ADV7176A* [ADI]

High Quality. 10-Bit. Digital CCIR-601 to PAL/NTSC Video Encoder ; 高质量。 10位。数字CCIR -601至PAL / NTSC视频编码器
ADV7176A*
型号: ADV7176A*
厂家: ADI    ADI
描述:

High Quality. 10-Bit. Digital CCIR-601 to PAL/NTSC Video Encoder
高质量。 10位。数字CCIR -601至PAL / NTSC视频编码器

编码器
文件: 总52页 (文件大小:631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Quality, 10-Bit, Digital CCIR-601  
to PAL/NTSC Video Encoder  
a
ADV7175A/ADV7176A*  
FEATURES  
Program m able LUMA Delay  
ITU-R BT601/ 656 YCrCb to PAL/ NTSC Video Encoder  
High Quality 10-Bit Video DACs  
Integral Nonlinearity <1 LSB at 10 Bits  
NTSC-M, PAL-M/ N, PAL-B/ D/ G/ H/ I  
Single 27 MHz Clock Required (
؋
2 Oversam pling)  
80 dB Video SNR  
32-Bit Direct Digital Synthesizer for Color Subcarrier  
Multistandard Video Output Support:  
Com posite (CVBS)  
Com ponent S-Video (Y/ C)  
Com ponent YUV and RGB  
EuroSCART Output (RGB + CVBS/ LUMA)  
Video Input Data Port Supports:  
CCIR-656 4:2:2 8-Bit Parallel Input Form at  
4:2:2 16-Bit Parallel Input Form at  
Individual ON/ OFF Control of Each DAC  
CCIR and Square Pixel Operation  
Integrated Subcarrier Locking to External Video Source  
Color Signal Control/ Burst Signal Control  
Interlaced/ Noninterlaced Operation  
Com plete On-Chip Video Tim ing Generator  
Program m able Multim ode Master/ Slave Operation  
Macrovision Antitaping Rev 7.01 (ADV7175A Only)**  
Closed Captioning Support  
Teletext Insertion Port (PAL-WST)  
Onboard Color Bar Generation  
Onboard Voltage Reference  
2-Wire Serial MPU Interface (I2C Com patible)  
Single Supply +5 V or + 3 V Operation  
Sm all 44-Lead PQFP Therm ally Enhanced Package  
SMPTE 170M NTSC Com patible Com posite Video  
ITU-R BT.470 PAL Com patible Com posite Video  
Full Video Output Drive or Low Signal Drive Capability  
34.7 m A m ax into 37.5 (Doubly-Term inated 75R)  
5 m A m in w ith External Buffers  
APPLICATIONS  
MPEG-1 and MPEG-2 Video, DVD, Digital Satellite/  
Cable System s (Set Top Boxes/ IRDs), Digital TVs,  
CD Video/ Karaoke, Video Gam es, PC Video/ Multim edia  
Program m able Sim ultaneous Com posite  
GENERAL D ESCRIP TIO N  
and S-Video Y/ C or RGB (SCART)/ YUV Video Outputs  
Program m able Lum a Filters (Low -Pass/ Notch/ Extended)  
Program m able VBI (Vertical Blanking Interval)  
Program m able Subcarrier Frequency and Phase  
T he ADV7175A/ADV7176A is an integrated digital video en-  
coder that converts Digital CCIR-601 4:2:2 8 or 16-bit compo-  
nent video data into a standard analog baseband television  
(Continued on page 11)  
FUNCTIO NAL BLO CK D IAGRAM  
M
U
L
T
I
P
L
E
X
E
R
10  
10  
10  
TELETEXT  
INSERTION  
BLOCK  
TTX  
10-BIT  
DAC  
DAC D (PIN 27)  
DAC C (PIN 26)  
DAC B (PIN 31)  
TTXREQ  
YUV TO  
RBG  
MATRIX  
10-BIT  
DAC  
V
AA  
10-BIT  
DAC  
Y
8
8
8
8
8
8
10  
8
8
8
INTER-  
POLATOR  
ADD  
SYNC  
LOW-PASS  
FILTER  
COLOR  
DATA  
YCrCb  
TO  
YUV  
P7–P0  
4:2:2 TO  
4:4:4  
INTER-  
U
10  
10  
8
INTER-  
POLATOR  
ADD  
BURST  
LOW-PASS  
FILTER  
10  
P15–P8  
10-BIT  
DAC  
MATRIX  
POLATOR  
DAC A (PIN 32)  
V
8
8
INTER-  
POLATOR  
ADD  
BURST  
LOW-PASS  
FILTER  
ADV7175A/ADV7176A  
10  
10  
HSYNC  
FIELD/VSYNC  
REAL-TIME  
CONTROL  
CIRCUIT  
V
R
REF  
VOLTAGE  
REFERENCE  
CIRCUIT  
2
VIDEO TIMING  
GENERATOR  
I C MPU PORT  
SIN/COS  
DDS BLOCK  
SET  
BLANK  
COMP  
SCRESET/RTC  
CLOCK  
SCLOCK SDATA ALSB  
GND  
RESET  
*Protected by U.S. patents numbers 5,343,196 and 5,442,355 and other intellectual property rights.  
**T his device is protected by U.S. Patent Numbers 4631603, 4577216, 4819098 and other intellectual property rights. T he Macrovision anticopy process is  
licensed for noncommercial home use only, which is its sole intended use in the device. Please contact sales office for latest Macrovision version available.  
NOT E: IT U-R and CCIR are used interchangeably in this document (IT U-R has replaced CCIR recommendations).  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1998  
ADV7175A/ADV7176ASPECIFICATIONS  
(V = +5 V ؎ 5%1, V = 1.235 V R = 150 . All specifications T to TMAX unless otherwise noted)  
2
5 V SPECIFICATIONS  
AA  
REF  
SET  
MIN  
P aram eter  
Conditions1  
Min  
Typ  
Max  
Units  
ST AT IC PERFORMANCE  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
10  
Bits  
±1  
±1  
LSB  
LSB  
Differential Nonlinearity  
Guaranteed Monotonic  
DIGIT AL INPUT S  
Input High Voltage, VINH  
Input Low Voltage, VINL  
2
V
V
µA  
µA  
pF  
0.8  
±1  
±50  
3
Input Current, IIN  
Input Current, IIN  
VIN = 0.4 V or 2.4 V  
VIN = 0.4 V or 2.4 V  
4
Input Capacitance, CIN  
10  
10  
DIGIT AL OUT PUT S  
Output High Voltage, VOH  
Output Low Voltage, VOL  
T hree-State Leakage Current  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
2.4  
V
V
µA  
pF  
0.4  
10  
T hree-State Output Capacitance  
ANALOG OUT PUT S  
Output Current5  
33  
0
34.7  
5
0.6  
37  
mA  
mA  
%
V
kΩ  
pF  
Output Current6  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
5
+1.4  
15  
IOUT = 0 mA  
30  
VOLT AGE REFERENCE  
Reference Range, VREF  
IVREFOUT = 20 µA  
1.112  
4.75  
1.235  
5.0  
1.359  
V
V
POWER REQUIREMENT S7  
VAA  
5.25  
155  
150  
Normal Power Mode  
IDAC (max)8  
150  
20  
100  
mA  
mA  
mA  
IDAC (min)8  
9
ICCT  
Low Power Mode  
IDAC (max)8  
80  
15  
100  
0.01  
mA  
mA  
mA  
%/%  
IDAC (min)8  
9
ICCT  
150  
0.5  
Power Supply Rejection Ratio  
COMP = 0.1 µF  
NOT ES  
1T he max/min specifications are guaranteed over this range. T he max/min values are typical over 4.75 V to 5.25 V.  
2T emperature range T MIN to T MAX: 0°C to 70°C.  
3All digital input pins except pins RESET and RT C/SCRESET .  
4Excluding all digital input pins except pins RESET and RT C/SCRESET .  
5Full drive into 37.5 load.  
6Minimum drive current (used with buffered/scaled output load).  
7Power measurements are taken with Clock Frequency = 27 MHz. Max T J = 110°C.  
8IDAC is the total current (min corresponds to 5 mA output per DAC, max corresponds to 37 mA output per DAC) to drive all four DACs. T urning off individual  
DACs reduces IDAC correspondingly.  
9ICCT (Circuit Current) is the continuous current required to drive the device.  
Specifications subject to change without notice.  
–2–  
REV. B  
ADV7175A/ADV7176A  
1
2
(V = +3.0 V – 3.6 V , V = 1.235 V R = 300 . All specifications T to TMAX unless otherwise noted)  
3.3 V SPECIFICATIONS  
AA  
REF  
SET  
MIN  
P aram eter  
Conditions1  
Min  
Typ  
Max  
Units  
ST AT IC PERFORMANCE3  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
10  
Bits  
±1  
±1  
LSB  
LSB  
Differential Nonlinearity  
Guaranteed Monotonic  
DIGIT AL INPUT S  
Input High Voltage, VINH  
Input Low Voltage, VINL  
2
0.8  
V
V
µA  
µA  
pF  
3, 4  
Input Current, IIN  
Input Current, IIN  
VIN = 0.4 V or 2.4 V  
VIN = 0.4 V or 2.4 V  
±1  
±50  
3, 5  
Input Capacitance, CIN  
10  
DIGIT AL OUT PUT S  
Output High Voltage, VOH  
Output Low Voltage, VOL  
T hree-State Leakage Current3  
T hree-State Output Capacitance3  
ISOURCE = 400 µA  
ISINK = 3.2 mA  
2.4  
0.4  
V
V
µA  
pF  
10  
10  
ANALOG OUT PUT S3  
Output Current6, 7  
16.5  
0
17.35  
5
2.0  
18.5  
mA  
mA  
%
V
kΩ  
pF  
Output Current8  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
+1.4  
30  
15  
IOUT = 0 mA  
POWER REQUIREMENT S3, 9  
VAA  
3.0  
3.3  
3.6  
V
Normal Power Mode  
IDAC (max)10  
150  
20  
45  
155  
mA  
mA  
mA  
IDAC (min)10  
9
ICCT  
Low Power Mode  
IDAC (max)10  
75  
15  
45  
0.01  
mA  
mA  
mA  
%/%  
IDAC (min)10  
11  
ICCT  
Power Supply Rejection Ratio  
COMP = 0.1 µF  
0.5  
NOT ES  
11T he max/min specifications are guaranteed over this range. T he max/min values are typical over 3.0 V to 3.6 V.  
12T emperature range T MIN to T MAX: 0°C to 70°C.  
13  
Guaranteed by characterization.  
14All digital input pins except pins RESET and RT C/SCRESET .  
15Excluding all digital input pins except pins RESET and RT C/SCRESET .  
16Full drive into 37.5 load.  
17DACs can output 35 mA typically at 3.3 V (RSET = 150 and RL = 75 ), optimum performance obtained at 18 mA DAC current (R SET = 300 and RL = 150 .  
18Minimum drive current (used with buffered/scaled output load).  
19Power measurements are taken with Clock Frequency = 27 MHz. Max T J = 110°C.  
10  
I
is the total current (min corresponds to 5 mA output per DAC, max corresponds to 38 mA output per DAC) to drive all four DACs. T urning off individual  
DAC  
DACs reduces IDAC correspondingly.  
11  
I
(Circuit Current) is the continuous current required to drive the device.  
CCT  
Specifications subject to change without notice.  
REV. B  
–3–  
ADV7175A/ADV7176ASPECIFICATIONS  
1
2
(V = +4.75 V – 5.25 V , V = 1.235 V RSET = 150 . All specifications TMIN to T  
MAX  
AA  
REF  
1
5 V DYNAMIC SPECIFICATIONS  
unless otherwise noted.)  
P aram eter  
Conditions1  
Min  
Typ  
Max  
Units  
Filter Characteristics  
Luma Bandwidth3 (Low-Pass Filter)  
Stopband Cutoff  
Passband Cutoff F3 dB  
Chroma Bandwidth  
Stopband Cutoff  
Passband Cutoff F3 dB  
Luma Bandwidth3 (Low-Pass Filter)  
Stopband Cutoff  
Passband Cutoff F3 dB  
Chroma Bandwidth  
Stopband Cutoff  
NT SC Mode  
>54 dB Attenuation  
>3 dB Attenuation  
NT SC Mode  
>40 dB Attenuation  
>3 dB Attenuation  
PAL MODE  
>50 dB Attenuation  
>3 dB Attenuation  
PAL MODE  
>40 dB Attenuation  
>3 dB Attenuation  
Normal Power Mode  
Normal Power Mode  
Lower Power Mode  
Lower Power Mode  
RMS  
7.0  
4.2  
MHz  
MHz  
3.2  
2.0  
MHz  
MHz  
7.4  
5.0  
MHz  
MHz  
4.0  
2.4  
MHz  
MHz  
%
Degree  
%
Degree  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degree  
%
Passband Cutoff F3 dB  
Differential Gain4  
0.4  
0.4  
2.0  
1.0  
80  
70  
60  
58  
0.5  
1.0  
0.6  
0.2  
0.4  
0.1  
0.1  
0.6  
2.0  
1.0  
66  
Differential Phase4  
Differential Gain4  
Differential Phase4  
SNR4 (Pedestal)  
SNR4 (Pedestal)  
Peak Periodic  
RMS  
Peak Periodic  
SNR4 (Ramp)  
SNR4 (Ramp)  
Hue Accuracy4  
Color Saturation Accuracy4  
Chroma Nonlinear Gain4  
Chroma Nonlinear Phase4  
Chroma Nonlinear Phase4  
Chroma/Luma Intermod4  
Chroma/Luma Intermod4  
Chroma/Luma Gain Ineq4  
Chroma/Luma Delay Ineq4  
Luminance Nonlinearity4  
Chroma AM Noise4  
Chroma PM Noise4  
Referenced to 40 IRE  
NT SC  
PAL  
Referenced to 714 mV (NT SC)  
Referenced to 700 mV (PAL)  
±%  
±Degree  
±Degree  
±%  
±%  
±%  
ns  
±%  
dB  
dB  
63  
NOT ES  
1T he max/min specifications are guaranteed over this range. T he max/min values are typical over 4.75 V to 5.25 V.  
2T emperature range T MIN to T MAX: 0°C to +70°C.  
3T hese specifications are for the low-pass filter only and guaranteed by design. For other internal filters, see Figure 4.  
4Guaranteed by characterization.  
Specifications subject to change without notice.  
–4–  
REV. B  
ADV7175A/ADV7176A  
1
2
(V = +3.0 V – 3.6 V , V = 1.235 V RSET = 300 . All specifications TMIN to T  
AA  
REF  
MAX  
1
unless otherwise noted.)  
3.3 V DYNAMIC SPECIFICATIONS  
P aram eter  
Conditions1  
Min  
Typ  
Max  
Units  
Filter Characteristics  
Luma Bandwidth3 (Low-Pass Filter)  
Stopband Cutoff  
Passband Cutoff F3 dB  
Chroma Bandwidth  
Stopband Cutoff  
Passband Cutoff F3 dB  
Luma Bandwidth3 (Low-Pass Filter)  
Stopband Cutoff  
Passband Cutoff F3 dB  
Chroma Bandwidth  
Stopband Cutoff  
NT SC Mode  
>54 dB Attenuation  
>3 dB Attenuation  
NT SC Mode  
>40 dB Attenuation  
>3 dB Attenuation  
PAL MODE  
>50 dB Attenuation  
>3 dB Attenuation  
PAL MODE  
>40 dB Attenuation  
>3 dB Attenuation  
Normal Power Mode  
Normal Power Mode  
RMS  
7.0  
4.2  
MHz  
MHz  
3.2  
2.0  
MHz  
MHz  
7.4  
5.0  
MHz  
MHz  
4.0  
2.4  
MHz  
MHz  
%
Degree  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degree  
%
Passband Cutoff F3 dB  
Differential Gain4  
0.7  
0.5  
75  
68  
58  
Differential Phase4  
SNR4 (Pedestal)  
SNR4 (Pedestal)  
Peak Periodic  
RMS  
Peak Periodic  
SNR4 (Ramp)  
SNR4 (Ramp)  
56  
Hue Accuracy4  
1.0  
1.2  
1.1  
67  
63  
64  
Color Saturation Accuracy4  
Luminance Nonlinearity4  
Chroma AM Noise4  
Chroma PM Noise4  
Chroma AM Noise4  
Chroma PM Noise4  
±%  
dB  
dB  
dB  
NT SC  
NT SC  
PAL  
PAL  
63  
dB  
NOT ES  
1T he max/min specifications are guaranteed over this range. T he max/min values are typical over 3.0 V to 3.6 V.  
2T emperature range T MIN to T MAX: 0°C to +70°C.  
3T hese specifications are for the low-pass filter only and guaranteed by design. For other internal filters, see Figure 4.  
4Guaranteed by characterization.  
Specifications subject to change without notice.  
REV. B  
–5–  
ADV7175A/ADV7176A  
(V = 4.75 V – 5.25 V , V = 1.235 V RSET = 150 . All specifications TMIN to T 2 unless  
1
AA  
REF  
MAX  
5 V TIMING SPECIFICATIONS  
otherwise noted.)  
P aram eter  
Conditions  
Min  
Typ  
Max  
Units  
MPU PORT3, 4  
SCLOCK Frequency  
0
100  
kHz  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
µs  
SCLOCK High Pulsewidth, t1  
SCLOCK Low Pulsewidth, t2  
Hold T ime (Start Condition), t3  
Setup T ime (Start Condition), t4  
Data Setup T ime, t5  
SDAT A, SCLOCK Rise T ime, t6  
SDAT A, SCLOCK Fall T ime, t7  
Setup T ime (Stop Condition), t8  
4.0  
4.7  
4.0  
4.7  
250  
After T his Period the First Clock Is Generated  
Relevant for Repeated Start Condition  
1
300  
4.7  
ANALOG OUT PUT S3, 5  
Analog Output Delay  
DAC Analog Output Skew  
5
0
ns  
ns  
CLOCK CONT ROL  
AND PIXEL PORT3, 6  
FCLOCK  
27  
MHz  
Clock High T ime, t9  
Clock Low T ime, t10  
Data Setup T ime, t11  
Data Hold T ime, t12  
Control Setup T ime, t11  
Control Hold T ime, t12  
Digital Output Access T ime, t13  
Digital Output Hold T ime, t14  
Pipeline Delay, t15  
8
8
3.5  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
24  
4
37  
Clock Cycles  
T ELET EXT PORT3, 7  
Digital Output Access T ime, t16  
Data Setup T ime, t17  
20  
1
2
ns  
ns  
ns  
Data Hold T ime, t18  
RESET CONT ROL3, 4  
RESET Low T ime  
6
ns  
NOT ES  
1T he max/min specifications are guaranteed over this range.  
2T emperature range T MIN to T MAX: 0oC to +70oC.  
3T T L input values are 0 to 3 volts, with input rise/fall times 3 ns, measured between the 10% and 90% points. T iming reference points at 50% for inputs and  
outputs. Analog output load 10 pF.  
4Guaranteed by characterization.  
5Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.  
6Pixel Port consists of the following:  
Pixel Inputs:  
Pixel Controls:  
Clock Input:  
P15–P0  
HSYNC, FIELD/VSYNC, BLANK  
CLOCK  
7T eletext Port consists of the following:  
T eletext Output:  
T eletext Input:  
T T XREQ  
T T X  
Specifications subject to change without notice.  
–6–  
REV. B  
ADV7175A/ADV7176A  
(V = 3.0 – 3.61, V = 1.235 V RSET = 300 . All specifications TMIN to T 2 unless  
AA  
REF  
MAX  
otherwise noted.)  
3.3 V TIMING SPECIFICATIONS  
P aram eter  
Conditions  
Min  
Typ  
Max  
Units  
MPU PORT3, 4  
SCLOCK Frequency  
0
100  
kHz  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
µs  
SCLOCK High Pulsewidth, t1  
SCLOCK Low Pulsewidth, t2  
Hold T ime (Start Condition), t3  
Setup T ime (Start Condition), t4  
Data Setup T ime, t5  
SDAT A, SCLOCK Rise T ime, t6  
SDAT A, SCLOCK Fall T ime, t7  
Setup T ime (Stop Condition), t8  
4.0  
4.7  
4.0  
4.7  
250  
After T his Period the First Clock Is Generated  
for Repeated Start Condition  
1
300  
4.7  
ANALOG OUT PUT S3, 5  
Analog Output Delay  
DAC Analog Output Skew  
7
0
ns  
ns  
CLOCK CONT ROL  
AND PIXEL PORT3, 4, 6, 7  
FCLOCK  
27  
MHz  
Clock High T ime, t9  
Clock Low T ime, t10  
Data Setup T ime, t11  
Data Hold T ime, t12  
Control Setup T ime, t11  
Control Hold T ime, t12  
Digital Output Access T ime, t13  
Digital Output Hold T ime, t14  
Pipeline Delay, t15  
8
8
3.5  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
24  
4
37  
Clock Cycles  
T ELET EXT PORT3, 6, 8  
Digital Output Access T ime t16  
Data Setup T ime, t17  
23  
2
2
ns  
ns  
ns  
Data Hold T ime, t18  
RESET CONT ROL3, 4  
RESET Low T ime  
6
ns  
NOT ES  
1T he max/min specifications are guaranteed over this range.  
2T emperature range T MIN to T MAX: 0oC to +70oC.  
3T T L input values are 0 to 3 volts, with input rise/fall times 3 ns, measured between the 10% and 90% points. T iming reference points at 50% for inputs and  
outputs. Analog output load 10 pF.  
4Guaranteed by characterization.  
5Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.  
6Characterized by design.  
7Pixel Port consists of the following:  
Pixel Inputs:  
Pixel Controls:  
Clock Input:  
P15–P0  
HSYNC, FIELD/VSYNC, BLANK  
CLOCK  
8T eletext Port consists of the following:  
T eletext Output:  
T eletext Input:  
T T XREQ  
T T X  
Specifications subject to change without notice.  
REV. B  
–7–  
ADV7175A/ADV7176A  
t5  
t3  
t3  
SDATA  
t6  
t1  
SCLOCK  
t2  
t7  
t4  
t8  
Figure 1. MPU Port Tim ing Diagram  
CLOCK  
t12  
t9  
t10  
HSYNC,  
FIELD/VSYNC,  
BLANK  
CONTROL  
I/PS  
PIXEL INPUT  
DATA  
Cb  
Y
Cr  
Y
Cb  
Y
t11  
t13  
HSYNC,  
FIELD/VSYNC,  
BLANK  
CONTROL  
O/PS  
t14  
Figure 2. Pixel and Control Data Tim ing Diagram  
TXTREQ  
CLOCK  
t16  
t17  
t18  
TXT  
3 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
4 CLOCK  
CYCLES  
Figure 3. Teletext Tim ing Diagram  
–8–  
REV. B  
ADV7175A/ADV7176A  
P ACKAGE TH ERMAL P ERFO RMANCE  
ABSO LUTE MAXIMUM RATINGS1  
T he 44-PQFP package used for this device takes advantage of  
an ADI patented thermal coastline lead frame construction.  
T his maximizes heat transfer into the leads and reduces the  
package thermal resistance.  
VAA to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Voltage on Any Digital Input Pin . GND – 0.5 V to VAA + 0.5 V  
Storage Temperature (TS) . . . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . +150°C  
Lead Temperature (Soldering, 10 secs) . . . . . . . . . . . +260°C  
Analog Outputs to GND2 . . . . . . . . . . . . . GND – 0.5 to VAA  
T he junction-to-ambient (θJA) thermal resistance in still air on a  
four-layer PCB is 35.5°C/W. T he junction-to-case thermal  
resistance (θJC) is 13.75°C/W.  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
2Analog output short circuit to any power supply or common can be of an indefinite  
duration.  
O RD ERING GUID E  
Tem perature P ackage  
Range D escription  
P ackage  
O ption  
Model  
ADV7175AKS 0°C to +70°C Plastic Quad Flatpack S-44  
ADV7176AKS 0°C to +70°C Plastic Quad Flatpack S-44  
P IN CO NFIGURATIO N  
44 43 42 41 40 39 38 37 36 35 34  
1
2
33  
V
V
AA  
REF  
PIN 1  
IDENTIFIER  
32 DAC A  
31 DAC B  
P5  
P6  
3
4
30  
V
P7  
AA  
29 GND  
5
P8  
ADV7175A/ADV7176A  
PQFP  
6
28  
27  
P9  
V
AA  
TOP VIEW  
(Not to Scale)  
7
DAC D  
P10  
P11  
P12  
GND  
8
26 DAC C  
25 COMP  
24 SDATA  
9
10  
11  
V
23  
SCLOCK  
AA  
13  
12  
14 15 16 17 18 19  
21 22  
20  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADV7175A/ADV7176A feature proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. T herefore, pr oper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–9–  
ADV7175A/ADV7176A  
P IN FUNCTIO N D ESCRIP TIO NS  
Input/  
P in  
No.  
Mnem onic  
O utput  
Function  
1, 11, 20,  
28, 30  
VAA  
P
Power Supply (+3 V to +5 V).  
Ground Pin.  
10, 19, 21,  
29, 43  
GND  
G
15  
HSYNC  
I/O  
HSYNC (Modes 1 and 2) Control Signal. T his pin may be configured to  
output (Master Mode) or accept (Slave Mode) Sync signals.  
16  
FIELD/VSYNC  
I/O  
I/O  
Dual Function FIELD (Mode 1) and VSYNC (Mode 2) Control Signal. T his  
pin may be configured to output (Master Mode) or accept (Slave Mode)  
these control signals.  
17  
BLANK  
Video Blanking Control Signal. T he pixel inputs are ignored when this is  
logic level “0.” T his signal is optional.  
18  
22  
ALSB  
I
I
T T L Address Input. T his signal sets up the LSB of the MPU address.  
RESET  
T he input resets the on chip timing generator and sets the ADV7175A/  
ADV7176A into default mode. T his is NT SC operation, T iming Slave Mode  
0, 8-bit operation, 2 × composite and S-Video out and all DACs powered on.  
23  
24  
25  
SCLOCK  
SDAT A  
COMP  
I
MPU Port Serial Interface Clock Input.  
MPU Port Serial Data Input/Output.  
I/O  
O
Compensation Pin. Connect a 0.1 µF capacitor from COMP to VAA. For  
Optimum Dynamic Performance in Low Power Mode, the value of the  
COMP capacitor can be lowered to as low as 2.2 nF.  
26  
27  
31  
32  
DAC C  
DAC D  
DAC B  
DAC A  
O
O
O
O
RED/S-Video C/V Analog Output.  
GREEN/S-Video Y/Y Analog Output.  
BLUE/Composite/U Analog Output.  
PAL/NT SC Composite Video Output. Full-Scale Output is 180IRE (1286  
mV) for NT SC and 1300 mV for PAL.  
33  
34  
VREF  
RSET  
I/O  
I
Voltage Reference Input for DACs or Voltage Reference Output (1.235 V).  
A 150 resistor connected from this pin to GND is used to control full-scale  
amplitudes of the video signals.  
35  
SCRESET /RT C  
I
T his pin can be configured as an input by setting MR22 and MR21 of Mode  
Register 2. It can be configured as a subcarrier reset pin, in which case a high  
to low transition on this pin will reset the subcarrier to Field 0. Alternatively  
it may be configured as a Real T ime Control (RT C) input.  
36  
37  
T T XREQ/GND  
T T X/VAA  
P0–P15  
O
I
T eletext Data Request Signal/Defaults to GND when T eletext not selected  
(enables backward compatibility to ADV7175/ADV7176).  
T eletext Data/Defaults to VAA when T eletext not selected (enables backward  
compatibility to ADV7175/ADV7176).  
38–42  
I
8-Bit 4:2:2 Multiplexed YCrCb Pixel Port (P7–P0) or  
2–9, 12–14  
16-Bit YCrCb Pixel Port (P0–P15). P0 represents the LSB.  
44  
CLOCK  
I
T T L Clock Input. Requires a stable 27 MHz reference Clock for standard  
operation. Alternatively, a 24.52 MHz (NT SC) or 29.5 MHz (PAL) can be  
used for square pixel operation.  
–10–  
REV. B  
ADV7175A/ADV7176A  
(Continued from page 1)  
D ATA P ATH D ESCRIP TIO N  
For PAL B, D, G, H, I, M, N and NT SC M modes, YCrCb  
4:2:2 data is input via the CCIR-656 compatible pixel port at a  
27 MHz Data Rate. T he pixel data is demultiplexed to from  
three data paths. Y typically has a range of 16 to 235, Cr and  
Cb typically have a range of 128 ± 112; however, it is possible  
to input data from 1 to 254 on both Y, Cb and Cr. T he  
ADV7175A/ADV7176A supports PAL (B, D, G, H, I, N, M)  
and NT SC (with and without Pedestal) standards. T he ap-  
propriate SYNC, BLANK and Burst levels are added to the  
YCrCb data. Macrovision antitaping (ADV7175A only),  
closed captioning and teletext levels are also added to Y, and  
the resultant data is interpolated to a rate of 27 MHz. T he  
interpolated data is filtered and scaled by three digital FIR  
filters.  
signal compatible with worldwide standards. T he 4:2:2 YUV  
video data is interpolated to two times the pixel rate. T he  
color-difference components (UV) are quadrature modulated  
using a subcarrier frequency generated by an on-chip 32-bit  
digital synthesizer (also running at two times the pixel rate).  
T he two times pixel rate sampling allows for better signal-to-  
noise-ratio. A 32-bit DDS with a 10-bit look-up table produces  
a superior subcarrier in terms of both frequency and phase. In  
addition to the composite output signal, there is the facility to  
output S-Video (Y/C) video, YUV or RGB video. T he Y/C,  
YUV or RGB format is simultaneously available at the analog  
outputs with the composite video signal.  
Each analog output is capable of driving the full video-level  
(35 mA) signal into an unbuffered, doubly terminated 75 Ω  
load. With external buffering, the user has the additional option  
to scale back the DAC output current to 5 mA min, thereby signifi-  
cantly reducing the power dissipation of the device.  
The U and V signals are modulated by the appropriate subcarrier  
sine/cosine phases and added together to make up the chromi-  
nance signal. T he luma (Y) signal can be delayed 1–3 luma  
cycles (each cycle is 74 ns) with respect to the chroma signal.  
T he luma and chroma signals are then added together to make  
up the composite video signal. All edges are slew rate limited.  
The ADV7175A/ADV7176A also supports both PAL and NTSC  
square pixel operation.  
T he output video frames are synchronized with the incoming  
data timing reference codes. Optionally the encoder accepts  
(and can generate) HSYNC, VSYNC and FIELD timing signals.  
T hese timing signals can be adjusted to change pulsewidth and  
position while the part is in the master mode. T he encoder  
requires a single two times pixel rate (27 MHz) clock for standard  
operation. Alternatively, the encoder requires a 24.54 MHz clock  
for NT SC or 29.5 MH z clock for PAL square pixel mode  
operation. All internal timing is generated on-chip.  
T he YCrCb data is also used to generate RGB data with  
appropriate SYNC and BLANK levels. T he RGB data is in  
synchronization with the composite video output. Alternatively  
analog YUV data can be generated instead of RGB.  
T he four 10-bit DACs can be used to output:  
1. Composite Video + RGB Video.  
2. Composite Video + YUV Video  
3. T wo Composite Video Signals + LUMA and CHROMA  
3. (Y/C) Signals.  
A separate teletext port enables the user to directly input teletext  
data during the vertical blanking interval.  
Alternatively, each DAC can be individually powered off if not  
required.  
T he ADV7175A/ADV7176A modes are set up over a two-wire  
serial bidirectional port (I2C Compatible) with two slave addresses.  
Video output levels are illustrated in Appendix 4 and Appendix 5.  
Functionally the ADV7175A and ADV7176A are the same with  
the exception that the ADV7175A can output the Macrovision  
anticopy algorithm.  
INTERNAL FILTER RESP O NSE  
T he Y filter supports several different frequency responses,  
including two 4.5 MHz/5.0 MHz low pass responses, PAL/  
NT SC subcarrier notch responses and a PAL/NT SC extended  
response. T he U and V filters have a 2/2.4 MHz low-pass  
response for NT SC/PAL. T hese filter characteristics are illus-  
trated in Figures 4 to 12.  
T he ADV7175A/ADV7176A is packaged in a 44-lead thermally  
enhanced PQFP package.  
PASSBAND  
CUTOFF (MHz)  
PASSBAND  
RIPPLE (dB)  
STOPBAND  
CUTOFF (MHz)  
STOPBAND  
ATTENUATION (dB)  
F
3dB  
FILTER SELECTION  
MR04  
MR03  
NTSC  
PAL  
NTSC  
PAL  
NTSC/PAL  
NTSC  
PAL  
0
0
0
0
1
1
1
0
0
1
1
0
1
1
2.3  
3.4  
1.0  
1.4  
4.0  
2.3  
3.4  
0.026  
0.098  
0.085  
0.107  
0.150  
0.054  
0.106  
7.0  
7.3  
3.57  
4.43  
7.5  
>
>
>
>
>
>
>
54  
50  
27.6  
29.3  
40  
4.2  
5.0  
2.1  
2.7  
5.65  
4.2  
5.0  
7.0  
7.3  
54  
50.3  
Figure 4. Lum inance Internal Filter Specifications  
PASSBAND  
CUTOFF (MHz)  
PASSBAND  
RIPPLE (dB)  
STOPBAND  
CUTOFF (MHz)  
STOPBAND  
ATTENUATION (dB)  
ATTENUATION @  
1.3MHz (dB)  
F
3dB  
FILTER SELECTION  
NTSC  
PAL  
1.0  
1.3  
0.085  
0.04  
3.2  
4.0  
>
40  
40  
0.3  
0.02  
2.05  
2.45  
>
Figure 5. Chrom inance Internal Filter Specifications  
–11–  
REV. B  
ADV7175A/ADV7176A  
0
–10  
–20  
0
–10  
TYPE A  
–20  
–30  
–40  
–50  
–60  
–30  
–40  
–50  
–60  
TYPE B  
10  
0
2
4
6
8
10  
12  
0
2
4
6
8
12  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 9. PAL Notch Filter  
Figure 6. NTSC Low-Pass Filter  
0
–10  
–20  
–10  
–20  
–30  
–40  
–50  
–60  
–30  
–40  
–50  
–60  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 10. NTSC/PAL Extended Mode Filter  
Figure 7. NTSC Notch Filter  
0
0
–10  
–10  
TYPE B  
–20  
–30  
–40  
–50  
–60  
–20  
–30  
–40  
–50  
–60  
TYPE A  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 11. NTSC UV Filter  
Figure 8. PAL Low-Pass Filter  
–12–  
REV. B  
ADV7175A/ADV7176A  
0
–10  
–20  
SUBCARRIER RESET  
T ogether with the SCRESET /RT C PIN and Bits MR22 and  
MR21 of Mode Register 2, the ADV7175A/ADV7176A can be  
used in subcarrier reset mode. T he subcarrier will reset to  
Field 0 at the start of the following field when a low to high  
transition occurs on this input pin.  
–30  
–40  
–50  
–60  
REAL TIME CO NTRO L  
T ogether with the SCRESET /RT C PIN and Bits MR22 and  
MR21 of Mode Register 2, the ADV7175A/ADV7176A can be  
used to lock to an external video source. T he real time control  
mode allows the ADV7175A/ADV7176A to automatically alter  
the subcarrier frequency to compensate for line length variation.  
When the part is connected to a device that outputs a digital  
datastream in the RT C format (such as an ADV7185 video  
decoder [see Figure 13]), the part will automatically change to  
the compensated subcarrier frequency on a line by line basis.  
T his digital datastream is 67 bits wide and the subcarrier is  
contained in Bits 0 to 21. Each bit is two clock cycles long.  
00HEX should be written to all four subcarrier frequency regis-  
ters when using this mode.  
0
2
4
6
8
10  
12  
FREQUENCY – MHz  
Figure 12. PAL UV Filter  
CO LO R BAR GENERATIO N  
T he ADV7175A/ADV7176A can be configured to generate  
75% amplitude, 75% saturation (75/7.5/75/7.5) for NT SC or  
75% amplitude, 100% saturation (100/0/75/0) for PAL color  
bars. T hese are enabled by setting MR17 of Mode Register 1 to  
Logic “1.”  
VID EO TIMING D ESCRIP TIO N  
T he ADV7175A/ADV7176A is intended to interface to off-  
the-shelf MPEG1 and MPEG2 Decoders. Consequently, the  
ADV7175A/ADV7176A accepts 4:2:2 YCrCb Pixel Data via a  
CCIR-656 pixel port and has several video timing modes of  
operation that allow it to be configured as either system master  
video timing generator or a slave to the system video timing  
generator. T he ADV7175A/ADV7176A generates all of the  
required horizontal and vertical timing periods and levels for the  
analog video outputs.  
SQ UARE P IXEL MO D E  
T he ADV7175A/ADV7176A can be used to operate in square  
pixel mode. For NT SC operation an input clock of 24.5454  
MHz is required. Alternatively an input clock of 29.5 MHz is  
required for PAL operation. T he internal timing logic adjusts  
accordingly for square pixel mode operation.  
CO LO R SIGNAL CO NTRO L  
T he color information can be switched on and off the video  
output using Bit MR24 of Mode Register 2.  
T he ADV7175A/ADV7176A calculates the width and place-  
ment of analog sync pulses, blanking levels and color burst  
envelopes. Color bursts are disabled on appropriate lines, and  
serration and equalization pulses are inserted where required.  
BURST SIGNAL CO NTRO L  
T he burst information can be switched on and off the video  
output using Bit MR25 of Mode Register 2.  
In addition the ADV7175A/ADV7176A supports a PAL or  
NT SC square pixel operation in slave mode. T he part requires  
an input pixel clock of 24.5454 MHz for NT SC and an input  
pixel clock of 29.5 MHz for PAL. T he internal horizontal line  
counters place the various video waveform sections in the cor-  
rect location for the new clock frequencies.  
NTSC P ED ESTAL CO NTRO L  
T he pedestal on both odd and even fields can be controlled on a  
line by line basis using the NT SC Pedestal Control Registers.  
T his allows the pedestals to be controlled during the vertical  
blanking interval (Lines 10 to 25 and Lines 273 to 288).  
T he ADV7175A/ADV7176A has four distinct master and four  
distinct slave timing configurations. T iming Control is estab-  
lished with the bidirectional SYNC, BLANK and FIELD/  
VSYNC pins. T iming Mode Register 1 can also be used to vary  
the timing pulsewidths and where they occur in relation to each  
other.  
P IXEL TIMING D ESCRIP TIO N  
The ADV7175A/ADV7176A can operate in either 8-bit or  
16-bit YCrCb Mode.  
8-Bit YCr Cb Mode  
T his default mode accepts multiplexed YCrCb inputs through  
the P7-P0 pixel inputs. T he inputs follow the sequence Cb0, Y0  
Cr0, Y1 Cb1, Y2, etc. T he Y, Cb and Cr data are input on a  
rising clock edge.  
16-Bit YCr Cb Mode  
T his mode accepts Y inputs through the P7–P0 pixel inputs and  
multiplexed CrCb inputs through the P15–P8 pixel inputs. T he  
data is loaded on every second rising edge of CLOCK. The inputs  
follow the sequence Cb0, Y0 Cr0, Y1 Cb1, Y2, etc.  
REV. B  
–13–  
ADV7175A/ADV7176A  
CLOCK  
COMPOSITE  
VIDEO  
e.g., VCR  
SCRESET/RTC  
VIDEO  
DECODER  
(e.g., ADV7185)  
GREEN/LUMA/Y  
RED/CHROMA/V  
M
U
X
OR CABLE  
P7–P0  
BLUE/COMPOSITE/U  
COMPOSITE  
MPEG  
DECODER  
HSYNC  
FIELD/VSYNC  
ADV7175A/ADV7176A  
SEQUENCE  
RESERVED  
2
BIT  
H/LTRANSITION  
COUNT START  
RESET  
4 BITS  
RESERVED  
5 BITS  
RESERVED  
3
BIT  
LOW  
14 BITS  
RESERVED  
128  
1
FSCPLL INCREMENT  
0
0
13  
21  
RTC  
TIME SLOT: 01  
6768  
14  
19  
NOT USED IN  
ADV7175A/ADV7176A  
VALID  
SAMPLE SAMPLE  
INVALID  
8/LLC  
NOTES:  
1
F
PLL INCREMENT IS 22 BITS LONG, VALUED LOADED INTO ADV7175A/ADV7176A FSC DDS REGISTER IS  
PLL INCREMENTS BITS 21:0 PLUS BITS 0:9 OF SUB CARRIER FREQUENCY REGISTERS. ALL ZEROS SHOULD  
SC  
F
SC  
BE WRITTEN TO THE SUB CARRIER FREQUENCY REGISTERS OF THE ADV7175A/ADV7176A.  
2
SEQUENCE BIT  
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED  
NTSC: 0 = NO CHANGE.  
3
RESET BIT  
RESET ADV7175A/ADV7176A’s DDS.  
Figure 13. RTC Tim ing and Connections  
Ver tical Blanking D ata Inser tion  
It is possible to allow encoding of incoming YCbCr data on those lines of VBI that do not bear line sync or pre/post-equalization  
pulses (see Figures 15 to 26). T his mode of operation is called “Partial Blanking” and is selected by setting MR31 to 1. It allows the  
insertion of any VBI data (Opened VBI) into the encoded output waveform. T his data is present in digitized incoming YCbCr data  
stream (e.g., WSS data, CGMS, VPS, etc.). Alternatively, the entire VBI may be blanked (no VBI data inserted) on these lines by  
setting MR31 to 0.  
T he complete VBI comprises of the following lines:  
525/60 Systems, Lines 525 to 21 for Field 1 and Lines 262 to Line 284 for Field 2.  
625/50 Systems, Lines 624 to Line 22 and Lines 311 to 335.  
T he “Opened VBI” consists of:  
525/60 Systems, Lines 10 to 21 for Field 1 and second half of Line 273 to Line 284 for Field 2.  
625/50 Systems, Line 7 to Line 22 and Lines 319 to 335.  
Mode 0 (CCIR-656): Slave O ption  
(T iming Register 0 T R0 = X X X X X 0 0 0)  
T he ADV7175A/ADV7176A is controlled by the SAV (Start Active Video) and EAV (End Active Video) time codes in the pixel  
data. All timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately  
before and after each line during active picture and retrace. Mode 0 is illustrated in Figure 14. T he HSYNC, FIELD/VSYNC and  
BLANK (if not used) pins should be tied high during this mode.  
–14–  
REV. B  
ADV7175A/ADV7176A  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
r
C
b
C
b
8
0
0
0
F
F
F A  
F B  
A
B
A
B
8
0
0
0
C
r
F
F
0
0
0
0
X
Y
1
0
8
0
1
0
8
0
1
0
1
0
F
F
0
0
X
Y
C
b
C
r
Y
Y
Y
INPUT PIXELS  
Y
Y
Y
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LlNES/60Hz)  
268 CLOCK  
1440 CLOCK  
1440 CLCOK  
PAL SYSTEM  
(625 LINES/50Hz)  
280 CLOCK  
END OF ACTIVE  
VIDEO LINE  
START OF ACTIVE  
VIDEO LINE  
Figure 14. Tim ing Mode 0 (Slave Mode)  
Mode 0 (CCIR-656): Master O ption  
(T iming Register 0 T R0 = X X X X X 0 0 1)  
T he ADV7175A/ADV7176A generates H, V and F signals required for the SAV (Start Active Video) and EAV (End Active Video)  
time codes in the CCIR-656 standard. T he H bit is output on the HSYNC pin, the V bit is output on the BLANK pin, and the F bit  
is output on the FIELD/VSYNC pin. Mode 0 is illustrated in Figure 15 (NT SC) and Figure 16 (PAL). T he H, V and F transitions  
relative to the video waveform are illustrated in Figure 17.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
6
7
10  
11  
20  
21  
22  
5
9
8
H
V
EVEN FIELD  
ODD FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 15. Tim ing Mode 0 (NTSC Master Mode)  
REV. B  
–15–  
ADV7175A/ADV7176A  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
22  
23  
5
21  
H
V
EVEN FIELD  
ODD FIELD  
F
DISPLAY  
DISPLAY  
VERTICAL BLANK  
335  
336  
318  
334  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
V
F
ODD FIELD EVEN FIELD  
Figure 16. Tim ing Mode 0 (PAL Master Mode)  
ANALOG  
VIDEO  
H
F
V
Figure 17. Tim ing Mode 0 Data Transitions (Master Mode)  
Mode 1: Slave O ption HSYNC, BLANK, FIELD  
(T iming Register 0 T R0 = X X X X X 0 1 0)  
In this mode the ADV7175A/ADV7176A accepts horizontal SYNC and Odd/Even FIELD signals. A transition of the FIELD input  
when HSYNC is low indicates a new frame i.e., vertical retrace. T he BLANK signal is optional. When the BLANK input is disabled  
the ADV7175A/ADV7176A automatically blanks all normally blank lines. Mode 1 is illustrated in Figure 18 (NT SC) and Fig-  
ure 19 (PAL).  
–16–  
REV. B  
ADV7175A/ADV7176A  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 18. Tim ing Mode 1 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 19. Tim ing Mode 1 (PAL)  
Mode 1: Master O ption HSYNC, BLANK, FIELD  
(T iming Register 0 T R0 = X X X X X 0 1 1)  
In this mode the ADV7175A/ADV7176A can generate horizontal SYNC and Odd/Even FIELD signals. A transition of the FIELD  
input when HSYNC is low indicates a new frame i.e., vertical retrace. T he BLANK signal is optional. When the BLANK input is  
disabled, the ADV7175A/ADV7176A automatically blanks all normally blank lines. Pixel data is latched on the rising clock edge  
following the timing signal transitions. Mode 1 is illustrated in Figure 18 (NT SC) and Figure 19 (PAL). Figure 20 illustrates the  
HSYNC, BLANK and FIELD for an odd or even field transition relative to the pixel data.  
REV. B  
–17–  
ADV7175A/ADV7176A  
HSYNC  
FIELD  
PAL = 12 * CLOCK/2  
NTSC = 16 * CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
PAL = 132 * CLOCK/2  
NTSC = 122 * CLOCK/2  
Figure 20. Tim ing Mode 1 Odd/Even Field Transitions Master/Slave  
Mode 2: Slave O ption HSYNC, VSYNC, BLANK  
(T iming Register 0 T R0 = X X X X X 1 0 0 )  
In this mode the ADV7175A/ADV7176A accepts horizontal and vertical SYNC signals. A coincident low transition of both  
HSYNC and VSYNC inputs indicates the start of an odd field. A VSYNC low transition when HSYNC is high indicates the start of  
an even field. T he BLANK signal is optional. When the BLANK input is disabled, the ADV7175A/ADV7176A automatically blanks  
all normally blank lines as per CCIR-624. Mode 2 is illustrated in Figure 21 (NT SC) and Figure 22 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
Figure 21. Tim ing Mode 2 (NTSC)  
–18–  
REV. B  
ADV7175A/ADV7176A  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
VSYNC  
ODD FIELD EVEN FIELD  
Figure 22. Tim ing Mode 2 (PAL)  
Mode 2: Master O ption HSYNC, VSYNC, BLANK  
(T iming Register 0 T R0 = X X X X X 1 0 1)  
In this mode, the ADV7175A/ADV7176A can generate horizontal and vertical SYNC signals. A coincident low transition of both  
HSYNC and VSYNC inputs indicates the start of an Odd Field. A VSYNC low transition when HSYNC is high indicates the start  
of an even field. T he BLANK signal is optional. When the BLANK input is disabled, the ADV7175A/ADV7176A automatically  
blanks all normally blank lines as per CCIR-624. Mode 2 is illustrated in Figure 21 (NT SC) and Figure 22 (PAL). Figure 23  
illustrates the HSYNC, BLANK and VSYNC for an even-to-odd field transition relative to the pixel data. Figure 24 illustrates the  
HSYNC, BLANK and VSYNC for an odd-to-even field transition relative to the pixel data.  
HSYNC  
VSYNC  
PAL = 12 * CLOCK/2  
BLANK  
NTSC = 16 * CLOCK/2  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
PAL = 132 * CLOCK/2  
NTSC = 122 * CLOCK/2  
Figure 23. Tim ing Mode 2 Even-to-Odd Field Transition Master/Slave  
HSYNC  
VSYNC  
PAL = 864 * CLOCK/2  
NTSC = 858 * CLOCK/2  
PAL = 12 * CLOCK/2  
NTSC = 16 * CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 * CLOCK/2  
NTSC = 122 * CLOCK/2  
Figure 24. Tim ing Mode 2 Odd-to-Even Field Transition Master/Slave  
–19–  
REV. B  
ADV7175A/ADV7176A  
Mode 3: Master /Slave O ption HSYNC, BLANK, FIELD  
(T iming Register 0 T R0 = X X X X X 1 1 0 or X X X X X 1 1 1)  
In this mode, the ADV7175A/ADV7176A accepts or generates Horizontal SYNC and Odd/Even FIELD signals. A transition of the  
FIELD input when HSYNC is high indicates a new frame i.e., vertical retrace. T he BLANK signal is optional. When the BLANK  
input is disabled, the ADV7175A/ADV7176A automatically blanks all normally blank lines as per CCIR-624. Mode 3 is illustrated  
in Figure 25 (NT SC) and Figure 26 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
5
6
7
8
9
10  
11  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
283  
285  
284  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
Figure 25. Tim ing Mode 3 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
FIELD  
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
EVEN FIELD  
ODD FIELD  
Figure 26. Tim ing Mode 3 (PAL)  
–20–  
REV. B  
ADV7175A/ADV7176A  
O UTP UT VID EO TIMING  
applied. In this configuration the SCH phase will never be reset,  
which means that the output video will now track the unstable  
input video. T he subcarrier phase reset, when applied, will reset  
the SCH phase to Field 0 at the start of the next field (e.g.,  
subcarrier phase reset applied in Field 5 [PAL] on the start of  
the next field SCH phase will be reset to Field 0).  
T he video timing generator generates the appropriate SYNC,  
BLANK and BURST sequence that controls the output analog  
waveforms. T hese sequences are summarized below. In slave  
modes, the following sequences are synchronized with the input  
timing control signals. In master modes, the timing generator  
free runs and generates the following sequences in addition to  
the output timing control signals.  
MP U P O RT D ESCRIP TIO N  
T he ADV7175A and ADV7176A support a two-wire serial (I2C  
Compatible) microprocessor bus driving multiple peripherals.  
T wo inputs, serial data (SDAT A) and serial clock (SCLOCK),  
carry information between any device connected to the bus.  
Each slave device is recognized by a unique address. T he  
ADV7175A and ADV7176A each have four possible slave  
addresses for both read and write operations. T hese are unique  
addresses for each device and are illustrated in Figure 27 and  
Figure 28. T he LSB sets either a read or write operation. Logic  
Level “1” corresponds to a read operation, while Logic Level  
“0” corresponds to a write operation. A1 is set by setting the  
ALSB pin of the ADV7175A/ADV7176A to Logic Level “0” or  
Logic Level “1.”  
NTSCInter laced: Scan Lines 1–9 and 264–272 are always  
blanked and vertical sync pulses are included. Scan Lines 525,  
10–21 and 262, 263, 273–284 are also blanked and can be used  
for closed captioning data. Burst is disabled on lines 1–6, 261–  
269 and 523–525.  
NTSCNoninter laced: Scan Lines 1–9 are always blanked,  
and vertical sync pulses are included. Scan Lines 10–21 are also  
blanked and can be used for closed captioning data. Burst is  
disabled on Lines 1–6, 261–262.  
P AL–Inter laced: Scan Lines 1–6, 311–318 and 624–625 are  
always blanked, and vertical sync pulses are included in Fields  
1, 2, 5 and 6. Scan Lines 1–5, 311–319 and 624–625 are al-  
ways blanked, and vertical sync pulses are included in Fields 3,  
4, 7 and 8. T he remaining scan lines in the vertical blanking  
interval are also blanked and can be used for teletext data.  
Burst is disabled on Lines 1–6, 311–318 and 623–625 in Fields  
1, 2, 5 and 6. Burst is disabled on Lines 1–5, 311–319 and  
623–625 in Fields 3, 4, 7 and 8.  
1
1
1
0
0
1
A1  
X
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
P AL–Noninter laced: Scan Lines 1–6 and 311–312 are always  
blanked, and vertical sync pulses are included. T he remaining  
scan lines in the vertical blanking interval are also blanked and  
can be used for teletext data. Burst is disabled on Lines 1–5,  
310–312.  
0
1
WRITE  
READ  
Figure 27. ADV7175A Slave Address  
P O WER-O N RESET  
1
1
0
0
1
A1  
X
0
After power-up, it is necessary to execute a reset operation. A  
reset occurs on the falling edge of a high-to-low transition on  
the RESET pin. T his initializes the pixel port so that the  
pixel inputs, P7–P0 are selected. After reset, the ADV7175A/  
ADV7176A is automatically set up to operate in NT SC mode.  
Subcarrier frequency code 21F07C16HEX is loaded into the  
subcarrier frequency registers. All other registers, with the  
exception of Mode Register 0, are set to 00H. All bits in Mode  
Register 0 are set to Logic Level “0” except Bit MR02. Bit  
MR02 of Mode Register 0 is set to Logic “1.” T his enables the  
7.5 IRE pedestal.  
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
Figure 28. ADV7176A Slave Address  
T o control the various devices on the bus, the following proto-  
col must be followed: First, the master initiates a data transfer by  
establishing a start condition, defined by a high-to-low transition  
on SDAT A while SCLOCK remains high. T his indicates that  
an address/data stream will follow. All peripherals respond to  
the start condition and shift the next eight bits (7-bit address +  
R/W bit). T he bits transfer from MSB down to LSB. T he pe-  
ripheral that recognizes the transmitted address responds by  
pulling the data line low during the ninth clock pulse. T his is  
known as an acknowledge bit. All other devices withdraw from  
the bus at this point and maintain an idle condition. T he idle  
condition is where the device monitors the SDATA and SCLOCK  
lines waiting for the start condition and the correct transmitted  
address. T he R/W bit determines the direction of the data. A  
Logic “0” on the LSB of the first byte means that the master  
will write information to the peripheral. A Logic “1” on the  
LSB of the first byte means that the master will read informa-  
tion from the peripheral.  
SCH P hase Mode  
T he SCH phase is configured in default mode to reset every  
four (NT SC) or eight (PAL) fields to avoid an accumulation of  
SCH phase error over time. In an ideal system, zero SCH phase  
error would be maintained forever, but in reality, this is impos-  
sible to achieve due to clock frequency variations. T his effect is  
reduced by the use of a 32-bit DDS, which generates this SCH.  
Resetting the SCH phase every four or eight fields avoids the  
accumulation of SCH phase error, and results in very minor  
SCH phase jumps at the start of the four or eight field sequence.  
Resetting the SCH phase should not be done if the video source  
does not have stable timing or the ADV7175A/ADV7176A is  
configured in RT C mode (MR21 = 1 and MR22 = 1). Under  
these conditions (unstable video) the subcarrier phase reset  
should be enabled MR22 = 0 and MR21 = 1) but no reset  
REV. B  
–21–  
ADV7175A/ADV7176A  
T he ADV7175A/ADV7176A acts as a standard slave device on  
the bus. T he data on the SDAT A pin is 8 bits long, supporting  
the 7-bit addresses, plus the R/W bit. T he ADV7175A has 33  
subaddresses and the ADV7176A has 19 subaddresses to enable  
access to the internal registers. It therefore interprets the first  
byte as the device address and the second byte as the starting  
subaddress. T he subaddresses auto increment allow data to  
be written to or read from the starting subaddress. A data  
transfer is always terminated by a stop condition. T he user can  
also access any unique subaddress register on a one by one basis  
without having to update all the registers. T here is one excep-  
tion. T he subcarrier frequency registers should be updated in  
sequence, starting with Subcarrier Frequency Register 0. T he  
auto increment function should then be used to increment and  
access Subcarrier Frequency Registers 1, 2 and 3. The subcarrier  
frequency registers should not be accessed independently.  
return to the idle condition. If, in auto-increment mode the user  
exceeds the highest subaddress, the following action will be  
taken:  
1. In Read Mode, the highest subaddress register contents will  
continue to be output until the master device issues a no-  
acknowledge. T his indicates the end of a read. A no-ac-  
knowledge condition is where the SDAT A line is not pulled  
low on the ninth pulse.  
2. In Write Mode, the data for the invalid byte will not be  
loaded into any subaddress register, a no-acknowledge will  
be issued by the ADV7175A/ADV7176A and the part will  
return to the idle condition.  
SDATA  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of sequence  
with normal read and write operations, they cause an immediate  
jump to the idle condition. During a given SCLOCK high pe-  
riod, the user should issue only one start condition, one stop  
condition or a single stop condition followed by a single start  
condition. If an invalid subaddress is issued by the user, the  
ADV7175A/ADV7176A will not issue an acknowledge and will  
SCLOCK  
S
1-7  
8
9
1-7  
8
9
1-7  
DATA  
8
9
P
START ADDR  
ACK SUBADDRESS ACK  
ACK  
STOP  
R/W  
Figure 29. Bus Data Transfer  
Figure 29 illustrates an example of data transfer for a read se-  
quence and the start and stop conditions.  
Figure 30 shows bus write and read sequences.  
WRITE  
SEQUENCE  
S
SLAVE ADDR A(S) SUB ADDR A(S)  
LSB = 0  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
LSB = 1  
READ  
SEQUENCE  
S
SLAVE ADDR A(S)  
SUB ADDR A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
P
A(M)  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
S = START BIT  
P = STOP BIT  
A(S) = NO-ACKNOWLEDGE BY SLAVE  
A(M) = NO-ACKNOWLEDGE BY MASTER  
Figure 30. Write and Read Sequences  
SR1  
SR7  
SR6  
SR5  
SR4  
SR3  
SR2  
SR0  
SR7–SR6 (00)  
ZERO SHOULD BE WRITTEN  
TO THESE BITS  
ADV7176A SUBADDRESS REGISTER  
ADV7175A SUBADDRESS REGISTER  
SR5 SR4 SR3 SR2 SR1 SR0  
SR5 SR4 SR3 SR2 SR1 SR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MODE REGISTER 0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
MODE REGISTER 0  
MODE REGISTER 1  
MODE REGISTER 1  
SUB CARRIER FREQ REGISTER 0  
SUB CARRIER FREQ REGISTER 1  
SUB CARRIER FREQ REGISTER 2  
SUB CARRIER FREQ REGISTER 3  
SUB CARRIER PHASE REGISTER  
TIMING REGISTER 0  
SUB CARRIER FREQ REGISTER 0  
SUB CARRIER FREQ REGISTER 1  
SUB CARRIER FREQ REGISTER 2  
SUB CARRIER FREQ REGISTER 3  
SUB CARRIER PHASE REGISTER  
TIMING REGISTER 0  
CLOSED CAPTIONING EXTENDED DATA Ϸ BYTE 0  
CLOSED CAPTIONING EXTENDED DATA Ϸ BYTE 1  
CLOSED CAPTIONING DATA Ϸ BYTE 0  
CLOSED CAPTIONING DATA Ϸ BYTE 1  
TIMING REGISTER 1  
CLOSED CAPTIONING EXTENDED DATA Ϸ BYTE 0  
CLOSED CAPTIONING EXTENDED DATA Ϸ BYTE 1  
CLOSED CAPTIONING DATA Ϸ BYTE 0  
CLOSED CAPTIONING DATA Ϸ BYTE 1  
TIMING REGISTER 1  
MODE REGISTER 2  
MODE REGISTER 2  
NTSC PEDESTAL CONTROL REG 0 (FIELD 1/3)/TTX SETUP REG 0*  
NTSC PEDESTAL CONTROL REG 1 (FIELD 1/3)/TTX SETUP REG 1*  
NTSC PEDESTAL CONTROL REG 2 (FIELD 2/4)/TTX SETUP REG 2*  
NTSC PEDESTAL CONTROL REG 3 (FIELD 2/4)/TTX SETUP REG 3*  
MODE REGISTER 3  
NTSC PEDESTAL CONTROL REG 0 (FIELD 1/3)/TTX SETUP REG 0*  
NTSC PEDESTAL CONTROL REG 1 (FIELD 1/3)/TTX SETUP REG 1*  
NTSC PEDESTAL CONTROL REG 2 (FIELD 2/4)/TTX SETUP REG 2*  
NTSC PEDESTAL CONTROL REG 3 (FIELD 2/4)/TTX SETUP REG 3*  
MODE REGISTER 3  
MACROVISION REGISTER  
TTXRQ CONTROL REGISTER 0  
"
"
"
"
*TTX REGISTERS ARE AVAILABLE IN PAL MODE ONLY  
IN NTSC MODE THESE REGISTERS CONTROL PEDESTAL  
1
1
0
0
0
0
0
1
1
0
1
0
MACROVISION REGISTER  
TTXRQ CONTROL REGISTER 0  
*TTX REGISTERS ARE AVAILABLE IN PAL MODE ONLY  
IN NTSC MODE THESE REGISTERS CONTROL PEDESTAL  
Figure 31. Subaddress Register  
–22–  
REV. B  
ADV7175A/ADV7176A  
REGISTER ACCESSES  
MO D E REGISTER 0 MR0 (MR07–MR00)  
T he MPU can write to or read from all of the ADV7175A/  
ADV7176A registers except the subaddress register, which is a  
write-only register. T he subaddress register determines which  
register the next read or write operation accesses. All communi-  
cations with the part through the bus start with an access to the  
subaddress register. A read/write operation is performed from/to  
the target address, which then increments to the next address  
until a stop command on the bus is performed.  
(Addr ess [SR4–SR0] = 00H )  
Figure 32 shows the various operations under the control of Mode  
Register 0. This register can be read from as well as written to.  
MR0 BIT D ESCRIP TIO N  
Encode Mode Contr ol (MR01MR00)  
These bits are used to set up the encode mode. The ADV7175A/  
ADV7176A can be set up to output NT SC, PAL (B, D, G, H, I)  
and PAL (M) standard video.  
REGISTER P RO GRAMMING  
P edestal Contr ol (MR02)  
The following section describes each register, including subaddress  
register, mode registers, subcarrier frequency registers, subcarrier  
phase register, timing registers, closed captioning extended data  
registers, closed captioning data registers and NT SC pedestal  
control registers in terms of its configuration.  
This bit specifies whether a pedestal is to be generated on  
the NT SC composite video signal. T his bit is invalid if the  
ADV7175A/ADV7176A is configured in PAL mode.  
Lum inance Filter Contr ol (MR04–MR03)  
T he luminance filters are divided into two sets (NT SC/PAL) of  
four filters, low-pass A, low-pass B, notch and extended. When  
PAL is selected, bits MR03 and MR04 select one of four PAL  
luminance filters; likewise, when NT SC is selected, bits MR03  
and MR04 select one of four NT SC luminance filters. T he fil-  
ters are illustrated in Figures 4 to 12.  
Subaddr ess Register (SR7–SR0)  
T he communications register is an 8-bit write-only register.  
After the part has been accessed over the bus, and a read/write  
operation is selected, the subaddress is set up. T he subaddress  
register determines to/from which register the operation takes  
place.  
RGB Sync (MR05)  
T his bit is used to set up the RGB outputs with the sync infor-  
mation encoded on all RGB outputs.  
Figure 31 shows the various operations under the control of  
the subaddress register. Zero should always be written to  
SR7–SR6.  
O utput Contr ol (MR06)  
Register Select (SR5–SR0)  
T hese bits are set up to point to the required starting address.  
T his bit specifies if the part is in composite video or RGB/YUV  
mode. Please note that the main composite signal is still avail-  
able in RGB/YUV mode.  
MR01  
MR06  
MR05  
MR04  
MR03  
MR02  
MR00  
MR07  
OUTPUT SELECT  
MR06  
FILTER SELECT  
MR04 MR03  
OUTPUT VIDEO  
STANDARD SELECTION  
MR01  
MR00  
0
1
YC OUTPUT  
RGB/YUV OUTPUT  
0
0
1
1
0
1
0
1
LOW PASS FILTER (A)  
NOTCH FILTER  
EXTENDED MODE  
LOW PASS FILTER (B)  
0
0
1
1
0
1
0
1
NTSC  
PAL (B, D, G, H, I)  
PAL (M)  
RESERVED  
RGB SYNC  
MR07  
(0)  
PEDESTAL CONTROL  
MR02  
MR05  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
0
1
DISABLE  
ENABLE  
0
1
PEDESTAL OFF  
PEDESTAL ON  
Figure 32. Mode Register 0 (MR0)  
MR11  
MR17  
MR16  
MR15  
MR14  
MR13  
MR12  
MR10  
DAC A  
CONTROL  
DAC D  
CONTROL  
CLOSED CAPTIONING  
FIELD SELECTION  
MR16  
MR14  
MR12  
MR11  
0
1
NORMAL  
POWER-DOWN  
0
1
NORMAL  
POWER-DOWN  
0
0
1
1
0
1
0
1
NO DATA OUT  
ODD FIELD ONLY  
EVEN FIELD ONLY  
DATA OUT  
(BOTH FIELDS)  
COLOR BAR  
CONTROL  
DAC B  
CONTROL  
DAC C  
CONTROL  
INTERLACE  
CONTROL  
MR15  
MR13  
MR10  
MR17  
0
1
INTERLACED  
NONINTERLACED  
0
1
NORMAL  
POWER-DOWN  
0
1
NORMAL  
POWER-DOWN  
0
1
DISABLE  
ENABLE  
Figure 33. Mode Register 1 (MR1)  
–23–  
REV. B  
ADV7175A/ADV7176A  
SUBCARRIER  
FREQUENCY  
REG 3  
MO D E REGISTER 1 MR1 (MR17–MR10)  
(Addr ess (SR4–SR0) = 01H )  
FSC30  
FSC31  
FSC29 FSC28 FSC27 FSC26 FSC25 FSC24  
SUBCARRIER  
FREQUENCY  
REG 2  
Figure 33 shows the various operations under the control of Mode  
Register 1. This register can be read from as well as written to.  
FSC23 FSC22 FSC21 FSC20 FSC19 FSC18 FSC17 FSC16  
SUBCARRIER  
FREQUENCY  
REG 1  
FSC14  
FSC6  
FSC15  
FSC7  
FSC13 FSC12 FSC11 FSC10 FSC9  
FSC8  
FSC0  
MR1 BIT D ESCRIP TIO N  
Inter laced Mode Contr ol (MR10)  
T his bit is used to set up the output to interlaced or noninter-  
laced mode. T his mode is only relevant when the part is in  
composite video mode.  
SUBCARRIER  
FREQUENCY  
REG 0  
FSC5  
FSC4  
FSC3 FSC2 FSC1  
Figure 34. Subcarrier Frequency Register  
Closed Captioning Field Contr ol (MR12–MR11)  
T hese bits control the fields on which closed captioning data is  
displayed; closed captioning information can be displayed on an  
odd field, even field or both fields.  
SUBCARRIER P H ASE REGISTER (FP 7FP 0)  
(Addr ess [SR4–SR0] = 06H )  
T his 8-bit wide register is used to set up the subcarrier phase.  
Each bit represents 1.41°.  
D AC Contr ol (MR16–MR13)  
T hese bits can be used to power down the DACs. T his can  
be used to reduce the power consumption of the ADV7175A/  
ADV7176A if any of the DACs are not required in the application.  
TIMING REGISTER 0 (TR07TR00)  
(Addr ess [SR4–SR0] = 07H )  
Figure 35 shows the various operations under the control of  
T iming Register 0. T his register can be read from as well as  
written to. T his register can be used to adjust the width and  
position of the master mode timing signals.  
Color Bar Contr ol (MR17)  
T his bit can be used to generate and output an internal color  
bar test pattern. T he color bar configuration is 75/7.5/75/7.5  
for NT SC and 100/0/75/0 for PAL. It is important to note that  
when color bars are enabled the ADV7175A/ADV7176A is  
configured in a master timing mode as per the one selected by  
bits T R01 and T R02.  
TR0 BIT D ESCRIP TIO N  
Master /Slave Contr ol (TR00)  
T his bit controls whether the ADV7175A/ADV7176A is in  
master or slave mode.  
SUBCARRIER FREQ UENCY REGISTER 3-0  
(FSC3FSC0)  
Tim ing Mode Contr ol (TR02–TR01)  
T hese bits control the timing mode of the AD V7175A/  
ADV7176A. T hese modes are described in the T iming and  
Control section of the data sheet.  
(Addr ess [SR4–SR0] = 05H –02H )  
T hese 8-bit wide registers are used to set up the subcarrier fre-  
quency. T he value of these registers are calculated by using the  
following equation:  
BLANK Contr ol (TR03)  
T his bit controls whether the BLANK input is used when the  
part is in slave mode.  
232 –1  
× FSCF  
Subcarrier Frequency Register =  
FCLK  
Lum a D elay Contr ol (TR05–TR04)  
T hese bits control the addition of a luminance delay. Each bit  
represents a delay of 74 ns.  
i.e.: NT SC Mode,  
FCLK = 27 MHz,  
FSCF = 3.5795454 MHz  
P ixel P or t Select (TR06)  
232 –1  
27 ×106  
T his bit is used to set the pixel port to accept 8-bit or 16-bit  
data. If an 8-bit input is selected the data will be set up on Pins  
P7–P0.  
× 3.5795454 ×106  
Subcarrier Frequency Value =  
= 21F07C16 HEX  
Tim ing Register Reset (TR07)  
Figure 34 shows how the frequency is set up by the four registers.  
T oggling T R07 from low to high and low again resets the inter-  
nal timing counters. T his bit should be toggled after power-up,  
reset or changing to a new timing mode.  
TR07  
TR06  
TR05  
TR04  
TR03  
TR02  
TR01  
TR00  
BLACK INPUT  
CONTROL  
TIMING  
REGISTER RESET  
MASTER/SLAVE  
CONTROL  
TR03  
TR00  
TR07  
0
1
ENABLE  
DISABLE  
0
1
SLAVE TIMING  
MASTER TIMING  
PIXEL PORT  
CONTROL  
TIMING MODE  
SELECTION  
LUMA DELAY  
TR05 TR04  
TR06  
TR02 TR01  
0
0
1
1
0
1
0
1
0ns DELAY  
0
8-BIT  
0
0
1
1
0
1
0
1
MODE 0  
74ns DELAY  
148ns DELAY  
222ns DELAY  
1
16-BIT  
MODE 1  
MODE 2  
MODE 3  
Figure 35. Tim ing Register 0  
–24–  
REV. B  
ADV7175A/ADV7176A  
CLO SED CAP TIO NING EVEN FIELD  
TR1 BIT D ESCRIP TIO N  
D ATA REGISTER 10 (CED 15–CED 00)  
H SYNC Width (TR11–TR10)  
(Addr ess [SR4–SR0] = 09–08H )  
T hese bits adjust the HSYNC pulsewidth.  
These 8-bit wide registers are used to set up the closed captioning  
extended data bytes on even fields. Figure 36 shows how the  
high and low bytes are set up in the registers.  
HSYNC to VSYNC/FIELD D elay Contr ol (TR13–TR12)  
T hese bits adjust the position of the HSYNC output relative to  
the FIELD/VSYNC output.  
HSYNC to FIELD D elay Contr ol (TR15–TR14)  
When the ADV7175A/ADV7176A is in T iming Mode 1, these  
bits adjust the position of the HSYNC output relative to the  
FIELD output rising edge.  
CED15 CED14 CED13 CED12 CED11 CED10  
CED9  
CED8  
BYTE 1  
CED7  
CED6  
CED5  
CED4  
CED3  
CED2  
CED1  
CED0  
BYTE 0  
Figure 36. Closed Captioning Extended Data Register  
VSYNC Width (TR15–TR14)  
When the ADV7175A/ADV7176A is in T iming Mode 2, these  
bits adjust the VSYNC pulsewidth.  
CLO SED CAP TIO NING O D D FIELD  
D ATA REGISTER 10 (CCD 15–CCD 00)  
(Subaddr ess [SR4SR0] = 0B–0AH )  
These 8-bit wide registers are used to set up the closed captioning  
data bytes on odd fields. Figure 37 shows how the high and low  
bytes are set up in the registers.  
HSYNC to P ixel D ata Adjust (TR17–TR16)  
T his enables the HSYNC to be adjusted with respect to the  
pixel data. T his allows the Cr and Cb components to be  
swapped. T his adjustment is available in both master and slave  
timing modes.  
CCD15  
CCD14 CCD13 CCD12 CCD11 CCD10  
CCD9  
CCD8  
BYTE 1  
MO D E REGISTER 2 MR2 (MR27–MR20)  
(Addr ess [SR4-SR0] = 0D H )  
Mode Register 2 is an 8-bit wide register.  
CCD7  
CCD6  
CCD5  
CCD4  
CCD3  
CCD2  
CCD1  
CCD0  
BYTE 0  
Figure 39 shows the various operations under the control of Mode  
Register 2. This register can be read from as well as written to.  
Figure 37. Closed Captioning Data Register  
TIMING REGISTER 1 (TR17TR10)  
(AD D RESS [SR4–SR0] = 0CH )  
T iming Register 1 is an 8-Bit Wide Register  
MR2 BIT D ESCRIP TIO N  
Squar e P ixel Mode Contr ol (MR20)  
T his bit is used to set up square pixel mode. T his is available in  
slave mode only. For NT SC, a 24.54 MHz clock must be sup-  
plied. For PAL, a 29.5 MHz clock must be supplied.  
Figure 38 shows the various operations under the control of  
T iming Register 1. T his register can be read from as well as  
written to. T his register can be used to adjust the width and  
position of the master mode timing signals.  
TR11  
TR17  
TR16  
TR15  
TR14  
TR13  
TR12  
TR10  
HSYNC TO PIXEL  
DATA ADJUSTMENT  
HSYNC TO FIELD  
RISING EDGE DELAY  
(MODE 1 ONLY)  
HSYNC WIDTH  
HSYNC TO  
FIELD/VSYNC DELAY  
T
TR11 TR10  
A
TR17 TR16  
T
0
0
1
1
0
1
0
1
1 x T  
4 x T  
TR13 TR12  
B
PCLK  
T
TR15 TR14  
C
0
0
1
1
0
1
0
1
0 x T  
1 x T  
2 x T  
3 x T  
0
0
1
1
0
1
0
1
0 x T  
4 x T  
8 x T  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
x
x
0
1
T
T
B
16 x T  
PCLK  
+ 32s  
128 x T  
B
PCLK  
16 x T  
PCLK  
VSYNC WIDTH  
(MODE 2 ONLY)  
TR15 TR14  
0
0
1
1
0
1
0
1
1 x T  
4 x T  
PCLK  
PCLK  
16 x T  
PCLK  
128 x T  
PCLK  
TIMING MODE 1 (MASTER/PAL)  
LINE 1  
LINE 313  
LINE 314  
TA  
TB  
HSYNC  
TC  
FIELD/VSYNC  
Figure 38. Tim ing Register 1  
REV. B  
–25–  
ADV7175A/ADV7176A  
MR21  
MR27  
MR26  
MR25  
MR24  
MR23  
MR22  
MR20  
CHROMINANCE  
CONTROL  
RGB/YUV  
CONTROL  
GENLOCK SELECTION  
MR22 MR21  
MR24  
MR26  
x
0
0
1
DISABLE GENLOCK  
ENABLE SUBCARRIER  
RESET PIN  
0
1
RGB OUTPUT  
YUV OUTPUT  
0
1
ENABLE COLOR  
DISABLE COLOR  
1
1
ENABLE RTC PIN  
LOWER POWER  
MODE  
BURST  
CONTROL  
ACTIVE VIDEO LINE WIDTH  
CONTROL  
SQUARE PIXEL  
CONTROL  
MR27  
MR25  
MR23  
MR20  
0
1
DISABLE  
ENABLE  
0
1
ENABLE BURST  
DISABLE BURST  
0
1
DISABLE  
ENABLE  
0
1
720 PIXELS ACTIVE LINE  
ITU-R/SMPTE ACTIVE LINE  
Figure 39. Mode Register 2  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
PCO7 PCO6 PCO5 PCO4 PCO3 PCO2 PCO1 PCO0  
Genlock Contr ol (MR22–MR21)  
FIELD 1/3  
FIELD 1/3  
T hese bits control the genlock feature of the ADV7175A/  
AD V7176A. Setting M R21 to a Logic “1” configures the  
SCRESET /RT C pin as an input. Setting MR22 to Logic Level  
“0” configures the SCRESET /RT C pin as a subcarrier reset  
input, therefore, the subcarrier will reset to Field 0, following a  
high-to-low transition on the SCRESET /RT C pin. Setting  
MR22 to Logic Level “1” configures the SCRESET /RT C pin as  
a real-time control input.  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
PCO15 PCO14 PCO13 PCO12 PCO11 PCO10 PCO9 PCO8  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
PCE7 PCE6 PCE5 PCE4 PCE3 PCE2 PCE1 PCE0  
FIELD 2/4  
FIELD 2/4  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
PCE15 PCE14 PCE13 PCE12 PCE11 PCE10 PCE9 PCE8  
Active Video Line Contr ol (MR23)  
T his bit switches between two active video line durations. A  
zero selects IT U-R BT .470 (720 pixels PAL/NT SC) and a one  
selects IT U-R/SMPT E “analog” standard for active video dura-  
tion (710 pixels NT SC 702 pixels PAL).  
Figure 40. Pedestal Control Registers  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXO7 TXO6 TXO5 TXO4 TXO3 TXO2 TXO1 TXO0  
FIELD 1/3  
FIELD 1/3  
Chr om inance Contr ol (MR24)  
T his bit enables the color information to be switched on and off  
the video output.  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
TXO15 TXO14 TXO13 TXO12 TXO11 TXO10 TXO9 TXO8  
Bur st Contr ol (MR25)  
T his bit enables the burst information to be switched on and off  
the video output.  
LINE 14 LINE 13 LINE 12 LINE 11 LINE 10 LINE 9 LINE 8 LINE 7  
TXE7 TXE6 TXE5 TXE4 TXE3 TXE2 TXE1 TXE0  
FIELD 2/4  
FIELD 2/4  
LINE 22 LINE 21 LINE 20 LINE 19 LINE 18 LINE 17 LINE 16 LINE 15  
TXE15 TXE14 TXE13 TXE12 TXE11 TXE10 TXE9 TXE8  
RGB/YUV Contr ol (MR26)  
T his bit enables the output from the RGB DACs to be set to  
YUV output video standard. Bit MR06 of Mode Register 0  
must be set to Logic Level “1” before MR26 is set.  
Figure 41. Teletext Control Registers  
Lower P ower Contr ol (MR27)  
T his bit enables the lower power mode of the ADV7175A/  
ADV7176A. T his will reduce the DAC current by 50%.  
MO D E REGISTER 3 MR3 (MR37–MR30)  
(Addr ess [SR4–SR0] = 12H )  
Mode Register 3 is an 8-bit wide register.  
Figure 42 shows the various operations under the control of  
Mode Register 3.  
NTSC P ED ESTAL/P AL TELETEXT CO NTRO L  
REGISTERS 3–0 (P CE15–0, P CO 15–0)/ (TXE15–0, TXO 15–0)  
(Subaddr ess [SR4SR0] = 11–0EH )  
MR3 BIT D ESCRIP TIO N  
T hese 8-bit wide registers are used to set up the NT SC pedes-  
tal/PAL teletext on a line-by-line basis in the vertical blanking  
interval for both odd and even fields. Figures 40 and 41 show  
the four control registers. A Logic “1” in any of the bits of these  
registers has the effect of turning the pedestal OFF on the  
equivalent line when used in NT SC. A Logic “1” in any of the  
bits of these registers has the effect of turning teletext ON the  
equivalent line when used in PAL.  
Revision Code (MR30)  
T his bit is read only and indicates the revision of the device.  
VBI P ass-Thr ough Contr ol (MR31)  
T his bit determines whether or not data in the vertical blanking  
interval (VBI) is output to the analog outputs or blanked.  
Reser ved (MR33–MR32)  
T hese bits are reserved.  
Teletext Enable (MR34)  
T his bit must be set to “1” to enable teletext data insertion on  
the T T X pin.  
–26–  
REV. B  
ADV7175A/ADV7176A  
D AC Switching Contr ol (MR37)  
Input D efault Color (MR36)  
T his bit is used to switch the DAC outputs from SCART to a  
EUROSCART configuration. A complete table of all DAC  
output configurations is shown below.  
T his bit determines the default output color from the DACs for  
zero input data (or disconnected). A Logical “0” means that the  
color corresponding to 00000000 will be displayed. A Logical  
“1” forces the output color to black for 00000000 input video  
data.  
Table I. D AC O utput Configuration Matrix  
D AC A D AC B D AC C  
CVBS  
MR06  
MR26  
MR37  
D AC D  
Sim ultaneous O utput  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
CVBS  
Y
C
Y
CVBS  
Y
CVBS  
G
CVBS  
Y
2 Composite and Y/C  
2 Composite and Y/C  
2 Composite and Y/C  
2 Composite and Y/C  
RGB and Composite  
RGB and Composite  
YUV and Composite  
YUV and Composite  
CVBS  
CVBS  
CVBS  
B
C
C
C
R
R
V
V
CVBS  
Y
CVBS  
G
B
CVBS  
Y
U
U
CVBS  
NOT E  
CVBS: Composite Video Baseband Signal  
Each DAC can be individually powered ON or OFF with the following control bits  
(“0” = ON, “1” = OFF):  
MR13 - DAC C  
MR14 - DAC D  
MR15 - DAC B  
Y:  
C:  
U:  
V:  
R:  
G:  
B:  
Luminance Component Signal (For YUV or Y/C Mode)  
Chrominance Signal (For Y/C Mode)  
Chrominance Component Signal (For YUV Mode)  
Chrominance Component Signal (For YUV Mode)  
RED Component Video (For RGB Mode)  
MR16 - DAC A  
GREEN Component Video (For RGB Mode)  
BLUE Component Video (For RGB Mode)  
MR31  
MR36  
MR35  
MR34  
MR33  
MR32  
MR30  
MR30  
MR37  
RESERVED  
MR35 = 0  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
REV CODE  
(READ ONLY)  
INPUT DEFAULT COLOR  
MR36  
TELETEXT ENABLE  
VBI PASSTHROUGH  
MR31  
MR34  
0
1
INPUT COLOR  
BLACK  
0
1
DISABLE  
ENABLE  
0
1
DISABLE  
ENABLE  
DAC OUTPUT  
SWITCHING  
MR37  
DAC A  
DAC B  
DAC C  
DAC D  
0
1
COMPOSITE  
GREEN/LUMA/Y  
BLUE/COMP/U RED/CHROMA/V GREEN/LUMA/Y  
BLUE/COMP/U RED/CHROMA/V COMPOSITE  
Figure 42. Mode Register 3  
when bits T C07–T C04 are changed, the falling edge of T T REQ  
will track that of the rising edge (i.e., the time between the fall-  
ing and rising edge remains constant)—see Figure 48.  
TELETEXT CO NTRO L REGISTER TC07 (TC07–TC00)  
(Addr ess [SR4–SR0] = 24H )  
T eletext Control Register is an 8-bit wide register.  
TTXREQ Rising Edge Contr ol (TC07TC04)  
T hese bits control the position of the rising edge of T T XREQ.  
It can be programmed from zero CLOCK cycles to a max of 15  
CLOCK cycles—see Figure 48.  
TC06  
TC05  
TC04  
TC03  
TC02  
TC01  
TC00  
TC07  
TTXR EQ RISING EDGE CONTROL  
TC07 TC06 TC05 TC04  
TTXR EQ FALLING EDGE CONTROL  
TC03 TC02 TC01 TC00  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
0
0
"
1
1
0
0
"
1
1
0
0
"
1
1
0
1
"
0
1
0 PCLK  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
TTXREQ Falling Edge Contr ol (TC03TC00)  
1 PCLK  
" PCLK  
14 PCLK  
15 PCLK  
T hese bits control the position of the falling edge of T T XREQ.  
It can be programmed from zero CLOCK cycles to a max of 15  
CLOCK cycles. T his controls the active window for teletext  
data. Increasing this value reduces the amount of teletext bits  
below the default of 360. If bits T C03–T C00 are unchanged  
Figure 43. Teletext Control Register  
REV. B  
–27–  
ADV7175A/ADV7176A  
AP P END IX 1  
BO ARD D ESIGN AND LAYO UT CO NSID ERATIO NS  
The ADV7175A/ADV7176A is a highly integrated circuit contain-  
ing both precision analog and high speed digital circuitry. It has  
been designed to minimize interference effects on the integrity  
of the analog circuitry by the high speed digital circuitry. It is  
imperative that these same design and layout techniques be  
applied to the system level design so that high speed, accurate  
performance is achieved. T he “Recommended Analog Circuit  
Layout” shows the analog interface between the device and  
monitor.  
Supply D ecoupling  
For optimum performance, bypass capacitors should be in-  
stalled using the shortest leads possible, consistent with reliable  
operation, to reduce the lead inductance. Best performance is  
obtained with 0.1 µF ceramic capacitor decoupling. Each  
group of VAA pins on the ADV7175A/ADV7176A must have at  
least one 0.1 µF decoupling capacitor to GND. T hese capaci-  
tors should be placed as close to the device as possible.  
It is important to note that while the ADV7175A/ADV7176A  
contains circuitry to reject power supply noise, this rejection  
decreases with frequency. If a high frequency switching power  
supply is used, the designer should pay close attention to reduc-  
ing power supply noise and consider using a three terminal voltage  
regulator for supplying power to the analog power plane.  
The layout should be optimized for lowest noise on the ADV7175A/  
ADV7176A power and ground lines by shielding the digital  
inputs and providing good decoupling. T he lead length between  
groups of VAA and GND pins should by minimized to minimize  
inductive ringing.  
Gr ound P lanes  
D igital Signal Inter connect  
T he ground plane should encompass all ADV7175A/ADV7176A  
ground pins, voltage reference circuitry, power supply bypass  
circuitry for the ADV7175A/ADV7176A, the analog output traces,  
and all the digital signal traces leading up to the ADV7175A/  
ADV7176A. T he ground plane is the board’s common ground  
plane.  
T he digital inputs to the ADV7175A/ADV7176A should be  
isolated as much as possible from the analog outputs and other  
analog circuitry. Also, these input signals should not overlay  
the analog power plane.  
Due to the high clock rates involved, long clock lines to the  
ADV7175A/ADV7176A should be avoided to reduce noise  
pickup.  
T his should be as substantial as possible to maximize heat  
spreading and power dissipation on the board.  
Any active termination resistors for the digital inputs should be  
connected to the regular PCB power plane (VCC) and not the  
analog power plane.  
P ower P lanes  
T he ADV7175A/ADV7176A and any associated analog circuitry  
should have its own power plane, referred to as the analog  
power plane (VAA). T his power plane should be connected to  
the regular PCB power plane (VCC) at a single point through a  
ferrite bead. T his bead should be located within three inches of  
the ADV7175A/ADV7176A.  
Analog Signal Interconnect  
T he ADV7175A/ADV7176A should be located as close to the  
output connectors as possible to minimize noise pickup and  
reflections due to impedance mismatch.  
T he video output signals should overlay the ground plane, not  
the analog power plane, to maximize the high frequency power  
supply rejection.  
T he metallization gap separating device power plane and board  
power plane should be as narrow as possible to minimize the  
obstruction to the flow of heat from the device into the general  
board.  
Digital inputs, especially pixel data inputs and clocking signals,  
should never overlay any of the analog signal circuitry and  
should be kept as far away as possible.  
T he PCB power plane should provide power to all digital logic  
on the PC board, and the analog power plane should provide  
power to all ADV7175A/ADV7176A power pins and voltage  
reference circuitry.  
For best performance, the outputs should each have a 75 Ω  
load resistor connected to GND. T hese resistors should be  
placed as close as possible to the ADV7175A/ADV7176A as to  
minimize reflections.  
Plane-to-plane noise coupling can be reduced by ensuring that  
portions of the regular PCB power and ground planes do not  
overlay portions of the analog power plane unless they can be  
arranged so that the plane-to-plane noise is common-mode.  
T he ADV7175A/ADV7176A should have no inputs left float-  
ing. Any inputs that are not required should be tied to ground.  
–28–  
REV. B  
ADV7175A/ADV7176A  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
0.1F  
0.01F  
L1  
(FERRITE BEAD)  
+5V (V  
)
AA  
+5V (V  
)
+5V (V  
)
+5V  
(V  
AA  
AA  
)
1, 11, 20, 28, 30  
33F  
10F  
CC  
0.1F  
GND  
0.1F  
V
AA  
COMP  
25  
33  
27  
DAC D  
V
REF  
75⍀  
75⍀  
75⍀  
75⍀  
ADV7175A  
ADV7176A  
38–42,  
2–9, 12–14  
26  
DAC C  
+5V (V  
)
P15–P0  
AA  
S VIDEO  
4k⍀  
35  
DAC B 31  
SCRESET/RTC  
RESET  
100nF  
15 HSYNC  
“UNUSED  
INPUTS  
SHOULD BE  
GROUNDED”  
FIELD/VSYNC  
16  
17  
22  
+5V (V  
)
32  
DAC A  
CC  
+5V (V  
)
+5V (V  
)
CC  
CC  
BLANK  
RESET  
TTX  
100k⍀  
5k⍀  
5k⍀  
TTX  
TTX REQ  
100⍀  
100⍀  
37  
36  
44  
SCLOCK 23  
SDATA 24  
MPU BUS  
TTX REQ  
CLOCK  
100k⍀  
34  
R
SET  
+5V (V  
)
AA  
ALSB  
18  
GND  
150⍀  
TELETEXT PULLUP &  
10k⍀  
10, 19, 21  
29, 43  
PULLDOWN RESISTORS  
SHOULD ONLY BE USED  
IF THESE PINS ARE NOT  
CONNECTED  
27MHz CLOCK  
(SAME CLOCK AS USED BY  
MPEG2 DECODER)  
Figure 44. Recom m ended Analog Circuit Layout  
T he circuit below can be used to generate a 13.5 MHz waveform using the 27 MHz clock and the HSYNC pulse. T his waveform is  
guaranteed to produce the 13.5 MHz clock in synchronization with the 27 MHz clock. T his 13.5 MHz clock can be used if the  
13.5 MHz clock is required by the MPEG decoder. T his will guarantee that the Cr and Cb pixel information is input to the  
ADV7175A/ADV7176A in the correct sequence.  
D
Q
13.5MHz  
D
Q
CLOCK  
CK  
CK  
HSYNC  
Figure 45. Circuit to Generate 13.5 MHz  
REV. B  
–29–  
ADV7175A/ADV7176A  
AP P END IX 2  
CLO SED CAP TIO NING  
T he ADV7175A/ADV7176A supports closed captioning, conforming to the standard television synchronizing waveform for color  
transmission. Closed captioning is transmitted during the blanked active line time of Line 21 of the odd fields and Line 284 of even  
fields.  
Closed captioning consists of a 7-cycle sinusoidal burst that is frequency and phase locked to the caption data. After the clock run-in  
signal, the blanking level is held for two data bits and is followed by a Logic Level “1” start bit. 16 bits of data follow the start bit.  
T hese consist of two 8-bit bytes, seven data bits and one odd parity bit. T he data for these bytes is stored in closed captioning Data  
Registers 0 and 1.  
T he ADV7175A/ADV7176A also supports the extended closed captioning operation, which is active during even fields, and is en-  
coded on scan Line 284. T he data for this operation is stored in closed captioning extended Data Registers 0 and 1.  
All clock run-in signals and timing to support closed captioning on Lines 21 and 284 are generated automatically by the ADV7175A/  
ADV7176A. All pixels inputs are ignored during Lines 21 and 284.  
FCC Code of Federal Regulations (CFR) 47 Section 15.119 and EIA608 describe the closed captioning information for Lines 21 and  
284.  
T he ADV7175A/ADV7176A uses a single buffering method. T his means that the closed captioning buffer is only one byte deep,  
therefore there will be no frame delay in outputting the closed captioning data unlike other 2-byte deep buffering systems. T he data  
must be loaded at least one line before (Line 20 or Line 283) it is outputted on Line 21 and Line 284. A typical implementation of  
this method is to use VSYNC to interrupt a microprocessor, which will in turn load the new data (two bytes) every field. If no new  
data is required for transmission you must insert zeros in both the data registers; this is called NULLING. It is also important to load  
“control codes,” all of which are double bytes on Line 21, or a T V will not recognize them. If you have a message like “Hello World”  
which has an odd number of characters, it is important to pad it out to an even number to get “end of caption” 2-byte control code to  
land in the same field.  
10.5 ؎ 0.25s  
12.91s  
7 CYCLES  
OF 0.5035 MHz  
(CLOCKRUN-IN)  
TWO 7-BIT + PARITY  
ASCII CHARACTERS  
(DATA)  
P
A
R
I
T
Y
S
T
A
R
T
P
A
R
I
T
Y
D0–D6  
D0–D6  
50 IRE  
40 IRE  
BYTE 1  
BYTE 0  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003s  
33.764s  
27.382s  
Figure 46. Closed Captioning Waveform (NTSC)  
–30–  
REV. B  
ADV7175A/ADV7176A  
AP P END IX 3  
TELETEXT INSERTIO N  
Time TPD time needed by the ADV7175A/ADV7176A to interpolate input data on T T X and insert it onto the CVBS or Y outputs,  
such that it appears T synT xtOut = 10.2 µs after the leading edge of the horizontal signal. T ime T xtDel is the pipeline delay time by the  
source that is gated by the T T REQ signal in order to deliver T T X data.  
With the programmability that is offered with T T XREQ signal on the Rising/Falling edges, the T T X data is always inserted at the  
correct position of 10.2 µs after the leading edge of Horizontal Sync pulse, which enables a source interface with variable pipeline  
delays.  
T he width of the T T XREQ signal must always be maintained so it allows the insertion of 360 (to comply with the T eletext Standard  
“PAL–WST ”) teletext bits at a text data rate of 6.9375 Mbits/s; this is achieved by setting T C03–T C00 to zero. T he insertion win-  
dow is not open if the T eletext Enable bit (MR34) is set to zero.  
Teletext P r otocol  
T he relationship between the T T X bit clock (6.9375 MHz) and the system CLOCK (27 MHz) for 50 Hz is given as follows:  
27 MHz  
= 6.75 MHz  
4
6.9375 × 106  
= 1.027777  
6.75 × 106  
Thus 37 TTX bits correspond to 144 clocks (27 MHz) and each bit has a width of almost four clock cycles. T he ADV7175A/ADV7176A  
uses an internal sequencer and variable phase interpolation filter to minimize the phase jitter and thus generate a bandlimited signal  
which can be outputted on the CVBS and Y outputs.  
At the T T X input the bit duration scheme repeats after every 37 T T X bits or 144 clock cycles. T he protocol requires that T T X bits  
10, 19, 28, 37 are carried by three clock cycles, all other bits by four clock cycles. After 37 T T X bits, the next bits with three clock  
cycles are 47, 56, 65 and 74. T his scheme holds for all following cycles of 37 T T X bits, until all 360 T T X bits are completed. All  
teletext lines are implemented in the same way. Individual control of teletext lines are controlled by T eletext Setup Registers.  
45 BYTES (360 BITS) – PAL  
ADDRESS & DATA  
TELETEXT VBI LINE  
RUN-IN CLOCK  
Figure 47. Teletext VBI Line  
tSYNTXTOUT  
CVBS/Y  
tPD  
tPD  
HSYNC  
10.2s  
TXT  
DATA  
TXT  
DEL  
TXTREQ  
TXT  
ST  
PROGRAMMABLE PULSE EDGES  
tSYNTXTOUT = 10.2s  
tPD = PIPELINE DELAY THROUGH ADV7175A/ADV7176A  
TXT = TTXREQ TO TTX (PROGRAMMABLE RANGE = 4 BITS [0–15 CLOCK CYCLES])  
DEL  
Figure 48. Teletext Functionality Diagram  
–31–  
REV. B  
ADV7175A/ADV7176A  
AP P END IX 4  
NTSC WAVEFO RMS (WITH P ED ESTAL)  
1268.1mV  
1048.4mV  
130.8 IRE  
100 IRE  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
387.6mV  
334.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
48.3mV  
SYNC LEVEL  
–40 IRE  
Figure 49. NTSC Com posite Video Levels  
1048.4mV  
100 IRE  
REF WHITE  
714.2mV  
387.6mV  
334.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
48.3mV  
SYNC LEVEL  
–40 IRE  
Figure 50. NTSC Lum a Video Levels  
PEAK CHROMA  
1067.7mV  
835mV (pk-pk)  
286mV (pk-pk)  
BLANK/BLACK LEVEL  
PEAK CHROMA  
650mV  
232.2mV  
0mV  
Figure 51. NTSC Chrom a Video Levels  
100 IRE  
REF WHITE  
1052.2mV  
720.8mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
387.5mV  
331.4mV  
SYNC LEVEL  
–40 IRE  
45.9mV  
Figure 52. NTSC RGB Video Levels  
–32–  
REV. B  
ADV7175A/ADV7176A  
NTSC WAVEFO RMS (WITH O UT P ED ESTAL)  
130.8 IRE  
100 IRE  
1289.8mV  
1052.2mV  
PEAK COMPOSITE  
REF WHITE  
714.2mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
338mV  
52.1mV  
–40 IRE  
Figure 53. NTSC Com posite Video Levels  
1052.2mV  
100 IRE  
REF WHITE  
714.2mV  
338mV  
52.1mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
–40 IRE  
Figure 54. NTSC Lum a Video Levels  
PEAK CHROMA  
1101.6mV  
650mV  
903.2mV (pk-pk)  
307mV (pk-pk)  
BLANK/BLACK LEVEL  
PEAK CHROMA  
198.4mV  
0mV  
Figure 55. NTSC Chrom a Video Levels  
100 IRE  
1052.2mV  
REF WHITE  
715.7mV  
BLANK/BLACK LEVEL 336.5mV  
51mV  
0 IRE  
SYNC LEVEL  
–40 IRE  
Figure 56. NTSC RGB Video Levels  
REV. B  
–33–  
ADV7175A/ADV7176A  
P AL WAVEFO RMS  
PEAK COMPOSITE  
REF WHITE  
1284.2mV  
1047.1mV  
696.4mV  
350.7mV  
50.8mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
Figure 57. PAL Com posite Video Levels  
REF WHITE  
1047mV  
696.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
350.7mV  
50.8mV  
Figure 58. PAL Lum a Video Levels  
PEAK CHROMA  
1092.5mV  
885mV (pk-pk)  
300mV (pk-pk)  
BLANK/BLACK LEVEL  
650mV  
PEAK CHROMA  
207.5mV  
0mV  
Figure 59. PAL Chrom a Video Levels  
REF WHITE  
1050.2mV  
698.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
351.8mV  
51mV  
Figure 60. PAL RGB Video Levels  
–34–  
REV. B  
ADV7175A/ADV7176A  
UV WAVEFO RMS  
505mV  
505mV  
423mV  
334mV  
BETACAM LEVEL  
171mV  
82mV  
BETACAM LEVEL  
0mV  
0mV  
0mV  
–82mV  
0mV  
؊171mV  
–423mV  
؊334mV  
–505mV  
؊505mV  
Figure 61. NTSC 100% Color Bars No Pedestal U Levels  
Figure 64. NTSC 100% Color Bars No Pedestal V Levels  
467mV  
467mV  
391mV  
309mV  
BETACAM LEVEL  
76mV  
158mV  
BETACAM LEVEL  
0mV  
0mV  
–76mV  
0mV  
0mV  
–158mV  
–309mV  
–391mV  
–467mV  
–467mV  
Figure 62. NTSC 100% Color Bars with Pedestal U Levels  
Figure 65. NTSC 100% Color Bars with Pedestal V Levels  
350mV  
350mV  
293mV  
232mV  
SMPTE LEVEL  
57mV  
118mV  
SMPTE LEVEL  
0mV  
0mV  
–57mV  
0mV  
0mV  
–118mV  
–293mV  
–350mV  
–232mV  
–350mV  
Figure 63. PAL 1005 Color Bars U Levels  
Figure 66. PAL 100% Color Bars V Levels  
REV. B  
–35–  
ADV7175A/ADV7176A  
AP P END IX 5  
REGISTER VALUES  
T he ADV7175A/ADV7176A registers can be set depending on  
the user standard required.  
Addr ess  
D ata  
10Hex Pedestal Control Register 2  
11Hex Pedestal Control Register 3  
12Hex Mode Register 3  
24Hex T eletext Control Register  
00Hex  
00Hex  
00Hex  
00Hex  
T he following examples give the various register formats for  
several video standards.  
In each case the output is set to composite o/p with all DACs  
powered up and with the BLANK input control disabled. Addi-  
tionally, the burst and color information are enabled on the  
output and the internal color bar generator is switched off. In  
the examples shown, the timing mode is set to Mode 0 in slave  
format. T R02–T R00 of the T iming Register 0 control the tim-  
ing modes. For a detailed explanation of each bit in the com-  
mand registers, please turn to the Register Programming section  
of the data sheet. T R07 should be toggled after setting up a new  
timing mode. T iming Register 1 provides additional control over  
the position and duration of the timing signals. In the examples,  
this register is programmed in default mode.  
P AL M (FSC = 3.57561149 MH z)  
Addr ess  
00Hex Mode Register 0  
D ata  
06Hex  
00Hex  
A3Hex  
EFHex  
E6Hex  
21Hex  
00Hex  
08Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
01Hex Mode Register 1  
02Hex Subcarrier Frequency Register 0  
03Hex Subcarrier Frequency Register 1  
04Hex Subcarrier Frequency Register 2  
05Hex Subcarrier Frequency Register 3  
06Hex Subcarrier Phase Register  
07Hex T iming Register 0  
08Hex Closed Captioning Ext Register 0  
09Hex Closed Captioning Ext Register 1  
0AHex Closed Captioning Register 0  
0BHex Closed Captioning Register 1  
0CHex T iming Register 1  
NTSC (F SC = 3.5795454 MH z)  
Addr ess  
D ata  
00Hex Mode Register 0  
01Hex Mode Register 1  
04Hex  
00Hex  
16Hex  
7CHex  
F0Hex  
21Hex  
00Hex  
08Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
00Hex  
0DHex Mode Register 2  
02Hex Subcarrier Frequency Register 0  
03Hex Subcarrier Frequency Register 1  
04Hex Subcarrier Frequency Register 2  
05Hex Subcarrier Frequency Register 3  
06Hex Subcarrier Phase Register  
07Hex T iming Register 0  
08Hex Closed Captioning Ext Register 0  
09Hex Closed Captioning Ext Register 1  
0AHex Closed Captioning Register 0  
0BHex Closed Captioning Register 1  
0CHex T iming Register 1  
0EHex Pedestal Control Register 0  
0FHex Pedestal Control Register 1  
10Hex Pedestal Control Register 2  
11Hex Pedestal Control Register 3  
12Hex Mode Register 3  
24Hex T eletext Control Register  
0DHex Mode Register 2  
0EHex Pedestal Control Register 0  
0FHex Pedestal Control Register 1  
10Hex Pedestal Control Register 2  
11Hex Pedestal Control Register 3  
12Hex Mode Register 3  
24Hex T eletext Control Register  
P AL B, D , G, H , I (F SC = 4.43361875 MH z)  
Addr ess  
00Hex Mode Register 0  
01Hex Mode Register 1  
01 Hex  
00 Hex  
CBHex  
8A Hex  
09 Hex  
2AHex  
00 Hex  
08 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
00 Hex  
02Hex Subcarrier Frequency Register 0  
03Hex Subcarrier Frequency Register 1  
04Hex Subcarrier Frequency Register 2  
05Hex Subcarrier Frequency Register 3  
06Hex Subcarrier Phase Register  
07Hex T iming Register 0  
08Hex Closed Captioning Ext Register 0  
09Hex Closed Captioning Ext Register 1  
0AHex Closed Captioning Register 0  
0BHex Closed Captioning Register 1  
0CHex T iming Register 1  
0DHex Mode Register 2  
0EHex Pedestal Control Register 0  
0FHex Pedestal Control Register 1  
–36–  
REV. B  
ADV7175A/ADV7176A  
AP P END IX 6  
O P TIO NAL O UTP UT FILTER  
If an output filter is required for the CVBS, Y, UV, Chroma and RGB outputs of the ADV7175A/ADV7176A, the following filter in  
Figure 67 can be used. Plots of the filter characteristics are shown in Figures 68, 69 and 70. An output filter is not required if the  
outputs of the ADV7175A/ADV7176A are connected to an analog monitor or an analog T V; however, if the output signals are ap-  
plied to a system where sampling is used (e.g., digital T V), a filter is required to prevent aliasing.  
L
1H  
L
L
2.7H  
0.68H  
0
IN  
OUT  
C
C
C
56pF  
R
75⍀  
R
75⍀  
V
– OP  
–5  
470pF  
330pF  
dB  
–10  
–15  
–20  
–25  
–30  
–35  
Figure 67. Output Filter  
0
–5  
V
– OP  
–10  
dB  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
1
10  
100  
FREQUENCY – MHz  
Figure 69. Output Filter Close Up  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
V
– OP  
dB  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 68. Output Filter Plot  
1
2
4
6
8
10  
FREQUENCY – MHz  
Figure 70. Output Filter Plot Close Up  
REV. B  
–37–  
ADV7175A/ADV7176A  
AP P END IX 7  
O P TIO NAL D AC BUFFERING  
For external buffering of the ADV7175A/ADV7176A DAC outputs, the configuration in Figure 71 is recommended. T his configu-  
ration shows the DAC outputs running at half (18 mA) their full current (36 mA) capability. This will allow the ADV7175A/ADV7176A  
to dissipate less power, the analog current is reduced by 50% with a RSET of 300 and a RLOAD of 75 . This mode is recommended for  
3.3 volt operation as optimum performance is obtained from the DAC outputs at 18 mA with a VAA of 3.3 volts. T his buffer also  
adds extra isolation on the video outputs, see buffer circuit in Figure 72. When calculating absolute output full current and voltage,  
use the following equation:  
VOUT = IOUT × RLOAD  
VREF × K  
(
=
)
IOUT  
RSET  
K = 4.2146 constant , VREF = 1.235 V  
V
AA  
ADV7175A/ADV7176A  
OUTPUT  
BUFFER  
V
REF  
DAC A  
75⍀  
75⍀  
75⍀  
75⍀  
OUTPUT  
BUFFER  
DAC B  
PIXEL  
PORT  
DIGITAL  
CORE  
OUTPUT  
BUFFER  
DAC C  
DAC D  
R
SET  
OUTPUT  
BUFFER  
300⍀  
Figure 71. Output DAC Buffering Configuration  
V
CC  
36  
OUTPUT TO  
TV/MONITOR  
INPUT  
2N2907  
75⍀  
75⍀  
Figure 72. Recom m ended Output DAC Buffer  
–38–  
REV. B  
ADV7175A/ADV7176A  
AP P END IX 8  
O UTP UT WAVEFO RMS  
0.6  
0.4  
0.2  
0.0  
؊0.2  
L608  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 0.00 dB  
APL = 39.1%  
PRECISION MODE OFF  
SYNCHRONOUS  
SOUND-IN-SYNC OFF  
SYNC = SOURCE  
625 LINE PAL  
NO FILTERING  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2 3 4  
Figure 73. 100/75% PAL Color Bars  
0.5  
0.0  
L575  
0.0  
10.0  
20.0  
30.0  
MICROSECONDS  
PRECISION MODE OFF  
SYNCHRONOUS  
40.0  
50.0  
60.0  
70.0  
APL NEEDS SYNC = SOURCE!  
SOUND-IN-SYNC OFF  
SYNC = A  
625 LINE PAL  
NO FILTERING  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1  
Figure 74. 100/75% PAL Color Bars Lum inance  
REV. B  
–39–  
ADV7175A/ADV7176A  
0.5  
0.0  
–0.5  
L575  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NO BRUCH SIGNAL  
APL NEEDS SYNC = SOURCE!  
625 LINE PAL NO FILTERING  
SLOW CLAMP TO 0.00 V AT 6.72 s  
PRECISION MODE OFF  
SYNCHRONOUS  
SOUND-IN-SYNC OFF  
SYNC = A  
FRAMES SELECTED: 1  
Figure 75. 100/75% PAL Color Bars Chrom inance  
100.0  
0.5  
50.0  
0.0  
0.0  
F1  
L76  
–50.0  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
APL = 44.6%  
PRECISION MODE OFF  
SYNCHRONOUS  
525 LINE NTSC  
NO FILTERING  
SYNC = A  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2  
Figure 76. 100/75% NTSC Color Bars  
–40–  
REV. B  
ADV7175A/ADV7176A  
0.6  
0.4  
0.2  
50.0  
0.0  
0.0  
–0.2  
F2  
L238  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL = 44.7%  
PRECISION MODE OFF  
525 LINE NTSC  
NO FILTERING  
SYNCHRONOUS  
SYNC = SOURCE  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2  
Figure 77. 100/75% NTSC Color Bars Chrom inance  
0.4  
50.0  
0.2  
0.0  
–0.2  
–0.4  
–50.0  
F1  
L76  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
MICROSECONDS  
NOISE REDUCTION: 15.05dB  
APL NEEDS SYNC = SOURCE!  
PRECISION MODE OFF  
SYNCHRONOUS  
525 LINE NTSC  
NO FILTERING  
SYNC = B  
SLOW CLAMP TO 0.00 V AT 6.72 s  
FRAMES SELECTED: 1 2  
Figure 78. 100/75% NTSC Color Bars Chrom inance  
REV. B  
–41–  
ADV7175A/ADV7176A  
V
APL = 39.6%  
SYSTEM LINE L608  
ANGLE (DEG) 0.0  
GAIN x 1.000 0.000dB  
625 LINE PAL  
cy  
BURST FROM SOURCE  
DISPLAY +V & –V  
R
g
M
g
75%  
100%  
YI  
b
U
yl  
B
G
Cy  
m
g
r
SOUND IN SYNC OFF  
Figure 79. PAL Vector Plot  
R-Y  
APL = 45.1%  
SYSTEM LINE L76F1  
ANGLE (DEG) 0.0  
GAIN x 1.000 0.000dB  
525 LINE NTSC  
cy  
I
BURST FROM SOURCE  
R
M
g
Q
YI  
b
100%  
B-Y  
75%  
B
G
Cy  
–Q  
–I  
SETUP 7.5%  
Figure 80. NTSC Vector Plot  
–42–  
REV. B  
ADV7175A/ADV7176A  
COLOR BAR (NTSC)  
FIELD = 2 LINE = 28  
WFM -->  
FCC COLOR BAR  
LUMINANCE LEVEL (IRE)  
0.4  
0.2  
0.2  
0.0  
0.2  
0.1  
0.2  
0.1  
30.0  
20.0  
10.0  
0.0  
–10.0  
CHROMINANCE LEVEL (IRE)  
0.0 –0.2  
1.0  
–0.2  
–0.3  
–0.2  
–0.3  
0.0  
0.0  
0.0  
–1.0  
CHROMINANCE PHASE (DEG)  
. . . . .  
–0.1  
–0.2  
–0.2  
–0.1  
–0.3  
–0.2  
- - - - -  
0.0  
–1.0  
–2.0  
GRAY  
YELLOW  
CYAN  
GREEN  
MAGENTA  
RED  
BLUE  
BLACK  
AVERAGE: 32 --> 32  
REFERENCE 75/7.5/75/7.5 COLOR BAR STANDARD  
Figure 81. NTSC Color Bar Measurem ent  
DGDP (NTSC)  
WFM -->  
MOD 5 STEP  
BLOCK MODE START F2 L64, STEP = 32, END = 192  
DIFFERENTIAL GAIN (%)  
MIN = –0.00 MAX = 0.11 p-p/MAX = 0.11  
0.11 0.07  
0.00  
0.08  
0.07  
0.05  
0.3  
0.2  
0.1  
0.0  
–0.1  
DIFFERENTIAL PHASE (DEG)  
0.00 0.03  
MIN = –0.02 MAX = 0.14 pk-pk = 0.16  
0.14 0.10  
–0.02  
0.10  
0.20  
0.15  
0.10  
0.05  
–0.00  
–0.05  
–0.10  
1ST  
2ND  
3RD  
4TH  
5TH  
6TH  
Figure 82. NTSC Differential Gain and Phase Measurem ent  
REV. B  
–43–  
ADV7175A/ADV7176A  
LUMINANCE NONLINEARITY (NTSC)  
WFM -->  
5 STEP  
FIELD = 2 LINE = 21  
LUMINANCE NONLINEARITY (%)  
pk-pk = 0.2  
99.9  
99.9  
100.0  
99.9  
99.8  
100.4  
100.3  
100.2  
100.1  
100.0  
99.9  
99.8  
99.7  
99.6  
99.5  
99.4  
99.3  
99.2  
99.1  
99.0  
98.9  
98.8  
98.7  
98.6  
1ST  
2ND  
3RD  
4TH  
5TH  
Figure 83. NTSC Lum inance Nonlinearity Measurem ent  
CHROMINANCE AM PM (NTSC)  
FULL FIELD (BOTH FIELDS)  
BANDWIDTH 100Hz TO 500kHz  
WFM -->  
APPROPRIATE  
AM NOISE  
–68.4dB RMS  
–75.0  
–70.0  
–65.0  
–60.0  
–55.0  
–50.0  
–45.0  
–40.0  
dB RMS  
PM NOISE  
–64.4dB RMS  
–75.0  
–70.0  
–65.0  
–60.0  
–55.0  
–50.0  
–45.0  
–40.0  
dB RMS  
(0dB = 714mV p-p WITH AGC FOR 100% CHROMINANCE LEVEL)  
Figure 84. NTSC AMPM Noise Measurem ent  
–44–  
REV. B  
ADV7175A/ADV7176A  
NOISE SPECTRUM (NTSC)  
FIELD = 2 LINE = 64  
AMPLITUDE (0 dB = 714mV p-p)  
BANDWIDTH 100kHz TO FULL  
WFM -->  
PEDESTAL  
NOISE LEVEL = –80.1 dB RMS  
–5.0  
–10.0  
–15.0  
–20.0  
–25.0  
–30.0  
–35.0  
–40.0  
–45.0  
–50.0  
–55.0  
–60.0  
–65.0  
–70.0  
–75.0  
–80.0  
–85.0  
–90.0  
–95.0  
–100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
MHz  
Figure 85. NTSC SNR Pedestal Measurem ent  
NOISE SPECTRUM (NTSC)  
WFM -->  
RAMP SIGNAL  
FIELD = 2 LINE = 64  
AMPLITUDE (0 dB = 714mV p-p)  
BANDWIDTH 10kHz TO FULL (TILT NULL)  
NOISE LEVEL = –61.7 dB RMS  
–5.0  
–10.0  
–15.0  
–20.0  
–25.0  
–30.0  
–35.0  
–40.0  
–45.0  
–50.0  
–55.0  
–60.0  
–65.0  
–70.0  
–75.0  
–80.0  
–85.0  
–90.0  
–95.0  
–100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
MHz  
Figure 86. NTSC SNR Ram p Measurem ent  
REV. B  
–45–  
ADV7175A/ADV7176A  
PARADE SMPTE/EBU PAL  
mV Y(A)  
mV  
250  
Pb(B)  
mV  
Pr(C)  
250  
700  
600  
200  
150  
100  
50  
200  
150  
100  
50  
500  
400  
300  
200  
0
0
100  
–50  
–50  
0
–100  
–150  
–200  
–250  
–100  
–150  
–200  
–250  
؊100  
؊200  
؊300  
Figure 87. PAL YUV Parade Plot  
VM700A DEV 3 WC TEMP = 90؇C V = 5.25V  
DD  
CHANNEL C SYSTEM DEFAULT  
10-APR-97 09:23:07  
LIGHTNING  
L183  
COLORBARS: 75% SMPTE/EBU (50Hz)  
Pk-WHITE (100%) 700.0mV SETUP 0.0% COLOR Pk-Pk 525.0mV  
AVERAGE 15 --> 32  
YI  
–274.82  
0.93%  
G
R
CY  
88.31  
0.28%  
M
B
–173.24  
0.19%  
–88.36  
0.19%  
174.35  
–0.65%  
260.51  
–0.14%  
B-Y  
W
YI  
CY  
864.78  
–0.88%  
462.80  
–0.50%  
YI  
G
G
307.54  
–0.21%  
CY  
M
216.12  
–0.33%  
R
M
R
156.63  
–0.22%  
B
B
61.00  
1.92%  
B
R
G
M
CY  
YI  
W
R-Y  
CY  
–262.17  
–0.13%  
G
B
YI  
41.32  
–0.76%  
M
R
–218.70  
–0.51%  
–42.54  
0.69%  
212.28  
–3.43%  
252.74  
–3.72%  
COLOR Pk-Pk: B-Y 532.33mV  
Pk-WHITE: 700.4mV (100%) SETUP –0.01%  
1.40%  
R-Y 514.90mV –1.92%  
DELAY: B-Y –6ns R-Y –6ns  
Figure 88. PAL YUV Lighting Plot  
–46–  
REV. B  
ADV7175A/ADV7176A  
COMPONENT NOISE  
LINE = 202  
AMPLITUDE (0dB = 700mV p-p)  
BANDWIDTH 10kHz TO 5.0MHz  
NOISE dB RMS  
0.0  
–5.0  
–10.0  
–15.0  
–20.0  
–25.0  
–30.0  
-->Y –82.1  
Pb –82.3  
Pr –83.3  
–35.0  
–40.0  
–45.0  
–50.0  
–55.0  
–60.0  
–65.0  
–70.0  
–75.0  
–80.0  
–85.0  
–90.0  
–95.0  
–100.0  
1.0  
2.0  
3.0  
4.0  
5.0  
5.0  
MHz  
Figure 89. PAL YUV SNR Plot  
COMPONENT MULTIBURST  
LINE = 202  
AMPLITUDE (0dB = 100% OF 688.1mV  
683.4mV  
–0.05  
668.9mV  
–0.68  
(dB)  
0.04  
–0.02  
–2.58  
4.79  
–8.05  
0.0  
–5.0  
Y
–10.0  
0.49  
0.99  
2.00  
3.99  
5.79  
0.21  
0.23  
–0.78  
–2.59  
–7.15  
0.0  
Pb –5.0  
–10.0  
0.49  
0.25  
0.99  
0.25  
1.99  
2.39  
2.89  
–0.77  
–2.59  
–7.13  
0.0  
Pr –5.0  
–10.0  
0.49  
0.99  
1.99  
2.39  
2.89  
(MHz)  
Figure 90. PAL YUV Multiburst Response  
REV. B  
–47–  
ADV7175A/ADV7176A  
COMPONENT VECTOR SMPTE/EBU, 75%  
R
M
g
YI  
BK  
B
G
CY  
Figure 91. PAL YUV Vector Plot  
RGB PARADE SMPTE/EBU  
mV GREEN (A)  
mV  
BLUE (B)  
mV  
RED (C)  
700  
700  
600  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
؊100  
؊200  
؊300  
؊100  
؊200  
؊300  
؊100  
؊200  
؊300  
20 --> 32  
Figure 92. PAL RGB Waveform s  
–48–  
REV. B  
ADV7175A/ADV7176A  
IND EX  
Contents  
Contents  
P age No.  
P age No.  
MODE REGIST ER 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MR1 BIT DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . . 24  
SUBCARRIER FREQUENCY REGIST ER . . . . . . . . . . . 24  
SUBCARRIER PHASE REGIST ER . . . . . . . . . . . . . . . . . 24  
T IMING REGIST ER 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
T R0 BIT DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . . 24  
CLOSED CAPT IONING EVEN FIELD . . . . . . . . . . . . . 25  
CLOSED CAPT IONING ODD FIELD . . . . . . . . . . . . . 25  
T IMING REGIST ER 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
T R1 BIT DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . . 25  
MODE REGIST ER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MR2 BIT DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . . 25  
NT SC PEDEST AL/PAL T ELET EXT CONT ROL  
REGIST ERS 3–0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
MODE REGIST ER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
MR3 BIT DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . . 26  
T ELET EXT CONT ROL REGIST ER T C07 . . . . . . . . . . 27  
APPENDIX 1. BOARD DESIGN AND LAYOUT  
CONSIDERAT IONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
APPENDIX 2. CLOSED CAPT IONING . . . . . . . . . . . . 30  
APPENDIX 3. T ELET EXT INSERT ION . . . . . . . . . . . 31  
APPENDIX 4. WAVEFORMS . . . . . . . . . . . . . . . . . . . . 32  
APPENDIX 5. REGIST ER VALUES . . . . . . . . . . . . . . . 36  
APPENDIX 6. OPT IONAL OUT PUT FILT ER . . . . . . . 37  
APPENDIX 7. OPT IONAL DAC BUFFERING . . . . . . 38  
APPENDIX 8. OUT PUT WAVEFORMS . . . . . . . . . . . . 39  
OUT LINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . 50  
GENERAL DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . .  
ADV7175A/ADV7176A SPECIFICAT IONS . . . . . . . . . . .  
T IMING SPECIFICAT IONS . . . . . . . . . . . . . . . . . . . . . .  
ABSOLUT E MAXIMUM RAT INGS . . . . . . . . . . . . . . . .  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PIN CONFIGURAT ION . . . . . . . . . . . . . . . . . . . . . . . . . .  
1
2
6
9
9
9
PIN FUNCT ION DESCRIPT IONS . . . . . . . . . . . . . . . . 10  
DAT A PAT H DESCRIPT ION . . . . . . . . . . . . . . . . . . . . 11  
INT ERNAL FILT ER RESPONSE . . . . . . . . . . . . . . . . . . 11  
COLOR BAR GENERAT ION . . . . . . . . . . . . . . . . . . . . . 13  
SQUARE PIXEL MODE . . . . . . . . . . . . . . . . . . . . . . . . . 13  
COLOR SIGNAL CONT ROL . . . . . . . . . . . . . . . . . . . . . 13  
BURST SIGNAL CONT ROL . . . . . . . . . . . . . . . . . . . . . 13  
NT SC PEDEST AL CONT ROL . . . . . . . . . . . . . . . . . . . . 13  
PIXEL T IMING DESCRIPT ION . . . . . . . . . . . . . . . . . . 13  
SUBCARRIER RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
REAL T IME CONT ROL . . . . . . . . . . . . . . . . . . . . . . . . . 13  
VIDEO T IMING DESCRIPT ION . . . . . . . . . . . . . . . . . . 13  
T iming Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
T iming Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
T iming Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
T iming Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
OUT PUT VIDEO T IMING . . . . . . . . . . . . . . . . . . . . . . . 21  
POWER-ON RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MPU PORT DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . 21  
REGIST ER ACCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
REGIST ER PROGRAMMING . . . . . . . . . . . . . . . . . . . . 23  
MODE REGIST ER 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
MR0 BIT DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . . 23  
REV. B  
–49–  
ADV7175A/ADV7176A  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
P lastic Q uad Flatpack  
(S-44)  
0.548 (13.925)  
0.546 (13.875)  
0.096 (2.44)  
0.398 (10.11)  
MAX  
0.390 (9.91)  
0.037 (0.94)  
0.025 (0.64)  
8°  
0.8°  
33  
23  
34  
22  
SEATING  
PLANE  
TOP VIEW  
(PINS DOWN)  
44  
12  
1
11  
0.040 (1.02)  
0.032 (0.81)  
0.040 (1.02)  
0.032 (0.81)  
0.033 (0.84)  
0.029 (0.74)  
0.016 (0.41)  
0.012 (0.30)  
0.083 (2.11)  
0.077 (1.96)  
–50–  
REV. B  
–51–  
–52–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY