ADV7178_15 [ADI]

Integrated Digital CCIR-601 to PAL/NTSC Video Encoder;
ADV7178_15
型号: ADV7178_15
厂家: ADI    ADI
描述:

Integrated Digital CCIR-601 to PAL/NTSC Video Encoder

文件: 总44页 (文件大小:697K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated Digital CCIR-601  
to PAL/NTSC Video Encoder  
ADV7177/ADV7178  
FEATURES  
ITU-R BT601/656 YCrCb to PAL/NTSC video encoder  
High quality, 9-bit video DACs  
Integral nonlinearity <1 LSB at 9 bits  
NTSC-M, PAL-M/N, PAL-B/D/G/H/I  
Single 27 MHz crystal/clock required ( 2 oversampling)  
75 dB video SNR  
Color-signal control/burst-signal control  
Interlaced/noninterlaced operation  
Complete on-chip video timing generator  
OSD support (ADV7177 only)  
Programmable multimode master/slave operation  
Macrovision AntiTaping Rev. 7.01 (ADV7178 only)1  
Closed captioning support  
32-bit direct digital synthesizer for color subcarrier  
Multistandard video output support:  
Composite (CVBS)  
Component S-video (Y/C)  
Component YUV or RGB  
Video input data port supports:  
On-board voltage reference  
2-wire serial MPU interface (I2C®-compatible)  
Single-supply 5 V or 3 V operation  
Small 44-lead MQFP package  
Synchronous 27 MHz/13.5 MHz clock output  
CCIR-656 4:2:2 8-bit parallel input format  
4:2:2 16-bit parallel input format  
APPLICATIONS  
MPEG-1 and MPEG-2 video, DVD, digital satellite,  
cable systems (set-top boxes/IRDs), digital TVs,  
CD video/karaoke, video games, PC video/multimedia  
Full video output drive or low signal drive capability  
34.7 mA max into 37.5 Ω (doubly terminated 75 R)  
5 mA min with external buffers  
Programmable simultaneous composite and S-VHS  
(VHS) Y/C or RGB (SCART)/YUV video outputs  
Programmable luma filters (low-pass/notch/extended)  
Programmable VBI (vertical blanking interval)  
Programmable subcarrier frequency and phase  
Programmable luma delay  
1 The Macrovision anticopy process is licensed for noncommercial home use  
only, which is its sole intended use in the device. Please contact sales office  
for latest Macrovision version available. ITU-R and CCIR are used inter-  
changeably in this document (ITU-R has replaced CCIR recommendations).  
Individual on/off control of each DAC  
CCIR and square pixel operation  
FUNCTIONAL BLOCK DIAGRAM  
V
AA  
ADV7177/ADV7178  
DAC A  
(PIN 31)  
9
9
9
9-BIT  
DAC  
ADV7177  
ONLY  
YUV TO  
RBG  
MATRIX  
9-BIT  
DAC  
DAC B  
(PIN 27)  
OSD_EN  
OSD_0  
OSD_1  
OSD_2  
9-BIT  
DAC  
DAC C  
(PIN 26)  
Y
8
8
8
8
8
8
8
8
8
8
9
ADD  
INTER-  
LOW-PASS  
FILTER  
SYNC  
POLATOR  
COLOR  
DATA  
4:2:2 TO  
4:4:4  
INTER-  
YCrCb  
TO  
YUV  
U
8
8
9
9
ADD  
BURST  
INTER-  
POLATOR  
LOW-PASS  
FILTER  
P7–P0  
POLATOR  
MATRIX  
ADD  
INTER-  
V
P15–P8  
BURST  
POLATOR  
LOW-PASS  
FILTER  
HSYNC  
FIELD/VSYNC  
BLANK  
V
REF  
9
9
VOLTAGE  
REFERENCE  
CIRCUIT  
VIDEO TIMING  
GENERATOR  
R
SIN/COS  
DDS BLOCK  
SET  
COMP  
2
I C MPU PORT  
CLOCK CLOCK CLOCK/2 RESET  
SCLOCK SDATA ALSB  
GND  
Figure 1.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADV7177/ADV7178  
TABLE OF CONTENTS  
General Description......................................................................... 4  
Closed Captioning Even Field Data Register 1–0 (CED15–  
CED0).......................................................................................... 29  
Specifications..................................................................................... 5  
5 V Specifications......................................................................... 5  
3.3 V Specifications...................................................................... 6  
5 V Dynamic Specifications........................................................ 7  
3.3 V Dynamic Specifications..................................................... 8  
5 V Timing Specifications........................................................... 9  
3.3 V Timing Specifications...................................................... 10  
Absolute Maximum Ratings.......................................................... 12  
Stress Ratings .............................................................................. 12  
Package Thermal Performance................................................. 12  
ESD Caution................................................................................ 12  
Pin Configuration and Function Descriptions........................... 13  
Typical Performance Characteristics ........................................... 14  
Theory of Operation ...................................................................... 16  
Data Path Description ............................................................... 16  
Pixel Timing Description .......................................................... 16  
Video Timing Description ........................................................ 17  
Timing and Control ................................................................... 18  
Power-On Reset.......................................................................... 25  
MPU Port Description............................................................... 25  
Registers........................................................................................... 27  
Register Access............................................................................ 27  
Register Programming............................................................... 27  
Mode Register 0 MR0 (MR07–MR00).................................... 27  
MR0 Bit Description.................................................................. 27  
Mode Register 1 MR1 (MR17–MR10).................................... 28  
MR1 Bit Description.................................................................. 28  
Subcarrier Frequency Register 3–0.......................................... 28  
Subcarrier Phase Register (FP7–FP0)...................................... 29  
Timing Register 0 (TR07–TR00) ............................................. 29  
TR0 Bit Description ................................................................... 29  
Closed Captioning Odd Field Data Register 1–0 (CCD15–  
CCD0).......................................................................................... 29  
Timing Register 1 (TR17–TR10) ............................................. 30  
TR1 Bit Description................................................................... 30  
Mode Register 2 MR2 (MR27–MR20).................................... 30  
MR2 Bit Description.................................................................. 31  
NTSC Pedestal Registers 3–0 PCE15–0, PCO15–0............... 31  
Mode Register 3 MR3 (MR37–MR30).................................... 31  
MR3 Bit Description.................................................................. 31  
OSD Register 0–11..................................................................... 32  
Board Design and Layout Considerations .................................. 33  
Ground Planes ............................................................................ 33  
Power Planes ............................................................................... 33  
Supply Decoupling..................................................................... 33  
Digital Signal Interconnect....................................................... 33  
Analog Signal Interconnect ...................................................... 33  
Closed Captioning.......................................................................... 35  
Waveform Illustrations .................................................................. 36  
NTSC Waveforms With Pedestal ............................................. 36  
NTSC Waveforms Without Pedestal ....................................... 37  
PAL Waveforms.......................................................................... 38  
UV Waveforms ........................................................................... 39  
Register Values................................................................................ 40  
NTSC (FSC = 3.5795454 MHZ) ............................................... 40  
PAL B, D, G, H, I (FSC = 4.43361875 MHZ).......................... 40  
PAL M (FSC = 3.57561149 MHZ)............................................ 40  
Optional Output Filter................................................................... 41  
Optional DAC Buffering ............................................................... 42  
Outline Dimensions....................................................................... 43  
Ordering Guide .......................................................................... 43  
Rev. C | Page 2 of 44  
ADV7177/ADV7178  
REVISION HISTORY  
3/05—Rev. B to Rev. C  
Updated Format.................................................................. Universal  
Changes to Figure 6.........................................................................13  
Changes to Subcarrier Frequency Register 3–0 Section ............28  
Changes to Register Values Section ..............................................40  
Updated Outline Dimensions........................................................43  
Changes to Ordering Guide...........................................................43  
3/02—Rev. A to Rev. B  
Changed Figures 7–13 into TPC section .....................................10  
Edits to Figures 20 and 21 ..............................................................21  
Rev. C | Page 3 of 44  
ADV7177/ADV7178  
GENERAL DESCRIPTION  
The ADV7177/AD7178 are integrated digital video encoders  
that convert digital CCIR-601 4:2:2 8- or 16-component video  
data into a standard analog baseband television signal  
compatible with worldwide standards. The 4:2:2 YUV video  
data is interpolated to 2× the pixel rate. The color-difference  
components (UV) are quadrature modulated using a subcarrier  
frequency generated by an on-chip, 32-bit digital synthesizer  
(also running at 2× the pixel rate). The 2× pixel rate sampling  
allows for better signal-to-noise ratio. A 32-bit DDS with a 9-bit  
look-up table produces a superior subcarrier in terms of both  
frequency and phase. In addition to the composite output  
signal, there is the facility to output S-video (Y/C video), YUV  
or RGB video.  
The ADV7177/ADV7178 also support both PAL and NTSC  
square pixel operation.  
The output video frames are synchronized with the incoming  
data timing reference codes. Optionally, the encoder accepts  
(and can generate)  
,
, and FIELD timing signals.  
HSYNC VSYNC  
These timing signals can be adjusted to change pulse width and  
position while the parts are in master mode. The encoder  
requires a single, 2× pixel rate (27 MHz) clock for standard  
operation. Alternatively, the encoder requires a 24.5454 MHz  
clock for NTSC or 29.5 MHz clock for PAL square pixel mode  
operation. All internal timing is generated on-chip.  
The ADV7177/ADV7178 modes are set up over a 2-wire serial  
bidirectional port (I2C-compatible) with two slave addresses.  
Each analog output is capable of driving the full video-level  
(34.7 mA) signal into an unbuffered, doubly terminated 75 Ω  
load. With external buffering, the user has the additional option  
to scale back the DAC output current to 5 mA min, thereby  
significantly reducing the power dissipation of the device.  
Functionally, the ADV7178 and the ADV7177 are the same  
except that the ADV7178 can output the Macrovision anticopy  
algorithm, and OSD is only supported on the ADV7177.  
The ADV7177/ADV7178 are packaged in a 44-lead, thermally  
enhanced MQFP package.  
Rev. C | Page 4 of 44  
 
ADV7177/ADV7178  
SPECIFICATIONS  
5 V SPECIFICATIONS  
VAA = 5 V 5ꢀ,1 VREF = 1.235 V, RSET = 300 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 1.  
1
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE3  
Resolution (Each DAC)  
Accuracy (Each DAC)  
9
Bits  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS3  
±±.ꢀ  
±±.ꢀ  
LSB  
LSB  
Guaranteed monotonic  
Input High Voltage, VINH  
Input Low Voltage, VINL  
2
V
V
µA  
µA  
pF  
ꢀ.8  
±±  
± 5ꢀ  
4
Input Current, IIN  
Input Current, IIN  
VIN = ꢀ.4 V or 2.4 V  
VIN = ꢀ.4 V or 2.4 V  
5
Input Capacitance, CIN  
DIGITAL OUTPUTS3  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current  
Three-State Output Capacitance  
ANALOG OUTPUTS3  
Output Current6  
±ꢀ  
±ꢀ  
ISOURCE = 4ꢀꢀ µA  
ISINK = 3.2 mA  
2.4  
V
V
µA  
pF  
ꢀ.4  
±ꢀ  
RSET = 3ꢀꢀ Ω, RL = 75 Ω  
±6.5  
±7.35  
5
ꢀ.6  
±8.5  
mA  
mA  
%
V
kΩ  
pF  
Output Current7  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
VOLTAGE REFERENCE3  
Reference Range, VREF  
POWER REQUIREMENTS3, 8  
VAA  
5
±.4  
±5  
IOUT = ꢀ mA  
3ꢀ  
IVREFOUT = 2ꢀ µA  
±.±±2  
4.75  
±.235  
5.ꢀ  
±.359  
5.25  
V
V
Low Power Mode  
IDAC (max)9  
62  
25  
±ꢀꢀ  
ꢀ.ꢀ±  
mA  
mA  
mA  
%/%  
IDAC (min)9  
±ꢀ  
ICCT  
±5ꢀ  
ꢀ.5  
Power-Supply Rejection Ratio  
COMP = ꢀ.± µF  
± The max/min specifications are guaranteed over this range. The max/min values are typical over 4.75 V to 5.25 V.  
2 Temperature range TMIN to TMAX: ꢀ°C to 7ꢀ°C.  
3 Guaranteed by characterization.  
4
RESET  
, OSDꢀ, and CLOCK.  
All digital input pins except pins  
5
RESET  
, OSDꢀ, and CLOCK.  
Excluding all digital input pins except pins  
6 Full drive into 75 Ω load.  
7 Minimum drive current (used with buffered/scaled output load).  
8 Power measurements are taken with clock frequency = 27 MHz. Max TJ = ±±ꢀ°C.  
9 IDAC is the total current (min corresponds to 5 mA output per DAC, max corresponds to ±8.5 mA output per DAC) to drive all three DACs. Turning off individual DACs  
reduces IDAC correspondingly.  
±ꢀ  
I
(circuit current) is the continuous current required to drive the device.  
CCT  
Rev. C | Page 5 of 44  
 
 
 
 
 
 
 
 
 
 
 
 
ADV7177/ADV7178  
3.3 V SPECIFICATIONS  
VAA = 3.0 V to 3.6 V1, VREF = 1.235 V, RSET = 300 Ω. All specifications TMIN to TMAX2, unless otherwise noted.  
Table 2.  
1
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE3  
Resolution (Each DAC)  
Accuracy (Each DAC)  
Integral Nonlinearity  
Differential Nonlinearity  
DIGITAL INPUTS  
9
Bits  
±ꢀ.5  
±ꢀ.5  
LSB  
LSB  
Guaranteed monotonic  
Input High Voltage, VINH  
Input Low Voltage, VINL  
2
ꢀ.8  
V
V
µA  
µA  
pF  
3, 4  
Input Current, IIN  
Input Current, IIN  
VIN = ꢀ.4 V or 2.4 V  
VIN = ꢀ.4 V or 2.4 V  
±±  
±5ꢀ  
3, 5  
Input Capacitance, CIN  
DIGITAL OUTPUTS  
±ꢀ  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Three-State Leakage Current3  
Three-State Output Capacitance3  
ANALOG OUTPUTS3  
Output Current6, 7  
ISOURCE = 4ꢀꢀ µA  
ISINK = 3.2 mA  
2.4  
ꢀ.4  
V
V
µA  
pF  
±ꢀ  
±ꢀ  
±6.5  
±7.35  
5
2.ꢀ  
±8.5  
mA  
mA  
%
V
kΩ  
pF  
RSET = 3ꢀꢀ , RL = 75 Ω  
Output Current8  
DAC-to-DAC Matching  
Output Compliance, VOC  
Output Impedance, ROUT  
Output Capacitance, COUT  
POWER REQUIREMENTS3, 9  
VAA  
Normal Power Mode  
IDAC (max)±ꢀ  
IDAC (min)3  
±.4  
3ꢀ  
±5  
IOUT = ꢀ mA  
3.ꢀ  
3.3  
3.6  
±±6  
V
RSET = 3ꢀꢀ Ω, RL = ±5ꢀ Ω  
±±3  
±5  
45  
mA  
mA  
mA  
9
ICCT  
Low Power Mode  
IDAC (max)3  
6ꢀ  
25  
45  
ꢀ.ꢀ±  
mA  
mA  
mA  
%/%  
IDAC (min)3  
±±  
ICCT  
Power-Supply Rejection Ratio  
COMP = ꢀ.± µF  
ꢀ.5  
± The max/min specifications are guaranteed over this range. The max/min values are typical over 3.ꢀ V to 3.6 V.  
2 Temperature range TMIN to TMAX: ꢀ°C to 7ꢀ°C.  
3 Guaranteed by characterization.  
4
RESET  
, OSDꢀ, and CLOCK.  
All digital input pins except pins  
5
RESET  
, OSDꢀ, and CLOCK.  
Excluding all digital input pins except pins  
6 Full drive into 75 Ω load.  
7 DACs can output 35 mA typically at 3.3 V (RSET = ±5ꢀ Ω and RL = 75 Ω), optimum performance obtained at ±8 mA DAC current (RSET = 3ꢀꢀ Ω and RL = ±5ꢀ Ω).  
8 Minimum drive current (used with buffered/scaled output load).  
9 Power measurements are taken with clock frequency = 27 MHz. Max TJ = ±±ꢀ°C.  
±ꢀ  
I
is the total current (min corresponds to 5 mA output per DAC, max corresponds to 38 mA output per DAC) to drive all three DACs. Turning off individual DACs  
DAC  
reduces IDAC correspondingly.  
±±  
I
(circuit current) is the continuous current required to drive the device.  
CCT  
Rev. C | Page 6 of 44  
 
 
 
 
 
 
 
 
 
 
 
 
ADV7177/ADV7178  
5 V DYNAMIC SPECIFICATIONS  
VAA = 4.75 V to 5.25 V,1 VREF = 1.235 V, RSET = 300 Ω. All specifications TMIN to TMAX,2 unless otherwise noted.  
Table 3.  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
FILTER CHARACTERISTICS  
Luma Bandwidth3 (Low-Pass Filter)  
Stop-Band Cutoff  
Pass-Band Cutoff, F3 dB  
Chroma Bandwidth  
Stop-Band Cutoff  
Pass-Band Cutoff, F3 dB  
Luma Bandwidth3 (Low-Pass Filter)  
Stop-Band Cutoff  
Pass-Band Cutoff, F3 dB  
Chroma Bandwidth  
Stop-Band Cutoff  
NTSC Mode  
>54 dB Attenuation  
>3 dB Attenuation  
NTSC Mode  
>4ꢀ dB Attenuation  
>3 dB Attenuation  
PAL Mode  
>5ꢀ dB Attenuation  
>3 dB Attenuation  
PAL Mode  
>4ꢀ dB Attenuation  
>3 dB Attenuation  
Lower Power Mode  
Lower Power Mode  
RMS  
7.ꢀ  
4.2  
MHz  
MHz  
3.2  
2.ꢀ  
MHz  
MHz  
7.4  
5.ꢀ  
MHz  
MHz  
4.ꢀ  
2.4  
MHz  
MHz  
%
Degrees  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degrees  
%
Pass-Band Cutoff F3 dB  
Differential Gain4  
Differential Phase4  
SNR4 (Pedestal)  
2.ꢀ  
±.5  
75  
7ꢀ  
57  
Peak Periodic  
RMS  
Peak Periodic  
SNR4 (Ramp)  
56  
Hue Accuracy4  
±.2  
±.4  
±.ꢀ  
ꢀ.4  
ꢀ.6  
ꢀ.2  
ꢀ.2  
ꢀ.6  
2.ꢀ  
±.2  
64  
Color Saturation Accuracy4  
Chroma Nonlinear Gain4  
Chroma Nonlinear Phase4  
Referenced to 4ꢀ IRE  
NTSC  
PAL  
Referenced to 7±4 mV (NTSC)  
Referenced to 7ꢀꢀ mV (PAL)  
± %  
± Degrees  
± Degrees  
± %  
± %  
± %  
ns  
± %  
dB  
dB  
Chroma/Luma Intermod4  
Chroma/Luma Gain Inequality4  
Chroma/Luma Delay Inequality4  
Luminance Nonlinearity4  
Chroma AM Noise4  
Chroma PM Noise4  
62  
± The max/min specifications are guaranteed over this range. The max/min values are typical over 4.75 V to 5.25 V.  
2 Temperature range TMIN to TMAX: ꢀ°C to 7ꢀ°C.  
3 These specifications are for the low-pass filter only and are guaranteed by design. For other internal filters, see Table ±ꢀ.  
4 Guaranteed by characterization.  
Rev. C | Page 7 of 44  
 
 
 
 
 
 
 
ADV7177/ADV7178  
3.3 V DYNAMIC SPECIFICATIONS  
VAA = 3.0 V to 3.6 V,1 VREF = 1.235 V, RSET = 300 Ω. All specifications TMIN to TMAX,2 unless otherwise noted.  
Table 4.  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
FILTER CHARACTERISTICS  
Luma Bandwidth3 (Low-Pass Filter)  
Stop-Band Cutoff  
Pass-Band Cutoff, F3 dB  
Chroma Bandwidth  
Stop-Band Cutoff  
Pass-Band Cutoff, F3 dB  
Luma Bandwidth3 (Low-Pass Filter)  
Stop-Band Cutoff  
Pass-Band Cutoff, F3 dB  
Chroma Bandwidth  
Stop-Band Cutoff  
NTSC mode  
>54 dB attenuation  
>3 dB attenuation  
NTSC mode  
>4ꢀ dB attenuation  
>3 dB attenuation  
PAL mode  
>5ꢀ dB attenuation  
>3 dB attenuation  
PAL mode  
>4ꢀ dB attenuation  
>3 dB attenuation  
Normal power mode  
Normal power mode  
RMS  
7.ꢀ  
4.2  
MHz  
MHz  
3.2  
2.ꢀ  
MHz  
MHz  
7.4  
5.ꢀ  
MHz  
MHz  
4.ꢀ  
2.4  
MHz  
MHz  
%
Degrees  
dB rms  
dB p-p  
dB rms  
dB p-p  
Degrees  
%
Pass-Band Cutoff, F3 dB  
Differential Gain4  
Differential Phase4  
SNR4 (Pedestal)  
±.ꢀ  
±.ꢀ  
7ꢀ  
64  
56  
54  
±.2  
±.4  
±.4  
64  
62  
64  
62  
Peak periodic  
RMS  
Peak periodic  
SNR4 (Ramp)  
Hue Accuracy4  
Color Saturation Accuracy4  
Luminance Nonlinearity4  
Chroma AM Noise4  
Chroma PM Noise4  
Chroma AM Noise4  
Chroma PM Noise4  
± %  
dB  
dB  
dB  
NTSC  
NTSC  
PAL  
PAL  
dB  
± The max/min specifications are guaranteed over this range. The max/min values are typical over 3.ꢀ V to 3.6 V.  
2 Temperature range TMIN to TMAX: ꢀ°C to 7ꢀ°C.  
3 These specifications are for the low-pass filter only and are guaranteed by design. For other internal filters, see Table 7.  
4 Guaranteed by characterization.  
Rev. C | Page 8 of 44  
 
 
 
 
 
 
 
ADV7177/ADV7178  
5 V TIMING SPECIFICATIONS  
VAA = 4.75 V to 5.25 V,1 VREF = 1.235 V, RSET = 300 Ω. All specifications TMIN to TMAX,2 unless otherwise noted.  
Table 5.  
Parameter  
MPU PORT3, 4  
Conditions  
Min  
Typ  
Max  
Unit  
SCLOCK Frequency  
±ꢀꢀ  
kHz  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
µs  
SCLOCK High Pulse Width, t±  
SCLOCK Low Pulse Width, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
ANALOG OUTPUTS3, 5  
Analog Output Delay  
DAC Analog Output Skew  
CLOCK CONTROL AND PIXEL PORT3, 4, 6  
fCLOCK  
4.ꢀ  
4.7  
4.ꢀ  
4.7  
25ꢀ  
After this period, the first clock is generated  
Relevant for repeated start condition  
±
3ꢀꢀ  
4.7  
5
ns  
ns  
27  
MHz  
Clock High Time, t9  
8
ns  
Clock Low Time, t±ꢀ  
8
ns  
Data Setup Time, t±±  
Data Hold Time, t±2  
3.5  
4
ns  
ns  
Control Setup Time, t±±  
Control Hold Time, t±2  
Digital Output Access Time, t±3  
Digital Output Hold Time, t±4  
Pipeline Delay, t±5  
4
3
ns  
ns  
ns  
ns  
24  
4
37  
Clock Cycles  
RESET CONTROL3, 4  
RESET Low Time  
6
ns  
INTERNAL CLOCK CONTROL  
Clock/2 Rise Time, t±6  
Clock/2 Fall Time, t±7  
OSD TIMING4  
7
7
ns  
ns  
OSD Setup Time, t±8  
OSD Hold Time, t±9  
6
2
ns  
ns  
± The max/min specifications are guaranteed over this range.  
2 Temperature range TMIN to TMAX: ꢀ°C to 7ꢀ°C.  
3 TTL input values are ꢀ V to 3 V, with input rise/fall times 3 ns, measured between the ±ꢀ% and 9ꢀ% points. Timing reference points at 5ꢀ% for inputs and outputs.  
Analog output load ±ꢀ pF.  
4 Guaranteed by characterization.  
5 Output delay measured from the 5ꢀ% point of the rising edge of CLOCK to the 5ꢀ% point of full-scale transition.  
6 Pixel port consists of the following:  
Pixel inputs: P±5–Pꢀ  
HSYNC  
VSYNC BLANK  
Pixel controls:  
Clock input: CLOCK  
, FIELD/  
,
Rev. C | Page 9 of 44  
 
 
 
 
 
 
 
 
ADV7177/ADV7178  
3.3 V TIMING SPECIFICATIONS  
VAA = 3.0 V–3.6 V,1 VREF = 1.235 V, RSET = 300 Ω. All specifications TMIN to TMAX,2 unless otherwise noted.  
Table 6.  
Parameter  
MPU PORT3, 4  
Conditions  
Min  
Typ  
Max  
Unit  
SCLOCK Frequency  
±ꢀꢀ  
kHz  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
µs  
SCLOCK High Pulse Width, t±  
SCLOCK Low Pulse Width, t2  
Hold Time (Start Condition), t3  
Setup Time (Start Condition), t4  
Data Setup Time, t5  
SDATA, SCLOCK Rise Time, t6  
SDATA, SCLOCK Fall Time, t7  
Setup Time (Stop Condition), t8  
ANALOG OUTPUTS3, 5  
Analog Output Delay  
DAC Analog Output Skew  
CLOCK CONTROL AND PIXEL PORT3, 4, 6  
fCLOCK  
4.ꢀ  
4.7  
4.ꢀ  
4.7  
25ꢀ  
After this period the first clock is generated  
Repeated for start condition  
±
3ꢀꢀ  
4.7  
7
ns  
ns  
27  
MHz  
Clock High Time, t9  
8
ns  
Clock Low Time, t±ꢀ  
8
ns  
Data Setup Time, t±±  
Data Hold Time, t±2  
3.5  
4
ns  
ns  
Control Setup Time, t±±  
Control Hold Time, t±2  
Digital Output Access Time, t±3  
Digital Output Hold Time, t±4  
Pipeline Delay, t±5  
4
3
ns  
ns  
ns  
ns  
24  
4
37  
Clock cycles  
RESET CONTROL3, 4  
RESET Low Time  
6
ns  
INTERNAL CLOCK CONTROL  
Clock/2 Rise Time, t±6  
Clock/2 Fall Time, t±7  
OSD TIMING4  
±ꢀ  
±ꢀ  
ns  
ns  
OSD Setup Time, t±8  
OSD Hold Time, t±9  
±ꢀ  
2
ns  
ns  
± The max/min specifications are guaranteed over this range.  
2 Temperature range TMIN to TMAX: ꢀ°C to 7ꢀ°C.  
3 TTL input values are ꢀ V to 3 V, with input rise/fall times 3 ns, measured between the ±ꢀ% and 9ꢀ% points. Timing reference points at 5ꢀ% for inputs and outputs.  
Analog output load ±ꢀ pF.  
4 Guaranteed by characterization.  
5 Output delay measured from the 5ꢀ% point of the rising edge of CLOCK to the 5ꢀ% point of full-scale transition.  
6 Pixel port consists of the following:  
Pixel inputs: P±5–Pꢀ  
HSYNC  
VSYNC BLANK  
Pixel controls:  
Clock input: CLOCK  
, FIELD/  
,
Rev. C | Page ±ꢀ of 44  
 
 
 
 
 
 
 
 
ADV7177/ADV7178  
t3  
t5  
t3  
SDATA  
t6  
t1  
SCLOCK  
t2  
t7  
t4  
t8  
Figure 2. MPU Port Timing Diagram  
CLOCK  
HSYNC,  
t9  
t10  
t12  
CONTROL  
I/PS  
FIELD/VSYNC,  
BLANK  
PIXEL INPUT  
DATA  
Cb  
Y
Cr  
Y
Cb  
Y
t11  
t13  
HSYNC,  
FIELD/VSYNC,  
BLANK  
CONTROL  
O/PS  
t14  
Figure 3. Pixel and Control Data Timing Diagram  
t16  
t17  
CLOCK  
CLOCK/2  
t16  
t17  
CLOCK  
CLOCK/2  
Figure 4. Internal Timing Diagram  
t18  
t19  
CLOCK  
OSD_EN  
OSD0–2  
Figure 5. OSD Timing Diagram  
Rev. C | Page ±± of 44  
 
ADV7177/ADV7178  
ABSOLUTE MAXIMUM RATINGS  
STRESS RATINGS  
PACKAGE THERMAL PERFORMANCE  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
The 44-lead MQFP package used for this device has a junction-  
to-ambient thermal resistance (θJA) in still air on a 4-layer PCB  
of 53.2°C/W. The junction-to-case thermal resistance (θJC) is  
18.8°C/W. Care must be taken when operating the part in  
certain conditions to prevent overheating. Table 8 lists the  
conditions to use when using the part.  
Table 7.  
Table 8. Allowable Operating Conditions  
Parameter  
Rating  
Condition  
5 V  
No  
Yes  
Yes  
No  
3 V  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
VAA to GND  
7 V  
3 DACs on, double 75 R±  
3 DACs on, low power2  
3 DACs on, buffered3  
2 DACs on, double 75 R  
2 DACs on, low power  
2 DACs on, buffered  
Voltage on Any Digital Input Pin  
Storage Temperature (TS)  
Junction Temperature (TJ)  
Lead Temperature  
(Soldering, ±ꢀ sec)  
Analog Outputs to GND±  
GND – ꢀ.5 V to VAA + ꢀ.5 V  
–65°C to +±5ꢀ°C  
±5ꢀ°C  
Yes  
Yes  
26ꢀ°C  
GND – ꢀ.5 V to VAA  
± DAC on, double 75 R refers to a condition where the DACs are terminated  
into a double 75 R load and low power mode is disabled.  
± Analog output short circuit to any power supply or common can be of an  
indefinite duration.  
2 DAC on, low power refers to a condition where the DACs are terminated in  
a double 75 R load and low power mode is enabled.  
3 DAC on, buffered refers to a condition where the DAC current is reduced to  
5 mA and external buffers are used to drive the video loads.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4ꢀꢀꢀ V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page ±2 of 44  
 
 
 
 
ADV7177/ADV7178  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
44 43 42 41 40 39 38 37 36 35 34  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
V
R
AA  
SET  
PIN 1  
2
3
CLOCK/2  
P5  
V
REF  
DAC A  
4
P6  
V
AA  
5
P7  
GND  
AD7177/ADV7178  
6
P8  
V
MQFP  
AA  
7
P9  
TOP VIEW  
(Not to Scale)  
DAC B  
DAC C  
COMP  
8
P10  
9
P11  
10  
11  
P12  
SDATA  
SCLOCK  
OSD_EN  
12 13 14 15 16 17 18 19 20 21 22  
Figure 6. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No.  
±, 2ꢀ, 28, 3ꢀ  
2
Mnemonic I/O  
Function  
VAA  
P
Power Supply.  
CLOCK/2  
O
Synchronous Clock Output Signal. Can be either 27 MHz or ±3.5 MHz; this can be controlled by MR32  
and MR33 in Mode Register 3.  
3 to ±ꢀ,  
±2 to ±4,  
37 to 4±  
P5 to P±2,  
P±3 to ±4,  
Pꢀ to P4  
I
8-Bit, 4:2:2 Multiplexed YCrCb Pixel Port (P7–Pꢀ) or ±6-Bit YCrCb Pixel Port (P±5–Pꢀ). Pꢀ represents the  
LSB.  
±±  
±5  
OSD_EN  
HSYNC  
I
Enables OSD input data on the video outputs.  
HSYNC (Modes ± and 2) Control Signal. This pin can be configured to output (master mode) or accept  
(slave mode) Sync signals.  
I/O  
±6  
FIELD/  
VSYNC  
I/O  
Dual Function Field (Mode ±) and VSYNC (Mode 2) Control Signal. This pin can be configured to  
output (master mode) or accept (slave mode) these control signals.  
Video Blanking Control Signal. The pixel inputs are ignored when this is Logic ꢀ. This signal is optional.  
±7  
±8  
BLANK  
ALSB  
I/O  
I
G
I
TTL Address Input. This signal sets up the LSB of the MPU address.  
Ground Pin.  
The input resets the on-chip timing generator and sets the ADV7±77/ADV7±78 into default mode. This  
is NTSC operation, Timing Slave Mode ꢀ, 8-bit operation, 2× composite and S VHS out.  
±9, 2±, 29, 42 GND  
22  
RESET  
23  
24  
25  
26  
27  
3±  
32  
33  
SCLOCK  
SDATA  
COMP  
DAC C  
DAC B  
DAC A  
VREF  
I
MPU Port Serial Interface Clock Input.  
MPU Port Serial Data Input/Output.  
Compensation Pin. Connect a ꢀ.± µF capacitor from COMP to VAA  
DAC C Analog Output.  
DAC B Analog Output.  
DAC A Analog Output.  
Voltage Reference Input for DACs or Voltage Reference Output (±.235 V).  
A 3ꢀꢀ Ω resistor connected from this pin to GND is used to control full-scale amplitudes of the video  
signals.  
I/O  
O
O
O
O
I/O  
I
.
RSET  
34–36  
OSD_ꢀ to  
OSD_2  
I
On Screen Display Inputs.  
43  
44  
CLOCK  
CLOCK  
O
I
Crystal Oscillator Output (to crystal). Leave unconnected if no crystal is used.  
Crystal Oscillator Input. If no crystal is used, this pin can be driven by an external TTL clock source; it  
requires a stable 27 MHz reference clock for standard operation. Alternatively, a 24.5454 MHz (NTSC)  
or 29.5 MHz (PAL) can be used for square pixel operation.  
Rev. C | Page ±3 of 44  
 
ADV7177/ADV7178  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–10  
TYPE A  
–20  
–30  
–40  
–50  
TYPE B  
–60  
0
2
4
6
8
10  
12  
0
0
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. NTSC Low-Pass Filter  
Figure 10. PAL Notch Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. NTSC/PAL Extended Mode Filter  
Figure 8. NTSC Notch Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
TYPE A  
TYPE B  
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. NTSC UV Filter  
Figure 9. PAL Low-Pass Filter  
Rev. C | Page ±4 of 44  
 
 
ADV7177/ADV7178  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
Figure 13 . PAL UV Filter  
Rev. C | Page ±5 of 44  
ADV7177/ADV7178  
THEORY OF OPERATION  
DATA PATH DESCRIPTION  
Color-Bar Generation  
For PAL B, D, G, H, I, M, N and NTSC M, N modes, YCrCb  
4:2:2 data is input via the CCIR-656-compatible pixel port at  
a 27 MHz data rate. The pixel data is demultiplexed to form  
three data paths. Y typically has a range of 16 to 235, Cr and  
Cb typically have a range of 128 112; however, it is possible  
to input data from 1 to 254 on both Y, Cb and Cr. The  
The devices can be configured to generate 100/7.5/75/7.5 color  
bars for NTSC or 100/0/75/0 for PAL color bars. These are  
enabled by setting MR17 of Mode Register 1 to Logic 1.  
Square Pixel Mode  
The ADV7177/ADV7178 can be used to operate in square pixel  
mode. For NTSC operation, an input clock of 24.5454 MHz is  
required. Alternatively, an input clock of 29.5 MHz is required  
for PAL operation. The internal timing logic adjusts accordingly  
for square pixel mode operation.  
ADV7177/ADV7178 support PAL (B, D, G, H, I, N, M) and  
NTSC (with and without pedestal) standards. The appropriate  
SYNC,  
, and burst levels are added to the YCrCb data.  
BLANK  
Macrovision AntiTaping (ADV7178 only), closed captioning,  
OSD (ADV7177 only), and teletext levels are also added to Y,  
and the resulting data is interpolated to a rate of 27 MHz. The  
interpolated data is filtered and scaled by three digital FIR  
filters.  
Color Signal Control  
The color information can be switched on and off the video  
output by using Bit MR24 of Mode Register 2.  
The U and V signals are modulated by the appropriate  
subcarrier sine/cosine phases and added together to make up  
the chrominance signal. The luma (Y) signal can be delayed  
1 to 3 luma cycles (each cycle is 74 ns) with respect to the  
chroma signal. The luma and chroma signals are then added  
together to make up the composite video signal. All edges are  
slew-rate limited.  
Burst Signal Control  
The burst information can be switched on and off the video  
output using Bit MR25 of Mode Register 2.  
NTSC Pedestal Control  
The pedestal on both odd and even fields can be controlled on a  
line-by-line basis by using the NTSC pedestal control registers.  
This allows the pedestals to be controlled during the vertical  
blanking interval.  
The YCrCb data is also used to generate RGB data with  
appropriate SYNC and  
levels. The RGB data is in  
BLANK  
PIXEL TIMING DESCRIPTION  
synchronization with the composite video output. Alternatively,  
analog YUV data can be generated instead of RGB.  
The ADV7177/ADV7178 can operate in either 8-bit or 16-bit  
YCrCb mode.  
The three 9-bit DACs can be used to output:  
8-Bit YCrCb Mode  
RGB video  
YUV video  
This default mode accepts multiplexed YCrCb inputs through  
the P7 to P0 pixel inputs. The inputs follow the sequence Cb0,  
Y0 Cr0, Y1 Cb1, Y2, etc. The Y, Cb and Cr data are input on a  
rising clock edge.  
One composite video signal + LUMA and CHROMA  
(S-video).  
Alternatively, each DAC can be individually powered off if not  
required.  
16-Bit YCrCb Mode  
This mode accepts Y inputs through the P7 to P0 pixel inputs  
and multiplexed CrCb inputs through the P15 to P8 pixel  
inputs. The data is loaded on every second rising edge of  
CLOCK. The inputs follow the sequence Cb0, Y0 Cr0,  
Y1 Cb1, Y2, etc.  
Video output levels are illustrated in the section NTSC  
Waveforms With Pedestal.  
Internal Filter Response  
The Y filter supports several different frequency responses,  
including two 4.5 MHz/5.0 MHz low-pass responses, PAL/  
NTSC subcarrier notch responses, and a PAL/NTSC extended  
response. The U and V filters have a 1.0 MHz/1.3 MHz low-  
pass response for NTSC/PAL. These filter characteristics are  
illustrated in the Typical Performance Characteristics section.  
OSD  
The ADV7177 supports OSD. There are twelve, 8-bit OSD  
registers loaded with data from the four most significant bits of  
Y, Cb, Cr input pixel data bytes. A choice of eight colors can,  
therefore, be selected via the OSD_0, OSD_1, OSD_2 pins, each  
color being a combination of 12 bits of Y, Cb, Cr pixel data. The  
display is under control of the OSD_EN pin. The OSD window  
can be an entire screen or just one pixel, and its size may change  
by using the OSD_EN signal to control the width on a line-by-  
line basis. Figure 5 illustrates OSD timing on the ADV7177.  
Rev. C | Page ±6 of 44  
 
ADV7177/ADV7178  
VIDEO TIMING DESCRIPTION  
of 29.5 MHz for PAL. The internal horizontal line counters  
place the various video waveform sections in the correct  
location for the new clock frequencies.  
The ADV7177/ADV7178 are intended to interface to off-the-  
shelf MPEG1 and MPEG2 decoders. Consequently, the  
ADV7177/ADV7178 accept 4:2:2 YCrCb pixel data via a  
CCIR-656 pixel port, and have several video timing modes  
allowing them to be configured as either a system master  
video timing generator or a slave to the system video timing  
generator. The ADV7177/ADV7178 generate all of the required  
horizontal and vertical timing periods and levels for the analog  
video outputs. It is important to note that the CCIR-656 data  
stream should not contain ancillary data packets as per the  
BT1364 specification. This data can corrupt the internal  
synchronization circuitry of the devices, resulting in loss of  
synchronization on the output.  
The ADV7177/ADV7178 have four distinct master and four  
distinct slave timing configurations. Timing control is  
established with the bidirectional  
,
, and  
SYNC BLANK  
FIELD/  
pins. Timing Mode Register 1 can also be used  
VSYNC  
to vary the timing pulse widths and where they occur in  
relation to each other.  
Vertical Blanking Data Insertion (VBI)  
It is possible to allow encoding of incoming YCbCr data on  
those lines of VBI that do not bear line sync or pre- and post-  
equalization pulses (see the Typical Performance Characteristics  
section). This mode of operation is called partial blanking and  
is selected by setting MR31 to 1. It allows the insertion of any  
VBI data (opened VBI) into the encoded output waveform. This  
data is present in the digitized incoming YCbCr data stream  
(for example, WSS data, CGMS, and VPS). Alternatively, the  
entire VBI can be blanked (no VBI data inserted) on these lines  
by setting MR31 to 0.  
The ADV7177/ADV7178 calculate the width and placement of  
analog sync pulses, blanking levels, and color burst envelopes.  
Color bursts are disabled on appropriate lines, and serration  
and equalization pulses are inserted where required.  
In addition, the ADV7177/ADV7178 support a PAL or NTSC  
square pixel operation in slave mode. The parts require an input  
pixel clock of 24.5454 MHz for NTSC and an input pixel clock  
Table 10. Luminance Internal Filter Specifications  
Pass-Band  
Cutoff (MHz)  
Pass-Band  
Ripple (dB)  
Stop-Band  
Cutoff (MHz)  
Stop-Band  
Attenuation (dB) F3 dB  
Filter Selection MR04  
MR03  
NTSC  
PAL  
NTSC  
PAL  
NTSC/PAL  
NTSC  
PAL  
±
±
±
±
±
±
±
2.3  
3.4  
±.ꢀ  
±.4  
4.ꢀ  
2.3  
3.4  
ꢀ.ꢀ26  
ꢀ.ꢀ98  
ꢀ.ꢀ85  
ꢀ.±ꢀ7  
ꢀ.±5ꢀ  
ꢀ.ꢀ54  
ꢀ.±ꢀ6  
7.ꢀ  
7.3  
3.57  
4.43  
7.5  
>54  
>5ꢀ  
>27.6  
>29.3  
>4ꢀ  
4.2  
5.ꢀ  
2.±  
2.7  
5.35  
4.2  
5.ꢀ  
7.ꢀ  
7.3  
>54  
>5ꢀ.3  
Table 11. Chrominance Internal Filter Specifications  
Pass-Band  
Cutoff (MHz)  
Pass-Band  
Ripple (dB)  
Stop-Band  
Cutoff (MHz)  
Stop-Band  
Attenuation (dB)  
Attenuation  
@ 1.3 MHz (dB)  
Filter Selection  
NTSC  
PAL  
F3 dB  
2.ꢀ5  
2.45  
±.ꢀ  
±.3  
ꢀ.ꢀ85  
ꢀ.ꢀ4  
3.2  
4.ꢀ  
>4ꢀ  
>4ꢀ  
ꢀ.3  
ꢀ.ꢀ2  
Rev. C | Page ±7 of 44  
 
ADV7177/ADV7178  
TIMING AND CONTROL  
Mode 0 (CCIR-656): Slave Option  
Timing Register 0 TR0 = X X X X X 0 0 0  
The ADV7177/ADV7178 are controlled by the start active video (SAV) and end active video (EAV) time codes in the pixel data. All  
timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately before and after  
each line during active picture and retrace. Mode 0 is illustrated in Figure 14. The  
, FIELD/  
, and  
(if not used)  
HSYNC  
VSYNC  
BLANK  
pins should be tied high during this mode.  
ANALOG  
VIDEO  
EAV CODE  
SAV CODE  
C
r
F
F
0
0
0
0
X
Y
8
0
1
0
8
0
1
0
0
0
F
F
F
F
A
B
A
B
A
B
8
0
1
0
8
0
1
0
F
F
0
0
0
0
X
Y
C
C
r
C
b
C
C
Y
Y
Y
Y
Y
Y
INPUT PIXELS  
b
r
b
ANCILLARY DATA  
(HANC)  
4 CLOCK  
4 CLOCK  
4 CLOCK  
4 CLOCK  
NTSC/PAL M SYSTEM  
(525 LlNES/60Hz)  
1440 CLOCK  
1440 CLOCK  
268 CLOCK  
PAL SYSTEM  
(625 LINES/50Hz)  
280 CLOCK  
END OF ACTIVE  
VIDEO LINE  
START OF ACTIVE  
VIDEO LINE  
Figure 14. Timing Mode 0 (Slave Mode)  
Mode 0 (Ccir-656): Master Option  
Timing Register 0 TR0 = X X X X X 0 0 1  
The ADV7177/ADV7178 generate H, V, and F signals required for the SAV and EAV time codes in the CCIR-656 standard. The H bit is  
output on the pin, the V bit is output on the pin, and the F bit is output on the FIELD/ pin. Mode 0 is illustrated  
HSYNC  
BLANK  
VSYNC  
in Figure 15 (NTSC) and Figure 16 (PAL). The H, V, and F transitions relative to the video waveform are illustrated in Figure 17.  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
6
7
10  
11  
20  
21  
22  
5
9
8
H
V
F
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
283  
284  
285  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 15. Timing Mode 0 (NTSC Master Mode)  
Rev. C | Page ±8 of 44  
 
 
 
 
ADV7177/ADV7178  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
22  
23  
5
21  
H
V
F
EVEN FIELD ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
H
V
F
ODD FIELD  
EVEN FIELD  
Figure 16. Timing Mode 0 (PAL Master Mode)  
ANALOG  
VIDEO  
H
F
V
Figure 17. Timing Mode 0 Data Transitions (Master Mode)  
Rev. C | Page ±9 of 44  
ADV7177/ADV7178  
Mode 1: Slave Option  
,
, FIELD  
HSYNC BLANK  
Timing Register 0 TR0 = X X X X X 0 1 0  
In this mode, the ADV7177/ADV7178 accepts horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input when  
HSYNC is low indicates a new frame, that is, vertical retrace. The signal is optional. When the input is disabled, the  
BLANK  
BLANK  
ADV7177/ADV7178 automatically blank all normally blank lines. Mode 1 is illustrated in Figure 18 (NTSC) and Figure 19 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
283  
284  
285  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 18. Timing Mode 1 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
6
7
5
21  
22  
23  
HSYNC  
BLANK  
FIELD  
ODD FIELD  
EVEN FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
318  
319  
320  
317  
334  
335  
336  
HSYNC  
BLANK  
FIELD  
ODD FIELD EVEN FIELD  
Figure 19. Timing Mode 1 (PAL)  
Rev. C | Page 2ꢀ of 44  
 
 
ADV7177/ADV7178  
Mode 1: Master Option  
,
, FIELD  
HSYNC BLANK  
Timing Register 0 TR0 = X X X X X 0 1 1  
In this mode, the ADV7177/ADV7178 can generate horizontal SYNC and odd/even FIELD signals. A transition of the FIELD input when  
is low indicates a new frame, that is, vertical retrace. The signal is optional. When the input is disabled, the  
HSYNC  
BLANK  
BLANK  
ADV7177/ADV7178 automatically blank all normally blank lines. Pixel data is latched on the rising clock edge following the timing  
signal transitions. Mode 1 is illustrated in Figure 18 (NTSC) and Figure 19 (PAL). Figure 20 illustrates the  
for an odd or even field transition relative to the pixel data.  
,
, and FIELD  
HSYNC BLANK  
HSYNC  
FIELD  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cr  
Y
Cb  
Y
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 20. Timing Mode 1 Odd/Even Field Transitions Master/Slave  
Rev. C | Page 2± of 44  
 
ADV7177/ADV7178  
Mode 2: Slave Option  
,
,
HSYNC VSYNC BLANK  
Timing Register 0 TR0 = X X X X X 1 0 0  
In this mode, the ADV7177/ADV7178 accept horizontal and vertical SYNC signals. A coincident low transition of both  
and  
HSYNC  
inputs indicates the start of an odd field. A  
low transition when  
is high indicates the start of an even field. The  
HSYNC  
VSYNC  
BLANK  
VSYNC  
signal is optional. When the  
input is disabled, the ADV7177/ADV7178 automatically blank all normally blank lines as  
BLANK  
per the BT-470 specification. Mode 2 is illustrated in Figure 21 (NTSC) and Figure 22 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
20  
21  
22  
1
2
3
4
6
7
8
10  
11  
5
9
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
283  
284  
285  
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
Figure 21. Timing Mode 2 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
5
6
7
21  
22  
23  
HSYNC  
BLANK  
VSYNC  
EVEN FIELD  
ODD FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
334  
335  
336  
HSYNC  
BLANK  
VSYNC  
ODD FIELD  
EVEN FIELD  
Figure 22. Timing Mode 2 (PAL)  
Rev. C | Page 22 of 44  
 
 
ADV7177/ADV7178  
Mode 2: Master Option  
,
,
HSYNC VSYNC BLANK  
Timing Register 0 TR0 = X X X X X 1 0 1  
In this mode, the ADV7177/ADV7178 can generate horizontal and vertical SYNC signals. A coincident low transition of both  
HSYNC  
is high indicates the start of an even field.  
and  
The  
inputs indicates the start of an odd field. A  
signal is optional. When the  
low transition when  
HSYNC  
VSYNC  
BLANK  
VSYNC  
input is disabled, the ADV7177/ADV7178 automatically blank all normally blank lines  
BLANK  
as per the BT-470 specification. Mode 2 is illustrated in Figure 21 (NTSC) and Figure 22 (PAL). Figure 23 illustrates the  
,
,
HSYNC BLANK  
, and for an  
HSYNC BLANK VSYNC  
and  
for an even-to-odd field transition relative to the pixel data. Figure 24 illustrates the  
,
VSYNC  
odd-to-even field transition relative to the pixel data.  
HSYNC  
VSYNC  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 23. Timing Mode 2, Even-to-Odd Field Transition, Master/Slave  
HSYNC  
VSYNC  
PAL = 864 × CLOCK/2  
NTSC = 858 × CLOCK/2  
PAL = 12 × CLOCK/2  
NTSC = 16 × CLOCK/2  
BLANK  
PIXEL  
DATA  
Cb  
Y
Cr  
Y
Cb  
PAL = 132 × CLOCK/2  
NTSC = 122 × CLOCK/2  
Figure 24. Timing Mode 2, Odd-to-Even Field Transition, Master/Slave  
Rev. C | Page 23 of 44  
 
 
ADV7177/ADV7178  
Mode 3: Master/Slave Option  
,
, FIELD  
HSYNC BLANK  
Timing Register 0 TR0 = X X X X X 1 1 0 or X X X X X 1 1 1  
In this mode, the ADV7177/ADV7178 accept or generate horizontal SYNC and odd/even field signals. A transition of the field input  
when  
is high indicates a new frame, that is, vertical retrace. The  
signal is optional. When the  
input is disabled,  
HSYNC  
BLANK  
BLANK  
the ADV7177/ADV7178 automatically blank all normally blank lines as per the BT-470 specification. Mode 3 is illustrated in Figure 25  
(NTSC) and Figure 26 (PAL).  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
522  
523  
524  
525  
1
2
3
4
5
6
7
8
9
10  
11  
20  
21  
22  
HSYNC  
BLANK  
EVEN FIELD ODD FIELD  
FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
283  
284  
285  
HSYNC  
BLANK  
ODD FIELD EVEN FIELD  
FIELD  
Figure 25. Timing Mode 3 (NTSC)  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
622  
623  
624  
625  
1
2
3
4
5
6
7
21  
22  
23  
HSYNC  
BLANK  
EVEN FIELD ODD FIELD  
FIELD  
DISPLAY  
DISPLAY  
VERTICAL BLANK  
318  
334  
335  
336  
309  
310  
311  
312  
313  
314  
315  
316  
317  
319  
320  
HSYNC  
BLANK  
ODD FIELD EVEN FIELD  
FIELD  
Figure 26. Timing Mode 3 (PAL)  
Rev. C | Page 24 of 44  
 
 
ADV7177/ADV7178  
POWER-ON RESET  
After power-up, it is necessary to execute a reset operation. A  
reset occurs on the falling edge of a high-to-low transition on  
respond to the start condition and shift the next eight bits (7-bit  
address + R/ bit). The bits transfer from MSB down to LSB.  
W
the  
pin. This initializes the pixel port so that the pixel  
RESET  
The peripheral that recognizes the transmitted address  
responds by pulling the data line low during the ninth clock  
pulse. This is known as an acknowledge bit. All other devices  
withdraw from the bus at this point and maintain an idle  
condition. The idle condition is where the device monitors the  
SDATA and SCLOCK lines waiting for the start condition and  
inputs, P7 to P0, are selected. After reset, the devices are  
automatically set up to operate in NTSC mode. Subcarrier  
frequency code 21F07C16HEX is loaded into the subcarrier  
frequency registers. All other registers, except Mode Register 0,  
are set to 00HEX. All bits in Mode Register 0 are set to Logic 0  
except Bit MR02. Bit MR02 of Mode Register 0 is set to Logic 1.  
This enables the 7.5 IRE pedestal.  
the correct transmitted address. The R/ bit determines the  
W
direction of the data. A Logic 0 on the LSB of the first byte  
means that the master writes information to the peripheral. A  
Logic 1 on the LSB of the first byte means that the master reads  
information from the peripheral.  
MPU PORT DESCRIPTION  
The ADV7178 and ADV7177 support a 2-wire serial (I2C-  
compatible) microprocessor bus driving multiple peripherals.  
Two inputs, serial data (SDATA) and serial clock (SCLOCK),  
carry information between any device connected to the bus.  
Each slave device is recognized by a unique address. The  
ADV7178 and ADV7177 each have four possible slave  
addresses for both read and write operations. These are  
unique addresses for each device and are illustrated in  
Figure 27 and Figure 28. The LSB sets either a read or write  
operation. Logic 1 corresponds to a read operation, while Logic  
0 corresponds to a write operation. A1 is set by setting the  
ALSB pin of the ADV7177/ ADV7178 to Logic 0 or Logic 1.  
The ADV7177/ADV7178 act as standard slave devices on the  
bus. The data on the SDATA pin is 8 bits long, supporting the  
7-bit addresses, plus the R/ bit. The ADV7178 has 36 sub-  
W
addresses and the ADV7177 has 31 subaddresses to enable  
access to the internal registers. It therefore interprets the first  
byte as the device address and the second byte as the starting  
subaddress. The auto-increment of the subaddresses allows  
data to be written to or read from the starting subaddress. A  
data transfer is always terminated by a stop condition. The  
user can also access any unique subaddress register on a one-  
by-one basis without having to update all the registers, with one  
exception. The subcarrier frequency registers should be updated  
in sequence, starting with Subcarrier Frequency Register 0. The  
auto-increment function should then be used to increment and  
access Subcarrier Frequency Registers 1, 2 and 3. The subcarrier  
frequency registers should not be accessed independently.  
To control the various devices on the bus, the following  
protocol must be followed. First, the master initiates a data  
transfer by establishing a start condition, defined by a high-to-  
low transition on SDATA while SCLOCK remains high. This  
indicates that an address/data stream follows. All peripherals  
1
1
1
1
0
1
A1  
X
0
0
0
1
0
1
A1  
X
ADDRESS  
CONTROL  
ADDRESS  
CONTROL  
SET UP BY  
ALSB  
SET UP BY  
ALSB  
READ/WRITE  
CONTROL  
READ/WRITE  
CONTROL  
0
1
WRITE  
READ  
0
1
WRITE  
READ  
Figure 27. ADV7177 Slave Address  
Figure 28. ADV7178 Slave Address  
Rev. C | Page 25 of 44  
 
 
 
ADV7177/ADV7178  
Stop and start conditions can be detected at any stage during  
the data transfer. If these conditions are asserted out of  
sequence with normal read and write operations, they cause an  
immediate jump to the idle condition. During a given SCLOCK  
high period, the user should issue only one start condition, one  
stop condition, or a single stop condition followed by a single  
start condition. If an invalid subaddress is issued by the user,  
the devices do not issue an acknowledge and return to the idle  
condition. If, in auto-increment mode, the user exceeds the  
highest subaddress, the following actions are taken.  
In write mode, the data for the invalid byte is not loaded into  
any subaddress register, a no acknowledge is issued by the  
ADV7177/ADV7178, and the parts return to the idle condition.  
Figure 29 illustrates an example of data transfer for a read  
sequence and the start and stop conditions. Figure 30 shows  
bus write and read sequences.  
SDATA  
In read mode, the highest subaddress register contents continue  
to be output until the master device issues a no acknowledge.  
This indicates the end of a read. A no-acknowledge condition is  
where the SDATA line is not pulled low on the ninth pulse.  
SCLOCK  
S
1–7  
8
9
1–7  
8
9
1–7  
8
9
P
START ADDR R/W ACK SUBADDRESS ACK  
DATA  
ACK  
STOP  
Figure 29. Bus Data Transfer  
WRITE  
SEQUENCE  
S
S
SLAVE ADDR A(S) SUB ADDR A(S)  
LSB = 0  
DATA  
A(S)  
DATA  
A(M)  
A(S) P  
LSB = 1  
READ  
SEQUENCE  
SLAVE ADDR A(S) SUB ADDR A(S)  
S
SLAVE ADDR A(S)  
DATA  
DATA  
A(M) P  
S = START BIT  
P = STOP BIT  
A(S) = ACKNOWLEDGE BY SLAVE  
A(M) = ACKNOWLEDGE BY MASTER  
A(S) = NO ACKNOWLEDGE BY SLAVE  
A(M) = NO ACKNOWLEDGE BY MASTER  
Figure 30. Write and Read Sequences  
Rev. C | Page 26 of 44  
 
 
ADV7177/ADV7178  
REGISTERS  
REGISTER ACCESS  
MODE REGISTER 0 MR0 (MR07–MR00)  
Address [SR4–SR0] = 00H  
The MPU can write to or read from all of the ADV7177 and  
ADV7178 registers except the subaddress register, which is a  
write-only register. The subaddress register determines which  
register the next read or write operation accesses. All commun-  
ications with the part through the bus start with an access to  
the subaddress register. A read/write operation is performed  
from/to the target address, which then increments to the next  
address until a stop command on the bus is performed.  
Figure 32 shows the various operations under the control of  
Mode Register 0. This register can be read from as well as  
written to.  
MR0 BIT DESCRIPTION  
Output Video Standard Selection (MR01–MR00)  
These bits are used to set up the encode mode. The ADV7177/  
ADV7178 can be set up to output NTSC, PAL (B, D, G, H, I),  
and PAL (M) standard video.  
REGISTER PROGRAMMING  
This section describes each register, including the subaddress  
register, mode registers, subcarrier frequency registers, sub-  
carrier phase register, timing registers, closed captioning  
extended data registers, closed captioning data registers, and  
the NTSC pedestal control registers in terms of configuration.  
Pedestal Control (MR02)  
This bit specifies whether a pedestal is to be generated on  
the NTSC composite video signal. This bit is invalid if the  
ADV7177/ADV7178 is configured in PAL mode.  
Luminance Filter Control (MR04–MR03)  
Subaddress Register (SR7–SR0)  
The luminance filters are divided into two sets (NTSC/PAL) of  
four filters, low-pass A, low-pass B, notch, and extended. When  
PAL is selected, Bits MR03 and MR04 select one of four PAL  
luminance filters; likewise, when NTSC is selected, Bits MR03  
and MR04 select one of four NTSC luminance filters. The  
Typical Performance Characteristics section shows the filters.  
The communications register is an 8-bit, write-only register.  
After the parts have been accessed over the bus and a read/write  
operation is selected, the subaddress is set up. The subaddress  
register determines to/from which register the operation takes  
place.  
Figure 31 shows the various operations under the control of the  
subaddress register. Zero should always be written to SR7–SR6.  
RGB Sync (MR05)  
This bit is used to set up the RGB outputs with the sync  
information encoded on all RGB outputs.  
Register Select (SR5–SR0)  
These bits are set up to point to the required starting address.  
SR7  
SR6  
SR5  
SR4  
SR3  
SR2  
SR1  
SR0  
SR7–SR6 (00)  
ZERO SHOULD BE WRITTEN  
TO THESE BITS  
ADV7178 SUBADDRESS REGISTER  
SR5 SR4 SR3 SR2 SR1 SR0  
ADV7177 SUBADDRESS REGISTER  
SR5 SR4 SR3 SR2 SR1 SR0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MODE REGISTER 0  
MODE REGISTER 1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MODE REGISTER 0  
MODE REGISTER 1  
SUBCARRIER FREQ REGISTER 0  
SUBCARRIER FREQ REGISTER 1  
SUBCARRIER FREQ REGISTER 2  
SUBCARRIER FREQ REGISTER 3  
SUBCARRIER PHASE REGISTER  
TIMING REGISTER 0  
CLOSED CAPTIONING EXTENDED DATA– BYTE 0  
CLOSED CAPTIONING EXTENDED DATA– BYTE 1  
CLOSED CAPTIONING DATA– BYTE 0  
CLOSED CAPTIONING DATA– BYTE 1  
TIMING REGISTER 1  
SUBCARRIER FREQ REGISTER 0  
SUBCARRIER FREQ REGISTER 1  
SUBCARRIER FREQ REGISTER 2  
SUBCARRIER FREQ REGISTER 3  
SUBCARRIER PHASE REGISTER  
TIMING REGISTER 0  
CLOSED CAPTIONING EXTENDED DATA– BYTE 0  
CLOSED CAPTIONING EXTENDED DATA– BYTE 1  
CLOSED CAPTIONING DATA– BYTE 0  
CLOSED CAPTIONING DATA– BYTE 1  
TIMING REGISTER 1  
MODE REGISTER 2  
MODE REGISTER 2  
NTSC PEDESTAL CONTROL REG 0 (FIELD 1/3)  
NTSC PEDESTAL CONTROL REG 1 (FIELD 1/3)  
NTSC PEDESTAL CONTROL REG 2 (FIELD 2/4)  
NTSC PEDESTAL CONTROL REG 3 (FIELD 2/4)  
MODE REGISTER 3  
NTSC PEDESTAL CONTROL REG 0 (FIELD 1/3)  
NTSC PEDESTAL CONTROL REG 1 (FIELD 1/3)  
NTSC PEDESTAL CONTROL REG 2 (FIELD 2/4)  
NTSC PEDESTAL CONTROL REG 3 (FIELD 2/4)  
MODE REGISTER 3  
0
MACROVISION REGISTER  
OSD REGISTER  
"
"
"
"
"
"
"
"
1
0
0
0
1
1
MACROVISION REGISTER  
0
1
1
1
1
0
OSD REGISTER  
Figure 31. Subaddress Register  
Rev. C | Page 27 of 44  
 
 
 
ADV7177/ADV7178  
MR07  
MR06  
MR05  
MR04  
MR03  
MR02  
MR01  
MR00  
OUTPUT SELECT  
MR06  
LUMINANCE FILTER CONTROL  
MR04 MR03  
OUTPUT VIDEO  
STANDARD SELECTION  
MR01  
MR00  
0
1
YC OUTPUT  
RGB/YUV OUTPUT  
0
0
1
1
0
1
0
1
LOW-PASS FILTER (A)  
NOTCH FILTER  
EXTENDED MODE  
LOW-PASS FILTER (B)  
NTSC  
PAL (B, D, G, H, I)  
PAL (M)  
0
0
1
1
0
1
0
1
RESERVED  
MR07  
RGB SYNC  
PEDESTAL CONTROL  
MR02  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
MR05  
0
1
PEDESTAL OFF  
PEDESTAL ON  
0
1
DISABLE  
ENABLE  
Figure 32. Mode Register 0 (MR0)  
MR17  
MR16  
MR15  
MR14  
MR13  
MR12  
MR11  
MR10  
MR16  
LUMA  
DAC CONTROL  
CLOSED CAPTIONING  
FIELD SELECTION  
ONE SHOULD  
BE WRITTEN TO  
THIS BIT  
MR14  
MR12 MR11  
0
1
NORMAL  
POWER-DOWN  
0
0
1
1
0
1
0
1
NO DATA OUT  
ODD FIELD ONLY  
EVEN FIELD ONLY  
DATA OUT  
(BOTH FIELDS)  
COLOR BAR  
CONTROL  
COMPOSITE  
DAC CONTROL  
CHROMA  
DAC CONTROL  
INTERLACED MODE  
CONTROL  
MR17  
MR15  
MR13  
MR10  
0
1
DISABLE  
ENABLE  
NORMAL  
POWER-DOWN  
NORMAL  
POWER-DOWN  
INTERLACED  
NONINTERLACED  
0
1
0
1
0
1
Figure 33. Mode Register 1 (MR1)  
Output Select (MR06)  
Color Bar Control (MR17)  
This bit specifies if the part is in composite video or RGB/YUV  
mode. Note that the main composite signal is still available in  
RGB/YUV mode.  
This bit can be used to generate and output an internal color-  
bar test pattern. The color-bar configuration is 100/7.5/75/7.5  
for NTSC and 100/0/75/0 for PAL. Note that when color bars  
are enabled, the ADV7177/ADV7178 are configured in a master  
timing mode as per the one selected by bits TR01 and TR02.  
MODE REGISTER 1 MR1 (MR17–MR10)  
Address (SR4–SR0) = 01H  
SUBCARRIER FREQUENCY REGISTER 3–0  
FSC3–FSC0  
Address [SR4–SR0] = 05H–02H  
Figure 33 shows the various operations under the control of  
Mode Register 1. This register can be read from as well as  
written to.  
These 8-bit-wide registers are used to set up the subcarrier  
frequency. The value of these registers is calculated by using the  
following equation, in which the asterisk (*) means rounded to  
the nearest integer:  
MR1 BIT DESCRIPTION  
Interlaced Mode Control (MR10)  
This bit is used to set up the output to interlaced or noninter-  
laced mode. This mode is relevant only when the part is in  
composite video mode.  
No.of Subcarrier FrequencyValues in OneLineof VideoLine  
× 232  
*
No.of 27MHzClock CyclesinOne VideoLine  
For example, in NTSC mode  
Closed Captioning Field Selection (MR12–MR11)  
These bits control the fields on which closed captioning data is  
displayed; closed captioning information can be displayed on an  
odd field, even field, or both fields.  
227.5  
1716  
Subcarrier Frequency Value =  
× 232 = 569408542 d = 21F07C1Fh  
DAC Control (MR15–MR13)  
Note that on power-up, FSC Register 0 is set to 16h. A value of  
1F as derived above is recommended.  
These bits can be used to power down the DACs to reduce the  
power consumption of the ADV7177/ADV7178 if any of the  
DACs are not required in the application.  
Rev. C | Page 28 of 44  
 
 
ADV7177/ADV7178  
Program as  
Input Control (TR03)  
FSC Register 0: 1Fh  
FSC Register 2: 7Ch  
FSC Register 3: F0h  
FSC Register 4: 21h  
This bit controls whether the  
part is in slave mode.  
input is used when the  
BLANK  
Luma Delay (TR05–TR04)  
These bits control the addition of a luminance delay. Each bit  
represents a delay of 74 ns.  
Figure 34 shows how the frequency is set up by the four  
registers.  
Pixel Port Control (TR06)  
SUBCARRIER  
FREQUENCY  
REG 3  
FSC31 FSC30 FSC29 FSC28 FSC27 FSC26 FSC25 FSC24  
This bit is used to set the pixel port to accept 8-bit or 16-bit  
data. If an 8-bit input is selected, the data is set up on  
Pins P7–P0.  
SUBCARRIER  
FREQUENCY  
REG 2  
FSC23 FSC22 FSC21 FSC20 FSC19 FSC18 FSC17 FSC16  
SUBCARRIER  
FREQUENCY  
REG 1  
Timing Register Reset (TR07)  
FSC14  
FSC6  
FSC15  
FSC7  
FSC13 FSC12 FSC11 FSC10 FSC9  
FSC8  
FSC0  
Toggling TR07 from low to high and low again resets the  
internal timing counters. This bit should be toggled after  
power-up, reset, or after changing to a new timing mode.  
SUBCARRIER  
FREQUENCY  
REG 0  
FSC5  
FSC4  
FSC3 FSC2 FSC1  
Figure 34. Subcarrier Frequency Register  
CLOSED CAPTIONING EVEN FIELD  
DATA REGISTER 1–0 (CED15–CED0)  
SUBCARRIER PHASE REGISTER (FP7–FP0)  
Address [SR4–SR0] = 06H  
Address [SR4–SR0] = 09H–08H  
This 8-bit-wide register is used to set up the subcarrier phase.  
Each bit represents 1.41 degrees.  
These 8-bit-wide registers are used to set up the closed  
captioning extended data bytes on even fields. Figure 35  
shows how the high and low bytes are set up in the registers.  
TIMING REGISTER 0 (TR07–TR00)  
Address [SR4–SR0] = 07H  
BYTE 1 CED15 CED14 CED13 CED12 CED11 CED10 CED9 CED8  
BYTE 0 CED7 CED6 CED5 CED4 CED3 CED2 CED1 CED0  
Figure 35. Closed Captioning Extended Data Register  
Figure 37 shows the various operations under the control of  
Timing Register 0. This register can be read from as well as  
written to. This register can be used to adjust the width and  
position of the master mode timing signals.  
CLOSED CAPTIONING ODD FIELD  
DATA REGISTER 1–0 (CCD15–CCD0)  
TR0 BIT DESCRIPTION  
Master/Slave Control (TR00)  
Subaddress [SR4–SR0] = 0BH–0AH  
This bit controls whether the ADV7177/ADV7178 are in master  
or slave mode. This register can be used to adjust the width and  
position of the master timing signals.  
These 8-bit-wide registers are used to set up the closed  
captioning data bytes on odd fields. Figure 36 shows how  
the high and low bytes are set up in the registers.  
Timing Mode Selection (TR02–TR01)  
These bits control the timing mode of the ADV7177/ADV7178.  
These modes are described in the Timing and Control section.  
BYTE 1 CCD15 CCD14 CCD13 CCD12 CCD11 CCD10 CCD9 CCD8  
BYTE 0 CCD7 CCD6 CCD5 CCD4 CCD3 CCD2 CCD1 CCD0  
Figure 36. Closed Captioning Data Register  
TR07  
TR06  
TR05  
TR04  
TR03  
TR02  
TR01  
TR00  
TIMING  
REGISTER RESET  
BLANK INPUT  
CONTROL  
MASTER/SLAVE  
CONTROL  
TR03  
TR00  
TR07  
0
1
ENABLE  
DISABLE  
0
1
SLAVE TIMING  
MASTER TIMING  
LUMA DELAY  
TIMING MODE  
SELECTION  
PIXEL PORT  
CONTROL  
TR05 TR04  
TR02TR01  
TR06  
0
0
1
1
0
1
0
1
0ns DELAY  
74ns DELAY  
148ns DELAY  
222ns DELAY  
0
0
1
1
0
1
0
1
MODE 0  
MODE 1  
MODE 2  
MODE 3  
0
1
8-BIT  
16-BIT  
Figure 37. Timing Register 0  
Rev. C | Page 29 of 44  
 
 
 
 
 
ADV7177/ADV7178  
Width (TR15–TR14)  
VSYNC  
When the ADV7177/ADV7178 are in Timing Mode 2, these  
bits adjust the pulse width.  
TIMING REGISTER 1 (TR17–TR10)  
Address [SR4–SR0] = 0CH  
VSYNC  
to Pixel Data Adjust (TR17–TR16)  
Timing Register 1 is an 8-bit-wide register. Figure 38 shows the  
various operations under the control of Timing Register 1. This  
register can be read from as well as written to. This register can  
be used to adjust the width and position of the master mode  
timing signals.  
HSYNC  
This enables the  
to be adjusted with respect to the pixel  
HSYNC  
data and allows the Cr and Cb components to be swapped. This  
adjustment is available in both master and slave timing modes.  
TR1 BIT DESCRIPTION  
MODE REGISTER 2 MR2 (MR27–MR20)  
Address [SR4-SR0] = 0DH  
Width (TR11–TR10)  
HSYNC  
These bits adjust the  
pulse width.  
HSYNC  
Mode Register 2 is an 8-bit-wide register. Figure 39 shows the  
various operations under the control of Mode Register 2. This  
register can be read from as well as written to.  
to FIELD/  
VSYNC  
Delay (TR13–TR12)  
HSYNC  
These bits adjust the position of the  
output relative to  
HSYNC  
the FIELD/  
output.  
VSYNC  
to FIELD Rising Edge Delay (TR15–TR14)  
HSYNC  
When the device is in Timing Mode 1, these bits adjust the  
position of the  
output relative to the FIELD output  
HSYNC  
rising edge.  
TR17  
TR16  
TR15  
TR14  
TR13  
TR12  
TR11  
TR10  
HSYNC TO PIXEL  
DATA ADJUST  
HSYNC TO FIELD  
RISING EDGE DELAY  
(MODE 1 ONLY)  
HSYNC TO  
FIELD/VSYNC DELAY  
HSYNC WIDTH  
T
TR11 TR10  
A
TR17 TR16  
TR13 TR12  
T
B
1 × T  
4 × T  
0
0
1
1
0
1
0
1
PCLK  
TR15 TR14  
T
C
0
0
1
1
0
1
0
1
0 3 T  
1 3 T  
2 3 T  
3 3 T  
0
0
1
1
0
1
0
1
0 × T  
4 × T  
8 × T  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
X
x
0
1
T
T
16 × T  
B
B
PCLK  
128 × T  
+ 32µs  
PCLK  
16 × T  
PCLK  
VSYNC WIDTH  
(MODE 2 ONLY)  
TR15 TR14  
0
0
1
1
0
1
0
1
1 × T  
4 × T  
PCLK  
PCLK  
16 × T  
PCLK  
128 × T  
PCLK  
TIMING MODE 1 (MASTER/PAL)  
LINE 1  
LINE 313  
LINE 314  
HSYNC  
T
A
T
T
C
B
FIELD/VSYNC  
Figure 38. Timing Register 1  
MR27  
MR26  
MR25  
MR24  
MR23  
MR22  
MR21  
MR20  
RGB/YUV  
CONTROL  
CHROMINANCE  
CONTROL  
MR22–MR21  
(00)  
MR26  
MR24  
ZERO SHOULD  
BE WRITTEN TO  
THESE BITS  
0
1
RGB OUTPUT  
YUV OUTPUT  
0
1
ENABLE COLOR  
DISABLE COLOR  
LOW POWER  
MODE  
BURST  
CONTROL  
ACTIVE VIDEO  
LINE DURATION  
SQUARE PIXEL  
CONTROL  
MR27  
MR25  
MR23  
MR20  
0
1
DISABLE  
ENABLE  
0
1
ENABLE BURST  
DISABLE BURST  
0
1
720 PIXELS  
710 PIXELS/702 PIXELS  
0
1
DISABLE  
ENABLE  
Figure 39. Mode Register 2  
Rev. C | Page 3ꢀ of 44  
 
 
 
ADV7177/ADV7178  
MR2 BIT DESCRIPTION  
NTSC PEDESTAL REGISTERS 3–0  
PCE15–0, PCO15–0  
(Subaddress [SR4–SR0] = 11–0EH)  
Square Pixel Control (MR20)  
This bit is used to set up square pixel mode. This is available in  
slave mode only. For NTSC, a 24.5454 MHz clock must be  
supplied. For PAL, a 29.5 MHz clock must be supplied.  
These 8-bit-wide registers set up the NTSC pedestal on a line-  
by-line basis in the vertical blanking interval for both odd and  
even fields. Figure 40 show the four control registers. A Logic 1  
in any of the bits of these registers has the effect of turning the  
pedestal off on the equivalent line when used in NTSC.  
Active Video Line Duration (MR23)  
This bit switches between two active video line durations. A 0  
selects CCIR Rec. 601 (720 pixels PAL/NTSC) and a 1 selects  
ITU-R.BT470 “analog” standard for active video duration  
(710 pixels NTSC, 702 pixels PAL).  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
FIELD 1/3 PCO7 PCO6 PCO5 PCO4 PCO3 PCO2 PCO1 PCO0  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
Chrominance Control (MR24)  
FIELD 1/3 PCO15 PCO14 PCO13 PCO12 PCO11 PCO10 PCO9 PCO8  
This bit enables the color information to be switched on and off  
the video output.  
LINE 17 LINE 16 LINE 15 LINE 14 LINE 13 LINE 12 LINE 11 LINE 10  
FIELD 2/4 PCE7 PCE6 PCE5 PCE4 PCE3 PCE2 PCE1 PCE0  
Burst Control (MR25)  
LINE 25 LINE 24 LINE 23 LINE 22 LINE 21 LINE 20 LINE 19 LINE 18  
This bit enables the burst information to be switched on and off  
the video output.  
FIELD 2/4 PCE15 PCE14 PCE13 PCE12 PCE11 PCE10 PCE9 PCE8  
Figure 40. Pedestal Control Registers  
RGB/YUV Control (MR26)  
This bit enables the output from the RGB DACs to be set to  
YUV output video standard. Bit MR06 of Mode Register 0 must  
be set to Logic 1 before MR26 is set.  
MODE REGISTER 3 MR3 (MR37–MR30)  
Address [SR4–SR0] = 12H  
Mode Register 3 is an 8-bit-wide register. Figure 41shows the  
various operations under the control of Mode Register 3.  
Table 12. DAC Output Configuration Matrix  
MR06  
MR26  
DAC A  
CVBS  
CVBS  
B
DAC B  
DAC C  
MR3 BIT DESCRIPTION  
Revision Code (MR30)  
±
±
±
±
Y
Y
G
Y
C
C
R
V
This bit is read only and indicates the revision of the device.  
U
VBI_Pass-Through (MR31)  
This bit determines whether or not data in the vertical blanking  
interval (VBI) is output to the analog outputs or blanked. VBI  
In Table 12,  
data insertion is not available in Slave Mode 0. Also, if  
BLANK  
CVBS: Composite video baseband signal  
input control (TR03) is enabled, and VBI_Pass-Through is  
enabled, TR03 has priority, that is, VBI data insertion does  
not work.  
Y:  
Luminance component signal, YUV or Y/C mode  
Chrominance signal, for Y/C mode  
C:  
U:  
V:  
R:  
G:  
B:  
Clock Output (MR33–MR32)  
Chrominance component signal, for YUV mode  
Chrominance component signal, for YUV mode  
Red component video, for RGB mode  
These bits control the synchronous clock output signal. The  
clock can be 27 MHz, 13.5 MHz, or disabled, depending on the  
values of these bit.  
OSD Enable (MR35)  
A Logic 1 in MR35 enables the OSD function on the ADV7177.  
Input Default Color (MR36)  
Green component video, for RGB mode  
Blue component video, for RGB mode  
This bit determines the default output color from the DACs for  
zero input data (or disconnected). A Logic 0 means that the  
color corresponding to 00000000 is displayed. A Logic 1 forces  
the output color to black for 00000000 input video data.  
Low Power Control (MR27)  
This bit enables the lower power mode of the ADV7177 and the  
ADV7178. This reduces DAC current by 50ꢀ.  
Reserved (MR37)  
Zero should be written to this bit.  
Rev. C | Page 3± of 44  
 
 
 
ADV7177/ADV7178  
OSD REGISTER 0–11  
Address [SR4–SR0] = 13H–1EH  
There are 12 OSD registers as shown in Figure 42. There are  
four bits for each Y, Cb, and Cr value, and there are four zeros  
added to give the complete byte for each value loaded internally.  
(Y0 = [Y03, Y02, Y01, Y00, 0, 0, 0, 0], Cb = [Cb3, Cb2, Cb1, Cb0, 0,  
0, 0, 0,], Cr = [Cr3, Cr2, Cr1, Cr0, 0, 0, 0, 0].)  
MR36  
MR35  
MR34  
MR33  
MR32  
MR31  
MR30  
MR30  
MR37  
CLOCK OUTPUT  
MR33-32  
OSD ENABLE  
MR35  
MR37  
0
0
1
1
0
1
0
1
CLOCK OUTPUT OFF  
13.5MHz OUTPUT  
27MHz OUTPUT  
REV CODE  
(READ ONLY)  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
0
1
DISABLE  
ENABLE  
CLOCK OUTPUT OFF  
INPUT DEFAULT COLOR  
MR36  
MR34  
VBI PASSTHROUGH  
MR31  
ZERO SHOULD  
BE WRITTEN TO  
THIS BIT  
0
1
INPUT COLOR  
BLACK  
0
1
DISABLE  
ENABLE  
Figure 41. Mode Register 3  
Y0  
Cr0  
Y1  
Cb0  
Cr1  
Cb1  
Cr7  
Cb7  
Figure 42. OSD Registers  
Rev. C | Page 32 of 44  
 
 
ADV7177/ADV7178  
BOARD DESIGN AND LAYOUT CONSIDERATIONS  
The ADV7177/ADV7178 are highly integrated circuits  
containing both precision analog circuitry and high speed  
digital circuitry. The parts have been designed to minimize  
interference effects on the integrity of the analog circuitry by  
the high speed digital circuitry. It is imperative that the same  
design and layout techniques be applied to the system-level  
design so that high speed and accurate performance is achieved.  
Figure 43 shows the analog interface between the device and  
monitor. The layout should be optimized for lowest noise on the  
ADV7177/ADV7178 power and ground lines by shielding the  
digital inputs and providing good decoupling. The lead length  
between groups of VAA and GND pins should by minimized to  
minimize inductive ringing.  
SUPPLY DECOUPLING  
For optimum performance, bypass capacitors should be  
installed using the shortest leads possible, consistent with  
reliable operation, to reduce the lead inductance. Best  
performance is obtained with 0.1 µF ceramic capacitor  
decoupling. Each group of VAA pins on the ADV7177/ADV7178  
must have at least one 0.1 µF decoupling capacitor to GND.  
These capacitors should be placed as close to the device as  
possible. Note that while the ADV7177/ADV7178 contains  
circuitry to reject power-supply noise, this rejection decreases  
with frequency. If a high frequency switching power supply is  
used, the designer should pay close attention to reducing power  
supply noise and consider using a 3-terminal voltage regulator  
for supplying power to the analog power plane.  
GROUND PLANES  
The ground plane should encompass all ADV7177/ADV7178  
ground pins, voltage reference circuitry, power supply bypass  
circuitry for the ADV7177/ADV7178, the analog output traces,  
and all digital signal traces leading up to the ADV7177/  
ADV7178. The ground plane is the boards common ground  
plane.  
DIGITAL SIGNAL INTERCONNECT  
The digital inputs to the ADV7177/ADV7178 should be  
isolated as much as possible from the analog outputs and other  
analog circuitry. Also, these input signals should not overlay the  
analog power plane.  
Due to the high clock rates involved, long clock lines to the  
ADV7177/ADV7178 should be avoided to reduce noise pickup.  
Any active termination resistors for the digital inputs should be  
connected to the regular PCB power plane (VCC) and not to the  
analog power plane.  
POWER PLANES  
The ADV7177/ADV7178 and any associated analog circuitry  
should have their own power plane, referred to as the analog  
power plane (VAA). This power plane should be connected to  
the regular PCB power plane (VCC) at a single point through a  
ferrite bead. This bead should be located within three inches of  
the ADV7177/ADV7178.  
ANALOG SIGNAL INTERCONNECT  
The ADV7177/ADV7178 should be located as close to the  
output connectors as possible to minimize noise pickup and  
reflections due to impedance mismatch.  
The metallization gap separating the device power plane and  
board power plane should be as narrow as possible to minimize  
the obstruction to the flow of heat from the device into the  
general board.  
The video output signals should overlay the ground plane, not  
the analog power plane, to maximize the high frequency power-  
supply rejection. Digital inputs, especially pixel data inputs and  
clocking signals, should never overlay any of the analog signal  
circuitry and should be kept as far away as possible.  
The PCB power plane should provide power to all digital logic  
on the PC board, and the analog power plane should provide  
power to all ADV7177/ADV7178 power pins and voltage  
reference circuitry.  
For best performance, the outputs should each have a 75 Ω load  
resistor connected to GND. These resistors should be placed as  
close as possible to the ADV7177/ADV7178 to minimize  
reflections.  
Plane-to-plane noise coupling can be reduced by ensuring that  
portions of the regular PCB power and ground planes do not  
overlay portions of the analog power plane, unless they can be  
arranged so that the plane-to-plane noise is common mode.  
The ADV7177/ADV7178 should have no floating inputs. Any  
inputs that are not required should be tied to ground.  
Rev. C | Page 33 of 44  
 
ADV7177/ADV7178  
POWER SUPPLY DECOUPLING  
FOR EACH POWER SUPPLY GROUP  
0.1µF  
0.01µF  
5V (V  
L1  
5V (V  
)
5V (V )  
AA  
AA  
(FERRITE BEAD)  
)
5V (V  
)
AA  
AA  
5V  
(V  
GND  
0.1µF  
0.1µF  
)
10µF  
33µF  
CC  
1, 20, 28, 30  
32  
25  
V
COMP  
V
REF  
AA  
11  
34  
35  
36  
27  
26  
31  
OSD_EN  
OSD_0  
OSD_1  
OSD_2  
LUMA  
75Ω  
75Ω  
75Ω  
OSD  
INPUTS  
ADV7177/  
ADV7178  
CHROMA  
37–41,  
3–10, 12–14  
PIXEL DATA  
P15–P0  
5V (V  
)
CVBS  
AA  
15  
16  
17  
22  
44  
43  
2
HSYNC  
UNUSED  
INPUTS  
SHOULD BE  
GROUNDED  
4kΩ  
FIELD/VSYNC  
BLANK  
RESET  
100nF  
5V (V  
)
5V (V  
)
CC  
CC  
RESET  
5kΩ  
5kΩ  
CLOCK  
100Ω  
100Ω  
27MHz  
XTAL  
33pF  
23  
24  
24  
SCLOCK  
SDATA  
CLOCK  
MPU BUS  
CLOCK/2  
33pF  
27MHz OR 13.5MHz  
CLOCK OUTPUT  
R
SET  
ALSB  
18  
GND  
100Ω  
19, 21  
29, 42  
5V (V  
)
AA  
10kΩ  
Figure 43. Recommended Analog Circuit Layout  
Rev. C | Page 34 of 44  
ADV7177/ADV7178  
CLOSED CAPTIONING  
The ADV7177/ADV7178 support closed captioning, which  
conforms to the standard television synchronizing waveform  
for color transmission. Closed captioning is transmitted during  
the blanked active line time of Line 21 of the odd fields and  
Line 284 of even fields.  
FCC Code of Federal Regulations (CFR) 47 Section 15.119 and  
EIA608 describe the closed captioning information for Line 21  
and Line 284.  
The ADV7177/ADV7178 uses a single buffering method.  
This means that the closed captioning buffer is only 1 byte  
deep, therefore there is no frame delay in outputting the closed  
captioning data unlike other 2-byte-deep buffering systems.  
The data must be loaded at least one line before (Line 20 or  
Line 283) it is outputted on Line 21 and Line 284. A typical  
Closed captioning consists of a 7-cycle sinusoidal burst that is  
frequency and phase locked to the caption data. After the clock  
run-in signal, the blanking level is held for 2 data bits and is  
followed by a Logic 1 start bit. The start bit is followed by16 bits  
of data. These consist of two, 8-bit bytes, seven data bits and one  
odd parity bit. The data for these bytes is stored in closed  
captioning Data Registers 0 and 1.  
implementation of this method is to use  
to interrupt  
VSYNC  
a microprocessor, which in turn loads the new data (2 bytes)  
every field. If no new data is required for transmission, zeros  
must be inserted in both data registers; this is called nulling.  
The ADV7177/ADV7178 also supports the extended closed  
captioning operation, which is active during even fields, and is  
encoded on Scan Line 284. The data for this operation is stored  
in closed captioning extended Data Registers 0 and 1. All clock  
run-in signals and timing to support closed captioning on  
Line 21 and Line 284 are generated automatically by the  
ADV7177/ ADV7178. All pixels inputs are ignored during  
Line 21 and Line 284.  
It is also important to load control codes, all of which are  
double bytes on Line 21, or a TV does not recognize them. If  
you have a message such as “Hello World,” which has an odd  
number of characters, it is important to pad it out to an even  
number to include the end-of-caption, 2-byte control code in  
the same field.  
10.5 ± 0.25µs  
12.91µs  
D0–D6  
D0–D6  
50 IRE  
40 IRE  
REFERENCE COLOR BURST  
(9 CYCLES)  
FREQUENCY = F = 3.579545MHz  
SC  
AMPLITUDE = 40 IRE  
10.003µs  
27.382µs  
33.764µs  
Figure 44. Closed Captioning Waveform (NTSC)  
Rev. C | Page 35 of 44  
 
ADV7177/ADV7178  
WAVEFORM ILLUSTRATIONS  
NTSC WAVEFORMS WITH PEDESTAL  
PEAK COMPOSITE  
REF WHITE  
1268.1mV  
1048.4mV  
130.8 IRE  
100 IRE  
714.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
387.6mV  
334.2mV  
SYNC LEVEL  
48.3mV  
–40 IRE  
Figure 45. NTSC Composite Video Levels  
100 IRE  
REF WHITE  
1048.4mV  
714.2mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
387.6mV  
334.2mV  
–40 IRE  
SYNC LEVEL  
48.3mV  
Figure 46. NTSC Luma Video Levels  
963.8mV  
PEAK CHROMA  
629.7mVp-p  
286mVp-p  
650mV  
BLANK/BLACK LEVEL  
PEAK CHROMA  
335.2mV  
0mV  
Figure 47. NTSC Chroma Video Levels  
100 IRE  
REF WHITE  
1052.2mV  
720.8mV  
7.5 IRE  
0 IRE  
BLACK LEVEL  
BLANK LEVEL  
387.5mV  
331.4mV  
–40 IRE  
SYNC LEVEL  
45.9mV  
Figure 48. NTSC RGB Video Levels  
Rev. C | Page 36 of 44  
 
ADV7177/ADV7178  
NTSC WAVEFORMS WITHOUT PEDESTAL  
130.8 IRE  
100 IRE  
PEAK COMPOSITE  
REF WHITE  
1289.8mV  
1052.2mV  
714.2mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
338mV  
52.1mV  
–40 IRE  
Figure 49. NTSC Composite Video Levels  
100 IRE  
REF WHITE  
1052.2mV  
714.2mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
338mV  
52.1mV  
–40 IRE  
Figure 50. NTSC Luma Video Levels  
PEAK CHROMA  
694.9mVp-p  
286mVp-p  
BLANK/BLACK LEVEL  
PEAK CHROMA  
0mV  
Figure 51. NTSC Chroma Video Levels  
100 IRE  
REF WHITE  
1052.2mV  
715.7mV  
0 IRE  
BLANK/BLACK LEVEL  
SYNC LEVEL  
336.5mV  
51mV  
–40 IRE  
Figure 52. NTSC RGB Video Levels  
Rev. C | Page 37 of 44  
 
ADV7177/ADV7178  
PAL WAVEFORMS  
PEAK COMPOSITE  
REF WHITE  
1284.2mV  
1047.1mV  
696.4mV  
350.7mV  
50.8mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
Figure 53. PAL Composite Video Levels  
REF WHITE  
1047mV  
696.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
350.7mV  
50.8mV  
Figure 54. PAL Luma Video Levels  
989.7mV  
650mV  
PEAK CHROMA  
672mVp-p  
300mVp-p  
BLANK/BLACK LEVEL  
PEAK CHROMA  
317.7mV  
0mV  
Figure 55. PAL Chroma Video Levels  
REF WHITE  
1050.2mV  
698.4mV  
BLANK/BLACK LEVEL  
SYNC LEVEL  
351.8mV  
51mV  
Figure 56. PAL RGB Video Levels  
Rev. C | Page 38 of 44  
 
ADV7177/ADV7178  
UV WAVEFORMS  
505mV  
505mV  
423mV  
334mV  
BETACAM LEVEL  
0mV  
82mV  
171mV  
0mV  
BETACAM LEVEL  
0mV  
–82mV  
0mV  
–171mV  
–423mV  
–505mV  
–334mV  
–505mV  
Figure 57. NTSC 100% Color Bars Without Pedestal, U Levels  
Figure 60. NTSC 100% Color Bars Without Pedestal, V Levels  
467mV  
467mV  
391mV  
309mV  
BETACAM LEVEL  
76mV  
158mV  
0mV  
BETACAM LEVEL  
0mV  
–76mV  
0mV  
0mV  
–158mV  
–391mV  
–467mV  
–309mV  
–467mV  
Figure 58. NTSC 100% Color Bars With Pedestal, U Levels  
Figure 61. NTSC 100% Color Bars With Pedestal, V Levels  
350mV  
350mV  
293mV  
232mV  
SMPTE LEVEL  
57mV  
118mV  
0mV  
0mV  
SMPTE LEVEL  
–57mV  
0mV  
0mV  
–118mV  
–293mV  
–350mV  
–232mV  
–350mV  
Figure 59. PAL 1005 Color Bars, U Levels  
Figure 62. PAL 100% Color Bars, V Levels  
Rev. C | Page 39 of 44  
 
ADV7177/ADV7178  
REGISTER VALUES  
The ADV7177/ADV7178 registers can be set depending on the  
user standard required.  
PAL B, D, G, H, I (FSC = 4.43361875 MHZ)  
Address Data  
Table 14.  
The following examples give the various register formats for  
several video standards. In each case the output is set to com-  
posite output with all DACs powered up and with the  
Address  
Value  
(Hex)  
(Hex)  
ꢀꢀ  
ꢀ±  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀ5  
ꢀ6  
ꢀ7  
ꢀ8  
ꢀ9  
ꢀA  
ꢀB  
ꢀC  
ꢀD  
ꢀE  
Register Name  
BLANK  
Mode Register ꢀ  
Mode Register ±  
ꢀ±  
ꢀꢀ  
CB  
8A  
ꢀ9  
2A  
ꢀ8  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
8ꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
input control disabled. Also, the burst and color information are  
enabled on the output and the internal color bar generator is  
switched off. In the examples shown, the timing mode is set to  
Mode 0 in slave format. TR02–TR00 of the Timing Register 0  
control the timing modes. For a detailed explanation of each bit  
in the command registers, see the Register Programming  
section. TR07 should be toggled after setting up a new timing  
mode. Timing Register 1 provides added control over the  
position and duration of the timing signals. In the examples,  
this register is programmed in default mode.  
Subcarrier Frequency Register ꢀ  
Subcarrier Frequency Register ±  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register ꢀ  
Timing Register ꢀ  
Closed Captioning Ext. Register ꢀ  
Closed Captioning Ext. Register ±  
Closed Captioning Register ꢀ  
Closed Captioning Register ±  
Timing Register ±  
NTSC (FSC = 3.5795454 MHZ)  
Address Data  
Table 13.  
Mode Register 2  
Pedestal Control Register ꢀ  
Pedestal Control Register ±  
Pedestal Control Register 2  
Pedestal Control Register 3  
Mode Register 3  
Address  
(Hex)  
Value  
(Hex)  
ꢀF  
Register Name  
±ꢀ  
±±  
±2  
ꢀꢀ  
ꢀ±  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀ5  
ꢀ6  
ꢀ7  
ꢀ8  
ꢀ9  
ꢀA  
ꢀB  
ꢀC  
ꢀD  
ꢀE  
ꢀF  
±ꢀ  
±±  
±2  
Mode Register ꢀ  
Mode Register ±  
ꢀ4  
ꢀꢀ  
±F±  
7C  
Fꢀ  
2±  
ꢀꢀ  
ꢀ8  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
8ꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
Subcarrier Frequency Register ꢀ  
Subcarrier Frequency Register ±  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register  
Timing Register ꢀ  
Closed Captioning Register ꢀ  
Closed Captioning Ext. Register ±  
Closed Captioning Register ꢀ  
Closed Captioning Register ±  
Timing Register ±  
PAL M (FSC = 3.57561149 MHZ)  
Address Data  
Table 15.  
Address  
Value  
(Hex)  
(Hex)  
ꢀꢀ  
ꢀ±  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀ5  
ꢀ6  
ꢀ7  
ꢀ8  
ꢀ9  
ꢀA  
ꢀB  
ꢀC  
ꢀD  
ꢀE  
Register Name  
Mode Register ꢀ  
Mode Register ±  
ꢀ6  
ꢀꢀ  
A3  
EF  
E6  
2±  
ꢀ8  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
8ꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
Subcarrier Frequency Register ꢀ  
Subcarrier Frequency Register ±  
Subcarrier Frequency Register 2  
Subcarrier Frequency Register 3  
Subcarrier Phase Register ꢀ  
Timing Register ꢀ  
Closed Captioning Ext. Register ꢀ  
Closed Captioning Ext. Register ±  
Closed Captioning Register ꢀ  
Closed Captioning Register ±  
Timing Register ±  
Mode Register 2  
Pedestal Control Register ꢀ  
Pedestal Control Register ±  
Pedestal Control Register 2  
Pedestal Control Register 3  
Mode Register 3  
± Fscꢀ = ±6h on default/power-up. This should be set to ±Fh.  
Mode Register 2  
Pedestal Control Register ꢀ  
Pedestal Control Register ±  
Pedestal Control Register 2  
Pedestal Control Register 3  
Mode Register 3  
ꢀF  
±ꢀ  
±±  
±2  
Rev. C | Page 4ꢀ of 44  
 
 
ADV7177/ADV7178  
OPTIONAL OUTPUT FILTER  
0
–16.7  
–33.3  
–50.0  
–66.7  
–83.3  
–100  
If an output filter is required for the CVBS, Y, UV, Chroma, and  
RGB outputs of the ADV7177/ADV7178, the filter in Figure 63  
can be used. Plots of the filter characteristics are shown in  
Figure 64. An output filter is not required if the outputs of the  
ADV7177/ADV7178 are connected to an analog monitor or an  
analog TV; however, if the output signals are applied to a system  
where sampling is used (for example, digital TV), a filter is  
required to prevent aliasing.  
L
L
L
1µH  
2.7µH  
0.68µH  
IN  
OUT  
C
C
C
56pF  
R
75Ω  
R
470pF  
330pF  
75Ω  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 63. Output Filter  
Figure 64. Output Filter Plot  
Rev. C | Page 4± of 44  
 
 
 
ADV7177/ADV7178  
OPTIONAL DAC BUFFERING  
V
AA  
For external buffering of the ADV7177/ADV7178 DAC  
outputs, the configuration in Figure 65 is recommended. This  
configuration shows the DAC outputs running at half (18 mA)  
their full-current (34.7 mA) capability. This allows the devices  
to dissipate less power; the analog current is reduced by 50ꢀ  
with a RSET of 300 Ω and a RLOAD of 75 Ω. This mode is  
recommended for 3.3 V operation as optimum performance is  
obtained from the DAC outputs at 18 mA with a VAA of 3.3 V.  
This buffer also adds extra isolation on the video outputs, as the  
buffer circuit in Figure 66 shows. When calculating absolute  
output full current and voltage, use the following equation:  
ADV7177/ADV7178  
OUTPUT  
BUFFER  
V
REF  
DAC A  
DAC B  
DAC C  
75  
75Ω  
75Ω  
OUTPUT  
BUFFER  
PIXEL  
PORT  
DIGITAL  
CORE  
OUTPUT  
BUFFER  
R
SET  
300Ω  
V
OUT = IOUT × RLOAD  
Figure 65. Output DAC Buffering Configuration  
(
VREF × K  
RSET  
)
IOUT  
=
V
+
CC  
where K = 4.2146 constant, VREF = 1.235 V  
5
4
3
OUTPUT TO  
TV MONITOR  
1
AD8051  
INPUT/  
OPTIONAL  
FILTER O/P  
2
V
CC  
Figure 66. Recommended Output DAC Buffer  
Rev. C | Page 42 of 44  
 
 
 
ADV7177/ADV7178  
OUTLINE DIMENSIONS  
1.03  
0.88  
0.73  
2.45  
MAX  
13.90  
BSC SQ  
33  
23  
34  
22  
SEATING  
PLANE  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
10°  
6°  
2°  
2.10  
2.00  
1.95  
0.23  
0.11  
VIEW A  
PIN 1  
44  
12  
7°  
0°  
1
11  
0.25 MIN  
0.10  
COPLANARITY  
0.45  
0.30  
0.80 BSC  
LEAD PITCH  
VIEW A  
LEAD WIDTH  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MO-112-AA-1  
Figure 67. Metric Quad Flat Package [MQFP]  
(S-44-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADV7±77KS  
ADV7±77KS-REEL  
ADV7±77KSZ±  
ADV7±77KSZ-REEL±  
ADV7±78KS  
Temperature Range  
ꢀ°C to 7ꢀ°C  
ꢀ°C to 7ꢀ°C  
ꢀ°C to 7ꢀ°C  
ꢀ°C to 7ꢀ°C  
Package Description  
Package Option  
S-44-2  
S-44-2  
S-44-2  
S-44-2  
44-Lead Metric Quad Flat Package (MQFP)  
44-Lead Metric Quad Flat Package (MQFP)  
44-Lead Metric Quad Flat Package (MQFP)  
44-Lead Metric Quad Flat Package (MQFP)  
44-Lead Metric Quad Flat Package (MQFP)  
44-Lead Metric Quad Flat Package (MQFP)  
ꢀ°C to 7ꢀ°C  
ꢀ°C to 7ꢀ°C  
S-44-2  
S-44-2  
ADV7±78KS-REEL  
± Z = Pb-free part.  
Rev. C | Page 43 of 44  
 
 
 
ADV7177/ADV7178  
NOTES  
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00228–0-3/05(C)  
Rev. C | Page 44 of 44  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY