ADV7174BCPZ [ADI]

IC COLOR SIGNAL ENCODER, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP-40, Color Signal Converter;
ADV7174BCPZ
型号: ADV7174BCPZ
厂家: ADI    ADI
描述:

IC COLOR SIGNAL ENCODER, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP-40, Color Signal Converter

编码器
文件: 总52页 (文件大小:488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Chip Scale PAL/NTSC Video Encoder with  
Advanced Power Management  
ADV7174/ADV7179  
FEATURES  
Programmable subcarrier frequency and phase  
ITU-R1 BT601/BT656 YCrCb to PAL/NTSC video encoder  
High quality 10-bit video DACs  
Programmable LUMA delay  
Individual on/off control of each DAC  
CCIR and square pixel operation  
SSAF™ (super sub-alias filter)  
Advanced power management features  
CGMS (copy generation management system)  
WSS (wide screen signaling)  
NTSC M, PAL N2, PAL B/D/G/H/I, PAL-M3 , PAL 60  
Single 27 MHz clock required (×2 oversampling)  
Macrovision 7.1 (ADV7174 only)  
Integrated subcarrier locking to external video source  
Color signal control/burst signal control  
Interlaced/noninterlaced operation  
Complete on-chip video timing generator  
Programmable multimode master/slave operation  
Closed captioning support  
80 dB video SNR  
Teletext insertion port (PAL-WST)  
On-board color bar generation  
On-board voltage reference  
2-wire serial MPU interface (I2C® compatible and fast I2C)  
Single-supply 2.8 V and 3.3 V operation  
Small 40-lead 6 mm × 6 mm LFCSP package  
−40°C to +85°C at 3.3 V  
32-bit direct digital synthesizer for color subcarrier  
Multistandard video output support:  
Composite (CVBS)  
Component S-video (Y/C)  
Video input data port supports:  
CCIR-656 4:2:2 8-bit parallel input format  
Programmable simultaneous composite and S-video or RGB  
(SCART)/YPbPr video outputs  
Programmable luma filters low-pass [PAL/NTSC] notch,  
extended SSAF, CIF, and QCIF  
Programmable chroma filters (low-pass [0.65 MHz, 1.0 MHz,  
1.2 MHz, and 2.0 MHz], CIF, and QCIF)  
−20°C to +85°C at 2.8 V  
APPLICATIONS  
Portable video applications  
Mobile phones  
Digital still cameras  
Programmable VBI (vertical blanking interval)  
FUNCTIONAL BLOCK DIAGRAM  
TTXREQ TTX  
ADV7174/ADV7179  
M
U
L
T
I
P
L
E
X
E
R
10  
10  
10  
POWER  
10  
10  
10  
10-BIT  
DAC  
MANAGEMENT  
CONTROL  
CGMS AND WSS  
INSERTION  
BLOCK  
TELETEXT  
INSERTION  
BLOCK  
DACA(PIN29)  
DACB(PIN28)  
DACC(PIN24)  
YUV TO  
RBG  
V
AA  
(SLEEP MODE)  
10-BIT  
DAC  
MATRIX  
RESET  
10-BIT  
DAC  
10  
8
PROGRAMMABLE  
9
8
Y
9
COLOR  
DATA  
ADD  
SYNC  
INTER-  
POLATOR  
LUMINANCE  
FILTER  
4:2:2 TO  
YCrCb  
4:4:4  
INTER-  
POLATOR  
TO  
YUV  
MATRIX  
P7–P0  
8
10  
10  
U
U
V
8
8
8
8
8
PROGRAMMABLE  
CHROMINANCE  
FILTER  
ADD  
BURST  
INTER-  
POLATOR  
8
8
V
10  
10  
HSYNC  
FIELD/VSYNC  
BLANK  
VIDEO TIMING  
GENERATOR  
V
REAL-TIME  
CONTROL  
CIRCUIT  
REF  
SIN/COS  
DDS BLOCK  
VOLTAGE  
REFERENCE  
CIRCUIT  
2
I C MPU PORT  
R
SET  
COMP  
CLOCK  
SCLOCK SDATA ALSB  
SCRESET/RTC  
GND  
Figure 1.  
1 ITU-R and CCIR are used interchangeably in this document (ITU-R has replaced CCIR recommendations).  
2 Throughout the document, N is referenced to PAL – Combination – N.  
3 ADV7174 only.  
Protected by U.S. Patent Numbers 5,343,196 and 5,442,355 and other intellectual property rights.  
Protected by U.S. Patent Numbers 4,631,603, 4,577,216, 4,819,098 and other intellectual property rights. The Macrovision anticopy process is licensed for  
noncommercial home use only, which is its sole intended use in the device. Contact the sales office for the latest Macrovision version available.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Specifications subject to change without notice. No license is granted by implication  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
 
 
ADV7174/ADV7179  
TABLE OF CONTENTS  
Specifications..................................................................................... 4  
2.8 V Specifications ...................................................................... 4  
2.8 V Timing Specifications ........................................................ 5  
3.3 V Specifications ...................................................................... 6  
3.3 V Timing Specifications ........................................................ 7  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
General Description....................................................................... 11  
Data Path Description................................................................ 11  
Internal Filter Response............................................................. 11  
Typical Performance Characteristics ........................................... 13  
Features ............................................................................................ 16  
Color Bar Generation ................................................................ 16  
Square Pixel Mode...................................................................... 16  
Color Signal Control.................................................................. 16  
Burst Signal Control................................................................... 16  
NTSC Pedestal Control ............................................................. 16  
Pixel Timing Description .......................................................... 16  
8-Bit YCrCb Mode ................................................................. 16  
Subcarrier Reset.......................................................................... 16  
Real-Time Control ..................................................................... 16  
Video Timing Description .................................................... 16  
Vertical Blanking Data Insertion.......................................... 17  
Mode 0 (CCIR-656): Slave Option....................................... 17  
Mode 0 (CCIR-656): Master Option ................................... 17  
HSYNC BLANK  
, , FIELD.. 24  
Mode 3: Master/Slave Option  
Power-On Reset.......................................................................... 25  
SCH Phase Mode........................................................................ 25  
MPU Port Description............................................................... 25  
Register Accesses ........................................................................ 26  
Register Programming................................................................... 27  
Subaddress Register (SR7–SR0) ............................................... 27  
Register Select (SR5–SR0)......................................................... 27  
Mode Register 1 (MR1)............................................................. 29  
Mode Register 2 (MR2)............................................................. 30  
Mode Register 3 (MR3)............................................................. 31  
Mode Register 4 (MR4)............................................................. 32  
Timing Mode Register 0 (TR0) ................................................ 33  
Timing Mode Register 1 (TR1) ................................................ 34  
Subcarrier Frequency Registers 3–0 ........................................ 35  
Subcarrier Phase Register.......................................................... 35  
Closed Captioning Even Field Data Registers 1–0 ................ 35  
Closed Captioning Odd Field Data Registers 1–0 ................. 36  
NTSC Pedestal/PAL Teletext Control Registers 3–0 ............. 36  
Teletext Request Control Register (TC07).............................. 37  
CGMS_WSS Register 0 (C/W0)............................................... 37  
CGMS_WSS Register 1 (C/W1)............................................... 38  
CGMS_WSS Register 2 (C/W2)............................................... 38  
Appendix 1—Board Design and Layout Considerations.......... 39  
Ground Planes ............................................................................ 39  
Power Planes ............................................................................... 39  
Supply Decoupling..................................................................... 40  
Digital Signal Interconnect ....................................................... 40  
Analog Signal Interconnect....................................................... 40  
Appendix 2—Closed Captioning ................................................. 41  
HSYNC BLANK  
Mode 1: Slave Option  
Mode 1: Master Option  
,
, FIELD................ 20  
HSYNC BLANK  
,
, FIELD ............ 21  
HSYNC VSYNC BLANK  
Mode 2: Slave Option  
Mode 2: Master Option  
,
,
.............. 22  
HSYNC VSYNC BLANK  
.......... 23  
,
,
Rev. A | Page 2 of 52  
ADV7174/ADV7179  
Appendix 3—Copy Generation Management System (CGMS)  
............................................................................................................42  
NTSC Waveforms (without Pedestal) ......................................46  
PAL Waveforms...........................................................................47  
Pb Pr Waveforms.........................................................................48  
Appendix 7—Optional Output Filter...........................................49  
Appendix 8—Recommended Register Values.............................50  
Outline Dimensions........................................................................52  
Ordering Guide ...........................................................................52  
Function of CGMS Bits..............................................................42  
Appendix 4—Wide Screen Signaling (WSS) ...............................43  
Function of WSS Bits..................................................................43  
Appendix 5—Teletext .....................................................................44  
Teletext Insertion.........................................................................44  
Teletext Protocol..........................................................................44  
Appendix 6—Waveforms ...............................................................45  
NTSC Waveforms (with Pedestal) ............................................45  
REVISION HISTORY  
2/04—Changed from REV. 0 to REV A.  
Added 2.8 V Version .......................................................... Universal  
Format Updated.................................................................. Universal  
Device Currents Updated on 3.3 V Specification .......... Universal  
Added new Table 1 and Renumbered Subsequent Tables.............4  
Added new Table 2 and Renumbered Subsequent Tables ...........5  
Change to Figure 54........................................................................38  
Change to Figure 55........................................................................39  
Change to Figure 79........................................................................48  
Changed Ordering Guide Temperature Specifications..............52  
Updated Outline Dimensions........................................................52  
10/02—Revision 0: Initial Version  
Rev. A | Page 3 of 52  
ADV7174/ADV7179  
SPECIFICATIONS  
2.8 V SPECIFICATIONS  
VAA = 2.8 V, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX1, unless otherwise noted.  
Table 1.  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE2  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS2  
10  
Bits  
RSET = 300 Ω  
Guaranteed monotonic  
3.0  
LSB  
LSB  
1
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
Input Capacitance, CIN  
DIGITAL OUTPUTS2  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
ANALOG OUTPUTS2  
Output Current3  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
POWER REQUIREMENTS2, 4  
VAA  
1.6  
2.4  
V
V
µA  
pF  
0.7  
1
VIN = 0.4 V or 2.4 V  
10  
10  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
V
V
µA  
pF  
0.4  
10  
RSET = 150 Ω, RL = 37.5 Ω  
33  
0
34.7  
2.0  
37  
1.4  
30  
mA  
%
V
kΩ  
pF  
30  
IOUT = 0 mA  
2.8  
V
Normal Power Mode  
IDAC (Max)5  
ICCT  
RSET = 150 Ω, RL = 37.5 Ω  
115  
30  
120  
mA  
mA  
6
Low Power Mode  
IDAC (Max)5  
ICCT  
62  
30  
mA  
mA  
6
Sleep Mode  
7
IDAC  
ICCT  
0.1  
0.001  
0.01  
µA  
µA  
%/%  
8
Power Supply Rejection Ratio  
COMP = 0.1 µF  
0.5  
1 Temperature range TMIN to TMAX: –20°C to +85°C.  
2 Guaranteed by characterization.  
3 DACs can output 35 mA typically at 2.8 V (RSET = 150 Ω and RL = 37.5 Ω). Full drive into 37.5 Ω load.  
4 Power measurements are taken with clock frequency = 27 MHz. Max TJ = 110°C.  
5 IDAC is the total current (min corresponds to 5 mA output per DAC, max corresponds to 37 mA output per DAC) to drive all three DACs. Turning off individual DACs  
reduces IDAC correspondingly.  
6 ICCT (circuit current) is the continuous current required to drive the device.  
7 Total DAC current in sleep mode.  
8 Total continuous current during sleep mode.  
Rev. A | Page 4 of 52  
 
 
 
 
 
 
 
ADV7174/ADV7179  
2.8 V TIMING SPECIFICATIONS  
VAA = 2.8 V, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX1, unless otherwise noted.  
Table 2.  
Parameter  
MPU PORT2, 3  
Conditions1  
Min  
Typ  
Max  
Unit  
SCLOCK Frequency  
0
400  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
SCLOCK High Pulse Width, t1  
SCLOCK Low Pulse Width, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
ANALOG OUTPUTS3, 4  
Analog Output Delay  
DAC Analog Output Skew  
CLOCK CONTROL AND PIXEL PORT4, 5  
fCLOCK  
0.6  
1.3  
0.6  
0.6  
100  
After this period the first clock is generated  
Relevant for repeated start condition  
300  
300  
0.6  
7
0
ns  
ns  
27  
MHz  
Clock High Time, t9  
8
ns  
Clock Low Time, t10  
8
ns  
Data Setup Time, t11  
Data Hold Time, t12  
3.5  
4
ns  
ns  
Control Setup Time, t11  
Control Hold Time, t12  
Digital Output Access Time, t13  
4
3
ns  
ns  
ns  
ns  
12  
8
48  
4
Digital Output Hold Time, t1  
5
Pipeline Delay, tPD  
Clock Cycles  
TELETEXT3, 4, 6  
Digital Output Access Time, t16  
Data Setup Time, t17  
Data Hold Time, t18  
23  
2
6
ns  
ns  
ns  
3, 4  
RESET  
CONTROL  
RESET  
6
ns  
Low Time  
1 Temperature range TMIN to TMAX: –20°C to +85°C.  
2 TTL input values are 0 V to 2.8 V, with input rise/fall times −3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs.  
Analog output load –10 pF.  
3 Guaranteed by characterization.  
4 Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.  
5 See Figure 60.  
6 Teletext Port consists of the following:  
Teletext Output: TTXREQ  
Teletext Input: TTX  
Rev. A | Page 5 of 52  
 
 
 
ADV7174/ADV7179  
3.3 V SPECIFICATIONS  
VAA = 3.0 V–3.6 V1, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 3.  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE3  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS3  
10  
Bits  
RSET = 300 Ω  
Guaranteed Monotonic  
0.6  
LSB  
LSB  
1
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
2
V
V
µA  
pF  
0.8  
1
3, 4  
VIN = 0.4 V or 2.4 V  
Input Capacitance, CIN  
DIGITAL OUTPUTS3  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
ANALOG OUTPUTS3  
Output Current4, 5  
10  
10  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
2.4  
V
V
µA  
pF  
0.4  
10  
RSET = 150 Ω, RL = 37.5 Ω  
RSET = 1041 Ω, RL = 262.5 Ω  
33  
0
34.7  
5
2.0  
37  
mA  
mA  
%
V
kΩ  
pF  
Output Current6  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
POWER REQUIREMENTS3, 7  
VAA  
1.4  
30  
30  
IOUT = 0 mA  
3.0  
3.3  
3.6  
120  
V
Normal Power Mode  
IDAC (Max)8  
RSET = 150 Ω, RL = 37.5 Ω  
RSET = 1041 Ω, RL = 262.5 Ω  
115  
20  
35  
mA  
mA  
mA  
IDAC (Min)8  
9
ICCT  
Low Power Mode  
IDAC (Max)8  
62  
20  
35  
mA  
mA  
mA  
IDAC (Min)8  
9
ICCT  
Sleep Mode  
10  
IDAC  
ICCT  
0.1  
0.001  
0.01  
µA  
µA  
%/%  
11  
Power Supply Rejection Ratio  
COMP = 0.1 µF  
0.5  
1 The max/min specifications are guaranteed over this range. The max/min values are typical over 3.0 V to 3.6 V.  
2 Temperature range TMIN to TMAX: –40°C to +85°C.  
3 Guaranteed by characterization.  
4 Full drive into 37.5 Ω load.  
5 DACs can output 35 mA typically at 3.3 V (RSET = 150 Ω and RL = 37.5 Ω), optimum performance obtained at 18 mA DAC current (RSET = 300 Ω and RL = 75 Ω).  
6 Minimum drive current (used with buffered/scaled output load).  
7 Power measurements are taken with clock frequency = 27 MHz. Max TJ = 110°C.  
8 IDAC is the total current (min corresponds to 5 mA output per DAC, max corresponds to 37 mA output per DAC) to drive all three DACs. Turning off individual DACs  
reduces IDAC correspondingly.  
9 ICCT (circuit current) is the continuous current required to drive the device.  
10 Total DAC current in sleep mode.  
11 Total continuous current during sleep mode.  
Rev. A | Page 6 of 52  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADV7174/ADV7179  
3.3 V TIMING SPECIFICATIONS  
VAA = 3.0 V–3.6 V1, VREF = 1.235 V, RSET = 150 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 4.  
Parameter  
MPU PORT3, 4  
Conditions1  
Min  
Typ  
Max  
Unit  
SCLOCK Frequency  
0
400  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
SCLOCK High Pulse Width, t1  
SCLOCK Low Pulse Width, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
ANALOG OUTPUTS3, 5  
Analog Output Delay  
DAC Analog Output Skew  
CLOCK CONTROL AND PIXEL PORT4, 5  
fCLOCK  
0.6  
1.3  
0.6  
0.6  
100  
After this period, the first clock is generated  
Relevant for repeated start condition  
300  
300  
0.6  
7
0
ns  
ns  
27  
MHz  
Clock High Time, t9  
8
ns  
Clock Low Time, t10  
8
ns  
Data Setup Time, t11  
Data Hold Time, t12  
3.5  
4
ns  
ns  
Control Setup Time, t11  
Control Hold Time, t12  
Digital Output Access Time, t13  
Digital Output Hold Time, t14  
4
3
ns  
ns  
ns  
ns  
12  
8
48  
6
Pipeline Delay, tPD  
Clock Cycles  
TELETEXT3, 4  
Digital Output Access Time, t16  
Data Setup Time, t17  
Data Hold Time, t18  
23  
2
6
ns  
ns  
ns  
3, 4  
RESET  
CONTROL  
RESET  
6
ns  
Low Time  
1 The maximum/minimum specifications are guaranteed over this range. The maximum/minimum values are typical over 3.0 V to 3.6 V range.  
2 Temperature range TMIN to TMAX: –40°C to +85°C.  
3 TTL input values are 0 V to 3 V, with input rise/fall times −3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs.  
Analog output load –10 pF.  
4 Guaranteed by characterization.  
5 Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.  
6 See Figure 60.  
Rev. A | Page 7 of 52  
 
 
 
 
 
 
ADV7174/ADV7179  
t5  
t3  
t3  
SDATA  
t6  
t1  
SCLOCK  
t2  
t7  
t4  
t8  
Figure 2. MPU Port Timing Diagram  
CLOCK  
HSYNC,  
t9  
t10  
t12  
CONTROL  
FIELD/VSYNC,  
BLANK  
I/P  
S
PIXEL INPUT  
DATA  
Cb  
Y
Cr  
Y
Cb  
Y
t11  
t13  
HSYNC,  
FIELD/VSYNC,  
BLANK  
CONTROL  
O/PS  
t14  
Figure 3. Pixel and Control Data Timing Diagram  
TTXREQ  
CLOCK  
t16  
t17  
t18  
TTX  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
3 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
Figure 4. Teletext Timing Diagram  
Rev. A | Page 8 of 52  
ADV7174/ADV7179  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability  
VAA to GND  
4 V  
Voltage on Any Digital Input Pin  
Storage Temperature (TS)  
Junction Temperature (TJ)  
Lead Temperature  
Soldering, 10 sec  
Analog Outputs to GND1  
GND – 0.5 V to VAA + 0.5 V  
−65°C to +150°C  
150°C  
260°C  
GND – 0.5 V to VAA  
2
θJA  
30°C/W  
__________________________________________________  
1 Analog output short circuit to any power supply or common can be of an indefinite duration.  
2 With the exposed metal paddle on the underside of LFCSP soldered to GND on the PCB.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 9 of 52  
ADV7174/ADV7179  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
39  
40  
38 37 36 35 34 33 32 31  
PIN 1  
INDICATOR  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
CLOCK  
V
REF  
V
AA  
DAC A  
DAC B  
3
P5  
P6  
4
V
AA  
ADV7174/ADV7179  
5
GND  
P7  
LFCSP  
TOP VIEW  
(Not to Scale)  
6
V
GND  
GND  
GND  
GND  
AA  
7
DAC C  
COMP  
8
9
SDATA  
SCLOCK  
10  
V
AA  
11 12 13 14 15 16 17 18 19 20  
Figure 5. Pin Configurations  
Table 6. Pin Function Descriptions  
Input/  
Output  
Mnemonic  
P7–P0  
CLOCK  
Function  
I
I
8-Bit 4:2:2 Multiplexed YCrCb Pixel Port (P7–P0). P0 is the LSB.  
TTL Clock Input. Requires a stable 27 MHz reference clock for standard operation. Alternatively, a 24.5454 MHz  
(NTSC) or 29.5 MHz (PAL) can be used for square pixel operation.  
HSYNC  
I/O  
HSYNC  
(Modes 1 and 2) Control Signal. This pin may be configured to output (master mode) or accept (slave  
mode) sync signals.  
FIELD/VSYNC I/O  
Dual Function FIELD (Mode 1) and VSYNC (Mode 2) Control Signal. This pin may be configured to output  
(master mode) or accept (slave mode) these control signals.  
BLANK  
I/O  
I
Video Blanking Control Signal. The pixel inputs are ignored when this is Logic 0. This signal is optional.  
SCRESET/RTC  
This pin can be configured as an input by setting MR22 and MR21 of Mode Register 2. It can be configured as a  
subcarrier reset pin, in which case a low-to-high transition on this pin resets the subcarrier to Field 0.  
Alternatively, it can be configured as a real-time control (RTC) input.  
VREF  
RSET  
I/O  
I
Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).  
A 150 Ω resistor connected from this pin to GND is used to control full-scale amplitudes of the video signals.  
COMP  
O
Compensation Pin. Connect a 0.1 µF capacitor from COMP to VAA. For optimum dynamic performance in low  
power mode, the value of the COMP capacitor can be lowered to as low as 2.2 nF.  
DAC A  
DAC B  
DAC C  
SCLOCK  
SDATA  
ALSB  
O
O
O
I
I/O  
I
DAC Output (see Table 13)  
DAC Output (see Table 13).  
DAC Output (see Table 13).  
MPU Port Serial Interface Clock Input.  
MPU Port Serial Data Input/Output.  
TTL Address Input. This signal sets up the LSB of the MPU address.  
RESET  
I
This input resets the on-chip timing generator and sets the ADV7174/ADV7179 into default mode. This is NTSC  
operation, Timing Slave Mode 0, 8-bit operation, 2× composite out signals. DACs A, B, and C are enabled.  
TTX  
I
Teletext Data.  
TTXREQ  
VAA  
GND  
O
P
G
Teletext Data Request Signal/Defaults to GND when Teletext Not Selected.  
Power Supply (2.8 V or 3.3 V).  
Ground Pin.  
Rev. A | Page 10 of 52  
ADV7174/ADV7179  
GENERAL DESCRIPTION  
typically have a range of 128 112; however, it is possible to  
input data from 1 to 254 on both Y, Cb, and Cr. The ADV7174/  
ADV7179 supports PAL (B/D/G/H/I/M/N) and NTSC (with  
The ADV7174/ADV7179 is an integrated digital video encoder  
that converts digital CCIR-601 4:2:2 8-bit component video data  
into a standard analog baseband television signal compatible  
with worldwide standards.  
BLANK  
and without pedestal) standards. The appropriate SYNC,  
,
and burst levels are added to the YCrCb data. Macrovision Anti-  
taping (ADV7174 only), closed-captioning, and Teletext levels  
are also added to Y and the resultant data is interpolated to a  
rate of 27 MHz. The interpolated data is filtered and scaled by  
three digital FIR filters.  
The on-board SSAF (super sub-alias filter) with extended  
luminance frequency response and sharp stop-band attenuation  
enables studio quality video playback on modern TVs, giving  
optimal horizontal line resolution.  
An advanced power management circuit enables optimal con-  
trol of power consumption in both normal operating modes  
and in power-down or sleep modes.  
The U and V signals are modulated by the appropriate subcarrier  
sine/cosine phases and added together to make up the chromi-  
nance signal. The luma (Y) signal can be delayed 1–3 luma  
cycles (each cycle is 74 ns) with respect to the chroma signal.  
The luma and chroma signals are then added together to make  
up the composite video signal. All edges are slew rate limited.  
The ADV7174/ADV7179 supports both PAL and NTSC square  
pixel operation. The parts incorporate WSS and CGMS-A data  
control generation.  
The YCrCb data is also used to generate RGB data with  
The output video frames are synchronized with the incoming  
data timing reference codes. Optionally, the encoder accepts  
BLANK  
appropriate SYNC and  
levels. The RGB data is in  
synchronization with the composite video output. Alternatively,  
analog YPbPr data can be generated instead of RGB data.  
HSYNC VSYNC  
(and can generate)  
,
, and FIELD timing signals.  
These timing signals can be adjusted to change pulse width and  
position while the part is in the master mode. The encoder  
requires a signal two times the pixel rate (27 MHz) clock for  
standard operation. Alternatively, the encoder requires a  
24.5454 MHz clock for NTSC or 29.5 MHz clock for PAL  
square pixel mode operation. All internal timing is generated  
on-chip.  
The three l0-bit DACs can be used to output:  
Composite Video + Composite Video  
S-Video + Composite Video  
YPrPb Video  
SCART RGB Video  
Alternatively, each DAC can be individually powered off if not  
required.  
A separate Teletext port enables the user to directly input  
Teletext data during the vertical blanking interval.  
Video output levels are illustrated in Appendix 6.  
The ADV7174/ADV7179 modes are set up over a 2-wire serial  
bidirectional port (I2 C compatible) with two slave addresses.  
INTERNAL FILTER RESPONSE  
The Y filter supports several different frequency responses,  
including two low-pass responses, two notch responses, an  
extended (SSAF) response, a CIF response, and a QCIF  
response. The UV filter supports several different frequency  
responses, including four low-pass responses, a CIF response,  
and a QCIF response. These can be seen in Table 7 and Table 8  
and Figure 6 to Figure 18.  
The ADV7174/ADV7179 is packaged in a 40-lead 6 mm × 6 mm  
LFCSP package.  
DATA PATH DESCRIPTION  
For PAL B/D/G/H/I/M/N and NTSC M and N modes, YCrCb  
4:2:2 data is input via the CCIR-656 compatible pixel port at a  
27 MHz data rate. The pixel data is demultiplexed to form three  
data paths. Y typically has a range of 16 to 235, and Cr and Cb  
Rev. A | Page 11 of 52  
ADV7174/ADV7179  
Table 7. Luminance Internal Filter Specifications  
Pass-Band Ripple  
(dB)  
3 dB Bandwidth  
(MHz)  
Stop-Band Cutoff  
(MHz)  
Stop-Band Attenuation  
(dB)  
Filter Type  
Filter Selection  
MR04 MR03 MR02  
Low-Pass  
(NTSC)  
Low-Pass  
(PAL)  
0
0
0
0.091  
0.15  
4.157  
4.74  
7.37  
7.96  
−56  
−64  
0
0
1
Notch (NTSC)  
Notch (PATL)  
Extended  
(SSAF)  
0
0
1
1
1
0
0
1
0
0.015  
0.095  
0.051  
6.54  
6.24  
6.217  
8.3  
8.0  
8.0  
−68  
−66  
−61  
CIF  
QCIF  
1
1
0
1
1
0
0.018  
Monotonic  
3.0  
1.5  
7.06  
7.15  
−61  
−50  
Table 8. Chrominance Internal Filter Specifications  
Pass-Band Ripple  
(dB)  
3 dB Bandwidth  
(MHz)  
Stop-Band Cutoff  
(MHz)  
Stop-Band Attenuation  
(dB)  
Filter Type  
Filter Selection  
MR07 MR06 MR05  
1.3 MHz  
Low-Pass  
0.65 MHz  
Low-Pass  
1.0 MHz  
Low-Pass  
2.0 MHz  
0
0
0
0
0
0
1
1
0
1
0
1
0.084  
1.395  
0.65  
1.0  
3.01  
3.64  
3.73  
5.0  
−45  
Monotonic  
Monotonic  
0.0645  
−58.5  
−49  
2.2  
−40  
Low-Pass  
Reserved  
CIF  
QCIF  
1
1
1
0
0
1
0
1
0
0.084  
Monotonic  
0.7  
0.5  
3.01  
4.08  
−45  
−50  
Rev. A | Page 12 of 52  
ADV7174/ADV7179  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
0
0
2
4
6
8
10  
12  
0
0
0
2
4
6
8
10  
12  
12  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Chrominance Internal Filter Specifications  
Figure 9. PAL Notch Luma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
12  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. PAL Low-Pass Luma Filter  
Figure 10. Extended Mode (SSAF) Luma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
12  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. NTSC Notch Luma Filter  
Figure 11. CIF Luma Filter  
Rev. A | Page 13 of 52  
ADV7174/ADV7179  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
0
0
2
4
6
8
10  
12  
12  
12  
0
0
0
2
4
6
8
10  
12  
12  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. QCIF Luma Filter  
Figure 15. 1.0 MHz Low-Pass Chroma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. 1.3 MHz Low-Pass Chroma Filter  
Figure 16. 2.0 MHz Low-Pass Chroma Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2
4
6
8
10  
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. 0.65 MHz Low-Pass Chroma Filter  
Figure 17. CIF Chroma Filter  
Rev. A | Page 14 of 52  
ADV7174/ADV7179  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 18. QCIF Chroma Filter  
Rev. A | Page 15 of 52  
ADV7174/ADV7179  
FEATURES  
COLOR BAR GENERATION  
REAL-TIME CONTROL  
The ADV7174/ADV7179 can be configured to generate 100/  
7.5/75/7.5 color bars for NTSC or 100/0/75/0 for PAL color  
bars. These are enabled by setting MR17 of Mode Register 1 to  
Logic 1.  
Together with the SCRESET/RTC pin and Bits MR22 and MR21  
of Mode Register 2, the ADV7174/ADV7179 can be used to  
lock to an external video source. The real-time control mode  
allows the ADV7174/ADV7179 to automatically alter the  
subcarrier frequency to compensate for line length variation.  
When the part is connected to a device that outputs a digital  
data stream in the RTC format (such as a ADV7183A video  
decoder; see Figure 19), the part automatically changes to the  
compensated subcarrier frequency on a line-by-line basis. This  
digital data stream is 67 bits wide and the subcarrier is contained  
in Bits 0 to 21. Each bit is two clock cycles long. 00H should be  
written into all four subcarrier frequency registers when using  
this mode.  
SQUARE PIXEL MODE  
The ADV7174/ADV7179 can be used to operate in square pixel  
mode. For NTSC operation, an input clock of 24.5454 MHz is  
required. Alternatively, for PAL operation, an input clock of  
29.5 MHz is required. The internal timing logic adjusts accord-  
ingly for square pixel mode operation.  
COLOR SIGNAL CONTROL  
The color information can be switched on and off the video  
output using Bit MR24 of Mode Register 2.  
Video Timing Description  
The ADV7174/ADV7179 is intended to interface with off-the-  
shelf MPEG1 and MPEG2 decoders. Consequently, the  
ADV7174/ADV7179 accepts 4:2:2 YCrCb pixel data via a  
CCIR-656 pixel port and has several video timing modes of  
operation that allow it to be configured as either a system  
master video timing generator or as a slave to the system video  
timing generator. The ADV7174/ADV7179 generates all of the  
required horizontal and vertical timing periods and levels for  
the analog video outputs.  
BURST SIGNAL CONTROL  
The burst information can be switched on and off the video  
output using Bit MR25 of Mode Register 2.  
NTSC PEDESTAL CONTROL  
The pedestal on both odd and even fields can be controlled on a  
line-by-line basis using the NTSC pedestal control registers.  
This allows the pedestals to be controlled during the vertical  
blanking interval.  
The ADV7174/ADV7179 calculates the width and placement of  
analog sync pulses, blanking levels, and color burst envelopes.  
Color bursts are disabled on appropriate lines, and serration and  
equalization pulses are inserted where required.  
PIXEL TIMING DESCRIPTION  
The ADV7174/ADV7179 operates in an 8-bit YCrCb mode.  
8-Bit YCrCb Mode  
In addition, the ADV7174/ADV7179 supports a PAL or NTSC  
square pixel operation in slave mode. The part requires an input  
pixel clock of 24.5454 MHz for NTSC and an input pixel clock  
of 29.5 MHz for PAL. The internal horizontal line counters  
place the various video waveform sections into the correct  
location for the new clock frequencies.  
This default mode accepts multiplexed YCrCb inputs through  
the P7–P0 pixel inputs. The inputs follow the sequence Cb0, Y0  
Cr0, Y1, Cb1, Y2, and so on. The Y, Cb, and Cr data are input on  
a rising clock edge.  
SUBCARRIER RESET  
Together with the SCRESET/RTC pin and Bits MR22 and  
MR21 of Mode Register 2, the ADV7174/ADV7179 can be used  
in subcarrier reset mode. The subcarrier resets to Field 0 at the  
start of the following field when a low-to-high transition occurs  
on this input pin.  
The ADV7174/ADV7179 has four distinct master and four  
distinct slave timing configurations. Timing control is  
HSYNC BLANK  
established with the bidirectional  
,
, and  
VSYNC  
FIELD/  
pins. Timing Mode Register 1 can also be used  
to vary the timing pulse widths and where they occur in  
relation to each other.  
Rev. A | Page 16 of 52  
ADV7174/ADV7179  
CLOCK  
COMPOSITE  
VIDEO  
(e.g., VCR  
OR CABLE)  
SCRESET/RTC  
VIDEO  
DECODER  
(e.g., ADV7183A)  
GREEN/LUMA/Y  
RED/CHROMA/Pr  
P7–P0  
BLUE/COMPOSITE/Pb  
HSYNC  
FIELD/VSYNC  
AD7174/ADV7179  
SEQUENCE  
RESERVED  
2
BIT  
H/LTRANSITION  
COUNT START  
RESET  
BIT  
5 BITS  
RESERVED  
4 BITS  
RESERVED  
3
LOW  
13  
14 BITS  
RESERVED  
128  
1
PLL INCREMENT  
F
SC  
0
0
21  
RTC  
TIME SLOT: 01  
6768  
14  
19  
NOT USED IN THE  
ADV7174/ADV7179  
VALID  
SAMPLE SAMPLE  
INVALID  
8/LLC  
NOTES  
1
F
F
PLL INCREMENT IS 22 BITS LONG, VALUE LOADED INTO ADV7174/ADV7179 F DDS REGISTER IS  
SC  
SC  
PLL INCREMENT BITS 21:0 PLUS BITS 0:9 OF THE SUBCARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD  
SC  
BE WRITTEN TO THE SUBCARRIER FREQUENCY REGISTERS OF THE ADV7174/ADV7179.  
2
SEQUENCE BIT  
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED  
NTSC: 0 = NO CHANGE  
RESET BIT  
3
RESET ADV7174/ADV7179 DDS  
Figure 19. RTC Timing and Connections  
Vertical Blanking Data Insertion  
nization pattern. A synchronization pattern is sent immediately  
before and after each line during active picture and retrace.  
It is possible to allow encoding of incoming YCbCr data on  
those lines of VBI that do not bear line sync or pre-/post-  
equalization pulses (see Figure 21 to Figure 32). This mode of  
operation is called partial blanking and is selected by setting  
MR32 to 1. It allows the insertion of any VBI data (opened VBI)  
into the encoded output waveform. This data is present in the  
digitized incoming YCbCr data stream, for example. WSS data,  
CGMS, VPS, and so on. Alternatively, the entire VBI may be  
blanked (no VBI data inserted) on these lines by setting MR32  
to 0.  
HSYNC  
VSYNC  
Mode 0 is illustrated in Figure 20. The  
BLANK  
and  
mode.  
, FIELD/  
(if not used) pins should be tied high during this  
,
Mode 0 (CCIR-656): Master Option  
(Timing Register 0 TR0 = X X X X X 0 0 1)  
The ADV7174/ADV7179 generates H, V, and F signals required  
for the SAV and EAV time codes in the CCIR-656 standard. The  
HSYNC  
H bit is output on the  
pin, the V bit is output on the  
BLANK  
VSYNC  
pin, and the F bit is output on the FIELD/ pin.  
Mode 0 (CCIR-656): Slave Option  
Mode 0 is illustrated in Figure 21 (NTSC) and Figure 22 (PAL).  
The H, V, and F transitions relative to the video waveform are  
illustrated in Figure 23.  
(Timing Register 0 TR0 = X X X X X 0 0 0)  
The ADV7174/ADV7179 is controlled by the SAV (start active  
video) and EAV (end active video) time codes in the pixel data.  
All timing information is transmitted using a 4-byte synchro-  
Rev. A | Page 17 of 52  
ADV7174/ADV7179  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
b
C
r
C
b
8
0
0
0
F
F
F A A  
F B B  
A
B
8
0
0
0
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
INPUT PIXELS  
Y
Y
Y
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LlNES/60Hz)  
268 CLOCK  
1440 CLOCK  
1440 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
280 CLOCK  
END OF ACTIVE  
VIDEO LINE  
START OF ACTIVE  
VIDEO LINE  
Figure 20. Timing Mode 0 (Slave Mode)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
6
7
10  
11  
20  
21  
22  
5
9
8
H
V
F
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
V
ODD FIELD  
EVEN FIELD  
F
Figure 21. Timing Mode 0 (NTSC Master Mode)  
Rev. A | Page 18 of 52  
ADV7174/ADV7179  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
22  
23  
5
21  
H
V
EVEN FIELD  
ODD FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 22. Timing Mode 0 (PAL Master Mode)  
ANALOG  
VIDEO  
H
F
V
Figure 23. Timing Mode 0 Data Transitions (Master Mode)  
Rev. A | Page 19 of 52  
ADV7174/ADV7179  
HSYNC  
HSYNC BLANK  
, FIELD  
Mode 1: Slave Option  
,
when  
BLANK  
is low indicates a new frame, i.e., vertical retrace.  
BLANK  
The  
signal is optional. When the  
input is  
(Timing Register 0 TR0 = X X X X X 0 1 0)  
disabled, the ADV7174/ADV7179 automatically blanks all  
normally blank lines as per CCIR-624. Mode 1 is illustrated in  
Figure 24 (NTSC) and Figure 25 (PAL).  
In this mode, the ADV7174/ADV7179 accepts horizontal SYNC  
and odd/even FIELD signals. A transition of the FIELD input  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 24. Timing Mode 1 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 25. Timing Mode 1 (PAL)  
Rev. A | Page 20 of 52  
 
 
ADV7174/ADV7179  
is disabled, the ADV7174/ADV7179 automatically blanks all  
normally blank lines as per CCIR-624. Pixel data is latched on  
the rising clock edge following the timing signal transitions.  
Mode 1 is illustrated in Figure 24 (NTSC) and Figure 25 (PAL).  
HSYNC BLANK  
, FIELD  
Mode 1: Master Option  
,
(Timing Register 0 TR0 = X X X X X 0 1 1)  
In this mode, the ADV7174/ADV7179 can generate horizontal  
SYNC and odd/even FIELD signals. A transition of the FIELD  
HSYNC BLANK  
Figure 26 illustrates the  
,
, and FIELD for an  
HSYNC  
BLANK  
input when  
retrace. The  
is low indicates a new frame, i.e., vertical  
odd or even field transition relative to the pixel data.  
BLANK  
signal is optional. When the  
input  
HSYNC  
FIELD  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 26. Timing Mode 1 Odd/Even Field Transitions Master/Slave  
Rev. A | Page 21 of 52  
 
ADV7174/ADV7179  
HSYNC  
signal is optional. When the  
disabled, the ADV7174/ADV7179 automatically blanks all  
normally blank lines as per CCIR-624. Mode 2 is illustrated in  
Figure 27 (NTSC) and Figure 28 (PAL).  
HSYNC VSYNC BLANK  
Mode 2: Slave Option  
,
,
transition when  
BLANK  
is high indicates the start of an even  
BLANK  
input is  
field. The  
(Timing Register 0 TR0 = X X X X X 1 0 0)  
In this mode, the ADV7174/ADV7179 accepts horizontal and  
vertical SYNC signals. A coincident low transition of both and  
VSYNC  
VSYNC  
inputs indicates the start of an odd field. A  
low  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
Figure 27. Timing Mode 2 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
5
6
7
21  
22  
23  
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
335  
336  
317  
334  
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
Figure 28. Timing Mode 2 (PAL)  
Rev. A | Page 22 of 52  
 
 
ADV7174/ADV7179  
BLANK  
HSYNC VSYNC BLANK  
Mode 2: Master Option  
,
,
input is disabled, the ADV7174/ADV7179 automatically  
blanks all normally blank lines as per CCIR-624. Mode 2 is  
illustrated in Figure 27 (NTSC) and Figure 28 (PAL). Figure 29  
(Timing Register 0 TR0 = X X X X X 1 0 1)  
In this mode, the ADV7174/ADV7179 can generate horizontal  
and vertical SYNC signals. A coincident low transition of both  
HSYNC BLANK  
VSYNC  
illustrates the  
field transition relative to the pixel data. Figure 30 illustrates the  
HSYNC BLANK VSYNC  
,
, and  
for an even-to-odd  
HSYNC  
VSYNC  
VSYNC  
low transition when  
and  
inputs indicates the start of an odd field. A  
HSYNC  
,
, and  
for an odd-to-even field  
is high indicates the start  
transition relative to the pixel data.  
BLANK  
of an even field. The  
signal is optional. When the  
HSYNC  
VSYNC  
BLANK  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 29. Timing Mode 2 Even-to-Odd Field Transition Master/Slave  
HSYNC  
VSYNC  
PAL = 864 × CLOCK/2  
NTSC = 858 × CLOCK/2  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 30. Timing Mode 2 Odd-to-Even Field Transition Master/Slave  
Rev. A | Page 23 of 52  
 
 
ADV7174/ADV7179  
BLANK  
HSYNC BLANK  
, FIELD  
Mode 3: Master/Slave Option  
,
that is, vertical retrace. The  
signal is optional. When the  
BLANK  
input is disabled, the ADV7174/ADV7179 automatically  
(Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1)  
blanks all normally blank lines as per CCIR-624. Mode 3 is  
illustrated in Figure 31 (NTSC) and Figure 32 (PAL).  
In this mode, the ADV7174/ADV7179 accepts or generates  
horizontal SYNC and odd/even FIELD signals. A transition of  
HSYNC  
the FIELD input when  
is high indicates a new frame,  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
6
7
10  
11  
20  
21  
22  
5
9
8
HSYNC  
BLANK  
FIELD  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 31. Timing Mode 3 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
22  
23  
5
21  
HSYNC  
BLANK  
FIELD  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
314  
315  
316  
317  
319  
320  
313  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 32. Timing Mode 3 (PAL)  
Rev. A | Page 24 of 52  
 
 
ADV7174/ADV7179  
1
1
0
1
0
1
A1  
X
POWER-ON RESET  
ADDRESS  
CONTROL  
After power-up, it is necessary to execute a reset operation. A  
reset occurs on the falling edge of a high-to-low transition on  
SET UP BY  
ALSB  
RESET  
the  
pin. This initializes the pixel port so that the pixel  
READ/WRITE  
CONTROL  
inputs, P7–P0, are selected. After reset, the ADV7174/ADV7179  
is automatically set up to operate in NTSC mode. Subcarrier  
frequency code 21F07C16H is loaded into the subcarrier  
frequency registers. All other registers, with the exception of  
Mode Register 0, are set to 00H. With the exception of Bit MR44,  
all bits in Mode Register 0 are set to Logic 0. Bit MR44 of Mode  
Register 4 is set to Logic 1. This enables the 7.5 IRE pedestal.  
0
1
WRITE  
READ  
Figure 33. ADV7174 Slave Address  
0
1
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
SCH PHASE MODE  
SET UP BY  
ALSB  
The SCH phase is configured in default mode to reset every  
four (NTSC) or eight (PAL) fields to avoid an accumulation of  
SCH phase error over time. In an ideal system, 0 SCH phase  
error would be maintained forever, but in reality, this is impossi-  
ble to achieve due to clock frequency variations. This effect is  
reduced by the use of a 32-bit DDS, which generates this SCH.  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 34. ADV7179 Slave Address  
To control the various devices on the bus, the following protocol  
must be followed: first, the master initiates a data transfer by  
establishing a start condition, defined by a high-to-low transition  
on SDATA while SCLOCK remains high. This indicates that an  
address/data stream will follow. All peripherals respond to the  
Resetting the SCH phase every four or eight fields avoids the  
accumulation of SCH phase error and results in very minor  
SCH phase jumps at the start of the 4- or 8-field sequence.  
Resetting the SCH phase should not be done if the video source  
does not have stable timing or the ADV7174/ADV7179 is  
configured in RTC mode (MR21 = 1 and MR22 = 1). Under  
these conditions (unstable video), the subcarrier phase reset  
should be enabled (MR22 = 0 and MR21 = 1), but no reset  
applied. In this configuration, the SCH phase can never be reset,  
which means that the output video can now track the unstable  
input video. The subcarrier phase reset, when applied, resets the  
SCH phase to Field 0 at the start of the next field, for example,  
subcarrier phase reset applied in Field 5 (PAL) on the start of  
the next field SCH phase is reset to Field 0.  
W
start condition and shift the next eight bits (7-bit address + R/  
bit). The bits transfer from MSB down to LSB. The peripheral  
that recognizes the transmitted address responds by pulling the  
data line low during the ninth clock pulse. This is known as an  
Acknowledge bit. All other devices withdraw from the bus at  
this point and maintain an idle condition. The idle condition is  
where the device monitors the SDATA and SCLOCK lines wait-  
ing for the start condition and the correct transmitted address.  
W
The R/ bit determines the direction of the data. A Logic 0 on  
the LSB of the first byte means that the master will write infor-  
mation to the peripheral. A Logic 1 on the LSB of the first byte  
means that the master will read information from the peripheral.  
MPU PORT DESCRIPTION  
The ADV7174/ADV7179 supports a 2-wire serial (I2C  
compatible) microprocessor bus driving multiple peripherals.  
Two inputs, serial data (SDATA) and serial clock (SCLOCK),  
carry information between any device connected to the bus.  
Each slave device is recognized by a unique address. The  
ADV7174/ADV7179 has four possible slave addresses for both  
read and write operations. These are unique addresses for each  
device and are illustrated in Figure 33 and Figure 34. The LSB  
sets either a read or write operation. Logic 1 corresponds to a  
read operation, while Logic 0 corresponds to a write operation.  
A 1 is set by setting the ALSB pin of the ADV7174/ ADV7179 to  
Logic 0 or Logic 1.  
The ADV7174/ADV7179 acts as a standard slave device on the  
bus. The data on the SDATA pin is eight bits long, supporting  
W
the 7-bit addresses plus the R/ bit. The ADV7174/ADV7179  
has 26 subaddresses to enable access to the internal registers. It  
therefore interprets the first byte as the device address and the  
second byte as the starting subaddress. The subaddresses’ auto  
increment allows data to be written to or read from the starting  
subaddress. A data transfer is always terminated by a stop  
condition. The user can also access any unique subaddress  
register on a one-by-one basis without having to update all the  
registers. There is one exception. The subcarrier frequency  
registers should be updated in sequence, starting with  
Subcarrier Frequency Register 0. The auto increment function  
should then be used to increment and access Subcarrier  
Frequency Registers 1, 2, and 3. The subcarrier frequency  
registers should not be accessed independently.  
Rev. A | Page 25 of 52  
 
 
ADV7174/ADV7179  
Stop and start conditions can be detected at any stage during the  
data transfer. If these conditions are asserted out of sequence with  
normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCLOCK high period,  
the user should issue only one start condition, one stop condition,  
or a single stop condition followed by a single start condition. If  
an invalid subaddress is issued by the user, the ADV7174/  
ADV7179 cannot issue an acknowledge and returns to the idle  
condition. If in auto-increment mode the user exceeds the  
highest subaddress, the following action is taken:  
Figure 35 illustrates an example of data transfer for a read  
sequence and the start and stop conditions.  
Figure 36 shows bus write and read sequences.  
SDATA  
SCLOCK  
S
1–7  
8
9
1
–7  
8
9
1–7  
DATA  
8
9
P
START ADDR  
ACK SUBADDRESS ACK  
ACK  
STOP  
R/W  
Figure 35. Bus Data Transfer  
REGISTER ACCESSES  
1. In read mode, the highest subaddress register contents  
continues to be output until the master device issues a no-  
acknowledge. This indicates the end of a read. A no-  
acknowledge condition is when the SDATA line is not  
pulled low on the ninth pulse.  
2. In write mode, the data for the invalid byte is not loaded  
into any subaddress register, a no-acknowledge is issued by  
the ADV7174/ADV7179, and the part returns to the idle  
condition.  
The MPU can write to or read from all of the ADV7174/  
ADV7179 registers except the subaddress register, which is a  
write-only register. The subaddress register determines which  
register the next read or write operation accesses. All commu-  
nications with the part through the bus start with an access to  
the subaddress register. A read/write operation is performed  
from to the target address, which then increments to the next  
address until a stop command on the bus is performed.  
WRITE  
SEQUENCE  
S
S
SLAVE ADDR A(S) SUB ADDR A(S)  
LSB = 0  
DATA  
A(S)  
A(S)  
P
DATA  
LSB = 1  
READ  
SEQUENCE  
A(M)  
A(M)  
SLAVE ADDR A(S)  
SUB ADDR A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
P
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
S = START BIT  
P = STOP BIT  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 36. Write and Read Sequences  
Rev. A | Page 26 of 52  
 
 
ADV7174/ADV7179  
REGISTER PROGRAMMING  
This section describes the configuration of each register,  
including the subaddress register, mode registers, subcarrier  
frequency registers, the subcarrier phase register, timing  
registers, closed captioning extended data registers, closed  
captioning data registers, and NTSC pedestal control registers.  
Figure 37 shows the various operations under the control of the  
subaddress register. Zero should always be written to SR7–SR6.  
REGISTER SELECT (SR5–SR0)  
These bits are set up to point to the required starting address.  
SUBADDRESS REGISTER (SR7–SR0)  
The communications register is an 8-bit write-only register.  
After the part has been accessed over the bus and a read/write  
operation is selected, the subaddress is set up. The subaddress  
register determines to/from which register the operation takes  
place.  
SR1  
SR7  
SR6  
SR5  
SR4  
SR3  
SR2  
SR0  
SR7 – SR6(000)  
ZERO SHOULD BE WRITTEN  
TO THESE BITS  
ADV7174 SUBADDRESS REGISTER  
SR5 SR4 SR3 SR2 SR1 SR0  
POWER-UP  
VALUES  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
MODE REGISTER 0  
MODE REGISTER 1  
MODE REGISTER 2  
MODE REGISTER 3  
MODE REGISTER 4  
RESERVED  
RESERVED  
TIMING MODE REGISTER 0  
TIMING MODE REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 0  
SUBCARRIER FREQUENCY REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 2  
SUBCARRIER FREQUENCY REGISTER 3  
SUBCARRIER PHASE REGISTER  
00h  
58h  
00h  
00h  
10h  
00h  
00h  
00h  
00h  
16h  
7Ch  
F0h  
21h  
00h  
ADV7179 SUBADDRESS REGISTER  
SR5 SR4 SR3 SR2 SR1 SR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
MODE REGISTER 0  
MODE REGISTER 1  
MODE REGISTER 2  
MODE REGISTER 3  
MODE REGISTER 4  
RESERVED  
RESERVED  
TIMING MODE REGISTER 0  
TIMING MODE REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 0  
SUBCARRIER FREQUENCY REGISTER 1  
SUBCARRIER FREQUENCY REGISTER 2  
SUBCARRIER FREQUENCY REGISTER 3  
SUBCARRIER PHASE REGISTER  
CLOSED CAPTIONING EXTENDED DATA BYTE 0  
CLOSED CAPTIONING EXTENDED DATA BYTE 1  
CLOSED CAPTIONING DATA BYTE 0  
CLOSED CAPTIONING DATA BYTE 1  
NTSC PEDESTAL CONTROL REGISTER 0/  
PAL TTX CONTROL REGISTER 0  
NTSC PEDESTAL CONTROL REGISTER 1/  
PAL TTX CONTROL REGISTER 1  
CLOSED CAPTIONING EXTENDED DATA BYTE 0 00h  
CLOSED CAPTIONING EXTENDED DATA BYTE 1 00h  
CLOSED CAPTIONING DATA BYTE 0  
CLOSED CAPTIONING DATA BYTE 1  
NTSC PEDESTAL CONTROL REGISTER 0/  
PAL TTX CONTROL REGISTER 0  
NTSC PEDESTAL CONTROL REGISTER 1/  
PAL TTX CONTROL REGISTER 1  
NTSC PEDESTAL CONTROL REGISTER 2/  
PAL TTX CONTROL REGISTER 2  
NTSC PEDESTAL CONTROL REGISTER 3/  
PAL TTX CONTROL REGISTER 3  
CGMS_WSS_0  
CGMS_WSS_1  
CGMS_WSS_2  
TELETEXT REQUEST CONTROL REGISTER  
RESERVED  
RESERVED  
00h  
00h  
00h  
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
1
0
1
00h  
00h  
00h  
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
1
0
1
NTSC PEDESTAL CONTROL REGISTER 2/  
PAL TTX CONTROL REGISTER 2  
NTSC PEDESTAL CONTROL REGISTER 3/  
PAL TTX CONTROL REGISTER 3  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
0
0
0
1
0
1
CGMS_WSS_0  
CGMS_WSS_1  
CGMS_WSS_2  
TELETEXT REQUEST CONTROL REGISTER  
RESERVED  
RESERVED  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
MACROVISION REGISTERS  
Figure 37. Subaddress Register Map  
Rev. A | Page 27 of 52  
 
 
ADV7174/ADV7179  
MODE REGISTER 0 (MR0)  
Bits:  
Address:  
MR07 – MR00  
SR4–SR0 = 00H  
Figure 38 shows the various operations under the control of Mode Register 0. This register can be read from as well as written to.  
MR07  
MR06  
MR05  
MR04  
MR03  
MR02  
MR01  
MR00  
OUTPUT VIDEO  
STANDARD SELECTION  
CHROMA FILTER SELECT  
MR06 MR05  
MR07  
MR01 MR00  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.3 MHz LOW-PASS FILTER  
0
0
1
1
0
1
0
1
NTSC  
PAL (B, D, G, H, and I)  
PAL (M)  
0.65 MHz LOW-PASS FILTER  
1.0 MHz LOW-PASS FILTER  
2.0 MHz LOW-PASS FILTER  
RESERVED  
CIF  
QCIF  
RESERVED  
LUMA FILTER SELECT  
MR03 MR02  
RESERVED  
MR04  
0
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
0
LOW-PASS FILTER (NTSC)  
LOW-PASS FILTER (PAL)  
NOTCH FILTER (NTSC)  
NOTCH FILTER (PAL)  
EXTENDED MODE  
CIF  
1
0
1
0
1
0
1
QCIF  
RESERVED  
Figure 38. Mode Register 0  
Table 9. MR0 Bit Description  
Bit Name  
Bit No.  
Description  
Output Video Standard  
Selection  
MR01–MR00  
These bits are used to set up the ENCODE mode. The ADV7174/ADV7179 can be set up to  
output NTSC, PAL (B/D/G/H/I), and PAL (M and N) standard video.  
PAL M is available on the ADV7174 only.  
Luminance Filter Control  
MR02–MR04  
These bits specify which luminance filter is to be selected. The filter selection is made  
independent of whether PAL or NTSC is selected.  
Chrominance Filter Control MR05–MR07  
These bits select the chrominance filter. A low-pass filter can be selected with a choice of  
cutoff frequencies 0.65 MHz, 1.0 MHz, 1.3 MHz, or 2 MHz, along with a choice of CIF or QCIF  
filters.  
Rev. A | Page 28 of 52  
 
ADV7174/ADV7179  
MODE REGISTER 1 (MR1)  
Bits:  
MR17–MR10  
Address:  
SR4–SR0 = 01H  
Figure 39 shows the various operations under the control of Mode Register 1. This register can be read from as well as written to.  
MR17  
MR16  
MR15  
MR14  
MR13  
MR12  
MR11  
MR10  
DAC A  
CONTROL  
CLOSED CAPTIONING  
FIELD SELECTION  
RESERVED  
MR16  
1 SHOULD BE  
WRITTEN TO  
THIS BIT  
MR12  
MR11  
0
1
NORMAL  
POWER-DOWN  
0
0
1
1
0
1
0
1
NO DATA OUT  
ODD FIELD ONLY  
EVEN FIELD ONLY  
DATA OUT  
(BOTH FIELDS)  
COLOR BAR  
CONTROL  
MR17  
DAC B  
CONTROL  
DAC C  
CONTROL  
INTERLACE  
CONTROL  
MR15  
MR13  
MR10  
0
1
NORMAL  
POWER-DOWN  
0
1
NORMAL  
POWER-DOWN  
0
1
INTERLACED  
NONINTERLACED  
0
1
DISABLE  
ENABLE  
Figure 39. Mode Register 1  
Table 10. MR1 Bit Description  
Bit Name  
Bit No.  
Description  
Interlace Control  
MR10  
This bit is used to set up the output to interlaced or noninterlaced mode. Power-down mode  
is relevant only when the part is in composite video mode.  
Closed Captioning Field  
Selection  
MR12–MR11  
These bits control the fields on which closed captioning data is displayed; closed captioning  
information can be displayed on an odd field, even field, or both fields.  
DAC Control  
MR16–MR15  
and MR13  
These bits can be used to power down the DACs. Power-down can be used to reduce the  
power consumption of the ADV7174/ADV7179 if any of the DACs are not required in the  
application.  
Reserved  
Color Bar Control  
MR14  
MR17  
A Logic 1 must be written to this register.  
This bit can be used to generate and output an internal color bar test pattern. The color bar  
configuration is 100/7.5/75/7.5 for NTSC and 100/0/75/0 for PAL. It is important to note that  
when color bars are enabled, the ADV7174/ADV7179 is configured in a master timing mode.  
Rev. A | Page 29 of 52  
 
ADV7174/ADV7179  
MODE REGISTER 2 (MR2)  
Bits:  
MR27–MR20  
Address:  
SR4–SR0 = 02H  
Mode Register 2 is an 8-bit-wide register. Figure 40 shows the various operations under the control of Mode Register 2. This register can  
be read from as well as written to.  
MR26  
MR25  
MR24  
MR23  
MR22  
MR21  
MR27  
MR20  
CHROMINANCE  
CONTROL  
GENLOCK CONTROL  
MR22 MR21  
LOW POWER MODE  
MR24  
MR26  
x
0
0
1
DISABLE GENLOCK  
ENABLE SUBCARRIER  
RESET PIN  
0
1
ENABLE COLOR  
DISABLE COLOR  
0
1
DISABLE  
ENABLE  
1
1
ENABLE RTC PIN  
MR27  
BURST  
CONTROL  
ACTIVE VIDEO LINE  
DURATION  
SQUARE PIXEL  
CONTROL  
MR20  
RESERVED  
MR23  
MR25  
0
1
ENABLE BURST  
DISABLE BURST  
0
1
DISABLE  
ENABLE  
0
1
720 PIXELS  
710 PIXELS/702 PIXELS  
Figure 40. Mode Register 2  
Table 11. MR2 Bit Description  
Bit Name  
Bit No.  
Description  
Square Pixel Control  
MR20  
This bit is used to set up square pixel mode. This is available in slave mode only. For NTSC, a  
24.5454 MHz clock must be supplied. For PAL, a 29.5 MHz clock must be supplied.  
Genlock Control  
MR22–MR21  
These bits control the genlock feature of the ADV7174/ ADV7179. Setting MR21 to Logic 1  
configures the SCRESET/RTC pin as an input. Setting MR22 to Logic 0 configures the  
SCRESET/RTC pin as a subcarrier reset input. Therefore, the subcarrier will reset to Field 0  
following a low-to-high transition on the SCRESET/RTC pin. Setting MR22 to Logic 1 configures  
the SCRESET/RTC pin as a real-time control input.  
Active Video Line Duration MR23  
This bit switches between two active video line durations. A 0 selects CCIR REC601 (720 pixels  
PAL/NTSC), and a 1 selects ITU-R.BT470 standard for active video duration (710 pixels NTSC  
and 702 pixels PAL).  
Chrominance Control  
Burst Control  
Low Power Mode  
MR24  
MR25  
MR26  
This bit enables the color information to be switched on and off the video output.  
This bit enables the burst information to be switched on and off the video output.  
This bit enables the lower power mode of the ADV7174/ADV7179. This reduces the DAC  
current by 45%.  
Reserved  
MR27  
A Logic 0 must be written to this bit.  
Rev. A | Page 30 of 52  
 
ADV7174/ADV7179  
MODE REGISTER 3 (MR3)  
Bits:  
MR37–MR30  
Address:  
SR4–SR0 = 03H  
Mode Register 3 is an 8-bit-wide register. Figure 41 shows the various operations under the control of Mode Register 3.  
MR36  
MR35  
MR34  
MR33  
MR32  
MR31  
MR30  
MR37  
VBI_OPEN  
TTXREQ BIT  
MODE CONTROL  
CHROMA OUTPUT  
SELECT  
MR30  
MR31  
MR32  
MR36  
MR34  
0
1
DISABLE  
ENABLE  
RESERVED  
0
1
NORMAL  
BIT REQUEST  
0
1
DISABLE  
ENABLE  
INPUT DEFAULT  
COLOR  
TELETEXT  
ENABLE  
DAC OUTPUT  
DAC B  
MR37  
MR35  
MR33  
DAC A  
DAC C  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
0
1
COMPOSITE  
GREEN/LUMA/Y  
BLUE/COMP/Pb RED/CHROMA/Pr  
BLUE/COMP/Pb RED/CHROMA/Pr  
Figure 41. Mode Register 3  
Table 12. MR3 Bit Description  
Bit Name  
Bit No.  
Description  
Revision Code  
VBI Open  
MR30–MR31  
MR32  
These bits are read-only and indicate the revision of the device.  
This bit determines whether or not data in the vertical blanking interval (VBI) is output to  
the analog outputs or blanked. VBI data insertion is not available in Slave Mode 0. Also,  
BLANK  
BLANK  
when both  
input control and VBI open are enabled,  
input control has  
priority, i.e., VBI data insertion will not work.  
DAC Output  
MR33  
MR34  
This bit is used to switch the DAC outputs from SCART to a EUROSCART configuration. A  
complete list of all DAC output configurations is shown in Table 13.  
With this active high bit it is possible to output an extra chrominance signal C, on DAC A  
in any configuration that features a CVBS signal.  
Chroma Output Select  
Teletext Enable  
TTXREQ Bit Mode Control  
MR35  
MR36  
This bit must be set to 1 to enable Teletext data insertion on the TTX pin.  
This bit enables switching of the Teletext request signal from a continuous high signal  
(MR36 = 0) to a bitwise request signal (MR36 = 1).  
Input Default Color  
MR37  
This bit determines the default output color from the DACs for zero input pixel data (or  
disconnected). A Logic 0 means that the color corresponding to 00000000 is displayed. A  
Logic 1 forces the output color to black for 00000000 pixel input video data.  
Table 13. DAC Output Configuration Matrix  
MR34  
MR40  
MR41  
MR33  
DAC A  
DAC B  
DAC C  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CVBS  
Y
CVBS  
Y
CVBS  
G
CVBS  
Y
C
Y
C
Y
C
G
C
Y
CVBS  
CVBS  
CVBS  
CVBS  
B
B
Pb  
Pb  
CVBS  
CVBS  
CVBS  
CVBS  
B
B
Pb  
Pb  
C
C
C
C
R
CVBS: Composite Video Baseband Signal  
Y: Luminance Component Signal (For YPbPr or Y/C Mode)  
C: Chrominance Signal (For Y/C Mode)  
Pb: ColorComponent Signal (For YPbPr Mode)  
Pr: Color Component Signal (For YPbPr Mode)  
R: RED Component Video (For RGB Mode)  
G: GREEN Component Video (For RGB Mode)  
B: BLUE Component Video (For RGB Mode)  
R
Pr  
Pr  
C
C
C
C
R
R
Pr  
Pr  
Each DAC can be powered on or off individually  
See MR1 Description and Figure 39.  
Rev. A | Page 31 of 52  
 
 
ADV7174/ADV7179  
MODE REGISTER 4 (MR4)  
Bits:  
MR47–MR40  
Address:  
SR4–SR0 = 04H  
Mode Register 4 is an 8-bit-wide register. Figure 42 shows the various operations under the control of Mode Register 4.  
MR46  
MR45  
MR44  
MR43  
MR42  
MR41  
MR40  
MR47  
SLEEP MODE  
CONTROL  
PEDESTAL  
CONTROL  
RGB SYNC  
OUTPUT SELECT  
MR42  
MR40  
MR46  
MR44  
0
1
DISABLE  
ENABLE  
0
1
YC OUTPUT  
RGB/YPbPr OUTPUT  
0
1
DISABLE  
ENABLE  
0
1
PEDESTAL OFF  
PEDESTAL ON  
MR47  
(0)  
ACTIVE VIDEO  
FILTER CONTROL  
RGB/YUV  
CONTROL  
VSYNC_3H  
MR43  
MR45  
MR41  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
0
1
RGB OUTPUT  
YPbPr OUTPUT  
Figure 42. Mode Register 4  
Table 14. MR4 Bit Description  
Bit Name  
Bit No.  
MR40  
MR41  
MR42  
Description  
Output Select  
RGB/YPbPr Control  
RGB Sync  
This bit specifies if the part is in composite video or RGB/YPbPr mode.  
This bit enables the output from the RGB DACs to be set to YPbPr output video standard.  
This bit is used to set up the RGB outputs with the sync information encoded on all RGB  
outputs.  
VSYNC_3H  
MR43  
When this bit is enabled (1) in slave mode, it is possible to drive the VSYNC active low  
input for 2.5 lines in PAL mode and three lines in NTSC mode. When this bit is enabled in  
master mode, the ADV7174/ADV7179 outputs an active low VSYNC signal for three lines  
in NTSC mode and 2.5 lines in PAL mode.  
Pedestal Control  
MR44  
MR45  
This bit specifies whether a pedestal is to be generated on the NTSC composite video  
signal. This bit is invalid if the ADV7174/ ADV7179 is configured in PAL mode.  
This bit controls the filter mode applied outside the active video portion of the line. This  
filter ensures that the sync rise and fall times are always on spec regardless of which luma  
filter is selected. A Logic 1 enables this mode.  
Active Video Filter Control  
Sleep Mode Control  
MR46  
When this bit is set (1), sleep mode is enabled. With this mode enabled, the  
ADV7174/ADV7179 power consumption is reduced to typically 200 nA. The I2C registers  
can be written to and read from when the ADV7174/ADV7179 is in sleep mode. If MR46 is  
set to a (0) when the device is in sleep mode, the ADV7174/ADV7179 comes out of sleep  
mode and resumes normal operation. Also, if the RESET signal is applied during sleep  
mode, the ADV7174/ADV7179 comes out of sleep mode and resumes normal operation.  
Reserved  
MR47  
A Logic 0 should be written to this bit.  
Rev. A | Page 32 of 52  
 
ADV7174/ADV7179  
TIMING MODE REGISTER 0 (TR0)  
Bits:  
TR07–TR00  
Address:  
SR4–SR0 = 07H  
Figure 43 shows the various operations under the control of Timing Register 0. This register can be read from as well as written to.  
TR07  
TR06  
TR05  
TR04  
TR03  
TR02  
TR01  
TR00  
TIMING  
REGISTER RESET  
MASTER/SLAVE  
CONTROL  
BLANK INPUT  
CONTROL  
TR03  
TR00  
TR07  
0
1
ENABLE  
DISABLE  
0
1
SLAVE TIMING  
MASTER TIMING  
PIXEL PORT  
CONTROL  
TIMING MODE  
SELECTION  
LUMA DELAY  
TR05 TR04  
TR06  
TR02  
TR01  
0
0
1
1
0
1
0
1
0ns DELAY  
0
1
8 BIT  
FORBIDDEN  
0
0
1
1
0
1
0
1
MODE 0  
MODE 1  
MODE 2  
MODE 3  
74ns DELAY  
148ns DELAY  
222ns DELAY  
Figure 43. Timing Register 0  
Table 15. TR0 Bit Description  
Bit Name  
Bit No.  
Description  
Master/Slave Control  
Timing Mode Selection  
TR00  
TR02–TR01  
This bit controls whether the ADV7174/ADV7179 is in master or slave mode.  
These bits control the timing mode of the ADV7174/ADV7179. These modes are  
described in more detail in the 3.3 V Timing Specifications table.  
BLANK Input Control  
Luma Delay  
TR03  
This bit controls whether the BLANK input is used when the part is in slave mode.  
TR05–TR04  
These bits control the addition of a luminance delay. Each bit represents a delay of  
74 ns.  
Pixel Port Control  
TR06  
TR07  
This bit is used to set the pixel port to accept 8-bit or YCrCb data on Pins P7–P0.  
0 must be written here.  
Toggling the TR07 from low to high and to low again resets the internal timing  
counters. This bit should be toggled after power-up, reset, or changing to a new  
timing mode.  
Timing Register Reset  
Rev. A | Page 33 of 52  
 
ADV7174/ADV7179  
TIMING MODE REGISTER 1 (TR1)  
Bits:  
TR17–TR10  
Address:  
SR4–SR0 = 08H  
Timing Register 1 is an 8-bit-wide register. Figure 44 shows the various operations under the control of Timing Register 1. This register  
can be read from as well written to. This register can be used to adjust the width and position of the master mode timing signals.  
TR17  
TR16  
TR15  
TR14  
TR13  
TR12  
TR11  
TR10  
HSYNC WIDTH  
HSYNC TO PIXEL  
DATA ADJUST  
HSYNC TO FIELD  
RISING EDGE DELAY  
(MODE 1 ONLY)  
HSYNC TO  
FIELD/VSYNC DELAY  
T
TR11 TR10  
A
TR17 TR16  
TR13 TR12  
T
0
0
1
1
0
1
0
1
1 × T  
4 × T  
B
PCLK  
PCLK  
T
TR15 TR14  
C
0
0
1
1
0
1
0
1
0 × T  
1 × T  
2 × T  
3 × T  
0
0
1
1
0
1
0
1
0 × T  
4 × T  
8 × T  
PCLK  
PCLK  
PCLK  
PCLK  
x
x
0
1
T
T
B
16 × T  
PCLK  
PCLK  
PCLK  
PCLK  
128 × T  
+ 32µs  
B
PCLK  
16 × T  
PCLK  
VSYNC WIDTH  
(MODE 2 ONLY)  
TR15 TR14  
0
0
1
1
0
1
0
1
1 × T  
4 × T  
PCLK  
PCLK  
16 × T  
PCLK  
128 × T  
PCLK  
TIMING MODE 1 (MASTER/PAL)  
LINE 1  
LINE 313  
LINE 314  
T
A
HSYNC  
T
T
C
B
FIELD/VSYNC  
Figure 44. Timing Register 1  
Table 16. TR1 Bit Description  
Bit Name Bit No.  
TR11–TR10 These bits adjust the HSYNC pulse width.  
Description  
HSYNC  
Width  
HSYNC  
Delay  
VSYNC  
to FIELD/  
TR13–TR12 These bits adjust the position of the HSYNC output relative to the FIELD/VSYNC output.  
HSYNC  
Edge Delay  
TR15–TR14 When the ADV7174/ADV7179 is in Timing Mode 1, these bits adjust the position of the HSYNC  
output relative to the FIELD output rising edge.  
to FIELD Rising  
VSYNC  
TR15–TR14 When the ADV7174/ADV7179 is configured in Timing Mode 2, these bits adjust the VSYNC  
pulse width.  
Width  
HSYNC  
TR17–TR16 This enables the HSYNC to be adjusted with respect to the pixel data. This allows the Cr and Cb  
components to be swapped. This adjustment is available in both master and slave timing modes.  
to Pixel Data Adjust  
Rev. A | Page 34 of 52  
 
ADV7174/ADV7179  
SUBCARRIER FREQUENCY REGISTERS 3–0  
Bits:  
FSC3–FSC0  
Address:  
SR4–SR00 = 09H–0CH  
These 8-bit-wide registers are used to set up the subcarrier frequency. The value of these registers is calculated by using the following  
equation:  
No.of Subcarrier Frequency Values in One Line of Video Line  
× 232  
*
No.of 27 MHz Clock Cycles in OneVideo Line  
* Rounded to the nearest integer.  
For example, in NTSC mode,  
227.5  
1716  
Subcarrier Frequency Value =  
×232 = 569408542d = 21F07C1Eh  
Note that on power-up, FSC Register 0 is set to 16h. A value of 1E as derived above is recommended.  
Program as  
FSC Register 0: 1EH  
FSC Register 2: 7CH  
FSC Register 3: F0H  
FSC Register 4: 21H  
Figure 45 shows how the frequency is set up by the four registers.  
SUBCARRIER  
FREQUENCY  
REG 3  
FSC31 FSC30 FSC29 FSC28 FSC27 FSC26 FSC25 FSC24  
SUBCARRIER  
FREQUENCY  
REG 2  
FSC23 FSC22 FSC21 FSC20 FSC19 FSC18 FSC17 FSC16  
SUBCARRIER  
FREQUENCY  
REG 1  
FSC14  
FSC6  
FSC15  
FSC7  
FSC13 FSC12 FSC11 FSC10 FSC9  
FSC8  
FSC0  
SUBCARRIER  
FREQUENCY  
REG 0  
FSC5  
FSC4  
FSC3 FSC2 FSC1  
Figure 45. Subcarrier Frequency Register  
SUBCARRIER PHASE REGISTER  
Bits:  
Address:  
FP7–FP0  
SR4–SR0 = 0DH  
This 8-bit-wide register is used to set up the subcarrier phase. Each bit represents 1.41°. For normal operation, this register is set to 00H.  
CLOSED CAPTIONING EVEN FIELD DATA REGISTERS 1–0  
Bits:  
CED15–CED0  
Address:  
SR4–SR0 = 0EH–0FH  
These 8-bit-wide registers are used to set up the closed captioning extended data bytes on even fields. Figure 46 shows how the high and  
low bytes are set up in the registers.  
CED15 CED14 CED13 CED12 CED11 CED10 CED9 CED8  
CED7 CED6 CED5 CED4 CED3 CED2 CED1 CED0  
Figure 46. Closed Captioning Extended Data Register  
BYTE 1  
BYTE 0  
Rev. A | Page 35 of 52  
 
 
ADV7174/ADV7179  
CLOSED CAPTIONING ODD FIELD DATA REGISTERS 1–0  
Bits:  
CCD15–CCD0  
Subaddress:  
SR4–SR0 = 10H–11H  
These 8-bit-wide registers are used to set up the closed captioning data bytes on odd fields. Figure 47 shows how the high and low bytes  
are set up in the registers.  
CCD15 CCD14 CCD13 CCD12 CCD11 CCD10 CCD9 CCD8  
CCD7 CCD6 CCD5 CCD4 CCD3 CCD2 CCD1 CCD0  
Figure 47. Closed Captioning Data Register  
BYTE 1  
BYTE 0  
NTSC PEDESTAL/PAL TELETEXT CONTROL REGISTERS 3–0  
Bits:  
Subaddress:  
PCE15–PCE0, PCO15–PCO0/TXE15–TXE0, TXO15–TXO0  
SR4–SR0 = 12H–15H  
These 8-bit-wide registers are used to enable the NTSC pedestal/ PAL Teletext on a line-by-line basis in the vertical blanking interval for  
both odd and even fields. Figure 48 and Figure 49 show the four control registers. A Logic 1 in any of the bits of these registers has the  
effect of turning the pedestal off on the equivalent line when used in NTSC. A Logic 1 in any of the bits of these registers has the effect of  
turning Teletext on the equivalent line when used in PAL.  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
PCO7  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
PCO15 PCO14 PCO13 PCO12 PCO11 PCO10 PCO9 PCO8  
PCO6 PCO5  
PCO4  
PCO3 PCO2  
PCO1  
PCO0  
FIELD 1/3  
FIELD 1/3  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
PCE7 PCE6 PCE5 PCE4 PCE3 PCE2 PCE1 PCE0  
FIELD 2/4  
FIELD 2/4  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
PCE15 PCE14 PCE13 PCE12 PCE11 PCE10 PCE9  
PCE8  
Figure 48. Pedestal Control Registers  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXO7 TXO6 TXO5 TXO4 TXO3 TXO2 TXO1 TXO0  
FIELD 1/3  
FIELD 1/3  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
TXO15 TXO14 TXO13 TXO12 TXO11 TXO10 TXO9 TXO8  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXE7 TXE6 TXE5 TXE4 TXE3 TXE2 TXE1 TXE0  
FIELD 2/4  
FIELD 2/4  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
TXE15 TXE14 TXE13 TXE12 TXE11 TXE10  
TXE9  
TXE8  
Figure 49. Teletext Control Registers  
Rev. A | Page 36 of 52  
 
 
 
ADV7174/ADV7179  
TELETEXT REQUEST CONTROL REGISTER (TC07)  
Bits:  
TC07–TC00  
Address:  
SR4–SR0 = 19H  
Teletext control register is an 8-bit-wide register (see Figure 50).  
Table 17. Teletext Request Control Register  
Bit Name  
Bit No.  
Description  
TTXREQ Rising Edge Control  
TC07–TC04  
These bits control the position of the rising edge of TTXREQ. It can be  
programmed from 0 CLOCK cycles to a maximum of 15 CLOCK cycles (see  
Figure 50).  
TTXREQ Falling Edge Control  
TC03–TC00  
These bits control the position of the falling edge of TTXREQ. It can be  
programmed from zero CLOCK cycles to a max of 15 CLOCK cycles. This controls  
the active window for Teletext data. Increasing this value reduces the amount of  
Teletext bits below the default of 360. If Bits TC03–TC00 are 00H when Bits TC07–  
TC04 are changed, the falling edge of TTXREQ tracks that of the rising edge, i.e.,  
the time between the falling and rising edge remains constant (see Figure 49).  
CGMS_WSS REGISTER 0 (C/W0)  
Bits:  
Address:  
C/W07–C/W00  
SR4–SR0 = 16H  
CGMS_WSS Register 0 is an 8-bit-wide register. Figure 51 shows the operations under the control of this register.  
TC06  
TC05  
TC04  
TC03  
TC02  
TC01  
TC00  
TC07  
TTXREQ RISING EDGE CONTROL  
TC07 TC06 TC05 TC04  
TTXREQ FALLING EDGE CONTROL  
TC03 TC02 TC01 TC00  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
Figure 50. Teletext Control Register  
C/W07  
C/W06  
C/W05  
C/W04  
C/W03  
C/W02  
C/W01  
C/W00  
WIDE SCREEN  
SIGNAL CONTROL  
CGMS ODD FIELD  
CONTROL  
C/W03 – C/W00  
C/W07  
C/W05  
CGMS DATA BITS  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
CGMS CRC CHECK  
CONTROL  
CGMS EVEN FIELD  
CONTROL  
C/W06  
C/W04  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
Figure 51. CGMS_WSS Register 0  
Table 18. C/W0 Bit Description  
Bit Name  
Bit No.  
Description  
CGMS Data Bits  
C/W03–C/W00  
These four data bits are the final four bits of the CGMS data output stream. Note it is  
CGMS data ONLY in these bit positions, i.e., WSS data does not share this location.  
C/W04  
When this bit is enabled (1), the last six bits of the CGMS data, i.e., the CRC check  
sequence, are calculated internally by the ADV7174/ADV7179. If this bit is disabled (0), the  
CRC values in the register are output to the CGMS data stream.  
CGMS CRC Check Control  
CGMS Odd Field Control  
CGMS Even Field Control  
WSS Control  
C/W05  
C/W06  
C/W07  
When this bit is set (1), CGMS is enabled for odd fields. Note this is only valid in NTSC mode.  
When this bit is set (1), CGMS is enabled for even fields. Note this is only valid in NTSC mode.  
When this bit is set (1), wide screen signaling is enabled. Note this is only valid in PAL mode.  
Rev. A | Page 37 of 52  
 
 
ADV7174/ADV7179  
CGMS_WSS REGISTER 1 (C/W1)  
Bits:  
Address :  
C/W17–C/W10  
SR4–SR0 = 17H  
CGMS_WSS Register 1 is an 8-bit-wide register. Figure 52 shows the operations under the control of this register.  
C/W17  
C/W16  
C/W15  
C/W14  
C/W13  
C/W12  
C/W11  
C/W10  
C/W17 – C/W16  
CGMS DATA BITS  
C/W15 – C/W10  
CGMS/WSS DATA BITS  
Figure 52. CGMS_WSS Register 1  
Table 19. C/W1 Bit Description  
Bit Name  
Bit No.  
Description  
CGMS/WSS Data Bits  
C/W15–C/W10  
These bit locations are shared by CGMS data and WSS data. In NTSC mode, these bits  
are CGMS data. In PAL mode, these bits are WSS data.  
CGMS Data Bits  
C/W17–C/W16  
These bits are CGMS data bits only.  
CGMS_WSS REGISTER 2 (C/W2)  
Bits:  
C/W27–C/W20  
Address:  
(SR4–SR00) = 18H  
CGMS_WSS Register 2 is an 8-bit-wide register. Figure 53 shows the operations under the control of this register.  
C/W27  
C/W26  
C/W25  
C/W24  
C/W23  
C/W22  
C/W21  
C/W20  
C/W27 – C/W20  
CGMS/WSS DATA BITS  
Figure 53. CGMS_WSS Register 2  
Table 20. C/W2 Bit Description  
Bit Name  
Bit No.  
C/W27–C/W20  
Description  
CGMS/WSS Data Bits  
These bit locations are shared by CGMS data and WSS data. In NTSC mode, these  
bits are CGMS data. In PAL mode, these bits are WSS data.  
Rev. A | Page 38 of 52  
 
 
ADV7174/ADV7179  
APPENDIX 1—BOARD DESIGN AND LAYOUT CONSIDERATIONS  
The ADV7174/ADV7179 is a highly integrated circuit contain-  
ing both precision analog and high speed digital circuitry. It has  
been designed to minimize interference effects on the integrity  
of the analog circuitry by the high speed digital circuitry. It is  
imperative that these same design and layout techniques be  
applied to the system-level design so that high speed, accurate  
performance is achieved. Figure 54 shows the analog interface  
between the device and monitor.  
POWER PLANES  
The ADV7174/ADV7179 and any associated analog circuitry  
should have its own power plane, referred to as the analog  
power plane (VAA). This power plane should be connected to  
the regular PCB power plane (VCC) at a single point through a  
ferrite bead. This bead should be located within 3 inches of the  
ADV7174/ADV7179.  
The metallization gap separating the device power plane and  
board power plane should be as narrow as possible to minimize  
the obstruction to the flow of heat from the device into the  
general board.  
The layout should be optimized for lowest noise on the  
ADV7174/ADV7179 power and ground lines by shielding the  
digital inputs and providing good decoupling. The lead length  
between groups of VAA and GND pins should be minimized to  
reduce inductive ringing.  
The PCB power plane should provide power to all digital logic  
on the PC board, and the analog power plane should provide  
power to all ADV7174/ADV7179 power pins and voltage  
reference circuitry.  
GROUND PLANES  
The ground plane should encompass all ADV7174/ADV7179  
ground pins, voltage reference circuitry, power supply bypass  
circuitry for the ADV7174/ADV7179, the analog output traces,  
and all the digital signal traces leading up to the ADV7174/  
ADV7179. The ground plane is the boards common ground  
plane.  
Plane-to-plane noise coupling can be reduced by ensuring that  
portions of the regular PCB power and ground planes do not  
overlay portions of the analog power plane unless they can be  
arranged so that the plane-to-plane noise is common mode.  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
0.1  
µF  
0.01µF  
L1  
(FERRITE BEAD)  
3.3 V (V  
)
AA  
3.3V (V  
AA  
)
3.3 V  
(V  
3.3 V (V  
)
AA  
)
CC  
33µF  
10µ  
F
0.1µF  
0.1µF  
GND  
V
AA  
23  
30  
COMP  
V
REF  
ADV7174/ADV7179  
3–5, 35–39  
24  
DAC C  
3.3 V (V  
)
AA  
P7–P0  
75Ω  
75Ω  
75Ω  
4k  
28  
29  
32  
13  
DAC B  
DAC A  
SCRESET/RTC  
HSYNC  
RESET  
100nF  
UNUSED  
INPUTS  
SHOULD BE  
GROUNDED  
14 FIELD/VSYNC  
3.3 V (V  
)
CC  
3.3 V (V  
)
3.3 V (V )  
CC  
CC  
15  
BLANK  
100k  
20  
34  
33  
1
RESET  
TTX  
5kΩ  
5kΩ  
TTX  
100  
21  
22  
31  
SCLOCK  
SDATA  
TTXREQ  
MPU BUS  
100  
TTXREQ  
CLOCK  
100k  
R
SET  
3.3 V (V  
)
AA  
ALSB  
16  
GND  
150  
TELETEXT PULL-UP AND  
PULL-DOWN RESISTORS  
SHOULD ONLY BE USED  
IF THESE PINS ARE NOT  
CONNECTED  
10k  
27MHz CLOCK  
(SAME CLOCK AS USED BY  
MPEG2 DECODER)  
Figure 54. Recommended Analog Circuit Layout  
Rev. A | Page 39 of 52  
 
ADV7174/ADV7179  
ANALOG SIGNAL INTERCONNECT  
SUPPLY DECOUPLING  
The ADV7174/ADV7179 should be located as close to the  
output connectors as possible to minimize noise pickup and  
reflections due to impedance mismatch.  
For optimum performance, bypass capacitors should be in-  
stalled using the shortest leads possible, consistent with reliable  
operation, to reduce the lead inductance. Best performance is  
obtained with 0.1 µF ceramic capacitor decoupling. Each group  
of VAA pins on the ADV7174/ADV7179 must have at least one  
0.1 µF decoupling capacitor to GND. These capacitors should be  
placed as close to the device as possible.  
The video output signals should overlay the ground plane, not  
the analog power plane, to maximize the high frequency power  
supply rejection.  
Digital inputs, especially pixel data inputs and clocking signals,  
should never overlay any of the analog signal circuitry and  
should be kept as far away as possible.  
It is important to note that while the ADV7174/ADV7179  
contains circuitry to reject power supply noise, this rejection  
decreases with frequency. If a high frequency switching power  
supply is used, the designer should pay close attention to  
reducing power supply noise and consider using a 3-terminal  
voltage regulator for supplying power to the analog power  
plane.  
For best performance, the outputs should each have a 75 Ω load  
resistor connected to GND. These resistors should be placed as  
close as possible to the ADV7174/ADV7179 to minimize  
reflections.  
DIGITAL SIGNAL INTERCONNECT  
The ADV7174/ADV7179 should have no inputs left floating.  
Any inputs that are not required should be tied to ground.  
The digital inputs to the ADV7174/ADV7179 should be isolated  
as much as possible from the analog outputs and other analog  
circuitry. Also, these input signals should not overlay the analog  
power plane.  
The circuit in Figure 55 can be used to generate a 13.5 MHz  
HSYNC  
waveform using the 27 MHz clock and the  
pulse. This  
waveform is guaranteed to produce the 13.5 MHz clock in  
synchronization with the 27 MHz clock. This 13.5 MHz clock  
can be used if the 13.5 MHz clock is required by the MPEG  
decoder. This guarantees that the Cr and Cb pixel information  
is input to the ADV7174/ADV7179 in the correct sequence.  
Due to the high clock rates involved, long clock lines to the  
ADV7174/ADV7179 should be avoided to reduce noise pickup.  
Any active termination resistors for the digital inputs should be  
connected to the regular PCB power plane (VCC) and not to the  
analog power plane.  
Note that the exposed metal paddle on the bottom side of the  
LFCSP package must be soldered to PCB ground for proper  
heat dissipation and also for electrical noise and mechanical  
strength benefits.  
D
Q
13.5MHz  
D
Q
CLOCK  
HSYNC  
CK  
CK  
Figure 55. Circuit to Generate 13.5 MHz  
Rev. A | Page 40 of 52  
 
ADV7174/ADV7179  
APPENDIX 2—CLOSED CAPTIONING  
ADV7174/ADV7179. All pixel inputs are ignored during Lines  
21 and 284. FCC Code of Federal Regulations (CFR) 47 Section  
15.119 and EIA-608 describe the closed captioning information  
for Lines 21 and 284.  
The ADV7174/ADV7179 supports closed captioning, conform-  
ing to the standard television synchronizing waveform for color  
transmission. Closed captioning is transmitted during the  
blanked active line time of Line 21 of the odd fields and Line  
284 of even fields.  
The ADV7174/ADV7179 uses a single buffering method. This  
means that the closed captioning buffer is only one byte deep,  
therefore there will be no frame delay in outputting the closed  
captioning data unlike other 2-byte deep buffering systems. The  
data must be loaded at least one line before (Line 20 or Line 283)  
it is outputted on Line 21 and Line 284. A typical implementation  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency-locked and phase-locked to the caption data. After  
the clock run-in signal, the blanking level is held for 2 data bits  
and is followed by a Logic 1 start bit. 16 bits of data follow the  
start bit. These consist of two 8-bit bytes, 7 data bits, and 1 odd  
parity bit. The data for these bytes is stored in closed captioning  
Data Registers 0 and 1.  
VSYNC  
of this method is to use  
to interrupt a microprocessor,  
which in turn loads the new data (two bytes) every field. If no  
new data is required for transmission, you must insert zeros in  
both the data registers; this is called nulling. It is also important  
to load control codes, all of which are double bytes, on Line 21,  
or a TV cannot recognize them. If you have a message such as  
“Hello World,” which has an odd number of characters, it is  
important to pad it out to an even number to get the end of the  
caption 2-byte control code to land in the same field.  
The ADV7174/ADV7179 also supports the extended closed  
captioning operation, which is active during even fields, and is  
encoded on scan Line 284. The data for this operation is stored  
in closed captioning extended Data Registers 0 and 1.  
All clock run-in signals and timing to support closed captioning  
on Lines 21 and 284 are automatically generated by the  
10.5 ± 0.25µs  
12.91µs  
7 CYCLES  
OF 0.5035 MHz  
(CLOCK RUN-IN)  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
S
T
A
R
T
P
A
R
I
T
Y
D0–D6  
D0–D6  
50 IRE  
40 IRE  
BYTE 1  
BYTE 0  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
33.764µs  
27.382µs  
Figure 56. Closed Captioning Waveform (NTSC)  
Rev. A | Page 41 of 52  
ADV7174/ADV7179  
APPENDIX 3—COPY GENERATION MANAGEMENT SYSTEM (CGMS)  
C/W17 = C15, C/W20 = C0, C/W21 = C1, C/W22 = C2, C/W23  
The ADV7174/ADV7179 supports the CGMS, conforming to  
the standard. CGMS data is transmitted on Line 20 of the odd  
fields and on Line 283 of the even fields. Bits C/W05 and  
C/W06 control whether or not CGMS data is output on odd  
and even fields. CGMS data can only be transmitted when the  
ADV7174/ ADV7179 is configured in NTSC mode. The CGMS  
data is 20 bits long, the function of each of these bits is as shown  
below. The CGMS data is preceded by a reference pulse of the  
same amplitude and duration as a CGMS bit (see Figure 57).  
The bits are output from the configuration registers in the  
following order: C/W00 = C16, C/W01 = C17, C/W02 = C18,  
C/W03 = C19, C/W10 = C8, C/ W11 = C9, C/W12 = C10,  
C/W13 = C11, C/W14 = C12, C/ W15 = C13, C/W16 = C14,  
= C3, C/W24 = C4, C/W25 = C5, C/W26 = C6, C/W27 = C7. If  
Bit C/W04 is set to a Logic 1, the last six bits, C19–C14, which  
comprise the 6-bit CRC check sequence, are calculated  
automatically on the ADV7174/ADV7179 based on the lower  
14 bits (C0–C13) of the data in the data registers and output  
with the remaining 14 bits to form the complete 20 bits of the  
CGMS data. The calculation of the CRC sequence is based on  
the polynomial X6 + X + 1 with a preset value of 111111. If  
C/W04 is set to a Logic 0, all 20 bits (C0–C19) are directly  
output from the CGMS registers (no CRC is calculated; it must  
be calculated by the user).  
FUNCTION OF CGMS BITS  
Word 0 –6 Bits  
Word 1 –4 Bits  
Word 2 –4 Bits  
CRC –6 Bits CRC Polynomial = X6 + X + 1 (Preset to 111111)  
Table 21. Bit 1–Bit 14  
Word  
Bit  
Function  
Word 0  
1
0
B1  
B2  
B3  
Aspect Ratio  
Display Format  
Undefined  
16:9  
Letterbox  
4:3  
Normal  
B4, B5, B6  
B7, B8, B9, B10  
B11, B12, B13, B14  
Identification information about video and other signals, for example, audio  
Identification signal incidental to Word 0  
Identification signal and information incidental to Word 0  
Word 1  
Word 2  
100 IRE  
CRC SEQUENCE  
C17 C18 C19  
REF  
70 IRE  
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12  
C13 C14 C15 C16  
0 IRE  
49.1µs ± 0.5µs  
–40 IRE  
11.2µs  
2.235µs ± 20ns  
Figure 57. CGMS Waveform Diagram  
Rev. A | Page 42 of 52  
 
ADV7174/ADV7179  
APPENDIX 4—WIDE SCREEN SIGNALING (WSS)  
following order: C/W20 = W0, C/W21 = W1, C/W22 = W2,  
C/W23 = W3, C/W24 = W4, C/W25 = W5, C/W26 = W6,  
C/W27 = W7, C/W10 = W8, C/W11 = W9, C/W12 = W10,  
C/W13 = W11, C/W14 = W12, C/W15 = W13. If the Bit C/W07  
is set to a Logic 1, it enables the WSS data to be transmitted on  
Line 23. The latter portion of Line 23 (42.5 µs from the falling  
The ADV7174/ADV7179 supports WSS, conforming to the  
standard. WSS data is transmitted on Line 23. WSS data can  
only be transmitted when the ADV7174/ ADV7179 is  
configured in PAL mode. The WSS data is 14 bits long, the  
function of each of these bits is as shown below. The WSS data  
is preceded by a run-in sequence and a start code (see Figure 58).  
HSYNC  
edge of  
) is available for the insertion of video.  
The bits are output from the configuration registers in the  
FUNCTION OF WSS BITS  
Table 22. Bit 0–Bit 2 Bit 3 is the odd parity check of Bit 0–Bit 2  
Table 23. Bit 4–Bit 7  
Aspect  
Ratio  
Bit  
Value Description  
B0  
B1  
B2  
B3  
Format  
Position  
B4  
0
1
0
1
0
1
Camera Mode  
Film Mode  
0
0
0
1
4:3  
Full  
Format  
Not  
Applicable  
Center  
Top  
Center  
Top  
B5  
B6  
Standard Coding  
Motion Adaptive Color Plus  
No Helper  
Modulated Helper  
Reserved  
1
0
1
0
1
0
0
1
1
0
0
1
0
0
0
1
1
1
0
0
1
0
1
1
14:9  
14:9  
16:9  
16:9  
>16:9  
14:9  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Letterbox  
Full  
Format  
Not  
B7  
B8  
Center  
Center  
0
1
No Teletext Subtitles  
Teletext Subtitles  
No Open Subtitles  
Subtitles in Active Image Area  
Subtitles out of Active Image Area  
Reserved  
No Surround Sound Information  
Surround Sound Mode  
Reserved  
B9–B10  
0, 0  
1, 0  
0, 1  
1, 1  
0
1
1
1
0
16:9  
Not  
Applicable Applicable  
B11  
1
B12  
B13  
Reserved  
500mV  
W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13  
RUN-IN  
SEQUENCE  
START  
CODE  
ACTIVE  
VIDEO  
11.0µs  
38.4µs  
42.5µs  
Figure 58. WSS Waveform Diagram  
Rev. A | Page 43 of 52  
 
ADV7174/ADV7179  
APPENDIX 5—TELETEXT  
TELETEXT INSERTION  
TELETEXT PROTOCOL  
tPD is the time needed by the ADV7174/ADV7179 to interpolate  
input data on TTX and insert it onto the CVBS or Y outputs,  
such that it appears tSYNTTXOUT = 10.2 µs after the leading edge of  
the horizontal signal. Time TTXDEL is the pipeline delay time by  
the source that is gated by the TTXREQ signal in order to  
deliver TTX data.  
The relationship between the TTX bit clock (6.9375 MHz) and  
the system clock (27 MHz) for 50 Hz is  
27 MHz  
= 6.75MHz  
4
(
6.9375×106 6.75×106  
)
=1.027777  
With the programmability offered with the TTXREQ signal on  
the rising/falling edges, the TTX data is always inserted at the  
correct position of 10.2 µs after the leading edge of horizontal  
sync pulse, thus enabling a source interface with variable pipe-  
line delays.  
Thus, 37 TTX bits correspond to 144 clocks (27 MHz) and each  
bit has a width of almost four clock cycles. The ADV7174/  
ADV7179 uses an internal sequencer and variable phase inter-  
polation filter to minimize the phase jitter and thus generate a  
band-limited signal that can be output on the CVBS and Y  
outputs.  
The width of the TTXREQ signal must always be maintained to  
allow the insertion of 360 (to comply with the Teletext standard  
PAL-WST) Teletext bits at a text data rate of 6.9375 Mbits/s.  
This is achieved by setting TC03–TC00 to 0. The insertion  
window is not open if the Teletext enable bit (MR35) is set to 0.  
At the TTX input, the bit duration scheme repeats after every 37  
TTX bits or 144 clock cycles. The protocol requires that TTX  
Bits 10, 19, 28, and 37 are carried by three clock cycles and all  
other bits by four clock cycles. After 37 TTX bits, the next bits  
with three clock cycles are 47, 56, 65, and 74. This scheme holds  
for all following cycles of 37 TTX bits until all 360 TTX bits are  
completed. All Teletext lines are implemented in the same way.  
Individual control of Teletext lines is controlled by Teletext  
setup registers.  
45 BYTES (360 BITS) – PAL  
ADDRESS AND DATA  
TELETEXT VBI LINE  
RUN-IN CLOCK  
Figure 59. Teletext VBI Line  
tSYNTTXOUT  
CVBS/Y  
HSYNC  
tPD  
tPD  
10.2µs  
TTX  
DATA  
TTX  
DEL  
TTXREQ  
PROGRAMMABLE PULSE EDGES  
TTX  
ST  
tSYNTTXOUT = 10.2  
µs  
tPD = PIPELINE DELAY THROUGH ADV7174/ADV7179  
TTX  
DEL  
= TTXREQ TO TTX (PROGRAMMABLE RANGE = 4 BITS [0–15 CLOCK CYCLES])  
Figure 60. Teletext Functionality  
Rev. A | Page 44 of 52  
ADV7174/ADV7179  
APPENDIX 6—WAVEFORMS  
NTSC WAVEFORMS (WITH PEDESTAL)  
1268.1mV  
1048.4mV  
130.8 IRE  
100 IRE  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
387.6mV  
334.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
SYNC LEVEL  
48.3mV  
–40 IRE  
Figure 61. NTSC Composite Video Levels  
1048.4mV  
100 IRE  
REF WHITE  
714.2mV  
387.6mV  
334.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
SYNC LEVEL  
48.3mV  
–40 IRE  
Figure 62. NTSC Luma Video Levels  
PEAK CHROMA  
963.8mV  
629.7mV (p-p)  
286mV (p-p)  
650mV  
BLANK/BLACK LEVEL  
PEAK CHROMA  
335.2mV  
0mV  
Figure 63. NTSC Chroma Video Levels  
100 IRE  
REF WHITE  
1052.2mV  
720.8mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
387.5mV  
331.4mV  
SYNC LEVEL  
–40 IRE  
45.9mV  
Figure 64. NTSC RGB Video Levels  
Rev. A | Page 45 of 52  
ADV7174/ADV7179  
NTSC WAVEFORMS (WITHOUT PEDESTAL)  
130.8 IRE  
100 IRE  
1289.8mV  
1052.2mV  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
0 IRE  
338mV  
52.1mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
–40 IRE  
Figure 65. NTSC Composite Video Levels  
100 IRE  
1052.2mV  
REF WHITE  
714.2mV  
0 IRE  
338mV  
52.1mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
–40 IRE  
Figure 66. NTSC Luma Video Levels  
PEAK CHROMA  
978mV  
694.9mV (p-p)  
286mV (p-p)  
650mV  
BLANK/BLACK LEVEL  
PEAK CHROMA  
299.3mV  
0mV  
Figure 67. NTSC Chroma Video Levels  
100 IRE  
1052.2mV  
REF WHITE  
715.7mV  
336.5mV  
51mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
–40 IRE  
Figure 68. NTSC RGB Video Levels  
Rev. A | Page 46 of 52  
ADV7174/ADV7179  
PAL WAVEFORMS  
PEAK CHROMA  
989.7mV  
650mV  
672mV (p-p)  
300mV (p-p)  
BLANK/BLACK LEVEL  
PEAK CHROMA  
317.7mV  
0mV  
Figure 69. PAL Composite Video Levels  
REF WHITE  
1047mV  
696.4mV  
350.7mV  
50.8mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
Figure 70. PAL Luma Video Levels  
PEAK CHROMA  
989.7mV  
672mV (p-p)  
300mV (p-p)  
650mV  
BLANK/BLACK LEVEL  
PEAK CHROMA  
317.7mV  
0mV  
Figure 71. PAL Chroma Video Levels  
REF WHITE  
1050.2mV  
698.4mV  
351.8mV  
51mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
Figure 72. PAL RGB Video Levels  
Rev. A | Page 47 of 52  
ADV7174/ADV7179  
Pb Pr WAVEFORMS  
+505mV  
+334mV  
+505mV  
+423mV  
+171mV  
BETACAM LEVEL  
BETACAM LEVEL  
0mV  
+82mV  
0mV  
0mV  
0mV  
–82mV  
–171mV  
–334mV  
–423mV  
–05mV  
–505mV  
Figure 73. NTSC 100% Color Bars, No Pedestal Pb Levels  
Figure 76. NTSC 100% Color Bars, No Pedestal Pr Levels  
+467mV  
+309mV  
+467mV  
+391mV  
+158mV  
BETACAM LEVEL  
BETACAM LEVEL  
+76mV  
0mV  
0mV  
0mV  
0mV  
–76mV  
–158mV  
–309mV  
–391mV  
–467mV  
–467mV  
Figure 74. NTSC 100% Color Bars with Pedestal Pb Levels  
Figure 77. NTSC 100% Color Bars with Pedestal Pr Levels  
+350mV  
+232mV  
+350mV  
+293mV  
+118mV  
SMPTE LEVEL  
+57mV  
SMPTE LEVEL  
0mV  
0mV  
0mV  
0mV  
–57mV  
–118mV  
–232mV  
–293mV  
–350mV  
–350mV  
Figure 75. PAL 100% Color Bars, Pb Levels  
Figure 78. PAL 100% Color Bars, Pr Levels  
Rev. A | Page 48 of 52  
ADV7174/ADV7179  
APPENDIX 7—OPTIONAL OUTPUT FILTER  
0
If an output filter is required for the CVBS, Y, UV, chroma, and  
RGB outputs of the ADV7174/ADV7179, the filter shown in  
Figure 79 can be used. Plots of the filter characteristics are  
shown in Figure 80. An output filter is not required if the  
outputs of the ADV7174/ADV7179 are connected to most  
analog monitors or analog TVs. However, if the output signals  
are applied to a system where sampling is used (e.g., digital  
TVs), then a filter is required to prevent aliasing.  
10  
20  
30  
40  
50  
60  
70  
80  
22pF  
DISPLAY DEVICE  
1.8µH  
FILTER I/P  
Z
= 75Ω  
0
100k  
10M  
FREQUENCY (Hz)  
100M  
1M  
270pF  
330pF  
75Ω  
75Ω  
Figure 80. Output Filter Plot  
Figure 79. Output Filter  
Rev. A | Page 49 of 52  
 
 
ADV7174/ADV7179  
APPENDIX 8—RECOMMENDED REGISTER VALUES  
switched off. In the examples shown, the timing mode is set to  
The ADV7174/ADV7179 registers can be set depending on the  
user standard required. The power-on reset values can be found  
in Figure 37.  
Mode 0 in slave format. TR02–TR00 of the Timing Register 0  
control the timing modes. For a detailed explanation of each bit  
in the command registers, refer to the Register Programming  
section. TR07 should be toggled after setting up a new timing  
mode. Timing Register 1 provides additional control over the  
position and duration of the timing signals. In the examples,  
this register is programmed in default mode.  
The following examples give the various register formats for  
several video standards. In each case, the output is set to compos-  
ite output with all DACs powered up and with the input control  
BLANK  
disabled. Additionally, the burst and  
color information  
is enabled on the output, and the internal color bar generator is  
Table 24. PAL B/D/G/H/I (FSC = 4.43361875 MHz)  
Table 25. PAL N (FSC = 4.43361875 MHz)  
Address  
00H  
01H  
02H  
03H  
04H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
Description  
Data  
05H  
10H  
00H  
00H  
00H  
00H  
00H  
CBH  
8AH  
09H  
2AH  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
Address  
00H  
01H  
02H  
03H  
04H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
Description  
Data  
05H  
10H  
00H  
00H  
00H  
00H  
00H  
CBH  
8AH  
09H  
2AH  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Mode Register 3  
Mode Register 4  
Timing Register 0  
Timing Register 1  
Subcarrier Frequency Register 0  
Subcarrier Frequency Register 1  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Closed Captioning Ext Register 0  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Mode Register 3  
Mode Register 4  
Timing Register 0  
Timing Register 1  
Subcarrier Frequency Register 0  
Subcarrier Frequency Register 1  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Closed Captioning Ext Register 0  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
Teletext Request Control Register  
Telext Request Control Register  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
Teletext Request Control Register  
Rev. A | Page 50 of 52  
ADV7174/ADV7179  
Table 26. PAL-60 (FSC = 4.43361875 MHz)  
Table 27. NTSC (FSC = 3.5795454 MHz)  
Address  
00H  
01H  
02H  
03H  
04H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
Description  
Data  
04H  
10H  
00H  
00H  
00H  
00H  
00H  
CBH  
8AH  
09H  
2AH  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
Address  
00H  
01H  
02H  
03H  
04H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
Description  
Data  
00H  
10H  
00H  
00H  
10H  
00H  
00H  
1EH1  
7CH  
F0H  
21H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Mode Register 3  
Mode Register 4  
Timing Register 0  
Timing Register 1  
Subcarrier Frequency Register 0  
Subcarrier Frequency Register 1  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Closed Captioning Ext Register 0  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
Mode Register 0  
Mode Register 1  
Mode Register 2  
Mode Register 3  
Mode Register 4  
Timing Register 0  
Timing Register 1  
Subcarrier Frequency Register 0  
Subcarrier Frequency Register 1  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Closed Captioning Ext Register 0  
Closed Captioning Ext Register 1  
Closed Captioning Register 0  
Closed Captioning Register 1  
Pedestal Control Register 0  
Pedestal Control Register 1  
Pedestal Control Register 2  
Pedestal Control Register 3  
CGMS_WSS Register 0  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
Teletext Request Control Register  
CGMS_WSS Register 1  
CGMS_WSS Register 2  
Teletext Request Control Register  
1 On power-up, this register is set to 16h. 1Eh should be written here for  
correct FSC  
.
Rev. A | Page 51 of 52  
 
ADV7174/ADV7179  
OUTLINE DIMENSIONS  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
4.25  
4.10 SQ  
3.95  
TOP  
VIEW  
5.75  
BSC SQ  
BOTTOM  
VIEW  
0.50  
0.40  
0.30  
21  
10  
11  
20  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 81. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-40)  
Dimensions shown in millimeters  
Note that the exposed metal paddle on the bottom side of the LFCSP package must be soldered to PCB ground for proper heat dissipation  
and also for noise and mechanical strength benefits.  
ORDERING GUIDE  
Model  
ADV7179KCP  
ADV7179KCP-REEL  
ADV7179BCP  
ADV7179BCP-REEL  
ADV7174KCP  
ADV7174KCP-REEL  
ADV7174BCP  
ADV7174BCP-REEL  
EVAL-ADV7179EBM  
EVAL-ADV7174EBM  
Temperature Range  
0°C to 70°C  
0°C to 70°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
0°C to 70°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-40  
CP-40  
CP-40  
CP-40  
CP-40  
CP-40  
CP-40  
CP-40  
Lead Frame Chip Scale Package  
Lead Frame Chip Scale Package  
Lead Frame Chip Scale Package  
Lead Frame Chip Scale Package  
Lead Frame Chip Scale Package  
Lead Frame Chip Scale Package  
Lead Frame Chip Scale Package  
Lead Frame Chip Scale Package  
Evaluation Board  
Evaluation Board  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02980–0–2/04(A)  
Rev. A | Page 52 of 52  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY