CLOCK CYCLES])  
DEL  
Figure 60. Teletext Functionality Diagram  
REV. 0  
–35–  
ADV7170/ADV7171  
APPENDIX 6  
NTSC WAVEFORMS (WITH PEDESTAL)  
1268.1mV  
1048.4mV  
130.8 IRE  
100 IRE  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
387.6mV  
334.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
SYNC LEVEL  
48.3mV  
–40 IRE  
Figure 61. NTSC Composite Video Levels  
1048.4mV  
100 IRE  
REF WHITE  
714.2mV  
387.6mV  
334.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
SYNC LEVEL  
48.3mV  
–40 IRE  
Figure 62. NTSC Luma Video Levels  
PEAK CHROMA  
1067.7mV  
650mV  
835mV (pk-pk)  
286mV (pk-pk)  
BLANK/BLACK LEVEL  
PEAK CHROMA  
232.2mV  
0mV  
Figure 63. NTSC Chroma Video Levels  
100 IRE  
REF WHITE  
1052.2mV  
720.8mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
387.5mV  
331.4mV  
SYNC LEVEL  
–40 IRE  
45.9mV  
Figure 64. NTSC RGB Video Levels  
–36–  
REV. 0  
ADV7170/ADV7171  
NTSC WAVEFORMS (WITHOUT PEDESTAL)  
130.8 IRE  
100 IRE  
1289.8mV  
1052.2mV  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
338mV  
52.1mV  
–40 IRE  
Figure 65. NTSC Composite Video Levels  
1052.2mV  
100 IRE  
REF WHITE  
714.2mV  
338mV  
52.1mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
–40 IRE  
Figure 66. NTSC Luma Video Levels  
PEAK CHROMA  
1101.6mV  
650mV  
903.2mV (pk-pk)  
307mV (pk-pk)  
BLANK/BLACK LEVEL  
PEAK CHROMA  
198.4mV  
0mV  
Figure 67. NTSC Chroma Video Levels  
100 IRE  
1052.2mV  
REF WHITE  
715.7mV  
BLANK/BLACK LEVEL 336.5mV  
51mV  
0 IRE  
SYNC LEVEL  
–40 IRE  
Figure 68. NTSC RGB Video Levels  
REV. 0  
–37–  
ADV7170/ADV7171  
PAL WAVEFORMS  
PEAK COMPOSITE  
REF WHITE  
1284.2mV  
1047.1mV  
696.4mV  
350.7mV  
50.8mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
Figure 69. PAL Composite Video Levels  
REF WHITE  
1047mV  
696.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
350.7mV  
50.8mV  
Figure 70. PAL Luma Video Levels  
PEAK CHROMA  
1092.5mV  
650mV  
885mV (pk-pk)  
300mV (pk-pk)  
BLANK/BLACK LEVEL  
PEAK CHROMA  
207.5mV  
0mV  
Figure 71. PAL Chroma Video Levels  
REF WHITE  
1050.2mV  
698.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
351.8mV  
51mV  
Figure 72. PAL RGB Video Levels  
–38–  
REV. 0  
ADV7170/ADV7171  
UV WAVEFORMS  
505mV  
334mV  
505mV  
423mV  
171mV  
BETACAM LEVEL  
BETACAM LEVEL  
0mV  
82mV  
0mV  
0mV  
0mV  
–82mV  
؊171mV  
؊334mV  
–423mV  
–505mV  
؊505mV  
Figure 73. NTSC 100% Color Bars, No Pedestal U Levels  
Figure 76. NTSC 100% Color Bars, No Pedestal V Levels  
467mV  
467mV  
391mV  
309mV  
158mV  
BETACAM LEVEL  
76mV  
BETACAM LEVEL  
0mV  
0mV  
0mV  
0mV  
–76mV  
–158mV  
–309mV  
–391mV  
–467mV  
–467mV  
Figure 74. NTSC 100% Color Bars with Pedestal U Levels  
Figure 77. NTSC 100% Color Bars with Pedestal V Levels  
350mV  
350mV  
293mV  
232mV  
118mV  
SMPTE LEVEL  
57mV  
SMPTE LEVEL  
0mV  
0mV  
0mV  
0mV  
–57mV  
–118mV  
–232mV  
–293mV  
–350mV  
–350mV  
Figure 75. PAL 100% Color Bars, U Levels  
Figure 78. PAL 100% Color Bars, V Levels  
REV. 0  
–39–  
ADV7170/ADV7171  
APPENDIX 7  
OPTIONAL OUTPUT FILTER  
is not required if the outputs of the ADV7170/ADV7171 are  
connected to most analog monitors or analog TVs, however if  
the output signals are applied to a system where sampling is  
used (e.g., Digital TVs), then a filter is required to prevent  
aliasing.  
If an output filter is required for the CVBS, Y, UV, Chroma  
and RGB outputs of the ADV7170/ADV7171, the filter shown  
in Figure 79 can be used. Plots of the filter characteristics are  
shown in Figure 80, Figure 81 and Figure 82. An Output Filter  
0
L
L
L
1H  
2.7H  
0.68H  
V
– OP  
dB  
IN  
OUT  
–5  
C
C
C
56pF  
R
R
470pF  
330pF  
75⍀  
75⍀  
–10  
–15  
–20  
–25  
–30  
–35  
Figure 79. Output Filter  
0
–5  
–10  
V
– OP  
–15  
–20  
–25  
–30  
dB  
1
10  
100  
FREQUENCY – MHz  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
Figure 81. Output Filter Plot Close-Up  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
V
– OP  
dB  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 80. Output Filter Plot  
3
1
2
4
5
6
7
8
9 10  
FREQUENCY – MHz  
Filter 82. Output Filter Plot Close-Up  
–40–  
REV. 0  
ADV7170/ADV7171  
APPENDIX 8  
OPTIONAL DAC BUFFERING  
When calculating absolute output full-scale current and voltage,  
use the following equations:  
When external buffering is needed of the ADV7170/ADV7171  
DAC outputs, the configuration in Figure 83 is recommended.  
This configuration shows the DAC outputs running at half  
(18 mA) their full current (36 mA) capability. This will allow  
the ADV7170/ADV7171 to dissipate less power; the analog cur-  
rent is reduced by 50% with a RSET of 300 and a RLOAD of 75 .  
This mode is recommended for 3.3 V operation as optimum  
performance is obtained from the DAC outputs at 18 mA with a  
VAA of 3.3 V. This buffer also adds extra isolation on the video  
outputs (see buffer circuit in Figure 84).  
VOUT = IOUT × RLOAD  
VREF × K  
(
=
)
IOUT  
RSET  
K = 4.2146 constant ,VREF = 1.235 V  
V
AA  
ADV7170/ADV7171  
OUTPUT  
BUFFER  
V
REF  
DAC A  
CVBS  
OUTPUT  
BUFFER  
DAC B  
DAC C  
DAC D  
CVBS  
PIXEL  
PORT  
DIGITAL  
CORE  
OUTPUT  
BUFFER  
LUMA  
R
SET  
OUTPUT  
BUFFER  
300⍀  
CHROMA  
Figure 83. Output DAC Buffering Configuration  
V
AA  
36⍀  
OUTPUT TO  
TV/MONITOR  
INPUT  
2N2907  
75⍀  
75⍀  
Figure 84. Recommended Output DAC Buffer  
REV. 0  
–41–  
ADV7170/ADV7171  
APPENDIX 9  
RECOMMENDED REGISTER VALUES  
The ADV7170/ADV7171 registers can be set depending on the  
user standard required.  
0FHex Closed Captioning Ext Register 1  
10Hex Closed Captioning Register 0  
11Hex Closed Captioning Register 1  
12Hex Pedestal Control Register 0  
13Hex Pedestal Control Register 1  
14Hex Pedestal Control Register 2  
15Hex Pedestal Control Register 3  
16Hex CGMS_WSS Reg 0  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
The following examples give the various register formats for  
several video standards.  
In each case the output is set to composite o/p with all DACs  
powered up and with the BLANK input control disabled. Addi-  
tionally, the burst and color information are enabled on the  
output and the internal color bar generator is switched off. In  
the examples shown, the timing mode is set to Mode 0 in slave  
format. TR02–TR00 of the Timing Register 0 control the tim-  
ing modes. For a detailed explanation of each bit in the com-  
mand registers, please turn to the Register Programming section  
of the data sheet. TR07 should be toggled after setting up a new  
timing mode. Timing Register 1 provides additional control over  
the position and duration of the timing signals. In the examples,  
this register is programmed in default mode.  
17Hex CGMS_WSS Reg 1  
18Hex CGMS_WSS Reg 2  
19Hex TeleText Control Register  
PAL N (FSC = 4.43361875 MHz)  
Address  
00Hex Mode Register 0  
01Hex Mode Register 1  
02Hex Mode Register 2  
03Hex Mode Register 3  
04Hex Mode Register 4  
07Hex Timing Register 0  
08Hex Timing Register 1  
09Hex Subcarrier Frequency Register 0  
0AHex Subcarrier Frequency Register 1  
0BHex Subcarrier Frequency Register 2  
0CHex Subcarrier Frequency Register 3  
0DHex Subcarrier Phase Register  
0EHex Closed Captioning Ext Register 0  
0FHex Closed Captioning Ext Register 1  
10Hex Closed Captioning Register 0  
11Hex Closed Captioning Register 1  
12Hex Pedestal Control Register 0  
13Hex Pedestal Control Register 1  
14Hex Pedestal Control Register 2  
15Hex Pedestal Control Register 3  
16Hex CGMS_WSS Reg 0  
Data  
05Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
CBHex  
8AHex  
09Hex  
2AHex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
PAL B, D, G, H, I (FSC = 4.43361875 MHz)  
Address  
Data  
00Hex Mode Register 0  
01Hex Mode Register 1  
02Hex Mode Register 2  
03Hex Mode Register 3  
04Hex Mode Register 4  
07Hex Timing Register 0  
08Hex Timing Register 1  
09Hex Subcarrier Frequency Register 0  
0AHex Subcarrier Frequency Register 1  
0BHex Subcarrier Frequency Register 2  
0CHex Subcarrier Frequency Register 3  
0DHex Subcarrier Phase Register  
0EHex Closed Captioning Ext Register 0  
0FHex Closed Captioning Ext Register 1  
10Hex Closed Captioning Register 0  
11Hex Closed Captioning Register 1  
12Hex Pedestal Control Register 0  
13Hex Pedestal Control Register 1  
14Hex Pedestal Control Register 2  
15Hex Pedestal Control Register 3  
16Hex CGMS_WSS Reg 0  
05Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
CBHex  
8AHex  
09Hex  
2AHex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
17Hex CGMS_WSS Reg 1  
18Hex CGMS_WSS Reg 2  
19Hex TeleText Control Register  
PAL-60 (FSC = 4.43361875 MHz)  
Address  
00Hex Mode Register 0  
01Hex Mode Register 1  
02Hex Mode Register 2  
03Hex Mode Register 3  
04Hex Mode Register 4  
07Hex Timing Register 0  
08Hex Timing Register 1  
09Hex Subcarrier Frequency Register 0  
0AHex Subcarrier Frequency Register 1  
0BHex Subcarrier Frequency Register 2  
0CHex Subcarrier Frequency Register 3  
0DHex Subcarrier Phase Register  
0EHex Closed Captioning Ext Register 0  
0FHex Closed Captioning Ext Register 1  
10Hex Closed Captioning Register 0  
11Hex Closed Captioning Register 1  
12Hex Pedestal Control Register 0  
13Hex Pedestal Control Register 1  
Data  
04Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
CBHex  
8AHex  
09Hex  
2AHex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
17Hex CGMS_WSS Reg 1  
18Hex CGMS_WSS Reg 2  
19Hex TeleText Control Register  
PAL M (FSC = 3.57561149 MHz)  
Address  
Data  
00Hex Mode Register 0  
01Hex Mode Register 1  
02Hex Mode Register 2  
03Hex Mode Register 3  
04Hex Mode Register 4  
07Hex Timing Register 0  
08Hex Timing Register 1  
09Hex Subcarrier Frequency Register 0  
0AHex Subcarrier Frequency Register 1  
0BHex Subcarrier Frequency Register 2  
0CHex Subcarrier Frequency Register 3  
0DHex Subcarrier Phase Register  
0EHex Closed Captioning Ext Register 0  
02Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
A3Hex  
EFHex  
E6Hex  
21Hex  
00Hex  
00Hex  
–42–  
REV. 0  
ADV7170/ADV7171  
PAL-60 (Continued) (FSC = 4.43361875 MHz)  
Address  
Data  
14Hex Pedestal Control Register 2  
15Hex Pedestal Control Register 3  
16Hex CGMS_WSS Reg 0  
17Hex CGMS_WSS Reg 1  
18Hex CGMS_WSS Reg 2  
19Hex TeleText Control Register  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
Power-Up Reset Values  
NTSC (FSC = 3.5795454 MHz)  
Address  
Data  
00Hex Mode Register 0  
01Hex Mode Register 1  
02Hex Mode Register 2  
03Hex Mode Register 3  
04Hex Mode Register 4  
07Hex Timing Register 0  
08Hex Timing Register 1  
09Hex Subcarrier Frequency Register 0  
0AHex Subcarrier Frequency Register 1  
0BHex Subcarrier Frequency Register 2  
0CHex Subcarrier Frequency Register 3  
0DHex Subcarrier Phase Register  
0EHex Closed Captioning Ext Register 0  
0FHex Closed Captioning Ext Register 1  
10Hex Closed Captioning Register 0  
11Hex Closed Captioning Register 1  
12Hex Pedestal Control Register 0  
13Hex Pedestal Control Register 1  
14Hex Pedestal Control Register 2  
15Hex Pedestal Control Register 3  
16Hex CGMS_WSS Reg 0  
00Hex  
58Hex  
00Hex  
00Hex  
10Hex  
00Hex  
00Hex  
16Hex  
7CHex  
F0Hex  
21Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
17Hex CGMS_WSS Reg 1  
18Hex CGMS_WSS Reg 2  
19Hex TeleText Control Register  
REV. 0  
–43–  
ADV7170/ADV7171  
APPENDIX 10  
OUTPUT WAVEFORMS  
0.6  
0.4  
0.2  
0.0  
؊0.2  
L608  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 0.00 dB  
APL = 39.1%  
PRECISION MODE OFF  
SYNCHRONOUS  
SOUND-IN-SYNC OFF  
SYNC = SOURCE  
625 LINE PAL  
NO FILTERING  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2 3 4  
Figure 85. 100%/75% PAL Color Bars  
0.5  
0.0  
L575  
0.0  
10.0  
20.0  
30.0  
MICROSECONDS  
PRECISION MODE OFF  
SYNCHRONOUS  
40.0  
50.0  
60.0  
70.0  
APL NEEDS SYNC = SOURCE!  
SOUND-IN-SYNC OFF  
SYNC = A  
625 LINE PAL  
NO FILTERING  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1  
Figure 86. 100%/75% PAL Color Bars Luminance  
–44–  
REV. 0  
ADV7170/ADV7171  
0.5  
0.0  
–0.5  
L575  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NO BRUCH SIGNAL  
APL NEEDS SYNC = SOURCE!  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 V AT 6.72 s  
PRECISION MODE OFF  
SYNCHRONOUS  
SOUND-IN-SYNC OFF  
SYNC = A  
FRAMES SELECTED: 1  
Figure 87. 100%/75% PAL Color Bars Chrominance  
100.0  
0.5  
50.0  
0.0  
0.0  
F1  
L76  
–50.0  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
APL = 44.6%  
PRECISION MODE OFF  
SYNCHRONOUS  
525 LINE NTSC  
NO FILTERING  
SYNC = A  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2  
Figure 88. 100%/75% NTSC Color Bars  
REV. 0  
–45–  
ADV7170/ADV7171  
0.6  
0.4  
0.2  
50.0  
0.0  
0.0  
–0.2  
F2  
L238  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL = 44.7%  
PRECISION MODE OFF  
525 LINE NTSC  
NO FILTERING  
SYNCHRONOUS  
SYNC = SOURCE  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2  
Figure 89. 100%/75% NTSC Color Bars Luminance  
0.4  
50.0  
0.2  
0.0  
–0.2  
–0.4  
–50.0  
F1  
L76  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC = SOURCE!  
PRECISION MODE OFF  
SYNCHRONOUS  
525 LINE NTSC  
NO FILTERING  
SYNC = B  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2  
Figure 90. 100%/75% NTSC Color Bars Chrominance  
–46–  
REV. 0  
ADV7170/ADV7171  
V
APL = 39.6%  
SYSTEM LINE L608  
ANGLE (DEG) 0.0  
GAIN x 1.000 0.000dB  
625 LINE PAL  
cy  
BURST FROM SOURCE  
DISPLAY +V & –V  
R
g
M
g
75%  
100%  
YI  
b
U
yl  
B
G
Cy  
m
g
r
SOUND IN SYNC OFF  
Figure 91. PAL Vector Plot  
R-Y  
APL = 45.1%  
SYSTEM LINE L76F1  
ANGLE (DEG) 0.0  
GAIN x 1.000 0.000dB  
525 LINE NTSC  
cy  
I
BURST FROM SOURCE  
R
M
g
Q
YI  
b
100%  
B-Y  
75%  
B
G
Cy  
–Q  
–I  
SETUP 7.5%  
Figure 92. NTSC Vector Plot  
–47–  
REV. 0  
ADV7170/ADV7171  
COLOR BAR (NTSC)  
WFM -->  
FCC COLOR BAR  
FIELD = 2 LINE = 28  
LUMINANCE LEVEL (IRE)  
0.4  
0.2  
0.2  
0.0  
0.2  
0.1  
0.2  
0.1  
30.0  
20.0  
10.0  
0.0  
–10.0  
CHROMINANCE LEVEL (IRE)  
0.0 –0.2  
1.0  
–0.2  
–0.3  
–0.2  
–0.3  
0.0  
0.0  
0.0  
–1.0  
CHROMINANCE PHASE (DEG)  
. . . . .  
–0.1  
–0.2  
–0.2  
–0.1  
–0.3  
–0.2  
- - - - -  
0.0  
–1.0  
–2.0  
GRAY  
YELLOW  
CYAN  
GREEN  
MAGENTA  
RED  
BLUE  
BLACK  
AVERAGE: 32 --> 32  
REFERENCE 75/7.5/75/7.5 COLOR BAR STANDARD  
Figure 93. NTSC Color Bar Measurement  
DGDP (NTSC)  
BLOCK MODE START F2 L64, STEP = 32, END = 192  
DIFFERENTIAL GAIN (%)  
WFM -->  
MOD 5 STEP  
0.05  
MIN = 0.00 MAX = 0.11 p-p/MAX = 0.11  
0.11 0.07  
0.00  
0.08  
0.07  
0.3  
0.2  
0.1  
0.0  
–0.1  
DIFFERENTIAL PHASE (DEG)  
0.00 0.03  
MIN = –0.02 MAX = 0.14 pk-pk = 0.16  
0.14 0.10  
–0.02  
0.10  
0.20  
0.15  
0.10  
0.05  
–0.00  
–0.05  
–0.10  
1ST  
2ND  
3RD  
4TH  
5TH  
6TH  
Figure 94. NTSC Differential Gain and Phase Measurement  
–48–  
REV. 0  
ADV7170/ADV7171  
LUMINANCE NONLINEARITY (NTSC)  
FIELD = 2 LINE = 21  
LUMINANCE NONLINEARITY (%)  
WFM -->  
5 STEP  
pk-pk = 0.2  
99.9  
99.9  
100.0  
99.9  
99.8  
100.4  
100.3  
100.2  
100.1  
100.0  
99.9  
99.8  
99.7  
99.6  
99.5  
99.4  
99.3  
99.2  
99.1  
99.0  
98.9  
98.8  
98.7  
98.6  
1ST  
2ND  
3RD  
4TH  
5TH  
Figure 95. NTSC Luminance Nonlinearity Measurement  
CHROMINANCE AM PM (NTSC)  
FULL FIELD (BOTH FIELDS)  
BANDWIDTH 100Hz TO 500kHz  
WFM -->  
APPROPRIATE  
AM NOISE  
–68.4dB RMS  
–75.0  
–70.0  
–65.0  
–60.0  
–55.0  
–50.0  
–45.0  
–40.0  
dB RMS  
PM NOISE  
–64.4dB RMS  
–75.0  
–70.0  
–65.0  
–60.0  
–55.0  
–50.0  
–45.0  
–40.0  
dB RMS  
(0dB = 714mV p-p WITH AGC FOR 100% CHROMINANCE LEVEL)  
Figure 96. NTSC AMPM Noise Measurement  
REV. 0  
–49–  
ADV7170/ADV7171  
NOISE SPECTRUM (NTSC)  
WFM -->  
PEDESTAL  
FIELD = 2 LINE = 64  
AMPLITUDE (0 dB = 714mV p-p)  
BANDWIDTH 100kHz TO FULL  
NOISE LEVEL = –80.1 dB RMS  
–5.0  
–10.0  
–15.0  
–20.0  
–25.0  
–30.0  
–35.0  
–40.0  
–45.0  
–50.0  
–55.0  
–60.0  
–65.0  
–70.0  
–75.0  
–80.0  
–85.0  
–90.0  
–95.0  
–100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
MHz  
Figure 97. NTSC SNR Pedestal Measurement  
NOISE SPECTRUM (NTSC)  
WFM -->  
RAMP SIGNAL  
FIELD = 2 LINE = 64  
AMPLITUDE (0 dB = 714mV p-p)  
BANDWIDTH 10kHz TO FULL (TILT NULL)  
NOISE LEVEL = –61.7 dB RMS  
–5.0  
–10.0  
–15.0  
–20.0  
–25.0  
–30.0  
–35.0  
–40.0  
–45.0  
–50.0  
–55.0  
–60.0  
–65.0  
–70.0  
–75.0  
–80.0  
–85.0  
–90.0  
–95.0  
–100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
MHz  
Figure 98. NTSC SNR Ramp Measurement  
–50–  
REV. 0  
ADV7170/ADV7171  
PARADE SMPTE/EBU PAL  
mV Y(A)  
mV  
250  
Pb(B)  
mV  
Pr(C)  
250  
700  
600  
200  
150  
100  
50  
200  
150  
100  
50  
500  
400  
300  
200  
0
0
100  
–50  
–50  
0
–100  
–150  
–200  
–250  
–100  
–150  
–200  
–250  
؊100  
؊200  
؊300  
Figure 99. PAL YUV Parade Plot  
LIGHTNING  
L183  
COLORBARS: 75% SMPTE/EBU (50Hz)  
Pk-WHITE (100%) 700.0mV SETUP 0.0% COLOR Pk-Pk 525.0mV  
AVERAGE 32 --> 32  
YI  
–274.82  
0.93%  
G
R
CY  
88.31  
0.28%  
M
B
–173.24  
0.19%  
–88.36  
0.19%  
174.35  
–0.65%  
260.51  
–0.14%  
B-Y  
W
YI  
CY  
864.78  
–0.88%  
462.80  
–0.50%  
YI  
G
G
307.54  
–0.21%  
CY  
M
216.12  
–0.33%  
R
M
R
156.63  
–0.22%  
B
B
61.00  
1.92%  
B
R
G
M
CY  
YI  
W
R-Y  
CY  
–262.17  
–0.13%  
G
B
YI  
41.32  
–0.76%  
M
R
–218.70  
–0.51%  
–42.54  
0.69%  
212.28  
–3.43%  
252.74  
–3.72%  
COLOR Pk-Pk: B-Y 532.33mV  
Pk-WHITE: 700.4mV (100%) SETUP –0.01%  
1.40%  
R-Y 514.90mV –1.92%  
DELAY: B-Y –6ns R-Y –6ns  
Figure 100. PAL YUV Lighting Plot  
REV. 0  
–51–  
ADV7170/ADV7171  
COMPONENT NOISE  
LINE = 202  
AMPLITUDE (0dB = 700mV p-p)  
BANDWIDTH 10kHz TO 5.0MHz  
NOISE dB RMS  
0.0  
–5.0  
–10.0  
–15.0  
–20.0  
–25.0  
–30.0  
-->Y –82.1  
Pb –82.3  
Pr –83.3  
–35.0  
–40.0  
–45.0  
–50.0  
–55.0  
–60.0  
–65.0  
–70.0  
–75.0  
–80.0  
–85.0  
–90.0  
–95.0  
–100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
MHz  
Figure 101. PAL YUV SNR Plot  
COMPONENT MULTIBURST  
LINE = 202  
AMPLITUDE (0dB = 100% OF 688.1mV  
683.4mV  
–0.05  
668.9mV  
–0.68  
(dB)  
0.04  
–0.02  
–2.58  
4.79  
–8.05  
0.0  
Y
–5.0  
–10.0  
0.49  
0.99  
2.00  
3.99  
5.79  
0.21  
0.23  
–0.78  
–2.59  
–7.15  
0.0  
Pb –5.0  
–10.0  
0.49  
0.25  
0.99  
0.25  
1.99  
2.39  
2.89  
–0.77  
–2.59  
–7.13  
0.0  
Pr –5.0  
–10.0  
0.49  
0.99  
1.99  
MHz  
2.39  
2.89  
Figure 102. PAL YUV Multiburst Response  
–52–  
REV. 0  
ADV7170/ADV7171  
COMPONENT VECTOR SMPTE/EBU, 75%  
R
M
g
YI  
BK  
B
G
CY  
Figure 103. PAL YUV Vector Plot  
mV  
GREEN (A)  
mV  
BLUE (B)  
mV  
RED (C)  
700  
700  
600  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
؊100  
؊200  
؊300  
؊100  
؊200  
؊300  
؊100  
؊200  
؊300  
Figure 104. PAL RGB Waveforms  
REV. 0  
–53–  
ADV7170/ADV7171  
INDEX  
Contents  
Page No.  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . .  
ADV7170/ADV7171 SPECIFICATIONS . . . . . . . . . . . . .  
DYNAMIC SPECIFICATIONS . . . . . . . . . . . . . . . . . . . .  
TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . .  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . .  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PIN CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . .  
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . .  
1
1
2
4
5
8
8
8
9
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . 10  
DATA PATH DESCRIPTION . . . . . . . . . . . . . . . . . . . . . 10  
INTERNAL FILTER RESPONSE . . . . . . . . . . . . . . . . . . . 10  
COLOR BAR GENERATION . . . . . . . . . . . . . . . . . . . . . . 13  
SQUARE PIXEL MODE . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
COLOR SIGNAL CONTROL . . . . . . . . . . . . . . . . . . . . . . 13  
BURST SIGNAL CONTROL . . . . . . . . . . . . . . . . . . . . . . 13  
NTSC PEDESTAL CONTROL . . . . . . . . . . . . . . . . . . . . . 13  
PIXEL TIMING DESCRIPTION . . . . . . . . . . . . . . . . . . . 13  
SUBCARRIER RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
REAL-TIME CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
VIDEO TIMING DESCRIPTION . . . . . . . . . . . . . . . . . . . 13  
OUTPUT VIDEO TIMING . . . . . . . . . . . . . . . . . . . . . . . . 21  
POWER-ON RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MPU PORT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . 21  
REGISTER ACCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
REGISTER PROGRAMMING . . . . . . . . . . . . . . . . . . . . . 22  
MODE REGISTER 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
MODE REGISTER 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MODE REGISTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MODE REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MODE REGISTER 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
TIMING REGISTER 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
TIMING REGISTER 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SUBCARRIER FREQUENCY REGISTER 3–0 . . . . . . . . 28  
SUBCARRIER PHASE REGISTER . . . . . . . . . . . . . . . . . . 28  
CLOSED CAPTIONING EVEN FIELD . . . . . . . . . . . . . . 28  
CLOSED CAPTIONING ODD FIELD . . . . . . . . . . . . . . 28  
NTSC PEDESTAL/PAL TELETEXT  
CONTROL REGISTERS 3–0 . . . . . . . . . . . . . . . . . . . . . 28  
TELETEXT CONTROL REGISTER TC07 . . . . . . . . . . . 28  
APPENDIX 1. BOARD DESIGN AND  
LAYOUT CONSIDERATIONS . . . . . . . . . . . . . . . . . . . 30  
APPENDIX 2. CLOSED CAPTIONING . . . . . . . . . . . . . 32  
APPENDIX 3. COPY GENERATION MANAGEMENT  
SYSTEMS (CGMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
APPENDIX 4. WIDE SCREEN SIGNALING . . . . . . . . . 34  
APPENDIX 5. TELETEXT INSERTION . . . . . . . . . . . . 35  
APPENDIX 6.  
NTSC WAVEFORMS (WITH PEDESTAL) . . . . . . . . . 36  
NTSC WAVEFORMS (WITHOUT PEDESTAL) . . . . . 37  
PAL WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
UV WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
APPENDIX 7. OPTIONAL OUTPUT FILTER . . . . . . . . 40  
APPENDIX 8. OPTIONAL DAC BUFFERING . . . . . . . 41  
APPENDIX 9. RECOMMENDED REGISTER  
VALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
APPENDIX 10. OUTPUT WAVEFORMS . . . . . . . . . . . . 44  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 55  
–54–  
REV. 0  
ADV7170/ADV7171  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
44-Lead Plastic Quad Flatpack (PQFP)  
(S-44)  
0.548 (13.925)  
0.546 (13.875)  
0.096 (2.44)  
0.398 (10.11)  
MAX  
0.390 (9.91)  
0.037 (0.94)  
0.025 (0.64)  
8؇  
0.8؇  
33  
23  
34  
22  
SEATING  
PLANE  
TOP VIEW  
(PINS DOWN)  
44  
12  
1
11  
0.040 (1.02)  
0.032 (0.81)  
0.040 (1.02)  
0.032 (0.81)  
0.033 (0.84)  
0.029 (0.74)  
0.016 (0.41)  
0.012 (0.30)  
0.083 (2.11)  
0.077 (1.96)  
44-Lead Thin Plastic Quad Flatpack (TQFP)  
(SU-44)  
0.047 (1.20)  
MAX  
0.006 (0.15)  
0.002 (0.05)  
0.472 (12.00) SQ  
33  
23  
34  
22  
SEATING  
PLANE  
0.394  
(10.0)  
SQ  
TOP VIEW  
(PINS DOWN)  
44  
12  
1
11  
0.041 (1.05)  
0.037 (0.95)  
0.018 (0.45)  
0.012 (0.30)  
0.031 (0.80)  
BSC  
REV. 0  
–55–  

相关型号:

ADV7171WBSZ-REEL

Digital PAL/NTSC Video Encoder
ADI

ADV7171_15

Digital PAL/NTSC Video Encoder with 10-Bit
ADI

ADV7172

Digital PAL/NTSC Video Encoder with Six DACs 10 Bits, Color Control and Enhanced Power Management
ADI

ADV7172KST

Digital PAL/NTSC Video Encoder with Six DACs 10 Bits, Color Control and Enhanced Power Management
ADI

ADV7172KST

COLOR SIGNAL ENCODER, PQFP48, PLASTIC, TQFP-48
ROCHESTER

ADV7172KST-REEL

IC COLOR SIGNAL ENCODER, PQFP48, PLASTIC, TQFP-48, Color Signal Converter
ADI

ADV7172_15

Digital PAL/NTSC Video Encoder with Six DACs
ADI

ADV7173

Digital PAL/NTSC Video Encoder with Six DACs 10 Bits, Color Control and Enhanced Power Management
ADI

ADV7173*

Digital PAL/NTSC Video Encoder with Six DACs (10 Bits). Color Control and Enhanced Power Management
ADI

ADV7173KST

Digital PAL/NTSC Video Encoder with Six DACs 10 Bits, Color Control and Enhanced Power Management
ADI

ADV7173KST-REEL

Digital PAL/NTSC Video Encoder with Six DACs (10 Bits), Color Control and Enhanced Power Management
ADI

ADV7173KST-REEL

COLOR SIGNAL ENCODER, PQFP48, PLASTIC, TQFP-48
ROCHESTER